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ABSTRACT

The idea behind the strategy of pairs trading is to exploit the relationship between two
securities by finding two securities that move similarly over time. The theory is that by
buying one stock long while selling another stock short within the same sector, when the
securities diverge from equilibrium a profit will be yielded when the two securities

eventually converge back to equilibrium.

The investment strategy of ‘Pairs Trading’ was pioneered in the 1980’s and is a market
neutral strategy enabling traders to profit from almost any market condition. Although
this strategy was initially only available to hedge funds and investment banks, it has more
recently become a viable option for small-scale investors thanks to the increasing

development of ICT tools and internet-based brokers.

For this paper I have attempted to follow the methodologies used in the earlier studies
conducted by Gatev, Rouwenhorst and Goetzmann (2006) and Do & Faff (2009).
However in this paper I have chosen to apply vanilla options instead of going long and

short in the underlying. The options are set with a strike at the money.

I chose use the companies on the S&P 500 and used a co-integration approach to find all
subsets of two companies. One group of securities was significant at 1% level, one at a
5% level and the last at 10% level. The indicator to trade was calculated using the

mispricing expressed in standard deviations using a 50-day simple moving average.
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1. Introduction
For many years, practitioners and academics of investment management have tried to

beat the market by applying fundamental analysis and technical analysis. In the mid-
1980s Nunzio Tartaglia gathered a team of physicists, mathematicians and computer
scientist to discover arbitrage opportunities in the equity market. The team used
sophisticated statistical methods to develop highly technical trading programs. One of
these programs identified pairs of securities whose prices tended to move together. In
1987 they reportedly made a $50 million profit for the firm Bass (1999). The team was
disbanded in 1989 after low performance. However, quantitative trading strategies, and in
particular pairs trading have since become an increasingly popular strategy as the
methodology has gradually been easier to access for the average trader due to
technological advances. Therefore, in more recent years this kind of trading, often-noted

algorithm trading, has grown significantly.

Pairs trading involves finding two different assets, or pairs, that are co-integrated and are
close economic substitutes. By identifying the equilibrium between the stock pairs, one
can exploit any situation where the price of one of the pairs breaks out of the equilibrium.
Avellaneda and Lee (2010, p. 761) State that by investing frequently in small positions
over different stocks the portfolio will be diversified, which would produce a low
volatility investment strategy that has low covariance with the market. The trading
strategy relies on the fact that it is likely that pairs will revert back to their long-term
equilibrium. An accepted explanation for this equilibrium is the law of one price, which
states that similar products should sell for similar price It is also worth noting that the
trading strategy involves high frequency trading, which would encompass an increased

amount of trading cost.

A common example of co-integrated pairs is Coca-Cola (KO) and Pepsi (PEP). Both
companies registered under the same industry classification, producing carbonated soda

drinks. Feil! Finner ikke referansekilden. shows how both companies have shared their
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highs and lows. Because of the ‘
w

companies shared similarities one would

expect the securities to be affected by the g \Vad

same market and share similar trends. ' A\ Y

By looking at these two companies we

can see that in year 2000 the shares are
moving closer tOgCthCI‘, we would Figur 1-1 A time-series plot of the prices of Pepsi and Coca-Cola

therefore go long in PEP (red) and short in KO (blue). By 2002 the securities have moved
away from equilibrium and we would therefore expect reversion back to equilibrium. The

trader would therefore take a short position in Pepsi and a long position in coca cola.

David Shaw, a computer science professor recognised as one of the most successful
quantitative traders on Wall Street, and an early Tartaglia’s protégé, implies that the
success of his firm D.E. Shaw relied on an early entry into the market. In an interview,
put together, by New York Times journalist Joseph Kahn, he says he believes that when
his secret algorithms ‘spot a buy’ it only gives him a marginally better chance of

generating profit than if he were to flip a coin.

If the market is operating efficiently one would expect that a trading strategy revolving
around past price dynamics and simple contrarian principle would not be able to generate
money. Therefore the risk adjusted return should not be positive. As pairs trading has
been subject to rigorous research by several academics including Vidyamurthy (2004,
Gateyv, et al. (2006, Do and Faftf (2010, Do and Faff (2012), it seems that after accounting
for all costs regarding trading the excess return has diminished gradually and is

practically gone by 2008.

