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Abstract 

Disease management is crucial in the aquaculture industry and to date it 

involves the usage of antibiotics to treat and prevent disease, especially bacterial 

infections. However, there is a growing concern over the problems caused by 

conventional antibiotics in aquatic and terrestrial environments (eg, bacteria resistant 

to multiple antibiotics). Therefore, it is crucial to reduce the usage of conventional 

antibiotics or find alternative novel antibacterial agents to manage bacterial diseases 

and antibiotic-resistant bacteria. Antimicrobial peptides are natural antibiotics 

produced from multicellular organisms and have the ability to kill bacteria and to 

synergise with other antibiotics. In this study I have analysed the in-vitro antibacterial 

activity of synthetic Atlantic cod piscidin and its ability to permeabilize the bacterial 

membrane. Moreover, I have investigated the antimicrobial properties of synthetic cod 

piscidin in combination with several conventional antibiotics, including oxolinic acid, 

oxytetracycline hydrochloride, and sulfadiazine/trimethoprim, which are amongst the 

most important groups of antibiotics for prevention of bacterial diseases in 

aquaculture. Five test bacteria, including two Gram-positive bacteria (Micrococcus 

lysodeikticus and Planococcus citreus) and three Gram-negative bacteria (Yersinia 

ruckeri VI 3629, Vibrio anguillarum VI-F-258-3 and Aeromonas salmonicida NCIMB 

1102) were tested for synergistic activity of peptide-antibiotic combination. 

Antibacterial activity results showed moderate synergism i) between oxolinic acid and 

synthetic cod piscidin against V. anguillarum VI-F-258-3; ii) combined 

oxytetracycline hydrochloride and synthetic cod piscidin against V. anguillarum VI-F-

258-3 and A. salmonicida NCIMB 1102; iii) and combined sulfadiazine/trimethoprim 

and synthetic cod piscidin against M. lysodeikticus, A. salmonicida NCIMB 1102, Y. 

ruckeri VI 3629. In contrast, no synergistic activity of either test antibiotics with 

synthetic cod piscidin was found against P. citreus. The data show that synthetic cod 

piscidin can reduce the concentration of conventional antibiotics required to inhibit 

bacterial growth of fish pathogenic bacteria, namely Y. ruckeri VI 3629, V. 

anguillarum VI-F-258-3 and A. salmonicida NCIMB 1102. Flow cytometry analysis 

revealed that this peptide could form stable pores in the bacterial membrane, which 

might be its main mechanism of action. These properties of synthetic cod piscidin 

highlight its potential an novel antibacterial agent that in a not so distant future may be 

used in disease control management in commercial aquaculture systems. 
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Chapter 1. Introduction 

1.1. Status of cod farming 

1.1.1. Aquaculture industry 

Atlantic cod (Fig. 1) is a marine cold-water fish species, which is demersal and 

distributed in the North Atlantic from inshore regions to deeper waters. This fish is 

omnivorous and while young fish feed on plankton and small invertebrates (such as 

crustaceans, polychaetes, and echinoderms), adults feed on invertebrates, fish and 

occasionally seaweeds (Cohen et al., 1990). 

 

Figure 1. Atlantic cod, Gadus morhua Linnaeus 1758 (FAO, 2010). 

Nowadays, Atlantic cod is important for the aquaculture industry, especially in 

Norway, where it is a relatively new commercially farmed species (Grave et al., 2008). 

According to FAO, the global Atlantic cod capture has decreased steadily since 1968 

until 2007 while its global aquaculture production has increased from 2001 until 2007 

(Fig. 2) (FAO, 2010). Moreover, Norwegian aquaculture production of Atlantic cod 

has increased during the period 2000-2005 along with the usage of antimicrobial 

agents used in Norwegian aquaculture of Atlantic cod (Grave et al., 2008).  
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Figure 2. The global capture (A) and aquaculture production (B) for Atlantic cod 

(Gadus morhua) (FAO, 2010). 

1.1.2. Atlantic cod diseases 

Atlantic cod farming has traditionally been affected by bacterial diseases 

caused by two dominant pathogens, including Vibrio sp. and Aromonas spp. 

(Samuelsen et al., 2006). Vibriosis is the most serious diseases that caused by Vibrio 

sp. (eg. Vibrio anguillarum). Head and eyes are the main target organs of infection and 

this disease has clinical signs such as fin erosion and haemorrhages. Aeromonas 

salmonicida, the causative agent of furunculosis in Atlantic salmon, also infects 

Atlantic cod. The clinical signs include haemorrhages and necrosis of several organs, 

such as gills and skin (Samuelsen et al., 2006). Importantly, francisellosis is a new 

serious bacterial disease affecting Atlantic cod in Norway (Nylund et al., 2006). This 

disease is caused by Fracisella sp. and is characterized by haemorrahagic nodules in 

the skin and swollen kidney and spleen (Olsen et al., 2006). Therefore, antimicrobial 

agents (e.g., antibiotics) are necessary to manage the pathogenic bacteria invading 

Atlantic cod in aquaculture and preventing disease outbreaks that cause huge economic 

losses. 
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1.2. Antibiotics 

The most common compounds used in health management in aquaculture are 

antibiotics. An antibiotic is a biologically or synthetically produced substance 

(Graslund and Bengtsson, 2001) that has the ability to destroy bacteria or inhibit the 

bacterial growth (Sapkota et al., 2008). There are many different common groups of 

antibiotics including tetracyclines, quinolones, sulphonamides, aminopyrimidines, and 

amphenicols that are applied in aquaculture worldwide (Grave et al., 2008; Samuelsen 

et al., 2006; Schmidt et al., 2000). In particular, oxytetracycline, oxolinic acid, and 

combination of sulfadiazine with trimethoprim are the most commonly used antibiotics 

in Norwegian aquaculture (Sapkota et al., 2008). These antibiotic agents can protect 

cultured fish from bacterial infections to some extent but nowadays there are growing 

concerns with antibiotic-resistant bacteria. This issue has intensified to search for 

novel antimicrobial agents that can be used as alternative to antibiotics to treat and 

prevent bacterial diseases, whilst having less or no negative effect to other organisms 

in the environments surrounding aquaculture system. 

1.2.1. Main groups of antibiotics used in aquaculture and 

their mechanisms 

1.2.1.1. Quinolones are the group of antibiotics most commonly used in aquaculture. 

In particular, oxolinic acid is one antibiotic in this group that is widely applied to treat 

and prevent bacterial diseases in cultured commercial fish. It is a weak acid soluble in 

alkaline solution (Samuelsen et al., 1992) that is of synthetic origin and mainly used 

against Gram-negative bacteria, which it destroys by inhibiting their DNA-metabolism 

(Graslund and Bengtsson, 2001). These antibiotics  binding to complexes between 

DNA and gyrase or topoisomerase IV, leading to changes in the enzyme conformation. 
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The resulting quinolone-gyrase-DNA complex then inhibits DNA replication 

(Hawkey, 2003). 

1.2.1.2. Sulfonamides belong to an antibiotic group that is usually used in 

combination with trimethoprim against both Gram-negative and Gram-positive 

bacteria by a two step mechanism. In the first step, they impair tetrahydrofolate 

synthesis by inhibiting p-aminobenzoic acid, which leads to a decrease in nucleotide 

levels and in the second step they inhibit dihydrofol acid reductase, ultimately resulting 

in inhibition of bacterial growth (Graslund and Bengtsson, 2001; Vitale et al., 2003). 

1.2.1.3. Tetracyclines are normally used in aquaculture to control bacterial diseases in 

salmonids, namely furunculosis. Oxytetracycline is usually used in aquaculture, since 

it has broad-spectrum activity against a wide range of Gram-negative or Gram-positive 

bacteria. These antibiotics inhibit protein synthesis (Graslund and Bengtsson, 2001) by 

protecting the aminoacyl tRNA and the ribosomes of bacteria (Chopra and Roberts, 

2001). 

1.2.2. The negative effect of antibiotics 

1.2.2.1.Antibiotic-resistant bacteria 

Normally antibiotic-resistant bacteria arise by DNA mutations as well as by 

horizontal gene transfer mechanisms such as conjugation, conjugative transposition 

(Cabello, 2006) and transduction with other bacteria (Sapkota et al., 2008). For 

example, oxolinic acid works by constraining the DNA-metabolism of bacteria but 

unfortunately oxolinic acid-resistant bacteria are able to repair the damaged DNA due 

to resistance mutations (Graslund and Bengtsson, 2001). Plasmid-mediated and 

plasmid-transmitted resistance (Graslund and Bengtsson, 2001) are common for 

sulfonamides and tetracycline, and trimethoprim resistances genes are found in 

plasmids of both Gram-negative and Gram-positive bacteria (Sorum and L'Abee-Lund, 
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2002). Moreover, it has been reported that oxytetracycline-resistance plasmids can be 

transferred from fish pathogenic bacteria (Aeromonas) to human Escherichia coli 

(Rhodes et al., 2000). This is a very clear example of how resistance genes from 

antibiotics resistant bacteria in aquatic environments can be transferred to terrestrial 

bacterial, which might lead to antibiotic resistant bacteria in the terrestrial 

environment. 

1.2.2.2. The antibiotics residues accumulation 

The leaching of antibiotics from uneaten feed, excretion of actives metabolites, 

and excessive usage of antibiotics can be deposited in sediments on the bottom of the 

pond, river or sea bed and lead to accumulation of antibiotics residues for long periods 

of the time. As the antibiotics residues diffuse into the sediment, some of them can be 

digested by aquatic organisms but the remaining antibiotic residues can induce 

antibiotic-resistant bacteria amongst the normal microflora in the sediment (Cabello, 

2006). Antibiotic residues accumulate not only in the sediment but also distribute 

throughout the water column. These residues are in fact rich nutrients for growing 

plankton. The rapid growing of plankton due to high nutrient uptake leads to 

eutrophication, inducing changes in the ecological equilibrium (eg, producing an 

anoxic environment that has a negative impact to aquatic and terrestrial organisms 

(Chopra and Roberts, 2001)). In another study of antibiotic residues conducted in 

Norway, oxolinic acid residues have been detected in liver, plasma, and muscle of wild 

fish and crab; the source of this antibiotic residues was the medication administered in 

fish farms (Samuelsen et al., 1992). From these supporting reports, antibiotics residues 

from aquaculture activity in water column and sediment have negative impact directly 

to wild fauna and flora in aquatic environment. Therefore, it is necessary to find 

alternative antibiotics to use in the aquaculture industry. 
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1.3. Antimicrobial peptides and their mode of action 

Antimicrobial peptides are natural antibiotics produced by multicellular 

organisms, including plants, insects, amphibians, teleosts and mammals (McCafferty et 

al., 1999) (Fig. 3). They are low molecular weight compounds that consist of less than 

100 amino acids (Smith and Fernandes, 2009) and they have frequently been proposed 

as alternative anti-infective agents (Hancock, 1997). Antimicrobial peptides have been 

isolated from different cells, tissues and secretions from vertebrates, e.g., skin of 

rainbow trout (Fernandes and Smith, 2002), human urine (Park et al., 2001), epidermal 

mucus of Atlantic cod (Bergsson et al., 2005) and mast cells of hybrid striped bass 

(Silphaduang and Noga, 2001). Antimicrobial peptides are crucial components in 

innate defense against microbes (Boman, 1998), which is an important host defense 

mechanism for most living organisms both in terrestrial and aquatic environments but 

especially for aquatic organisms, which inhabit a complex environment rich in 

potential pathogens. Fish possess a diverse suite of antimicrobial peptides and these 

may play a more substantial role in the innate immune system of fish when compared 

to terrestrial mammals, which have a more highly evolved adaptive immune system 

(Douglas et al., 2003). Fish antimicrobial peptides have been isolated from different 

species (Table 1) and can be grouped in five families, based on their homology, 

secondary structure and genomic organization, including: the cathelicidins, defensins, 

LEAPs, piscidins and histone-dirived peptides (Smith and Fernandes, 2009). 
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Table 1. Antimicrobial peptides (AMPs) isolated from different species of fishes. 

AMPs Species of fish References 

CATH-1, -2 Rainbow trout 

(Oncorhynchus mykiss) 

Chang et al. (2005) 

CATH-1, -2 Atlantic salmon 

(Salmo salar) 

Chang et al. (2006) 

Histone H1 Coho salmon 

(Oncorhynchus kisutch) 

Patrzykat et al. (2001) 

Histone H2A Rainbow trout 

(Oncorhynchus mykiss) 

Fernandes et al. (2002) 

Histone H2B Atlantic cod 

(Gadus morhua) 

Bergsson et al. (2005) 

Piscidins Hybrid striped bass                  

(Morone chrysops x Morone saxatilis) 

Silphaduang and Noga, 

(2001) 

Pleurocidins Atlantic halibut 

(Hippoglossus hippoglossus) 

Patrzykat et al.(2003) 

Moronecidins Striped bass 

(Morone saxatilis) 

Lauth et al.(2002) 

Ribosomal Atlantic cod 

(Gagus morhua) 

Bergsson et al.(2005) 

Hepcidins Winter flounder                
(Pleuronectes americanus) 

Douglas et al.(2003) 

Hepcidin Hybrid striped bass                  

(Morone chrysops x Morone saxatilis) 

Lauth et al.(2005) 

Parasin I Amur catfish 

(Parasilurus asotus) 

Park et al.(1998b) 
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Antimicrobial peptides kill microbes through different mechanisms, namely by 

depolarizing and permeabilizing bacterial cell membrane, disrupting cell metabolism 

or interfering with DNA synthesis (Smith and Fernandes, 2009). The most common 

mode of action of antimicrobial peptides is explained by their ability to disrupt outer 

membrane of Gram-positive and Gram-negative bacteria by forming channels in the 

cytoplasmic membrane (Fig. 4). Typically, an antimicrobial peptide containing 

positively charged residues has the ability to interact with the negatively charged 

phospholipid heads on the bacterial membranes, their hydrophobic faces directed 

towards the bacterial membrane interior and their hydrophilic faces pointing inwards to 

form a channel that leads to release of intracellular components and causing bacterial 

cell dead (Hancock, 1997; Hancock and Chapple, 1999; Hancock and Scott, 2000). 

 

Figure 3. Several cationic antimicrobial peptides. 

Red is the Basic amino acids (positively charged) are coded red, whereas hydrophobic 

amino acids are shown in green (Zasloff, 2002). 



 9 

 

Figure 4. Mechanism of action of cationic peptides through pore formation . 

Positively charged antimicrobial peptides bind the negatively charged phospholipids 

head groups in the bacterial cytoplasmic membrane. This interaction results in the 

formation of pores on the bacterial membrane, which then leads to leakage of ions and 

the intracellular contents of the bacterial cell (Hancock, 1997). 