One common factor seen in these studies is taking opposite positions by going long and
short. The cost of taking the wrong position where the security does not return back to its
expected equilibrium can thus be prime reason for not generating excess return. This

paper seeks to reduce this loss by buying options instead of going long and short.
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Engle and Granger (1987) expanded the results proved in the paper by Granger (1981)
regarding long run dynamics. Long-run multiplier, error correcting model and partial
adjustment models were used to estimate the long and short run dynamics. Yet, it is the
discovery of modelling two non-stationary variables upon each other where the error term
is stationary that has made it possible to do pairs trading. Pairs trading is therefore trading

on the expectation of the long run dynamics.

Lee specified three main factors that statistical arbitrage encompasses:
I.  Trading signals are rule based.
II.  The trading strategy is market neutral, due to zero betas with the market and
III.  The mechanism for generating excess return is statistical.

Avellaneda and Lee (2010)

By applying options to pairs trading I seek to answer the question; ‘does the profitability
increase or decrease during the period in regards to prior studies’. I also seek to ascertain

if the cost losses due to non-convergence is decreased.

2.  Market efficiency

In the stock market, prices are under constant change to equilibrate the supply and
demand. The stock market is there to provide capital to businesses and at the same time
allocate ownership to investors. The efficiency of this reallocation of resources has
undertaken rigorous research. Most neoliberal and neoconservative economic theories are
founded on the belief that markets are efficient. The political philosophy neoliberalism

has been a driver for free trade on open deregulated markets.

This chapter will focus on research done on market efficiency; I focus on the central
contributor of testing the efficiency Fama (1965, 1970, 1991, 1998). Later research is

also provided questioning the early research done by Fama and Malkiel.
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Earlier research led by mathematician Bhacheliers and his study on the development of
prices during the 1900s, pointed towards a change of which was following a random
walk. “His “ fundamental principle” for the behaviour of prices was that speculation
should be a ‘fair game’; in particular, the expected profits to the speculator should be
zero. With the benefits of the modern theory of stochastic processes, we know now that

the process implied by this fundamental principle is a martingale” Fama (1970, p. 389)

For a time series to be classified as a random walk it requires independence. ”’In statistical
terms independence means that the probability distribution for the price change during
time t is independent of the sequence of price changes during previous time periods”

Fama (1965, p. 35)

A martingale is the probability theory, simply stating that there is no possibility of
predicting the mean of the future winning behaviour based on past and current
information. More specifically the recognised martingale definition is the process

satisfying:

EXpiqlXy, s X)) = X,

E(Xpsq1lXy, oo, Xn) — X, = 0.

Stating that the average “winnings” from observation n to observation n+1 are zero. If the
equity market were to behave as a martingale it would be impossible to gain excess return

in the long term.

If there is no possibility of predicting future price based on previous price there would
have to be independence between the observed values. Fama explains this independence:
”If there are many sophisticated traders who are extremely good at estimating intrinsic
value, they would be able to recognize situations where the price of a common stock is
beginning to run up above its intrinsic value. Since they expect the price to move

eventually back towards its intrinsic value, they have an incentive to sell this security or
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to sell it short... Thus their action will neutralize the dependence in the noise-generating-

process, and successive price changes will be independent” Fama (1965, p. 38)

The equity market would be efficient if the prices of all the securities fully reflected all
available information. As Fama (1970) writes, this statement is to general to be testable.
However, the conditions of market equilibrium were assumed to be stated in terms of

expected returns.

Fama (1970) Describes the expected return theory as:

E@jes1l Pe) = [1+ E(ev1] Pelpje

Simply stating that the expected upcoming price given all available information is equal
to current price plus the expected return given all available information times the current

price.

Where;

E is the expected value operator.

pj¢ 1s the price of security j at time t.

Dj t+1 1 the price of the security at t+1 (with reinvestment of any intermediate cash
income from the security).

7i t+1 1s the one-period percentage return (9 r41 — Pje)/ Djt-

@, is a general symbol for whatever set of information is assumed to be ‘fully reflected’
in the price at t.

Tildes indicate that p; ;1 and ., are random variables at t. The value of the
equilibrium expected return E (P ;41| ®,) is determined the information that &, ‘is fully
reflected’ in the formation of price pj;.

Xj t+1 18 the difference between the observed price and the expected value of the price that

was projected at ¢ on the basis of the information ®,.
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Xjt+1 = Pjt+1 — E(pj,t+1| d,)
E(xj,t+1| ®,)=0

With a return set equal to zero the model is referred to as the  fair game’ efficient market
model.

Fama (1970) Points to the fair game model where by any trading system based on
historical information would have expected return equal to zero. Pairs trading assume that
the securities in the long run would return back to its equilibrium. The expectation of this
behavior is only based on past information, and by the fair game model it would therefore
not be possible to generate excess return when accounted for risk.

The submartingale model states that the expected value of t+1 of any security is equal or
greater than the current price. This assumption: “Implies that such trading rules based
only on the information in &, cannot have greater expected profits than a policy of
always buying-and-holding the security during future period in question”Fama (1970, p.

386)

2.1 The random walk model

A combination of two assumptions brought together contributed to the random walk
model. First the assumption that all available information was fully reflected in the price,
and second that the return was identically distributed. Fama (1970, p. 386) wrote this

model as:

f(rj,t+1| d,) = f(T}',t+1)

Here the conditional and marginal probability distribution is the same as the non

conditional. Also the density function has to be the same for all t-values.

This is an example of a random walk generated; the interesting thing with this is that
from a technical point of view you would expect the security to be in an upward trend,
but clearly in this case it would not mean anything. It might look systematic, but these

values are following a random walk.
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Fama (1970) Elaborates on this by stating that if the expected return on a security j is

constant over time, then we have

E(fj,t+1| o] = E(fj,t+1)
From this formula it is easy to see that the *

expected return is independent from the

30

8

information available at time 7. Fama (1970)

targues that the random walk is an extension

20 40 60 80 100

of the fair game model by expressing that “the  Figur 2-1 Random Walk
mean of the distribution of 7 ;,.; is independent of the information available at t, @,
whereas the random walk model in addition says that the entire distribution is

independent of ®,”.

Fama (1970) not only argues that the random walk is an extension of the fair game model
but that the fair game model falls short because it does not take into account the
environment in which investor’s tastes and preferences create new information that is

used to generate return equilibrium in which return distribution repeats itself over time.

Due to the complexity of the ‘real world’ inference are often made with assumptions.
They can be justified or not justified. Market efficiency theory contains three

assumptions:

I.  There are no transaction costs in trading securities.
II.  All available information is costless-ly available to all market participants.
III.  All agree on the implications of current information for the current price and
distribution of future prices of each security. In such a market the current price of

a security obviously ‘fully reflects’ all available information.

Fama (1970) argues that this is not unrealistic, that even when the transaction costs are

high there is no causality in the fact that the price is not fully reflected by the available
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information at time ¢. He also argues that if enough investors have a sufficient amount of
information it would create an efficient market, and therefore even if not every investor

had sufficient information the market would still be efficient.

The weak form of market efficiency focuses on historical information, where any trading
strategy that was based on current or historical information would not be able to generate
excess return. This is due to the fact that all information is reflected in the price. Focus
here is on the fair game model, where return pointed towards a sub martingale expected
return model. Depending on which order the research was conducted it was often referred
to as a ‘random walk’. However, Fama (1970) states that even if the random walk has
been cited as a good approximation, the researcher would continue to point towards the
‘fair game’ model. “What resulted was a theory of efficient markets stated in terms of
random walks, but usually implying some more general form of the ‘fair game’

model.”Fama (1970, p. 409)

Market efficiency took a step further when researchers began analyzing how efficiently
new information became reflected in the market price. The semi strong market efficiency
still concludes that all prior information is reflected in the price. However, it now also
looks at how quickly new information become evaluated and transferred into the
securities. Information that is taken into account is the fundamental data, which could be
accounting practices, stock splits, annual reports etc. Fama (1970) looks at how the
securities react after these fundamental releases, he also concludes that to a large extent
the market is efficient. “We shall conclude that, with but a few exceptions, the efficient

market model stands up well” Fama (1970, p. 383)

Conversely, (Bodie et al 2009) states that there are fundamental ratios such as the PE
ratio that are able to ‘predict’ unexplained risk adjusted returns. Another strategy is the
buying of stocks just after the release of positive quarterly reports. This is a result which
is in large a contrast to the semi efficient market model, where Fama states: “The

available semi-strong form evidence on the effect of various sorts of public
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announcements on common stock returns is all consistent with the efficient market

model.” Fama (1970, p. 409)

The strong form of market efficiency is concerned with the monopoly effect, determining
whether or not there are any investors/hedge funds in particular that would have
monopolistic access to information that would be relevant for the development of prices,
and whether this information would be reflected in the market. Many regulations have
been implemented to prevent investors from benefiting from inside information. For
some this would be enough to conclude that the market does not operate under a strong
form of market efficiency.