1.3.1. Piscidin antimicrobial peptide. 

 Piscidins are antimicrobial peptides composed of approximately 22 amino acid 

residues that have been found just only fish. They are characterized a by conserved 

amino-terminus rich in histidine and phenylalanine and the mature peptides have a 

high positive net charge at physiological pH. (Chekmenev et al., 2006; Fernandes et 

al., 2010; Silphaduang and Noga, 2001; Sung et al., 2008). Sun et al. (2007) reported 

that the mandarin fish piscidin contained four exons and three introns that coded for a 

prepropeptide consisting of a signal peptide 22 amino acid, 22 amino acids of a mature 

peptide (contained high positively charge) and 35 amino acids of a C-terminal 

prodomain that is similar to the moronecidin gene from hybrid striped bass (Lauth et 

al., 2002) (Fig. 5). There are many peptide members in this family, including 

pleurocidin, piscidins, chrysophsins, epinecidin-1 and dicentracin, which are grouped 
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as piscidins based on their similarities in genomic organization, amino acid sequence, 

secondary structure and phylogeny. Piscidin displays broad-spectrum activity against 

bacteria, fungus, protozoan parasites and even some enveloped virus (Smith and 

Fernandes, 2009). The piscidins are amphipathic cationic peptides that contain highly 

positively charge and also hydrophobic side chains in a linear α-helical structure (Fig. 

6) that can be interact with the bacterial membrane through a similar mechanism to 

that of most antimicrobial peptides, leading to pore formation in the bacterial 

membrane followed by release of the intracellular contents (Fernandes et al., 2010; 

Noga et al., 2009). Piscidins have been found in the skin, intestine and gills (Cole et 

al., 2000; Cole et al., 1997; Lauth et al., 2002; Mulero et al., 2008), which are the 

mucosal tissues that exposed with pathogens in aquatic environment all the time. 

Therefore, piscidins are likely to play an important role in the first defence barrier 

against pathogen invasion in fish. 
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Figure 5. Bass moronecidin (piscidin) gene organization (Lauth et al., 2002). 

 

Figure 6. Amphipathic α-helical structure of piscidin from Atlantic cod (Gadus 

morhua). The hydrophilic residues are gray pentagons and hydrophobic residues are 

green diamonds. While the circles are neutral or polar amino acids (Fernandes et al., 

2010). 
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1.4. Synergistic activity 

Synergistic activity is defined as the combined positive interaction of two or 

more antimicrobial agents towards a single target molecule (McCafferty et al., 1999). 

The advantages of antimicrobial peptides over conventional antibiotics for therapeutic 

treatment are that they have broad spectrum for antibacterial, fungal and viral infection 

(Giacometti et al., 2000b) and they can synergise with other antibiotics (Cirioni et al., 

2006; Giacometti et al., 2000b; Park et al., 2006) and antimicrobial peptides (Lauth et 

al., 2005; Patrzykat et al., 2001) to enhancing their antimicrobial activity . to kill 

multiple-resistant strains of bacteria (Marr et al., 2006). The synergistic activity is 

evaluated by using fractional inhibitory concentration (FIC) index,  

FIC = FICA+FICB= [A]/ MICA+[B]/ MICB  

Where [A] and [B] are the minimal inhibitory concentration (MIC) of drug A and drug 

B in the combination, MICA and MICB are the MIC of drug A and drug B alone, and 

FICA and FICB are the FIC of combined drug A and drug B.  

The FIC index is interpreted as follow: ≤0.5, good synergism; 1.0, additive; and 

>4.0, antagonism (Yan and Hancock, 2001). Synergism is a positive interaction, 

inasmuch as antimicrobial activity of combined antimicrobial agents show 

significantly greater than their individual activity when tested separately. Additively is 

the result that shows antimicrobial activity of combined agents show no significant 

interaction when compared with individual activity when tested separately. On the 

other hand, antagonism is a negative interaction that antimicrobial activity of 

combined antimicrobial agents shows significantly less than their individual activity 

when tested separately. (Amsterdam, 2005). 

This study focused on the synergistic potential of combining synthetic cod 

piscidin and conventional antibiotics to enhance their antibacterial activity in vitro  
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1.5. Main objectives 

1. To purify and characterize synthetic cod piscidin. 

2. To determine its spectrum of activity. 

3. To investigate the kinetics of killing of synthetic cod piscidin. 

4. To determine its haemolytic properties against cod erythrocytes. 

5. To investigate if synthetic cod piscidin can disrupt the bacterial membranes through 

pore formation. 

6. To ascertain if synthetic cod piscidins can potentiate the activity of other 

antibacterial compounds. 
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Chapter 2. Synthetic piscidin from Atlantic Cod 

(Gadus morhua L.) and its potential 

2.1. Materials and methods 

2.1.1. Sequence analysis 

 The protein sequences of teleosts piscidins were obtained from Gene bank of 

National Center for Biotecnology Information (NCBI) database 

(http://www.ncbi.nlm.nih.gov/) and then aligned with the ClustalW 

(http://align.genome.jp/) and performed the multiple sequence alignment by using 

BioEdit. Nine protein sequences of piscidins from difference teleost species (Table 2) 

including Atlantic cod were constructed the phylogenetic tree by Maximum likelihood 

using ATGC: Montpellier bioinformatics platform (PhyML, http://www.atgc-

montpellier.fr/phyml/) and performed the phylogenetic tree by MEGA 4. 

Table 2. The Gene bank of protein sequences of piscidin from teleost fishes that 

were obtained from NCBI database. 

Teleost species Gene Gene bank 

Gadus morhua Piscidin ACS91329.1 

Morone chrysops x Morone saxatilis Piscidin 3 P0C006.1 

Epinephelus fuscoguttatus Piscidin-like peptide ADE06665.1 

Epinephelus coioides Piscidin-like peptide ACE78291.1 

Epinephelus akaara Piscidin-like peptide ACE78290.1 

Larimichthys crocea Piscidin-like peptide ACE78289.1 

Siniperca chuatsi Moronecidin AAV65044.1 

Morone chrysops Moronecidin AAL40409.1 

Morone saxatilis Moronecidin Q8UUG0.1 
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2.1.2. Peptide synthesis 

The piscidin sequence, FIHHIIGWISHGVRAIHRAIHG was characterized 

from Atlantic cod by Ms Jareeporn Ruangsri, a doctoral student in Aquatic Animal 

Health and Welfare, Faculty of Biosciences and Aquaculture, Bodø University College 

(Ruangsri et al. unpublished). The synthetic cod piscidin was synthesized by Gen 

Script (The Biology CRO, USA) by using the mentioned sequence. The theoretical 

molecular weight was 2527 Da. 

2.1.3. Peptide purification 

2.1.3.1. High performance liquid chromatography 

The synthesized peptide was chromatographed by C18 reversed-phase HPLC 

using 0.1% trifluoroacetic acid (TFA) in distilled water (solution A) and 0.1% TFA in 

acetonitrite (solution B). The synthesized peptide was dissolved in 0.1% TFA in 

distilled water and filtered with 0.2 µm pore filter (Whatman International Ltd, 

England) before purified by HPLC. One hundred microliter of sample was injected 

onto the column and eluted with solution A and solution B at a flow rate of 1 ml/min. 

The column was washed and equilibrated with both buffer solutions until no peptides 

remained in the column that was detected by absorbance at 280 nm. After HPLC, the 

interested fractions were lyophilized by freeze dryer until the solution was removed 

and then dry material was resuspended in 0.01% acetic acid in distilled sterile water 

and kept in -80°C until used for sodium dodecylsulfate polyacrylamind gel 

electrophoresis (SDS-PAGE) and antibacterial activity assays. 
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2.1.4. Sodium dodecylsulfate polyacrylamind gel electropho-

resis (SDS-PAGE) 

The synthetic cod piscidin purification was modified from Fernandes and 

Smith (2002) base on Schagger and Vonjagow (1987) by using SDS-PAGE with the 

Tris-Tricine system, 16% separating gel, 14% spacer gel, and 5% stacking gel (the gel 

preparation is followed Table 3). The three gel layers were separated following 

separating gel high approximately 4.5 cm, spacer gel 1.5 cm, and stacking gel 1 cm. 

The purified peptide each interested fraction was prepared by mixing with 

protein loading buffer (0.61 % (w/v) Tris, 4% (w/v) SDS, 12% (w/v) glycerol, 0.01% 

(w/v) bromophenol blue, 2% (v/v) β-mercaptoethanol, pH 6.8), purified peptide : 

protein loading buffer = 1 : 1 and then denatured by heating at 95 °C for 5 min. The 

low molecular weight protein marker (New England BioLab, USA) in range 3.4-212 

kDa was used. Anode (2.42 % (w/v) Tris, pH 8.90) and cathode (1.21 % (w/v) Tris, 

1.79% (w/v) Tricine (BDH), 0.1% (w/v) SDS, pH 8.25) buffer were put in the 

electrophoresis chambers (BioRad, USA). Six microliter of marker was added into the 

first well and followed by the 20 µl of complex sample in stacking gel. The gels were 

run in a Mini-PROTEIN® Tetra cell electrophoresis (BioRad, USA) approximately for 

2.30 h. (until the space between sample and end of separating gel was 1 cm) at 

constant current of 100 volt. The gels were stained with the coomassie staining (0.25 

% (w/v) Coomassie brilliant blue R250, 45 % (v/v) methanol and 10 % (v/v) glacial 

acetic acid) for 30 min and following by immersed in destaining solution (25 % (w/v) 

methanol and 7.5 % (w/v) acetic acid) until show clearly blue band of protein marker 

in the gel. 
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Table 3. The details of polyacrylamind gel preparation. 

Compositions Separating gel Spacer gel Stacking gel 

40 % Acrylamind:Bis (29:1), 

Accugel (ml) 

3.1 0.77 0.62 

Gel buffer (ml) (36.33% (w/v) 

Tris, 0.3 % (w/v) SDS, pH 8.45) 

2.5 1.0 1.55 

Water (ml) 0.65 1.23 4.08 

80% (w/v) Glycerol (ml) 1.25 - - 

10% (w/v) APS (µl) 75 30 100 

TEMED (µl) 7.5 3.0 10.0 

Approximately total volume 7.5 3.0 6.25 

This gel preparation for 16% separating gel, 14% spacer gel and 5% stacking gel that 

enough for 2 gels (separating gel 4.5 cm, spacer gel 1.5 cm, and stacking gel 1 cm) 

(Fernandes, 2002). 

2.1.5. MALDI-TOF MS 

The purified peptide fractions were collected based on antibacterial activity 

assay (two layer radial diffusion) of active fractions and approximately molecular mass 

by SDS-PAGE polyacrylamind gel electrophoresis (the theoretical molecular weight 

was 2527 Da). The molecular mass of collected fractions were determined by MALDI 

Micro MX (Waters/Micromass) using a nitrogen laser of 337 nm at the University of 

Tromsø, Norway. Each sample was mixed 1:1 with α-cyano-4-hydroxycinnamic acid. 

Glufibrinopeptide B was used as internal standard for mass adjustment (peptide mass, 

1570.67 Da). 
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2.1.6. Protein quantification 

The purified synthetic cod piscidin was measured the concentration by using a 

Quant-iTTM protein assay kit (Invitrogen, U.S.A) following the manufacturer’s 

protocol. Briefly, the working solution was prepared by diluting the Quant-iTTM 

reagent 1:200 in Quant-iTTM buffer. Three standards solution were used for 

calibrations; 10 µl of each standard solution was mixed with 190 µl of working 

solution in 0.5 ml PCR tube. Ten microliters of sample was added in 0.5 ml PCR tube 

and followed by adding 190 µl of working solution. The standards and samples were 

incubated for 15 min at room temperature and then the standards were equilibrated and 

followed by determining of protein concentration of the samples by QubitTM 

fluorometer (Invitrogen, U.S.A). 

2.1.7. Antibacterial activity 

2.1.7.1. Test bacteria 

2.1.7.1.1. Culture condition 

The various 12 bacterial strains including 4 Gram-positive bacteria and 8 

Gram-negative bacteria (Table 5) were kindly given by Ms Jareeporn Ruangsri, a 

Ph.D. student in Aquatic Animal Health and Welfare at Bodø university college, 

Norway. All test bacterial strains were cultured under appropriate condition based on 

Fernandes et al. (2002) and Ruangsri et al. (In press). All bacterial strains were 

cultured in trypticase soy broth (TSB) (Merck KGaA, Darmstadt, Germany) or 

trypticase soy agar (TSA) (Fluka Analytical, Switzerland), supplemented with NaCl 

(Merck KGaA, Darmstadt, Germany) as appropriate that were prepared following the 

manufacturer’s protocol (Table 4) and incubated at appropriate temperature which is 

showed in Table 5. 
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Table 4. The preparation of trypticase soy broth and agar. 

Trypticase Soy Broth Trypticase Soy Agar 

Ingredients Supplemented 

with 0.85% 

NaCl 

Supplemented 

with 1.5% 

NaCl 

Supplemented 

with 0.85% 

NaCl 

Supplemented 

with 1.5% 

NaCl 

Distilled water (ml) 1,000 1,000 1,000 1,000 

Trypticase Soy Broth (g) 30 30 30 30 

NaCl (g) 8.5 15 8.5 15 

Agar (g) - - 15 15 

Directions: All ingredients are suspended in glass bottle and sterilized at 121 °C for 15 

minutes by autoclaving, cool to 40-45 °C and poured in sterile Petri dishes for 

trypticase soy agar. The broth and agar media were kept in 4°C until use. 
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Table 5. List of the bacteria, identification code, and their culture conditions. 

Bacteria Gram Culture media+%NaCl/temperature condition 

Micrococcus lysodeikticus  + Trypticase soy agar or broth+0.85% NaCl / 37oC 

Planococcus citreus  + Trypticase soy agar or broth +1.5% NaCl / 20oC 

Staphylococcus aureus ATCC 9144 + Trypticase soy agar or broth+0.85% NaCl / 37oC 

Corynebacterium glutamicum ATCC 13032 + Trypticase soy agar or broth+0.85% NaCl / 25oC 

Escherichia coli ATCC 25922 - Trypticase soy agar or broth+0.85% NaCl / 37oC 

Vibrio anguillarum NCIMB 2133  - Trypticase soy agar or broth +1.5% NaCl / 20oC 

Vibrio anguillarum VI-F-258-3  - Trypticase soy agar or broth +1.5% NaCl / 20oC 

Vibrio anguillarum  - Trypticase soy agar or broth +1.5% NaCl / 20oC 

Aeromonas salmonicida NCIMB 1102  - Trypticase soy agar or broth +1.5% NaCl / 20oC 

Yersinia ruckeri NCIMB 2196  - Trypticase soy agar or broth +1.5% NaCl / 20oC 

Yersinia ruckeri VI 3629  - Trypticase soy agar or broth +1.5% NaCl / 20oC 

Psychrobacter immobilis  - Trypticase soy agar or broth +1.5% NaCl / 20oC 
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2.1.7.1.2. Growth curve determination 

The bacterial strains in the Table 5 were sub-cultured onto TSA (suplemented 

NaCl as appropriate) under aseptic technique and incubated overnight at optimal 

temperature. Then several freshly colonies were picked and inoculated in the 

Erlenmeyer flasks (100 ml) containing 50 ml of TSB (supplemented NaCl as 

appropriate). The flasks were incubated at appropriate temperature condition (Table 5) 

with constant shaking for 200 rpm. The suspended bacterial cells in TSB were 

determined the optical density at 600 nm (Perni et al., 2005) by using 

spectrophotometer each indicated times after incubation until the growth curve of each 

bacteria reach to stationary phase. The optimal density each indicated times were 

performed in triplicate and then the average values were plotted with particular times 

to show the growth curve of each bacterial strain. 