However, there have been a lot of criticisms since the Global Financial Crisis (GFC). In

addition to these criticisms, large sales were reported ahead of the GFC.

Fama (1970) indicates that there are specialists at the stock exchange with inside
information that would be able to benefit from restricted information. However, apart
from those few the remaining investors would have to manage on the information given

in the public, and therefore would be subject to strong market efficiency.

The weak form of market efficiency where markets are in equilibrium and where
temporary disequilibrium is self-correcting has been disputed. If the prices on the
securities are in equilibrium where arbitrage profits have been completely removed is it
possible that a competitive economy would always be in equilibrium? Grossman and
Stiglitz argue that is it not by stating, “Clearly not, for then those who arbitrage make no
(private) return from their (privately) costly activity. Hence the assumption that all
markets, including those for information, are always in equilibrium and always perfectly

arbitraged are inconsistent when arbitrage is costly” Grossman and Stiglitz (1980, p. 393)

The semi strong form of market efficiency regarding how quickly new information is

reflected in the price has also been challenged by several researchers.



Aleksander Rinaldo 292353 14

Income has a significant effect on security prices, and one would therefore expect that the
market would to some extent “price in” their expected future income of a given security.
Ball and Brown (1968) created a study by developing two alternative models, both
looking at the expectation prior to an income release(market expectation) and then
studying the market behavior when expectations were not realized. “suggests that the
market begins to anticipate forecast errors early in the 12 months preceding the report”
Ball and Brown (1968, p. 171) Although the preciseness of anticipation or expectation of
error would increase the closer one gets to the release of the report, it does raise the
question of the markets efficiency. Ball and Brown (1968) among others' documented

that there was a predictability in abnormal returns.

Bernard and Thomas (1990, Bernard and Thomas (1989) explain that it is difficult to
understand why the market does not react fully on releases as publically available as
earnings. They go on to give an idea of why the market is behaving in such a way.
“Given that a firm announces positive (negatively) unexpected earning for quarter t, the
market tends to be positively (negatively) surprised in the days surrounding the
announcement for quarter t+1... This evidence is consistent with a market that “fails to
adequately revise its expectations for quarter t+1 earnings upon receipt of the news for

quarter t” Bernard and Thomas (1990, p. 306).

The publication by Shiller (2003) “From efficient markets theory to behavioral finance”,
argues that the efficient market hypothesis is outdated and that the research has taken a
wider perspective including psychology and sociology. In this paper Shriller presents the

efficient market model P,=E,P;

Where,
P; is the current price of any security

and E. P/ is the expected future price.

1
Joy, Litzenberg and McEnally(1977), Watts(1978), Rendleman, Jones and Latane(1982)
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From here it follows that future price is equal to the current price plus some forecast error
U, . Shiller (2003) points out that a forecast which obtains autocorrelation in its residuals
is violating the assumption that the error term should be random, and that this often is an
indication of omitted variables in the equation, or in other words, not all information is
taken into account. If there were a pattern in U, it would be contradictory to the market

efficiency hypothesis where all information is fully reflected in the price.

Shiller expands on this by stating, “the fundamental principle of optimal forecasting is
that the forecast must be less variable then the variable forecasted. Any forecaster whose
forecast consistently varies through time more than the variable forecasted is making a
serious error, because then high forecasts would themselves tend to indicate forecast

positive errors, and low forecast indicate negative errors.” Shiller (2003, p. 85)

Shiller (2003) highlights that we have to take into account human nature and the herding
behavior of the investors, stating that financial markets are not always functioning well
and that there is clear evidence of periods where markets do not reflect all the available

information.

Under the strong form of market efficiency it is claimed that if you want to exceed the
stock market return, you would have to take more risk than the stock market as a whole.
Maximum possible return would therefore be a function of how much risk the participant

would be willing to accept.

To test the validity of the strong market efficiency several alternatives have been
proposed. Yet, “efficient market theorists specify two methods to test tenet number three
(strong form of market efficiency). The first method is statistical inference. This involves,
calculating serial correlation coefficients of stock price changes. If the serial correlation
coefficient is zero or close to zero, this supports assuming serial independence in the
price data. Therefore, one can infer that stock-trading rules cannot work. The second

method requires using a stock trading rule, based solely on past prices — where expected
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profits are greater and risk lower than they would be under a naive buy and hold policy”

Prentis (2012, p. 24)

Prentis (2012) provides a systematic and clear overview of the inherent pitfalls with
research in favor of the market efficiency.
He provides three main reasons supported by earlier research:
I.  Using the wrong data
II.  Using the wrong method to analyze data and

III.  Jumping to conclusions without sufficient evidence.

Prentis (2012) also provides quantitative results contradicting Fama (1970)’s statement
that beating the stock market over long period of time should be impossible while at the

same time have lower risk than a buy and hold benchmark portfolio.