2.1.7.1.3. Cell density determination 

In this experiment, all 12 bacterial stains (Table 5) were determined density 

(CFU/ml) by plating on TSA (supplemented NaCl as appropriate) at different 

concentration of bacterial suspension based on optical density at 600 nm. Drop plate 

method was modified from Herigstad et al. (2001) and applied to determine the 

bacterial cell density in this experiment. The bacteria on TSA from a freshly overnight 

culture were inoculated into the Erlenmeyer flasks (100 ml) that contained 50 ml of 

TSB and incubated at appropriate temperature (Table 5) with constant shaking for 200 

rpm until reach to exponential phase. Then, the bacterial suspension in TSB was varied 

concentrations by diluting in the same medium and followed by measuring optimal 

density at 600 nm. Ten-fold serial dilution was made from each concentration of 

bacteria suspension with TSB. Thirty microliters of diluted bacterial suspension was 

plated on the TSA (supplemented NaCl as appropriate) for triplicate, overnight 
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incubated at optimal temperature. The bacterial colonies on agar plate in range 30-300 

colonies were considered as standard number for counting under a phase contrast 

stereo microscope. The counted bacterial cells were calculated as the number of colony 

forming unit (CFU) per milliliter of culture media after correcting for dilutions. The 

bacterial cell density (CFU/ml) at particular optical density at 600 nm was plotted to 

show the relationship and the linear regression equation was obtained. Finally the 

bacterial density at 108 CFU/ml at optical density 600 nm was calculated by using 

linear regression equation which is the relationship of bacterial density (CFU/ml) and 

optical density at 600 nm. 

2.1.7.2. Antimicrobial assay by two layer radial diffusion for selecting 

active fraction of synthetic cod piscidin after purification by HPLC 

The two-layer radial diffusion method was modified from Smith et al. (2000) 

used for first screen of antibacterial activity of purified synthetic cod piscidin of each 

interested fractions after HPLC purification. The Gram-positive bacterium P. citreus 

was used for testing antibacterial activity of purified peptide in this assay. Briefly, 144 

cm2 square petri-dish was added 14 ml bacterial underlayer, consisted 1.5% NaCl, 1% 

bactotryptone, 0.5% yeast extract and 1% agarose in the distilled water and 2×106 

CFU/ml of washed bacterium cells (log phase), and the underlayer was holed for 3 mm 

diameter by sterile pipette. Three microliters of interested fraction of the purified 

peptide was added into each well for duplicates and the control was 0.01 % acetic acid 

in sterile distilled water which is the diluent of sample. The plate was incubated at 4°C 

for 3 hours and then covered with 14 ml upperlayer, contained 6% TSB, 1.5% NaCl 

and 1% agarose and then incubated at 20 °C for 12-24 hours. The diameter of clear 

zone area (mm2) in the underlayer agar was indicated antibacterial activity of each 

well. 
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2.1.7.3. Antibacterial activity by microtitre broth dilution assay for 

determination of minimal inhibitory concentrations (MICs) and 

plating for minimal bactericidal concentration (MBC) of purified 

synthetic cod piscidin 

2.1.7.3.1. Preparation of bacterial cells for antibacterial activity assays 

Twelve bacterial strains in Table 5 were prepared for the antibacterial activity 

assays of purified antibacterial peptide. Briefly, the freshly overnight bacterial colonies 

on TSA were inoculated in 50 ml of TSB, contained 1.5% or 0.85% NaCl as 

appropriate and incubated at optimal temperature (Table 5) with constant shaking 200 

rpm until reached to exponential phase. The bacterial suspension was transferred into 

50 ml sterile centrifuge tube and centrifuged (Heraeus Labofuge 400R centrifuge, 

USA) at 4,500 rpm for 10 min and washed by sterile saline water (approximately 1.5% 

or 0.85% NaCl depend on bacteria). The bacterial pellet was cleaned and resuspended 

in sterile saline water and centrifuged at 4,500 rpm for 10 min again. After the last 

centrifuge, the supernatant was drained and then bacterial pellet was resuspended in 

Mueller-Hinton broth (MHB) (Merck KGaA, Darmstadt, Germany) (the preparation is 

showed in Table 6 following manufacturer’s protocol) that contained NaCl as 

appropriate. The resuspended bacterial cells in Mueller-Hinton broth was determined 

the optical density at 600 nm that corresponding to the bacterial density at 108 CFU/ml 

by using the spectrophotometer. Then bacterial density at 108 CFU/ml was diluted by 

Mueller-Hinton broth (supplemented NaCl as appropriate) for 105 CFU/ml that ready 

to use for MIC and MBC determination. 
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Table 6. The preparation of Mueller-Hinton broth. 

Mueller-Hinton Broth 
Ingredients 

Supplemented 0.85% NaCl Supplemented 1.5% NaCl 

Distilled water (ml) 1000 1000 

Mueller-Hinton broth (g) 21 21 

NaCl (g) 8.5 15 

Directions: All ingredients are suspended in glass bottle and sterilized by autoclaving 

at 121 °C for 10 minutes, cool to 40-45 °C and stored in 4 °C and protected from direct 

light. 

2.1.7.3.2. Preparation of purified synthetic cod piscidin solution 

The preparation of synthetic cod piscidin for determination of minimal 

inhibitory and bactericidal concentration was modified from Noga et al. (2009) Briefly 

the dry material of synthetic cod piscidin after freeze drying was resuspended in 0.01% 

acetic acid and determined the concentration by using a Quant-iTTM protein assay kit 

(Invitrogen, U.S.A). Finally synthetic cod piscidin was diluted to desired concentration 

in 0.2% (w/v) bovine serum albumin/0.01% (v/v) acetic acid and stored in -80 °C until 

use. 

2.1.7.3.3. Determination of minimal inhibitory concentrations (MICs) of purified 

synthetic cod piscidin 

Determination of minimal inhibitory concentrations (MICs) of synthetic cod 

piscidin various 12 bacteria was performed by using a microtitre broth dilution assay in 

96 microtitre plate (Becton Dickinson, France) that was modified from Fernandes et al. 

(2002). In this experiment the MIC of synthetic cod piscidin was defined as the lowest 

synthetic cod piscidin concentration that inhibits bacterial growth by 50% compared to 

the positive control (bacterial cells without peptide). Bacteria suspension in logarithm 
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phase of growth was prepared following 2.1.7.3.1. Ninety microliter of suspended 

bacterial cells in Mueller-Hinton broth (MHB), contained 105 CFU/ml was added into 

each well of sterile 96 well-microtitre plate for triplicate and followed by adding with 

10 µl of a two-fold serial dilution of synthetic cod piscidin, diluted in 0.2% (w/v) 

bovine serum albumin/0.01% (v/v) acetic acid (Noga et al., 2009). The plate was 

incubated at the appropriate temperature (Table 5) until the optical density at 540 nm 

(Microplate reader, Fluostar optima, BMG Labtech GmbH, Offenburg, Germany) 

reached 0.2 in the positive control well, contained 90 µl of suspended bacteria and 10 

µl of synthetic cod piscidin diluent. In addition, three negative controls were included: 

i) 90 µl of MHB and 10 µl of synthetic cod piscidin diluent, ii) 90 µl of MHB and 10 

µl of synthetic cod piscidin solution, and iii) 100 µl of MHB only. 

2.1.7.3.4. Determination of minimal bactericidal concentration (MBC) of purified 

synthetic cod piscidin 

All 12 bacteria in Table 5 were determined the minimal bactericidal 

concentration (MBC), performed as described by Fernandes and Smith (2002). Briefly, 

90 µl of washed bacteria containing approximately 105 CFU/ml in Mueller-Hinton 

broth (MHB) (supplemented 0.85 % or 1.5 % NaCl as appropriate) were added to each 

well in a 96-well microtitre plate and then 10 µl of two-fold serial dilution of synthetic 

cod piscidin was added. The control well contained 90 µl of suspended bacterial cells 

in MHB and 10 µl of synthetic cod piscidin diluents. Three negative controls were 

performed: i) 90 µl of MHB and 10 µl of synthetic cod piscidin diluent, ii) 90 µl of 

MHB and 10 µl of synthetic cod piscidin solution, and iii) 100 µl of MHB. All sample 

and controls were performed for triplicate. The microtitre plates were incubated in 

optimal temperature (Table 5) for 24 h and then the samples were plated on TSA 

(supplemented 0.85% or 1.5% NaCl as appropriate) and incubated at the appropriate 
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temperature (Table 5). The MBC was considered as the lowest concentration of 

synthetic cod piscidin that prevented colony forming on trypticase soy agar plates after 

incubation for 24 h. 

2.1.8. Haemolytic activity 

In the haemolytic activity of peptides was followed modification from 

Fernandes et al. (2002). Freshly blood (syringes were coated with peparin 150 IU/ml of 

blood) from Atlantic cod was washed with 10 mM phosphate buffered saline (PBS; 0.9 

% (w/v) NaCl, pH 7.4) in the sterile centrifuge tube by centrifugation to remove the 

leucocytes (buffy coat) and plasma (supernatant). The cleaned erythrocytes are 

deposited in bottom of centrifuge tube was resuspended in PBS and packed by 

centrifugation at 800 g for 10 min at 4 °C, and then 2 % (v/v) packed cell volume of 

cod erythrocytes were diluted in PBS that ready to test with peptide. Three 

antimicrobial peptides; synthetic cod piscidin, cecropin P1, and melittin were diluted to 

give a range of concentrations from 0.2-1.4 µM. Eleven microliters of each 

concentration of each peptide was added to 100 µl of a 2 % packed cod erythrocytes in 

PBS and incubated at 37 °C for 30 min. The controls were performed: i) negative 

controls, 100 µl of 2 % packed cod erythrocytes in PBS and 11 µl of PBS, ii) positive 

controls, 100 µl of 2 % packed cod erythrocytes and 11 µl of 0.2 % (v/v) Triton X-100. 

All the samples and controls were centrifuged at 1000 g for 5 min at room temperature. 

One hundred microliters of the supernatant from each sample was diluted with 800 µl 

of PBS and measured the absorbance at 540 nm (Microplate reader, Fluostar optima, 

BMG Labtech GmbH, Offenburg, Germany). The percentage of haemolytic activity of 

peptide was calculated from the ratio of absorbance of sample and positive control, 

(Absorbance540 nm of sample/Absorbacne540 nm of positive control)×100. 
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2.1.9. Cytoplasmic membrane permeabilization assay 

The membrane permeability assay was modified from Park et al. (2006) and 

Bunthof et al. (2001). A commercial viability and counting kit, the LIVE/DEAD 

BacLight kit was used (Invitrogen, USA). Two molecular DNA stains SYTO 9 (green 

fluorescence) can pass intact cell membranes and propidium iodide (PI) (red 

fluorescence) can only enter through permeabilized cell membranes. The bacterial cells 

stained by the fluorescent dyes were analysed by flow cytometry (Cell counter, 

Beckman Coulter, USA) to show the fluorescence intensity of untreated and synthetic 

cod piscidin treated bacterium cells. Gram-positive bacterium P. citreus was selected 

to test in this assay. Briefly, bacterium colonies were picked from freshly overnight 

culture on TSA plates and inoculated in flasks, contained 50 ml of TSB (supplemented 

1.5% NaCl), and incubated at 20 °C until reaching to exponential phase. Bacterium 

cells were harvested by centrifugation, washed with sterile saline (supplemented 1.5% 

NaCl) and resuspended in MHB (supplemented 1.5% NaCl). Ninety microliter of 

bacterial suspension containing 1×106 CFU/ml in MHB were mixed with 10 µl of 

different concentrations of synthetic cod piscidin, while 10 µl of MHB was added in 

90 µl of bacterial suspension was considerate as control. All samples and control were 

incubated at 20 °C for 1 h, followed by adding 100 µl of working solution (1.5 µl of 

SYTO 9, 1.5 µl of PI, and 497 µl of sterile saline 1.5% NaCl) of LIVE/DEAD 

BacLight bacterial viability and counting kit and incubated at room temperature for 15 

min. Then the fluorescence intensity of samples and control was determined by a flow 

cytometer (Cell Lab Quanta, Beckman Coulter, USA). 
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2.1.10. Kinetic assay 

The kinetic study, inhibiting rate of bacterium cell growth after incubation with 

synthetic cod piscidin was performed by fluorescence labeling using the commercial 

LIVE/DEAD BacLight bacterial viability and counting kit (Invitrogen, USA) 

following method 2.1.9. analysed by flow cytometry ( Cell lab Quanta, Beckman 

Coulter, USA). Briefly, P. citreus cells at exponential phase were washed with sterile 

saline 1.5 % NaCl and resuspended in MHB (supplemented 1.5% NaCl) to 106 

CFU/ml. 90 µl of bacterium suspension were mixed with 10 µl of synthetic cod 

piscidin at 0.08 µM to against P. citreus, while the control was 90 µl of bacterium 

suspension and 10 µl of MHB. All samples and control were incubated at 20°C until 

the indicated times and then incubated with an equal volume of working solution 

(2.1.9.) of LIVE/DEAD BacLight bacterial viability and counting kit before analyzing 

the fluorescence intensity by flow cytometric analysis. 
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2.2. Results 

2.2.1. Peptide analysis 

Cod piscidin protein sequence and piscidin family member were aligned, the 

results showed higher conserved amino acids found at the signal peptide region 

amongst modern fish species than mature and prodomain regions. In contradiction, less 

conserved amino acids can be identified along entire sequence of cod piscidin 

compared to piscidin from higher teleost (Fig. 7). The phylogenetic relationships of 

protein sequences of teleost piscidin orthologues was reconstructed. The result showed 

piscidin from Atlantic cod (Gadus morhua) is clustered together with large yellow 

croaker (Larimichthys crocea), while they are separated from other teleosts in 

Acanthopterygii superorder. In addition piscidin from all three grouper species are 

grouped together that more relate with mandarin fish (Siniperca chuatsi) than bass 

(Morone chrysops, Morone saxatilis, and Morone chrysops × Morone saxatilis,) (Fig. 

8). This result suggest that piscidin from Atlantic cod, belong to Paracanthopterygii 

superorder has the same ancestor with teleosts piscidins from Acanthopterygii 

superorder, and it showed to have high relatively with the large yellow croaker (Fig. 

9). 

Figure 7. The ClustalW multiple sequence alignment of piscidin protein 

sequences from teleost. The identities are represented by dots, while dashes 

denote the gaps indicated to maximize alignments. 
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Figure 8. The phylogenetic relationship between teleost piscidins.  

The phylogenetic relationship between teleost piscidins were analysed by Maximum 

likelihood of piscidin protein sequences using ATGC: Montpellier bioinformatics 

platform (PhyML) and performed the tree by MEGA 4. The number of each node 

indicated the percentage of bootstrapping after 100 replications and the aligned 

piscidin proteins sequences were showed in Fig. 7. 
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Figure 9. The taxonomic relationships of teleosts, were obtained protein 

sequences of piscidins. All fish pictures were obtained from FishBase; 

http://www.fishbase.org/ and FAO; http://www.fao.org/fishery/en). 
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2.2.2. Peptide purification 

The synthetic peptide was purified by C18 reversed phase HPLC with 

water/acetonitrile gradient (Fig. 10, top panel), the interested fractions were collected 

from retention time of 35 to 50 min which are highly peaks. The fractions 35-50 were 

freeze dried by lyophilizing and resuspended in 0.01% acetic acid for antibacterial 

activity assay and SDS-PAGE. The antibacterial activity of fractions 35-50 against P. 

citreus using two layers radial diffusion assay (Fig. 10, bottom panel) was found that 

highly inhibition clear zone areas from retention time of 44 and 45 min. Moreover, 

SDS-PAGE result was performed a single band in retention time of 44 and 45 min 

which are indicated molecular mass below 3.4 kDa (Fig. 11) after coomassie staining. 

Fractions 44 and 45 of purified synthetic cod piscidin were collected to analyze 

molecular mass by the matrix-assisted laser desorption/ionization time-of-flight 

(MALDI-TOF MS) mass spectrum that showed a signal to molecular ion 

approximately at 2527 Da (Fig. 12) that similar to theoretical molecular weight (2527 

Da) of obtained sequence, FIHHIIGWISHGVRAIHRAIHG. Finally yield of pure 

synthetic cod piscidin of fractions 44 and 45 were polled and quantified the 

concentration before determining the antibacterial activity assays. 
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Figure 10. The purification of synthetic cod piscidin. 

The purification was used C18 reversed-phase column for HPLC using 0.1% 

trifluoroacetic acid in acetonitrite and 0.1% trifluoroacetic acid in distilled water as 

gradient, as indicated by dotted line, and the solid line represents the absorbance at 280 

nm (top panel). The bottom panel shows the antibacterial activity of the various 

fractions, as determined by two-layer radial diffusion assay against the Gram-positive 

bacterium P. citreus. The peak eluting at 44 and 45 min (chromatogram) had the 

highest antibacterial activity (histogram). 
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Figure 11. SDS-PAGE analysis of the active fractions of purified synthetic cod 

piscidin. 

The active fractions were tested antibacterial activity against P. citreus. Lane 1: low-

molecular weight protein markers; lane 2: non purified synthetic cod piscidin; lane 3: 

fraction 44 of purified synthetic cod piscidin by HPLC; lane 4: fraction 45 of purified 

synthetic cod piscidin by HPLC. Each lane contains 2.5 µl of sample, except the 

markers (7 µl). The numbers left side showed the molecular mass of the markers in 

kilodaltons (kDa). 
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Figure 12. MALDI-TOF MS analysis of purified synthetic cod piscidin. 

The fraction 44 and 45 from purified synthetic cod piscidin that are showed by 

monoisotopic mass result. A top picture is represented molecular mass of fraction 44 

(2527.20 Da) and a bottom picture is represented molecular mass of fraction 45 

(2527.35 Da). While peak at 1570.67 Da is corresponded to internal standard of mass 

adjustment. 
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2.2.3. Bacterial growth curve and their density 

The preliminary study of bacterial growth determination and the determination 

of their density were used for antibacterial activity of antibacterial agents in this 

research. The investigation of bacterial growth was taken by optical density at 600 nm 

at indicated times (Appendex 1) during lag phase, log phase, and stationary phase of 

various Gram-positive and Gram-negative bacteria after incubation. The result showed 

the time during exponential phase of growth curve of M. lysodeikticus, S. aureus 

ATCC 9144, and E. coli ATCC 25922, incubated at 37 °C that appear short lag and log 

phase, the duration of their exponential phase of all three bacteria were selected at 3 

hours after inoculation. While, P. citreus and P. immobilis were incubated at 20 °C 

showed the slow growth rate that were selected the duration of their exponential phase 

at 14 hours after inoculation. Whereas, The growth curve of C. glutamicum ATCC 

13032, V. anguillarum NCIMB 2133, V. anguillarum VI-F-258-3, V. anguillarum, A. 

salmonicida NCIMB 1102, Y. ruckeri NCIMB 2196, and Y. ruckeri VI 3629 were 

performed the duration of their exponential phase at 8 hours after inoculation (Table 

7). 

Moreover, the relationship of optical density at 600 nm and bacterial density 

was calculated from linear regression equation, shown in Appendix 2. The results 

showed the optical density at 600 nm corresponding to 108 CFU/ml of each bacterium 

was provided in Table 7. Four bacteria; M. lysodeikticus, P. citreus, C. glutamicum 

ATCC 13032, and V. anguillarum shows optical density at 600 nm were 0.550, 1.022, 

0.500, and 0.500, respectively that corresponding to 108 CFU/ml. For other Gram-

positive and Gram-negative bacteria displayed optical density at 600 nm between rang 

0.100-0.275 that corresponding to 108 CFU/ml. 
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Table 7. Bacterial strains and the duration of their exponential phase after 

inoculation and the optical density at 600 nm corresponding to 10
8
 CFU/ml of 

bacterial density. 

Bacterial strains Exponential phase (h) 
OD600 corresponding to 

108 CFU/ml 

M. lysodeikticus  3 0.550 

P. citreus  14 1.022 

S. aureus ATCC 9144 3 0.150 

C. glutamicum ATCC 13032 8 0.500 

E. coli ATCC 25922 3 0.156 

V. anguillarum NCIMB 2133  8 0.200 

V. anguillarum VI-F-258-3  8 0.100 

V. anguillarum  8 0.500 

A. salmonicida NCIMB 1102  8 0.156 

Y. ruckeri NCIMB 2196  8 0.121 

Y. ruckeri VI 3629  8 0.160 

P. immobilis  14 0.275 

The values represented as average of three replications for each sample. The growth 

and cell density curves were showed in Appendix 1 and 2, respectively. 
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2.2.4. Antibacterial activity of synthetic cod piscidin against 

various bacteria and its haemolytic activity against cod 

erythrocytes 

The minimal inhibitory concentrations (MICs) and minimal bactericidal 

concentration (MBC) of synthetic cod piscidin against all 12 test bacterial strains were 

showed in Table 8. The result showed synthetic cod piscidin has more active against 

Gram-positive bacteria than Gram-negative bacteria with exception of V. anguillarum 

and P. immobilis. In addition, the MIC values of ranged between 0.04-5 µM of 

synthetic cod piscidin were performed against all four Gram-positive bacteria i.e. M. 

lysodeikticus, P. citreus, S. aureus ATCC 9144, C. glutamicum ATCC 13032 and two 

Gram-negative; V. anguillarum, P. immobilis. While the MBC were 4 times higher 

than MICs for P. citreus and 2 times higher than MICs for C. glutamicum ATCC 

13032 and P. immobilis, while MBC of other tested bacteria were more than 5 µM. 

The haemolytic activity of synthetic cod piscidin and cecropin P1 were showed 

percentage of haemolysis constantly around 30% from the lowest concentrations of 0.2 

µM until highest concentrations of 1.4 µM. While, percentage haemolysis of melittin 

against cod erythrocytes was increased following the increasing of its concentrations, 

over 0.8 µM of melittin performed completely lytic for cod erythrocytes (Fig. 13). 

Therefore synthetic cod piscidin has less haemolytic effect than melittin which has a 

strong haemolystic activity against cod erythrocytes. 
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Table 8. The minimal inhibitory and bactericidal concentrations of synthetic cod 

piscidin against twelve test bacteria. 

Bacterial strains Gram 
MICs 

(µM)a 

MBC 

(µM)b 

M. lysodeikticus  + 1.25-2.5 >5 

P. citreus  + 0.04-0.08 1.25 

S. aureus ATCC 9144 + 2.5-5 >5 

C. glutamicum ATCC 13032 + 0.63-1.25 2.5 

E. coli ATCC 25922 - >5 >5 

V. anguillarum NCIMB 2133 - >5 >5 

V. anguillarum VI-F-258-3 - >5 >5 

V. anguillarum  - 2.5-5 >5 

A. salmonicida NCIMB 1102 - >5 >5 

Y. ruckeri NCIMB 2196 - >5 >5 

Y. ruckeri VI 3629 - >5 >5 

P. immobilis  - 0.63-1.25 2.5 

The values were represented as average of triplicate of each sample. 

a MIC, was defined as the lowest synthetic cod piscidin concentration that inhibits 

bacterial growth by 50% compared to the positive control (bacteria without peptide). 

MIC curves of synthetic cod piscidin against various bacteria were showed in 

Appendix 3. 

b MBC, was considered as the lowest concentration of synthetic cod piscidin that 

prevented colony forming on TSA plates after incubation for 24 h. 
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Figure 13. The haemolytic activity of peptides against erythrocytes of Atlantic 

cod.  

The tested peptides were diluted to desired concentrations and incubated with a 2% 

(v/v) of cod erythrocytes for 30 min at 37 °C and performed for triplicate. Values were 

represented as means±standard error (vertical bars), n=3. 

2.2.5. Permeabilization of bacterium cells treated by 

synthetic cod piscidin 

 Gram-positive bacterium P. citreus cells were treated with synthetic cod 

piscidin with two difference concentrations of 0.08 µM (upper value of MICs interval) 

and 1.25 µM (MBC). The result of treated bacterial cells with synthetic cod piscidin 

(0.08 µM and 1.25 µM) was observed fluorescence intensity of internalized PI 

(florescent red) in bacterial cells after analyzed by flow cytometric analysis. The 

percentages of permeable cells were increased with concentration of synthetic cod 

piscidin from 0.08 µM (44.45% permeabilised cells) to 1.25 µM (87.33% 

permeabilised cells) after incubation for 1 h. Therefore synthetic cod piscidin able to 
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form the pore in bacterium membranes that allowed small molecule of PI enter the 

bacterium cells. While, the control (bacteria without synthetic cod piscidin) was less 

observed PI fluorescence (1.83% permeabilised cells) in dead bacterium cells but 

showed higher percentage of live cells (89.19% intact cells) labeled with fluorescent 

green of SYTO 9 after incubation for 1 h (Fig. 14 and Fig. 15). 

 

Figure 14. Permeabilization assay of synthetic cod piscidin against P. citreus. 

This assay was observed by PI (fluorescence red labeled permeabilized cells) and 

SYTO 9 (fluorescence green labeled intact cells) labeling and analyzed by using flow 

cytometric analysis. A, control was P. citreus cells suspension were incubated without 

synthetic cod piscidin; B, P. citreus cells suspension were incubated with synthetic cod 

piscidin at 0.08 µM (upper value of MIC interval); and C, P. citreus cells suspension 

were incubated with synthetic cod piscidin at 1.25 µM (MBC). While, the particles 

outside the defined regions were considered as unknown. 
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Figure 15. The average percentage of intact and permeabilized P. citreus cells. 

The intact cells were labeled by SYTO 9 (fluorescence green), whereas permeabilized 

P. citreus cells were indicated by PI internalization (fluorescence red) after incubated 

at 20 °C for 1 h with two concentration of synthetic cod piscidin (0.08 and 1.25 µM). 

While the control was performed as test bacteria without synthetic cod piscidin (0 µM 

of synthetic cod piscidin) and analyzed by using flow cytometric analysis. Each sample 

and control was performed for triplicate, values are represented as means±standard 

error (vertical bars); n=3. 
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2.2.6. Kinetic study 

 The kinetic study of synthetic cod piscidin against Gram-positive bacterium P. 

citreus cells which is the highly sensitive bacterium to synthetic cod piscidin were 

investigated inhibiting growth rate after treated with synthetic cod piscidin at 0.08 µM 

(upper value of MIC interval) with increasing of incubation times (Fig. 16) by flow 

cytometric analysis. The results found at 0 h after incubation with synthetic cod 

piscidin was found percentage of live bacterium cells was around 90 % and the live 

bacterium cells were decreased with increasing time. After 1 h of incubation, treated 

bacterium cells with synthetic cod piscidin were showed constant percentage of live 

bacterium cells of 43.96 %, 43.29 %, 52.16 % and 44.31 % of 1, 3, 6, 24 h, 

respectively incubation times. While the control, untreated bacterium cells with 

peptide showed approximately 90 % of live bacterium cells every indicated times (0-

24 h) after incubation at 20 °C. 
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Figure 16. The kinetic of synthetic cod piscidin against P. citreus. 

 

The kinetic was analyzed by 

flow cytometric analysis. The 

pictures A, C, E, G, I, and K 

were untreated bacterium cells 

(control) at 0, 0.5, 1, 3, 6, and 

24 h, respectively after 

incubation. While B, D, F, H, J, 

and L were treated bacterium 

cells with 0.08 µM (upper value 

of MIC interval) at 0, 0.5, 1, 3, 

6, and 24 h, respectively after 

incubation. The particles 

outside the defined regions 

were considered as unknown. 
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2.3. Discussion 

2.3.1. Sequence analysis 

In this study found the piscidin from G. morhua, Paracanthopterygii superorder 

has relationships with teleost piscidins from Acanthopterygii superorder. Most of 

protein sequences of piscidin are taxonomic relationship within Acanthopterygii 

superorder with exceptions of L. crocea sequence that is high relatively with G. 

morhua. This result similar with Fernandes et al. (2010) that showed separation of 

piscidin sequences of G. morhua and L. crocea from the other teleosts. The reason that 

cod piscidin is different from the other teleost piscidins from Acanthopterygii 

superorder might be caused by longer evolutionary distance than those teleosts. 

However, piscidins were found in many teleost species, especially the members in 

Acanthopterygii superorder. In addition, nine species of teleosts from the 36 species 

tested were showed immunopositive with anti-piscidin 1 antibody that found in 

families Moronidae (M. saxatilis, M. chrysops, M. saxatilis × M. chrysops, 

Dicentrarchu labrax), Serranidae (Epinephelus niveatus), Sciaenidae (Leiostomus 

xanthurus, Micropogonias undulates), Siganidae (Siganus rivulatus), Belontidae 

(Trichogaster leeri), and Cichlidae (Oreochromis niloticus) which are the members in 

order Perciformes (Silphaduang et al., 2006). Moreover, Corrales et al. (2010) detected 

strong piscidin 4-positive cells in tissues (gill, intestine, stomach) of importance 

commercially fish including hybrid striped bass (M. saxatilis × M. chrysops), white 

bass (M. chrysops), striped bass (M. saxatilis), european seabass (D. labrax), and 

giltheaad seabream (Sparus aurata) by immunohistochemistry. The most of piscidins 

are found expression in order Perciformes of Acanthopterygii superorder, and in this 

study showed piscidin also was found in G. morhua that belong to family Gadidae of 

Paracanthopterygii superorder. Piscidins are present in many commercially importance 
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fish in aquaculture that included Atlantic cod, a new important cultured commercial 

fish species. 

2.3.2. Peptide purification and identification 

The synthetic cod piscidin was synthesized by using a sequence, 

FIHHIIGWISHGVRAIHRAIHG that was characterized from Atlantic cod and 

performed a molecular mass 2527 Da by MALDI-TOF MS analysis. The synthetic cod 

piscidin sequence contained 22 amino acid and showed highly histidin and isoleucine 

rich in its sequence that similar with 22 amino acid piscidin 1, 2, 3 were isolated from 

mast cells of hybrid striped bass and highly conserved histidine-rich and 

phenylalanine-rich (Silphaduang and Noga, 2001). Moreover, Lauth et al. (2002) 

discovered two isoforms of 22 amino acid moronecidin from skin and gills of hybrid 

striped bass that performed molecular mass 2543 and 2571 Da and highly histidine 

content in their sequences. While, piscidin 4 from gill of hybrid striped bass is 44 

residues peptide with molecular mass 5329 Da that has highly homologous at its N-

terminus to piscidin 1, 2, and 3 (Noga et al., 2009). 

2.2.3. Bacterial growth curve and their density 

In this study, all 12 bacteria were determined the growth curve which is the 

relationship between optical density at 600 nm with indicated times to select the 

appropriate incubation time during their exponential phage that used for antibacterial 

activity assays. Three bacteria including M. lysodeikticus, S. aureus ATCC 9144 and 

E. coli ATCC 25922 were incubated at 37 °C that growth faster than other bacterial 

which were cultured at 20 °C, while P. citreus and P. immobilis grew quite slow 

(Appendix 1). 

The drop plate technique was applied in this study to determine the cell density, 

antibacterial activity of minimal bactericidal concentration and kinetic profile of 
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synergism. Duo to Chen et al. (2003) and Herigstad et al. (2001) performed the 

advantages of drop plate technique for bacterial density estimation; 1) saving the time 

for plating and colony counting process, 2) more accurately by counting under stereo-

microscope, 3) less material cost because in one agar plate could be investigated for 

triplicate of each dilution, and 4) more space in incubator for the plates incubation. 

However, the error from drop plate technique might be caused by colonies overlapping 

that result to incorrect colony counting (Herigstad et al., 2001), and the pipetting 

during serial dilution process and dropping on agar plate also was considered as the 

weakness of this method. 

2.2.4. Antimicrobial activity of synthetic cod piscidin 

The synthetic cod piscidin has ability to inhibit the bacterial growth by in vitro 

study using MIC and MBC estimation. The results performed synthetic cod piscidin 

seem to be more potential against Gram-positive bacteria (M. lysodeikticus, P. citreus, 

S. aureus ATCC 9144, and C. glutamicum ATCC 13032) than Gram-negative bacteria 

at micromolar concentration level. However, two Gram-negative bacteria including V. 

anguillarum and P. immobilis were inhibited in vitro growth by synthetic cod piscidin. 

Six Gram-negative bacteria including E. coli ATCC 25922, V. anguillarum NCIMB 

2133, V. anguillarum VI-F-258-3, A. salmonicida NCIMB 1102, Y. ruckeri NCIMB 

2196, and Y. ruckeri VI 3629 showed MIC and MBC values more than 5 µM, however 

if the synthetic cod piscidin is increased the test concentration then bacterial growth 

might be inhibited at higher than 5 µM. In this study was demonstrated the 

antibacterial activity of synthetic cod piscidin high potentiate against some bacteria, 

however there were many researches have been investigated ability of piscidins from 

fishes that resulted broad spectrum against bacteria, parasite, fungal and event virus. 
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Silphaduang and Noga (2001) isolated piscidin 1,2,3 from mast cell of hybrid 

striped bass that showed killing both Gram-positive and Gram-negative bacteria which 

are fish pathogens (e.g., S. iniae, A. salmonicida, and V. alginolyticus) and human 

pathogens (e.g., S. aureus, E. coli, Streptococcus faecalis, and Pseudomonas 

aeruginosa) that showed MIC in range 0.8-12.5 µg/ml, while MBC in range 1.6-25 

µM. Moreover, piscidin 4 was isolated from healthy hybrid striped bass that have 

ability to against both fish and human pathogens e.g., S. iniae (MIC and MBC 12.5-25 

µg/ml), Listonella agnuillarum (MIC and MBC 6.3 µg/ml), S. aureus (MIC and MBC 

6.3-12.5 µg/ml) and E. coli (MIC and MBC 50 µg/ml) (Noga et al., 2009). Moreover 

Lauth et al. (2002) performed antibacterial activity of synthetic amidated moronecidin 

against both Gram-positive bacteria (e.g., M. luteus and methicilin-resistant S. aureus 

showed MIC 10-20 and 1.25-2.5 µM, respectively) and Gram-negative bacteria (e.g., 

E. coli, A. hydrophila, V. cholera, Yersinia enterocolitica showed MIC 5-10, >20, 2.5-

5, 2.5-5 µM, respectively) that similar to antibacterial activity of bass moronecidin also 

showed by inhibiting bacterial growth, S. iniae, E. coli, Y. enterocoliticus, and Serratia 

sonnei at MIC in range 2.5-5 µM (Lauth et al., 2005). These published papers were 

confirmed that piscidins as a potent broad spectrum against bacteria growth by in vitro 

study. Unfutually, in this study determined the MIC and MBC of synthetic cod piscidin 

at maximum concentration of 5 µM that were not enough to inhibit in vitro growth of 

most of Gram-negative bactria (E. coli ATCC 25922, V. anguillarum NCIMB 2133, V. 

anguillarum VI-F-258-3, A. salmonicida NCIMB 1102, Y. ruckeri NCIMB 2196, and 

Y. ruckeri VI 3629). This result similar to Sun et al. (2007) study that reported the 

antibacterial activity of synthetic amidated piscidin from mandarin fish (S. chuatsi) 

able to against many Gram-negative bacteria at more than 5 µM of piscidin 

concentration including Aeromonas (MICs 10->160 µM and MBCs 20->160 µM), V. 
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anguillarum (MICs 20-80 µM and MBCs 40-160 µM), Y. ruckeri (MICs 20-40 µM 

and MBCs 40-80 µM), and E. coli (MICs 5-10 µM and MBCs 10-20 µM). However in 

this study was found sensitive Gram-negative bacterium P. immpbilis was inhibited 

growth at MICs 0.63-1.25 and MBC 2.5 µM that can be suggested that this bacterium 

might have difference in cellular membranes and pathogenicity from other tested 

Gram-negative bacteria that performed MIC and MBC more than 5 µM. 

Interestingly, piscidin was confirmed its ability to kill parasites by Coloni et al. 

(2008) that reported the antiparasitic activity of piscidin 2 from mast cells of hybrid 

striped bass able to against marine fish ectoparasites (Cryptocaryon irritans, 

Trichodina sp., and Amyloodinium ocellatum) and freshwater fish ectoparasites 

(Ichthyophthirius multifiliis), the protozoacidal concentration (PCmin, lowest 

concentration where at least one parasite died) showed against Trichodina, 

Cryptocaryon theront, Amyloodinium dinospore, and Ichthyophthirius theront of 

peptide concentration 12.5-100, 12.5, 6.3-12.5, and 6.3 µg/ml, respectively. 

In addition piscidin also showed potential against fungal that was reported by 

Sung et al. (2008), piscidin 2 inhibit growth of human pathogenic fungal including 

Malassezia furfur, Trichosporon beigelii, and Candida albicans at MICs of 6.25, 1.56, 

and 6.25 µM, respectively. Moreover, moronecidin from bass also performed against 

filamentous fungi including Neurospora crassa (MICs 1.56-3.12 µM), Aspergillus 

fumigates (MICs 50-100 µM), Fusarium oxysporum (MICs 0.78-1.56 µM), Fusarium 

culmorum (MICs 0.39-0.78 µM), and yeast, C. albicans, C. glabrata, C. lusitania, and 

C. tropicalis at MICs 10-20 µM (Lauth et al., 2002). 

Piscindins performed antibacterial, antifungal, antiparasitic activity, and 

surprisingly also showed antiviral activity property that piscidin-1N, 1H, 2, and 3 from 

hybrid striped bass were reported ability to reduce the infectivity of channel catfish 
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virus and frog virus3 at I50 (the concentration of piscidin that reduce viral infectivity by 

50%) of 4-11 µM and 13-16 µM, respectively (Chinchar et al., 2004). 

In this study demonstrated the ability of synthetic cod piscidin for antibacterial 

activity. Moreover, many reports were supported that piscidin has antimicrobial 

properties that able to against bacteria, fungal, parasite, and event virus. Therefore 

piscidin is appropriate to be a novel antimicrobial agent that might be applied for 

medication in aquaculture industry. 

2.3.5. Haemolytic activity against cod erythrocytes 

In this study was found synthetic cod piscidin has less haemolytic activity than 

mellitin, but still the same with cecropin P1. The piscidin 1, 2, and 3 from mast cells of 

hybrid striped bass were showed more haemolytic than magainin 2 but still less than 

melittin, approximately 10 µg/ml of piscidin 1, piscidin 2 and 100 µg/ml of piscidin 3 

started lytic human erythrocytes (Silphaduang and Noga, 2001). While, four 

concentrations of bass hepcidin including 5.5, 11, 22, and 44 µM were incubated with 

hybrid striped bass erythrocytes at 37 °C showed no haemolysis was observed at 5.5 

and 11 µM after incubation for 4 h, while 0.4-2.5 % haemolysis was showed after 3 h 

of incubation with 22 and 44 µM of bass hepcidin (Lauth et al., 2005). Moreover, 

moronecidin from hybrid striped bass has no haemolytic effect against human and 

sheep red blood cells below concentrations of 2.5 µM, while the concentrations over 5 

µM were observed haemolysis until reach to 20-80 µM which were found 100% lytic 

human red blood cells, and over 10 µM also was observed haemolysis of sheep red 

blood cells (Lauth et al., 2002). In addition amidated and non-amidated fish piscidin 1 

and 3 at concentration of 100 µg/ml was observed haemolytic effect against human red 

blood cells (Chekmenev et al., 2006). 
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2.3.6. Permeability of synthetic cod piscidin 

In this study used commercial LIVE/DEAD BacLight bacterial viability and 

counting kit to observe proportion of live and dead bacterium cells that were labeled 

by SYTO9 and PI and analyzed by using flow cytometric analysis. PI is a small 

molecule that can enters permeabilized cells and bound with double stranded nucleic 

acid and result red fluorescence, while intact bacterium cells were labeled fluorescence 

green of SYTO 9. In this study was found internal PI fluorescence in permeabilized P. 

citreus cells after incubated with 0.08 and 1.25 µM of synthetic cod piscidin that 

confirmed the ability of this peptide could disrupt bacteria membrane and allowed PI 

molecule enters inside the cells. However, some population of test bacterium cells 

could not be detected fluorescent labeled cells that identified as intermediate cells 

which might be caused by peptide still disrupting and forming the pore on bacterium 

cells membrane. Piscidin was demonstrated that its amphiphatic α-helical structure that 

contained high positively charge have potential to permeabilise bacterial membrane 

(Cotten et al., 2009). Cod piscidin was used in this study also has positive net charge 

and can be adopted the same structure (Rungsri et al. unpublished). Moreover piscidin 

2 damaged fugal, C. albicans plasma membrane potential that was found accumulation 

of DiBAC4(3) (binds to lipid-rich intracellular components) in depolarized cells and 

also found pore forming in fungal membrane by detection fluorescent 1,6-diphenyl-

1,3,5-hexatriene (associate with phospholipids within cytoplasmic membrane), lead to 

the releasing of intracellular cellular component and ions from the fungal cells (Sung et 

al., 2008). From these data were confirmed that main target of synthetic cod piscidin is 

the cytoplasmic membranes by pore formation which is the common mechanism of 

cationic antimicrobial peptides. For example, Park et al. (2006) investicated higher 

internalized PI fluorescence intensity of cationic antimicrobial peptide P5 treated S. 
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aureus cells than untreated and antibiotic chloramphenicol (act on inhibiting 

translation) treated cells by flow cytometric analysis. However, some antimicrobial 

peptides have no effect to cytoplasmic membrane, Buforin II could bind to DNA and 

RNA that lead to inhibiting cellular functions (Park et al., 1998a) and indolicidin that 

showed inhibiting DNA and protein synthesis (Subbalakshmi and Sitaram, 1998). 

Interestingly, in this study found synthetic cod piscidin at 0.08-1.25 µM could 

permeabilised P. citreus membrane that lead to bacterium growth inhibition around 44-

87 % by using flow cytometric analysis. Moreover, the percentage of haemolytic 

activity of this peptide showed less haemolysis around 30 % against cod erythrocytes 

by peptide concentration in range 0.2-1.4 µM which covered the concentrations of 

0.08-1.25 µM that can lysis P. ctreus cells for around 44-87 %. 

2.3.7. Kinetic study 

In this study, the bacterium growth was inhibited by synthetic cod piscidin at 

0.08 µM (upper value of MIC interval) that was found the percentage of live cells were 

decreased from 0 h (89.81 %) to 30 min (75.47 %) and until 1 h (43.96 %) after 

incubation with peptide. In addition from 3, 6, and 24 h after incubation, treated 

bacterium cells with synthetic cod piscidin were showed constant percentage of live 

bacterium cells of 43.29 %, 52.16 % and 44.31, respectively. Lauth et al. (2002) 

observed kinetic of synthetic amidated white bass moronecidin against S. aureus and 

found 90 % of bacterium cells were killed within 1 and 10 min after incubated with 6 

µM (2 times MIC) and 3 µM, respectively at 37 °C, however lower incubation 

temperature at 30 °C showed reducing of killing rate than at 37 °C either at 3 or  6 µM 

of peptide concentrations. Therefore the kinetic of antimicrobial peptides are 

dependent on time, peptide concentration, incubation temperature, and tested bacterial 

strain. 
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Chapter 3. Synergistic activity of synthetic 

piscidin from Atlantic Cod (Gadus morhua L.) 

with other antibiotic agents 

3.1. Materials and Methods 

3.1.1. Test bacteria 

Three Gram-negative bacteria including V. anguillarum VI-F-258-3, A. 

salmonicida NCIMB 1102, Y. ruckeri VI 3629 and two Gram-positive bacteria 

including M. lysodeikticus, and P. citreus were selected study the synergistic activity 

of combined synthetic cod piscidin and antibiotic agents. All five bacteria were 

cultured under the appropriate conditions (Table 5) until reached to exponential phase. 

Suspended bacterial cells in media were washed and prepared following 2.1.7.3.1. 

Cleaned bacterial cells of 105 CFU/ml in saline Mueller-Hinton broth (supplemented 

NaCl as appropriate) were used for the determination of the MIC and MBC of 

antibacterial agents alone and in combination. 

3.1.2. Preparation of antibacterial agents for antibacterial 

assays 

Four antibiotic agents that are common use in aquaculture industry were used 

for synergistic activity study including: oxolinic acid, oxytetracycline hydrochloride, 

sulfadiazine/trimethoprim combination (combined as 5 parts of sulfadiazine to 1 part 

of trimethoprim) and all antibiotic agents are of commercial origin from Sigma-

Aldrich. The antibiotic stock solution was prepared by using a modification from 

Bruun et al. (2000) based on the National Committee for Clinical Laboratory Standard 

(NCCLS). Briefly, the antibiotic solutions were prepared by weighting for desired 
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amount and dissolving into specific diluent of each antibiotic, and then mixed for 

homogenous solution by vortex mixer. The diluent was sterile water for 

oxytetracycline hydrochloride, 0.1 M NaOH for oxolinic acid and sulfadiazine, and 

0.05 M HCl for trimethoprim. In addition oxolinic acid and sulfadiazine/trimethoprim 

solutions were adjusted the pH in range between 6-8 with 1 M NaOH and 1 M HCl. 

Then the final concentration of NaOH and HCl in antibiotic solutions including 0.0006 

M NaOH and 0.004 M HCl for oxolinic acid, while 0.0004 M NaOH and 0.003 M HCl 

for sulfadiazine/trimethoprim. All antibiotic solutions were stored in 1.5 ml sterile 

micro tube in -80 °С. 

The preparation of synthetic cod piscidin was following 2.1.7.3.2 base on Noga 

et al. (2009) method, briefly the synthetic cod piscidin was resuspended in 0.2% (w/v) 

bovine serum albumin/0.01% (v/v) acetic acid and kept in -80 °C until use for 

antibacterial activity test. 

3.1.3. The determination of minimal inhibitory and bacterici-

dal concentration of antibacterial agents 

Determination of minimal inhibitory concentrations (MICs) and minimal 

inhibitory bactericidal concentration (MBC) of antibiotic agents and synthetic cod 

piscidin against test bacteria was followed 2.1.7.3.3 and 2.1.7.3.4 that was modified 

from Fernandes et al.(2002). Briefly, test bacterium cells 105 CFU/ml in Mueller-

Hinton broth (supplemented NaCl as appropriate) was added into each well of 96 well-

microtitre plates in volume 90 µl and mixed with 10 µl of two-fold serial dilutions of 

antibacterial agent for triplication. The positive control well, contained 90 µl of 

suspended bacteria and 10 µl of antibacterial agent diluent. Moreover, three negative 

controls were included: i) 90 µl of MHB and 10 µl of antibacterial agent diluent, ii) 90 

µl of MHB and 10 µl of antibacterial agent solution, and iii) 100 µl of MHB. The 
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plates were incubated under appropriate condition of each test bacteria (Table 5) until 

the optical density at 540 nm reached to 0.2 in the positive control well. MIC was 

determined as the lowest antibacterial agent concentration that inhibits bacterial 

growth by 50% compared with the positive control. 

In addition the MBC was observed by plating out from each well of 96 well-

microtitre plates after incubation with antibacterial agents at appropriate temperature 

for 24 h on trypticase soy agar plate, contained 0.85% or 1.5% NaCl as appropriate. 

MBC was considered as the lowest concentration of antibacterial agent that prevented 

colony forming on trypticase soy agar after incubation for 24 h in appropriate 

temperature. 

3.1.4. Synergistic activity of peptide-antibiotic combination 

Synergistic study of combined synthetic cod piscidin with conventional 

antibiotics was determined following the modification from Park et al. (2006). The 

method involves determining the individual MIC of antibiotic and synthetic cod 

piscidin alone as well as the MIC of antibiotic and synthetic cod piscidin in the 

combination that was tested in 96 well plates. The initial concentration of the 

combined antibiotic and synthetic cod piscidin was based on the individual MIC of 

antibiotic and synthetic cod piscidin. Briefly, 90 µl of suspended bacterial cells 105 

CFU/ml in MHB (supplemented NaCl as appropriate) was added in each well of 96 

well plate and followed by adding of two-fold serial dilutions of combined 

antibacterial agents. The positive control well was contained 90 µl of bacterial cells 

105 CFU/ml in MHB and 10 µl of antibacterial agent diluent. Three negative controls 

were performed: i) 90 µl of MHB and 10 µl of antibacterial agent diluent, ii) 90 µl of 

MHB and 10 µl of combined antibacterial agent solution, and iii) 100 µl of MHB. 

Each test sample and control were performed in triplicate, the plate was incubated at 
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appropriate temperature until the optical density at 540 nm of positive control well 

reached to 0.2. The MIC was determined as the lowest antibacterial agent 

concentration that inhibits bacterial growth by 50% compared with the positive control 

(Fernandes et al., 2002). The synergistic activity was assessed by determining the 

fractional inhibitory concentration (FIC) index. The FIC index is used as an indicator 

of synergistic activity of two antibacterial agents combination and calculated according 

to the equation: 

FIC index= FICA+FICB= [A]/MICA+[B]/MICB 

Where [A] and [B] are the MIC of drug A and drug B in the combination, 

MICA and MICB are the MIC of drug A and drug B alone, and FICA and FICB are the 

FIC of drug A and drug B. The FIC indexes are interpreted as follows: ≤0.5, good 

synergism; 1.0, additive; and >4.0, antagonism (Yan and Hancock, 2001). 

3.1.5. Kinetics of synergism 

Determination of kinetic of combined oxolinic acid and synthetic cod piscidin 

which showed synergistic activity against V. anguillarum VI-F-258-3 was evaluated 

base on Fernandes et al. (2002) by using the viable count of drop plate technique 

(Herigstad et al., 2001). Briefly, 90 µl of suspended bacteria approximately 105 

CFU/ml in MHB (supplemented 1.5% NaCl) was mixed with 10 µl of combined 

antibacterial agents solution contained 0.031 µM of oxolinic acid and 5 µM of 

synthetic cod piscidin (based on MIC of individual oxolinic and synthetic cod piscidin 

against V. anguillarum VI-F-258-3) in 96 well plate and then incubated at 20 °C for 

indicated times. The kinetic study was monitored at 0 min, 30 min, 1h, 2h, 3h, 6h, 12h, 

and 24h after combined antibacterial agents addition. As controls including positive 

control which is the mixing between 90 µl of suspended bacteria approximately 105 

CFU/ml in MHB and 10 µl of antibacterial agent diluents, while three negative 
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controls including: i) 90 µl of MHB and 10 µl of antibacterial agent diluent, ii) 90 µl of 

MHB and 10 µl of antibacterial agent solution, and iii) 100 µl of MHB. The test 

samples and controls were performed in triplicate. The sample each indicated time 

after incubation was diluted in media base on 10 fold serial dilution and plating by 

using drop plate technique (Herigstad et al., 2001) on TSA that contained 1.5% NaCl 

and the agar plates were incubated at 20 °C. The bacterial colonies were counted under 

stereo microscope following the bacterium colony density standard should be between 

in rang 30-300 colonies on agar plate. Finally the bacterial density (CFU/ml) was 

plotted with indicated time after incubation. 
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3.2. Results 

3.2.1. Antibacterial activity against test bacteria 

The minimal inhibitory concentrations (MICs) of synthetic cod piscidin showed 

more active to Gram-positive bacteria in range of MICs 0.04-2.5 µM than Gram-

negative bacteria that showed MIC >5 µM. The MBC of synthetic cod piscidin against 

all tested bacteria were higher than 5 µM (maximal tested concentration) with 

exception of P. citreus was showed MBC of 1.25 µM (Table 9). 

The MICs and MBC of antibiotic agents against Gram-positive bacteria (M. 

lysodeikticus and P. citreus) and Gram-negative bacteria (V. anguillarum VI-F-258-3, 

A. salmonicida NCIMB 1102, and Y. ruckeri VI 3629) were provided in Table 10. The 

result was found that MIC of sulfadiazine/trimethoprim against M. lysodeikticus was 

performed highest concentration (MICs 32-64 µM), while showed more active against 

P. citreus (MICs 0.031-0.063 µM). However, the MBC result of 

sulfadiazine/trimethoprim was not active against all five tested bacteria. The 

antibacterial activity of oxolinic acid and oxytetracycline hydrochloride was performed 

in range 0.016-0.5 µM against all five tested bacteria. The MBC of oxolinic acid also 

showed ineffective against P. citreus (MBC >64 µM), whereas very active against A. 

salmonicida NCIMB 1102 (MBC 0.063 µM). Moreover, MBC of oxytetracycline 

hydrochloride performed more active A. salmonicida NCIMB 1102 (MBC 1 µM) than 

other tested bacteria. 
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Table 9. The minimal inhibitory and bactericidal concentrations of synthetic cod 

piscidin against five test bacteria. 

Bacteria MIC (µM)a MBC (µM)b 

M. lysodeikticus  1.25-2.5 >5 

P. citreus  0.04-0.08 1.25 

V. anguillarum VI-F-258-3 >5 >5 

A. salmonicida NCIMB 1102 >5 >5 

Y. ruckeri VI 3629 >5 >5 

The values were represented as average of triplicate of each sample. 

a MIC, was defined as the lowest synthetic cod piscidin concentration that inhibits 

bacterial growth by 50% compared to the positive control (bacteria without peptide). 

b MBC, was considered as the lowest concentration of synthetic cod piscidin that 

prevented colony forming on TSA plates after incubation for 24 h. 

.
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Table 10. The minimal inhibitory and bactericidal concentrations of antibiotic agents against various bacteria. 

Oxolinic acid Oxytetracycline hydrochloride Sulfadiazine/trimethoprim 
Bacteria 

MIC (µM)a MBC (µM)b MIC (µM)a MBC (µM)b MIC (µM)a MBC (µM)b 

M. lysodeikticus 0.125-0.25 1 0.063-0.125 8 32-64 >64 

P. citreus 0.25-0.5 >64 0.031-0.063 16 0.031-0.063 >64 

V. anguillarum VI-F-258-3 0.016-0.031 1 0.016-0.031 8 0.5-1 >64 

A. salmonicida NCIMB 1102 0.016-0.031 0.063 0.031-0.063 1 2-4 32 

Y. ruckeri VI 3629 0.031-0.063 16 0.125-0.25 32 0.5-1 >64 

The values were represented as average of triplicate of each sample. 

a MIC, The MIC was defined as the lowest antibiotic concentration that inhibits bacterial growth by 50% compared to the positive control 

(bacteria without peptide). The MIC curve was showed in Appendix 4. 

b MBC, The MBC was considered as the lowest concentration of antibiotics that prevented colony forming on TSA plates after incubation 

for 24 h. 
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3.2.2. Synergistic activity  

Five strains of bacteria including two Gram-positive bacteria; M. lysodeikticus, 

P. citreus and three Gram-negative bacteria; Y. ruckeri VI 3629, V. anguillarum VI-F-

258-3, A. salmonicida NCIMB 1102 were tested synergistic activity of antibiotic-

peptide combination. The synergistic activity results were showed in Table 11, 12, and 

13 that reported moderate synergism for combined oxolinic acid and synthetic cod 

piscidin against V. anguillarum VI-F-258-3; combined oxytetracycline hydrochloride 

and synthetic cod piscidin against V. anguillarum VI-F-258-3, A. salmonicida NCIMB 

1102; and combined sulfadiazine/trimethoprim and synthetic cod piscidin against M. 

lysodeikticus, A. salmonicida NCIMB 1102, Y. ruckeri VI 3629. In contrast, no 

synergistic activity of all three test antibioticss with synthetic cod piscidin was found 

against P. citreus. However, additive activity of combined oxolinic acid and synthetic 

cod piscidin against P. citreus showed one-fold decreasing in the MICs of individual 

antibacterial agent in combination. 
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Table 11. The FIC index of combined oxolinic acid and synthetic cod piscidin against test bacteria. 

MIC (µM) MIC of combination (µM) 
Bacteria 

oxolinic acid piscidin oxolinic acid, piscidin 

FIC index Interpretation 

M. lysodeikticus 0.125-0.25 1.25-2.5 0.125-0.25, 1.25-2.5 2.0 Additive 

P. citreus 0.25-0.5 0.04-0.08 0.125-0.25, 0.02-0.04 1.0 Additive 

V. anguillarum VI-F-258-3 0.016-0.031 >5 0.008-0.016, 1.25-2.5 <0.7 Moderate synergism 

A. salmonicida NCIMB 1102 0.016-0.031 >5 >0.031, >5 >3.0 Antagonism 

Y. ruckeri VI 3629 0.031-0.063 >5 0.031-0.063, 2.5-5 <1.5 Additive 

FIC index= FICA+ FICB = [A]/ MICA+[B]/ MICB , where [A] and [B] are the MICs of drug A and drug B in the combination, MICA and 

MICB are the MICs of drug A and drug B alone, and FICA and FICB are the FICs of drug A and drug B. FIC index are interpreted as 

follow: ≤0.5,good synergism; 1.0,additive; and >4.0,antagonism. 
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Table 12. The FIC index of combined oxytetracycline hydrochloride and synthetic cod piscidin against test bacteria. 

MIC (µM) MIC of combination (µM) 

Bacteria 
oxytetracycline 

hydrochloride 
piscidin 

oxytetracycline 

hydrochloride, piscidin 

FIC index Interpretation 

M. lysodeikticus 0.063-0.125 1.25-2.5 0.031-0.063, 0.63-1.25 1.0 Additive 

P. citreus 0.031-0.063 0.04-0.08 0.031-0.063, 0.04-0.08 2.0 Additive 

V. anguillarum VI-F-258-3 0.016-0.031 >5 0.008-0.016, 1.25-2.5 <0.7 Moderate synergism 

A. salmonicida NCIMB 1102 0.031-0.063 >5 0.016-0.031, 1.25-2.5 <0.7 Moderate synergism 

Y. ruckeri VI 3629 0.125-0.25 >5 >0.25, >5 >3.0 Antagonism 

FIC index= FICA+ FICB = [A]/ MICA+[B]/ MICB , where [A] and [B] are the MICs of drug A and drug B in the combination, MICA and 

MICB are the MICs of drug A and drug B alone, and FICA and FICB are the FICs of drug A and drug B. FIC index are interpreted as 

follow: ≤0.5,good synergism; 1.0,additive; and >4.0,antagonism. 
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Table 13. The FIC index of sulfadiazine/trimethoprim and synthetic cod piscidin against test bacteria. 

MIC (µM) MIC of combination (µM) 

Bacteria 
Sulfadiazine 

/trimethoprim 
piscidin 

sulfadiazine/trimethoprim, 

piscidin 

FIC index Interpretation 

M. lysodeikticus 32-64 1.25-2.5 8-16, 0.63-1.25 0.7 Moderate synergism 

P. citreus 0.031-0.063 0.04-0.08 >0.063, >0.08 >4 Antagonism 

V. anguillarum VI-F-258-3 0.5-1 >5 0.5-1, 2.5-5 <1.5 Additive 

A. salmonicida NCIMB 1102 2-4 >5 1-2, 1.25-2.5 <0.7 Moderate synergism 

Y. ruckeri VI 3629 0.5-1 >5 0.25-0.5, 1.25-2.5 <0.7 Moderate synergism 

FIC index= FICA+ FICB = [A]/ MICA+[B]/ MICB , where [A] and [B] are the MICs of drug A and drug B in the combination, MICA and 

MICB are the MICs of drug A and drug B alone, and FICA and FICB are the FICs of drug A and drug B. FIC index are interpreted as 

follow: ≤0.5,good synergism; 1.0,additive; and >4.0,antagonism. 
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3.2.3. The kinetic of oxolinic acid and synthetic cod piscidin 

in combination against V. anguillarum VI-F-258-3 

In this study, the combination of oxolinic acid and synthetic cod piscidin 

showed moderate synergistic activity against V. anguillarum VI-F-258-3 that was 

determined kinetic profile at indicated times after incubation (Fig. 17). The 

concentration of combined oxolinic acid and synthetic cod piscidin were considered 

base on the combination between MIC of individual agent, then in combination 

contained oxolinic acid 0.031 µM (the upper interval MIC value) and 5 µM of 

synthetic cod piscidin (MIC > 5 µM). The result showed bacterium cells density were 

increased a little bit from 0 h to 2 h after incubated with combined oxolinic acid and 

synthetic cod piscidin at 20 °C. And then bacterium cells density were started 

decreasing after 2 h until 24 h after incubation. While a control was incubated with 

absence of combined oxolinic acid and synthetic cod piscidin that found bacterium 

cells density were increased from 0 h until 24 h after incubation at 20 °C. 
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Figure 17. The kinetic of combined oxolinic acid and synthetic cod piscidin 

against V. anguillarum VI-F-258-3. 

A, suspended V. anguillarum VI-F-258-3 approximately 105 CFU/ml in MHB were 

incubated with combined oxolinic acid (0.031 µM) and synthetic cod piscidin (5 µM) 

and plated on TSA for indicated times after incubation at 20°C. B, the control was 

contained V. anguillarum VI-F-258-3 suspension approximately 105 CFU/ml in MHB 

and incubated without combined antibacterial agents. Values are represented as 

means±standard error (vertical bars); n=3. 
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3.3. Discussion 

3.3.1. Minimal inhibitory and bactericidal concentration of 

antibacterial agents 

In this study found the individual MIC of synthetic cod piscidin were observed 

by MIC in rang 0.04-2.5 µM against 2 Gram-positive bacteria (M. lysodeikticus and P. 

citreus), while MIC of synthetic cod piscidin against all 3 strains of Gram-negative 

bacteria (V. anguillarum VI-F-258-3, A. salmonicida NCIMB 1102, and Y. ruckeri VI 

3629) were more than 5 µM. In addition, only MBC of synthetic cod piscidin against 

P. citreus was investigated of 1.25 µM of peptide concentration, whereas the MBC of 

other test bacteria performed more than 5 µM of peptide concentration. However, the 

antibacterial activity of synthetic cod piscidin against different bacterial stains was 

discussed in the Chapter 2. 

The antibacterial activity of conventional antibiotics; oxolinic acid, 

oxytetracycline hydrochloride, and sulfadiazine/trimethoprim were investigated MIC 

and MBC against various bacteria. In this study; ineffective antibacterial activity was 

found for sulfadiazine/trimethoprim combination against all five tested bacteria under 

consideration of MBC value. Moreover MICs of sulfadiazine/trimethoprim showed 

high concentration against M. lysodeikticus (MICs 32-64 µM), however the MICs of 

sulfadiazine/trimethoprim were 0.031-0.063 µM against P. citreus. Oxolinic acid 

showed very active antibacterial activity against A. salmonicida NCIMB 1102 (MBC 

0.063 µM), whereas ineffective antibacterial against P. citreus (MBC >64 µM). There 

are many reports for antibacterial activity of antibiotics used in aquaculture was 

investigated. Schmidt et al. (2000) observed the MICs of some antibiotics used in 

Danish aquaculture; oxolinic acid, sulfadiazine/trimethoprime combination 5:1, and 

oxytetracycline against Y. ruckeri (MICs of 2-8, 0.05-1, and 2-8 µg/ml, respectively), 
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and Aromonas resistant strains (MICs of 4-16, 205->1,024, and 32-256 µg/ml, 

respectively). Moreover, Bruun et al. (2000) reported the MICs of some antibiotics 

used in aquaculture; oxolinic acid, potentiated sulfadiazine (five parts sulfadiazine to 

one part trimethoprim), and oxytetracycline hydrochloride against F. psychrophilum 

(MICs of 0.13-0.25, 16-32, and 0.063-0.13 mg/ml, respectively), E. coli ATCC 25922 

(MICs of 0.032-0.063, 2-4, and 1-2 mg/ml, respectively), S. aureus ATCC 29213 

(MICs of 0.5-1, 1-2, and 0.25-1 mg/ml, respectively), and Pseudomonas aeruginosa 

ATCC 27853 (MICs of 16-32, 256-512, and 8-16 mg/ml, respectively). In this study, 

sulfadiazine/trimethoprim combination showed ineffective antibacterial activity 

against all five tested bacteria that similar with report of Bruun et al. (2000), showed 

less antibacterial effect of potentiated sulfadiazine against Pseudomonas aeruginosa 

ATCC 27853 (MICs 256-512 µg/ml) and F. psychrophilum NCIMB 1947 (MICs 16-

32 µg/ml). Moreover, Myhr et al. (1991) have been tested MIC90 of antibiotics 

consisting enrofloxacin, flumequine, oxolinic acid, nitrofurazolidone, oxytetracycline, 

and combined trimethoprim-sulfadiazine against V. anguillarum serovar O1 and O2 

strains by using drug microdilution method, the result showed MIC of 

nitrofurazolidone (MICs of 1-4 µg/ml) higher than MIC of combined trimethoprim-

sulfadiazine (MIC of 0.5 µg/ml) and another antibiotics (oxytetracycline, oxolinic acid, 

enrofloxacin, and flumequine, MIC <0.5 µg/ml) against both V. anguillarum serovar. 

However, in the present was found antibiotic resistant bacteria that reported by 

Akinbowale et al. (2006) investigated antibiotics (e.g., oxolinic acid, trimethoprime 

potentiated sulfonamide, and oxytetracycline) resistance in isolated bacteria from 

aquaculture (e.g., fish and crustaceans farming) and environment sources in Australia 

was found antibiotic resistance is common in isolated bacteria, for examples; Vibrio 

spp. resistance to oxytetracycline (while, no resistance to trimethoprime potentiated 
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sulfamethoxazole and oxolinic acid), Aeromonas spp. resistance to oxolinic acid, 

oxytetracycline, and trimethoprime potentiated sulfamethoxazole, Edwardsiella tarda 

resistance to oxytetracycline (susceptible to oxolinic acid and trimethoprime 

potentiated sulfamethoxazole), and Staphylococcus spp., Micrococcus spp. resistannce 

to oxolinic acid. From these supporting reports indicate that the antibiotics resistance 

bacteria were found in aquatic environment, caused by antibiotic used in aquaculture 

activity. It is possible that the antibiotic resistant gene from aquatic microorganisms 

might be transferred to terrestrial pathogens that might be caused of difficult to treat 

and prevent the diseases invading in terrestrial animals. 

3.3.2. Synergistic study of synthetic cod piscidin and antibio-

tics combination 

In this study was investigated the synergistic activity in vitro of synthetic cod 

piscidin from Atlantic cod with the conventional antibiotics, including oxolinic acid, 

oxytetracycline hydrochloride, and sulfadiazine/trimethoprim, which are amongst the 

most important antibiotic group for treatment and prevention of bacterial diseases in 

aquaculture. Interestingly, moderate synergy was found in this studies that showed FIC 

index <0.7 for combined synthetic cod piscidin with oxolinic acid, oxytetracycline 

hydrochloride, and sulfadiazine/trimethoprim against various strains of fish pathogenic 

bacteria including V. anguillarum VI-F-258-3, A. salmonicida NCIMB 1102, and Y. 

ruckeri VI 3629. The combination of antibacterial agents in this study showed 

synthetic cod piscidin can reduce the concentration of conventional antibiotics required 

to inhibit bacterial growth of most of test bacteria after combination. Many 

publications have been reported that combination of two antibacterial agents including 

combined antimicrobial peptide with antimicrobial peptide and also combined 
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antimicrobial peptide and antibiotic could enhanced their antimicrobial activity against 

various strains of bacteria than using antimicrobial peptide or antibiotic alone.  

The synergistic interaction between the conventional antibiotic agent 

chloramphenicol and peptide A3 (sequenced from the N-terminus of Helicobacter 

pylori ribosomal protein L1) was found that their antibacterial activity in vitro against 

both Gram-negative and Gram-positive bacteria (S. aureus, P. aeruginosa, and E. coli) 

increased 2-8 fold more than using peptide A3 or antibiotic chloramphenicol alone 

(Park et al., 2004). Moreover Park et al. (2006) showed highest S. aureus membrane 

permeability of combined cationic antimicrobial peptide P5 with chloramphenical 

when compared with untreated and antibiotic treated bacterium cells by detection 

internalized PI fluorescence intensity using flow cytometric analysis. Another research 

was reported that synergy between pleurocidin and the lactic acid bacterial 

antimicrobial peptides destroyed outer membranes of bacterial (Luders et al., 2003). 

From these reports were confirmed that the combination of antimicrobial peptide and 

antibiotic could enhance their antibacterial activity and membrane permeability when 

compared with individual activity. Importantly the combination of antimicrobial 

peptide and antibiotic may solve the problem of antibiotic resistant bacteria that was 

supported by in vitro study of synergistic activity of combined antibacterial peptides 

nisin (produced by Lactococcus lactis) and ranalexin (isolated from bullfrog skin) with 

several antibiotics e.g., amoxycillin, and amoxicillin-clavulanate. The result was 

showed the killing activity was enhanced by against methicillin-resistant 

Staphylococcus aureus (MRSA) which is the resistance antibacterial treatment 

(Giacometti et al., 2000a). The similarly by Cirioni et al. (2006) showed the strong 

synergistic activity between α-helical antimicrobial peptides, magainin II and cecropin 

A with vancomycin that were investigated FIC indexes in range 0.312-0.458 against S. 
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ureus ATCC 25923, and S. aureus with intermediate resistance to vancomycin. In this 

study was observed moderate synergism of synthetic cod piscidin in combination with 

clinically used antibiotics in aquaculture. Unfortunately, antagonisms were found for 

combined synthetic cod piscidin with oxolinic acid, oxytetracycline hydrochloride, and 

sulfadiazine/trimethoprim against A. salmonicida NCIMB 1102, Y. ruckeri VI 3629, 

and P. citreus, respectively. This antagonism result was similar to Ulvatne et al. (2001) 

that reported no synergy between antibacterial peptides (P18, P15, P12, P9, and P6) 

and antibiotics (ampicillin, vancomycin, erythromycin, gentamicin, tetracycline, 

ciprofloxacin, and rifampicin) with exception of synergistic combination of 

antibacterial peptide P9 with ampicillin against S. aureus ATCC 25923, whereas, 

strong synergism of all antibacterial peptides (P18, P15, P12, P9, and P6) and 

erythromycin was observed against E. coli ATCC 25922. In addition, two synergistic 

interactions were investigated between enrofloxacin with antimicrobial peptides 

alamethicin and surfactin (FIC indexes were 0.75 and 0.56, respectively), whereas two 

indifference interactions were found between enrofloxacin with antimicrobial peptides 

globomycin and gramicidin S (FIC indexes were 1 for both) against Mycoplasma 

pulmonis (Fehri et al., 2007). In this study not only antagonism were found but 

additive activity also were investigated. The antagonism and additive activity might be 

caused by competition or alteration of biding site between combined antibacterial 

agents and particular binding site on bacterial cell. Moreover, Mueller-Hinton medium 

contained high ionic strength (Yan and Hancock, 2001) that might disrupt the 

combination of antibacterial agents and inhibit their antibacterial activity that might 

lead to additive and antagonistic activity of peptide-antibiotic combination. In addition, 

Fernandes et al., (2010) have mentioned that glycine residue at position 7 (Fig. 6) in 

amphipathic structure of cod piscidin might disrupt its function, which might related to 
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reducing of its antibacterial activity or ability to combine with antibiotics. Similar with 

Silphaduang and Noga (2001) report that a glycine substituted for histidin at position 

17 of piscidin 3 might disrupt the its amphipathic α-helix structure and lead to reducing 

of its haemolytic and antibacterial activity as well.  

Not only combination between antimicrobial peptide and antibiotic that can 

enhance their antibacterial activity but the combination between antibacterial peptides 

also can increase antibacterial activity when compared with individual activity. Lauth 

et al. (2005) showed synergism antibacterial activity of combined hepcidin and 

moronecidin, purified from the gills of hybrid striped bass against S. iniae, E. coli, Y. 

enterocolitica, and S. sonnei, the FIC indices were between 0.5-0.75 that were 

indicated good to moderate synergy. Moreover Luders et al. (2003) investigated the 

strong synergy between pleurocidin with antimicrobial peptides (produced by lactic 

acid bacteria); curvacin A, pediocin PA-1, and sakacin P that showed FIC indexes 

0.19-0.5 against Gram-positive Listeria ivanovii Li4 and Gram-negative E. coli ATCC 

14763 with exception of combined pleurocidin with sakacin P, showed FIC index 1. 

Thus, the interaction between antimicrobial peptide with antibiotic is 

potentially enhancing antimicrobial activity and can supporting useful for 

antimicrobial therapy. Moreover, the combination of them could reduce the antibiotic 

concentration and increased antibacterial activity against antibiotic resistant bacteria by 

in vitro study. Therefore the combination of antimicrobial peptide and antibiotic might 

be used to manage antibiotic resistant bacteria problem and control bacterial diseases 

in aquaculture in the future. 
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Chapter 4. Conclusions 

Disease management is crucial in the aquaculture industry, and to date it 

involves the usage of antibiotics to treat and prevent diseases, especially bacterial 

infections. However, there is a growing concern over the problems caused by 

conventional antibiotics in environment (e.g., bacteria resistant to multiple antibiotics). 

Therefore, it is crucial to reduce the usage of conventional antibiotics or find 

alternative novel antibacterial agents to manage bacterial diseases and antibiotic-

resistant bacteria. Antimicrobial peptides are produced from multicellular organisms 

and have the ability to kill and inhibit bacteria via different mechanisms, namely by 

permeabilizing the bacterial cell membrane or disrupt cell metabolism. Therefore the 

antimicrobial peptides are considered as an attractive new alternative to conventional 

antibiotics. One significant advantage of antimicrobial peptides is that they have a 

broad spectrum of activity and can synergise with other antibiotics. In this thesis, I 

have investigated the antibacterial activity in-vitro of synthetic cod piscidin from 

Atlantic cod against different Gram-positive and Gram-negative bacteria and found 

synthetic cod piscidin to be more active against Gram-positive bacteria than Gram-

negative bacteria with exception of V. anguillarum and P. immobilis. Interestingly, the 

permeabilization assay of synthetic cod piscidin against P. citreus revealed that this 

peptide permeabilized the bacterial membrane at its MICs and MBC values. Synthetic 

cod piscidin showed similar haemolytic activity to cecropin 1 and was less haemolytic 

than melittin against cod erythrocytes. Moreover, the synergistic activity in-vitro of 

synthetic cod piscidin was investigated with the conventional antibiotics, including 

oxolinic acid, oxytetracycline hydrochloride, and sulfadiazine/trimethoprim 

combination, which are amongst the most important antibiotics used for prevention of 

bacterial diseases in aquaculture. The peptide-antibiotic combination were tested 
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against two Gram-positive bacteria; M. lysodeikticus, P. citreus and three Gram-

negative bacteria; Y. ruckeri VI 3629, V. anguillarum VI-F-258-3, A. salmonicida 

NCIMB 1102 which are common fish pathogens. The synergistic activity results 

showed moderate synergism for combined oxolinic acid and synthetic cod piscidin 

against V. anguillarum VI-F-258-3; combined oxytetracycline hydrochloride and 

synthetic cod piscidin against V. anguillarum VI-F-258-3, A. salmonicida NCIMB 

1102; and combined sulfadiazine/trimethoprim and synthetic cod piscidin against M. 

lysodeikticus, A. salmonicida NCIMB 1102, Y. ruckeri VI 3629. In contrast, no 

synergistic activity of all three test antibiotics with synthetic cod piscidin was found 

against P. citreus. The data show that synthetic cod piscidin can reduce the 

concentration of conventional antibiotics required to inhibit bacterial growth of fish 

pathogenic bacteria (Y. ruckeri VI 3629, V. anguillarum VI-F-258-3, and A. 

salmonicida NCIMB 1102). These results provide a better insight into the mode of 

action of synthetic cod piscidin and suggest that it could be explored as an alternative 

antibiotic, which may be used in disease control management in commercial 

aquaculture systems in the future. 



 75 

Appendix 1 

Growth curve of various bacteria 
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Figure A1.1. Growth curve of M. lysodeikticus that showed the relationship between 

optical densities at 600 nm and indicated times after incubation with appropriate 

culture conditions. The error bars were represented the standard error values for the 

average of triplicate. Red circle is indicated time during exponential phase. 
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Figure A1.2. Growth curve of P. citreus that showed the relationship between optical 

densities at 600 nm and indicated times after incubation with appropriate culture 

conditions. The error bars were represented the standard error values for the average of 

triplicate. Red circle is indicated time during exponential phase. 
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Figure A1.3. Growth curve of S. aureus ATCC 9144 that showed the relationship 

between optical densities at 600 nm and indicated times after incubation with 

appropriate culture conditions. The error bars were represented the standard error 

values for the average of triplicate. Red circle is indicated time during exponential 

phase. 
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Figure A1.4. Growth curve of C. glutamicum ATCC 13032 that showed the 

relationship between optical densities at 600 nm and indicated times after incubation 

with appropriate culture conditions. The error bars were represented the standard error 

values for the average of triplicate. Red circle is indicated time during exponential 

phase. 
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Figure A1.5. Growth curve of E. coli ATCC 25922 that showed the relationship 

between optical densities at 600 nm and indicated times after incubation with 

appropriate culture conditions. The error bars were represented the standard error 

values for the average of triplicate. Red circle is indicated time during exponential 

phase. 
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Figure A1.6. Growth curve of V. anguillarum NCIMB 2133 that showed the 

relationship between optical densities at 600 nm and indicated times after incubation 

with appropriate culture conditions. The error bars were represented the standard error 

values for the average of triplicate. Red circle is indicated time during exponential 

phase. 
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Figure A1.7. Growth curve of V. anguillarum VI-F-258-3 that showed the relationship 

between optical densities at 600 nm and indicated times after incubation with 

appropriate culture conditions. The error bars were represented the standard error 

values for the average of triplicate. Red circle is indicated time during exponential 

phase. 
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Figure A1.8. Growth curve of V. anguillarum that showed the relationship between 

optical densities at 600 nm and indicated times after incubation with appropriate 

culture conditions. The error bars were represented the standard error values for the 

average of triplicate. Red circle is indicated time during exponential phase. 
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Figure A1.9. Growth curve of A. salmonicida NCIMB 1102 that showed the 

relationship between optical densities at 600 nm and indicated times after incubation 

with appropriate culture conditions. The error bars were represented the standard error 

values for the average of triplicate. Red circle is indicated time during exponential 

phase. 
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Figure A1.10. Growth curve of Y. ruckeri NCIMB 2196 that showed the relationship 

between optical densities at 600 nm and indicated times after incubation with 

appropriate culture conditions. The error bars were represented the standard error 

values for the average of triplicate. Red circle is indicated time during exponential 

phase. 
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Figure A1.11. Growth curve of Y. ruckeri VI 3629 that showed the relationship 

between optical densities at 600 nm and indicated times after incubation with 

appropriate culture conditions. The error bars were represented the standard error 

values for the average of triplicate. Red circle is indicated time during exponential 

phase. 
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Figure A1.12. Growth curve of P. immobilis that showed the relationship between 

optical densities at 600 nm and indicated times after incubation with appropriate 

culture conditions. The error bars were represented the standard error values for the 

average of triplicate. Red circle is indicated time during exponential phase. 
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Appendix 2 

The correlation ship between bacterial densities and optical density at 600 nm 
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Figure A2.1. The relationship between cell density and optical density at 600 nm of M. 

lysodeikticus. Values are represented as means±standard error (vertical bars); n=3. The 

linear regression equation was used to calculate the bacterium cell density at particular 

optical density at 600 nm. 
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Figure A2.2. The relationship between cell density and optical density at 600 nm of P. 

citreus Values are represented as means±standard error (vertical bars); n=3. The linear 

regression equation was used to calculate the bacterium cell density at particular 

optical density at 600 nm. 
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Figure A2.3. The relationship between cell density and optical density at 600 nm of S. 

aureus ATCC 9144. Values are represented as means±standard error (vertical bars); 

n=3. The linear regression equation was used to calculate the bacterium cell density at 

particular optical density at 600 nm. 
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Figure A2.4. The relationship between cell density and optical density at 600 nm of C. 

glutamicum ATCC 13032. Values are represented as means±standard error (vertical 

bars); n=3. The linear regression equation was used to calculate the bacterium cell 

density at particular optical density at 600 nm. 
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Figure A2.5. The relationship between cell density and optical density at 600 nm of E. 

coli ATCC 25922. Values are represented as means±standard error (vertical bars); n=3. 

The linear regression equation was used to calculate the bacterium cell density at 

particular optical density at 600 nm. 
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Figure A2.6. The relationship between cell density and optical density at 600 nm of V. 

anguillarum NCIMB 2133. Values are represented as means±standard error (vertical 

bars); n=3. The linear regression equation was used to calculate the bacterium cell 

density at particular optical density at 600 nm. 
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Figure A2.7. The relationship between cell density and optical density at 600 nm of V. 

anguillarum VI-F-258-3. Values are represented as means±standard error (vertical 

bars); n=3. The linear regression equation was used to calculate the bacterium cell 

density at particular optical density at 600 nm. 
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Figure A2.8. The relationship between cell density and optical density at 600 nm of V. 

anguillarum. Values are represented as means±standard error (vertical bars); n=3. The 

linear regression equation was used to calculate the bacterium cell density at particular 

optical density at 600 nm. 
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Figure A2.9. The relationship between cell density and optical density at 600 nm of A. 

salmonicida NCIMB 1102. Values are represented as means±standard error (vertical 

bars); n=3. The linear regression equation was used to calculate the bacterium cell 

density at particular optical density at 600 nm. 
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Figure A2.10. The relationship between cell density and optical density at 600 nm of Y. 

ruckeri NCIMB 2196. Values are represented as means±standard error (vertical bars); 

n=3. The linear regression equation was used to calculate the bacterium cell density at 

particular optical density at 600 nm. 
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Figure A2.11. The relationship between cell density and optical density at 600 nm of Y. 

ruckeri VI 3629. Values are represented as means±standard error (vertical bars); n=3. 

The linear regression equation was used to calculate the bacterium cell density at 

particular optical density at 600 nm. 
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Figure A2.12. The relationship between cell density and optical density at 600 nm of 

P. immobilis. Values are represented as means±standard error (vertical bars); n=3. The 

linear regression equation was used to calculate the bacterium cell density at particular 

optical density at 600 nm. 
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Appendix 3 

Minimal inhibitory concentration of synthetic cod piscidin 

 

Figure A3.1. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of M. lysodeikticus. The optical density at 540 nm was 

determined when the positive control, bacteria without peptide reached to 0.2 after 

incubated at appropriate temperature. The MIC values are represented in rage by the 

red line indicates the inhibition of bacterial growth by 50% compared to the positive 

control. Values are represented as means±standard error (vertical bars); n=3. 

 

Figure A3.2. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of P. citreus. The optical density at 540 nm was 

determined when the positive control, bacteria without peptide reached to 0.2 after 

incubated at appropriate temperature. The MIC values are represented in rage by the 

red line indicates the inhibition of bacterial growth by 50% compared to the positive 

control. Values are represented as means±standard error (vertical bars); n=3. 
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Figure A3.3. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of S. aureus ATCC 9144. The optical density at 540 nm 

was determined when the positive control, bacteria without peptide reached to 0.2 after 

incubated at appropriate temperature. The MIC values are represented in rage by the 

red line indicates the inhibition of bacterial growth by 50% compared to the positive 

control. Values are represented as means±standard error (vertical bars); n=3. 

 

Figure A3.4. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of C. glutamicum ATCC 13032. The optical density at 

540 nm was determined when the positive control, bacteria without peptide reached to 

0.2 after incubated at appropriate temperature. The MIC values are represented in rage 

by the red line indicates the inhibition of bacterial growth by 50% compared to the 

positive control. Values are represented as means±standard error (vertical bars); n=3. 
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Figure A3.5. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of E. coli ATCC 25922. The optical density at 540 nm 

was determined when the positive control, bacteria without peptide reached to 0.2 after 

incubated at appropriate temperature. The MIC values are represented in rage by the 

red line indicates the inhibition of bacterial growth by 50% compared to the positive 

control. Values are represented as means±standard error (vertical bars); n=3. 

 

Figure A3.6. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of V. anguillarum NCIMB 2133. The optical density at 

540 nm was determined when the positive control, bacteria without peptide reached to 

0.2 after incubated at appropriate temperature. The MIC values are represented in rage 

by the red line indicates the inhibition of bacterial growth by 50% compared to the 

positive control. Values are represented as means±standard error (vertical bars); n=3. 
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Figure A3.7. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of V. anguillarum VI-F-258-3. The optical density at 

540 nm was determined when the positive control, bacteria without peptide reached to 

0.2 after incubated at appropriate temperature. The MIC values are represented in rage 

by the red line indicates the inhibition of bacterial growth by 50% compared to the 

positive control. Values are represented as means±standard error (vertical bars); n=3. 

 

Figure A3.8. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of V. anguillarum. The optical density at 540 nm was 

determined when the positive control, bacteria without peptide reached to 0.2 after 

incubated at appropriate temperature. The MIC values are represented in rage by the 

red line indicates the inhibition of bacterial growth by 50% compared to the positive 

control. Values are represented as means±standard error (vertical bars); n=3. 
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Figure A3.9. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of A. salmonicida NCIMB 1102. The optical density at 

540 nm was determined when the positive control, bacteria without peptide reached to 

0.2 after incubated at appropriate temperature. The MIC values are represented in rage 

by the red line indicates the inhibition of bacterial growth by 50% compared to the 

positive control. Values are represented as means±standard error (vertical bars); n=3. 

 

Figure A3.10. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of Y. ruckeri NCIMB 2196. The optical density at 540 

nm was determined when the positive control, bacteria without peptide reached to 0.2 

after incubated at appropriate temperature. The MIC values are represented in rage by 

the red line indicates the inhibition of bacterial growth by 50% compared to the 

positive control. Values are represented as means±standard error (vertical bars); n=3. 
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Figure A3.11. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of Y. ruckeri VI 3629. The optical density at 540 nm 

was determined when the positive control, bacteria without peptide reached to 0.2 after 

incubated at appropriate temperature. The MIC values are represented in rage by the 

red line indicates the inhibition of bacterial growth by 50% compared to the positive 

control. Values are represented as means±standard error (vertical bars); n=3. 

 

Figure A3.12. The different concentrations of synthetic cod piscidin were incubated 

with approximate 105 CFU/ml of P. immobilis. The optical density at 540 nm was 

determined when the positive control, bacteria without peptide reached to 0.2 after 

incubated at appropriate temperature. The MIC values are represented in rage by the 

red line indicates the inhibition of bacterial growth by 50% compared to the positive 

control. Values are represented as means±standard error (vertical bars); n=3. 
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Appendix 4 

Minimal inhibitory concentration of antibiotics 
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Figure A4.1. The different concentrations of antibiotics; oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim combination (C) 

were incubated with approximate 105 CFU/ml of M. lysodeikticus. The optical density 

at 540 nm was determined when the positive control reached to 0.2 after incubated at 

appropriate temperature. The MIC values are represented in rage by the red line 

indicates the inhibition of bacterial growth by 50% compared to the positive control. 

Values are represented as means±standard error (vertical bars); n=3. 
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Figure A4.2. The different concentrations of antibiotics; oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim combination (C) 

were incubated with approximate 105 CFU/ml of P. citreus. The optical density at 540 

nm was determined when the positive control reached to 0.2 after incubated at 

appropriate temperature. The MIC values are represented in rage by the red line 

indicates the inhibition of bacterial growth by 50% compared to the positive control. 

Values are represented as means±standard error (vertical bars); n=3. 
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Figure A4.3. The different concentrations of antibiotics; oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim combination (C) 

were incubated with approximate 105 CFU/ml of V. anguillarum VI-F-258-3. The 

optical density at 540 nm was determined when the positive control reached to 0.2 

after incubated at appropriate temperature. The MIC values are represented in rage by 

the red line indicates the inhibition of bacterial growth by 50% compared to the 

positive control. Values are represented as means±standard error (vertical bars); n=3. 
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Figure A4.4. The different concentrations of antibiotics; oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim combination (C) 

were incubated with approximate 105 CFU/ml of A. salmonicida NCIMB 1102. The 

optical density at 540 nm was determined when the positive control reached to 0.2 

after incubated at appropriate temperature. The MIC values are represented in rage by 

the red line indicates the inhibition of bacterial growth by 50% compared to the 

positive control. Values are represented as means±standard error (vertical bars); n=3. 
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Figure A4.5. The different concentrations of antibiotics; oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim combination (C) 

were incubated with approximate 105 CFU/ml of Y. ruckeri VI 3629. The optical 

density at 540 nm was determined when the positive control reached to 0.2 after 

incubated at appropriate temperature. The MIC values are represented in rage by the 

red line indicates the inhibition of bacterial growth by 50% compared to the positive 

control. Values are represented as means±standard error (vertical bars); n=3. 
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Appendix 5 

Minimal inhibitory concentration of combined antibiotic and synthetic cod piscidin 

 

Figure A5.1. The MIC of combined synthetic cod piscidin with oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim (C) against M. 

lysodeikticus. The red line indicates the inhibition of bacterial growth by 50% 

compared to the positive control. Values are represented as means±standard error 

(vertical bars); n=3. 
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Figure A5.2. The MIC of combined synthetic cod piscidin with oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim (C) against P. 

citreus. The red line indicates the inhibition of bacterial growth by 50% compared to 

the positive control. Values are represented as means±standard error (vertical bars); 

n=3. 
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Figure A5.3. The MIC of combined synthetic cod piscidin with oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim (C) against V. 

anguillarum VI-F-258-3. The red line indicates the inhibition of bacterial growth by 

50% compared to the positive control. Values are represented as means±standard error 

(vertical bars); n=3. 
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Figure A5.4. The MIC of combined synthetic cod piscidin with oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim (C) against A. 

salmonicida NCIMB 1102. The red line indicates the inhibition of bacterial growth by 

50% compared to the positive control. Values are represented as means±standard error 

(vertical bars); n=3. 
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Figure A5.5. The MIC of combined synthetic cod piscidin with oxolinic acid (A), 

oxytetracycline hydrochloride (B), and sulfadiazine/trimethoprim (C) against Y. 

ruckeri VI 3629. The red line indicates the inhibition of bacterial growth by 50% 

compared to the positive control. Values are represented as means±standard error 

(vertical bars); n=3. 
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