“The relative maxima and minima stock trading rule makes substantially more money at
significantly less risk than the naive buy-and-hold policy. Efficient market theorists say
this thorough beating of the US stock market should be impossible to achieve using only
a stock trading rule, based solely on past prices. Thus, tenet number three and the weak
form of the theory of efficient markets is invalid during this early stock market period,
prior to US government financial markets regulation. This calls the theory of efficient

markets into question.” Prentis (2012, p. 28)

Nevertheless, Easton and Kerin (2010) points out that it makes more sense to ask to what
extent the market is efficient or not. They also stipulate how important it is to separate the
efficiency the market has in regards to pricing securities, and the efficiency of the pricing
of the market as a whole. In other words a separation is needed between micro and macro
efficiency. While there is a clear separation between micro and macro I will note that the

market prospects do have an effect on the expected value of a single security.
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In regards to pairs trading it has been shown by Gatev, et al. (2006) that profits were
generated during a sample period of several years, this also questions Fama (1970)’s

theory of strong market efficiency.

While this paper does not try to provide evidence either for or against market efficiency,
it attempts to try and provide a wide overview of the studies conducted on market
efficiency. Furthermore, it should be noted that this is not a conclusive list on the

published research on market efficiency.

3. Arbitrage
Arbitrage is defined as “the simultaneous purchase and sale of the same, or essentially

similar, security in two different markets for advantageously different prices”’Shleifer and
Vishny (1997, p. 35) Arbitrage is a broad concept with many combinations. To give an
example, suppose a given exchange rate (say between Australian Dollars and Norwegian
Kroner) two different quotes are given by two different traders, at the same time. One
would be able to buy the kroner in the cheaper market and sell them in the more

expensive.

The textbook-typical example of arbitrage consists of simultaneously buying a product in
one market and selling it in another in order to avoid exposure to the market. The gains
made from this transaction then become the arbitrage profit. It is argued that while
opportunities such as this may exist in the financial market at certain times, they tend to
disappear fairly quickly and that arbitrage opportunities are more likely to exist in new

and underdeveloped markets.

However, keeping the market in equilibrium is an ongoing process and this would mean
that new opportunities for arbitrage would exist every time there was a divergence from
equilibrium. Traders who use pair trading attempt to profit on this strategy, which is to
transform the price to its equilibrium. In the paper by Gatev, et al. (2006) it is mentioned
there would have to be a profit to undertake this action, and that the excess return is the

payment for transferring the market into equilibrium.
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In theory arbitrage requires no capital and entails no risk. In reality one would have to

have capital and to some extent endure risk. Shleifer and Vishny (1997)

Pairs trading is said to be an arbitrage strategy though arbitrage as a concept is often
referred to as being risk-free. However, even if one were able to generate a market
neutral portfolio it would not mean that it is risk free. In other words pairs trading is a
risk arbitrage.

Different theories have been developed for the explanation of why pairs diverge from
each other. One is the fundamental change in one or both of the co-integrated pairs.
However, if the change were the due cause of fundamental change there would be no

reason why the pairs should remain co-integrated.

3.1 Pure arbitrage
A pure arbitrage opportunity is defined as “a zero-cost trading strategy that offers the

possibility of a gain with no possibility of a loss Bondarenko (2003, p. 875).

While in earlier times, before the late technological advances, well-resourced arbitrageurs
could have taken advantage of such ‘pure arbitrage opportunities’, today markets operate
on a much more level playing field. This decrease in ‘pure arbitrage opportunities has led

to an increase in market efficiency through more developed markets.

According to Damodaran (2014) at New York University, there are 2 main reasons why
finding pure arbitrage in modern markets will be a rare occurrence. The first is that
identical assets are uncommon in real-life situations and the second is that even if you
were to find two identical assets, it would raise the question as to why these pricing

differences were allowed to exist.

One example of such a strategy would be to exploit the mispricing of options through put

call parity, yet this would acquire the trader to be able to identify mispricing if it exists.

Chen (1996) names pure arbitrage as “the strongest form of arbitrage”, and states that in
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order for a pure arbitrage pricing formula to exist “a complete market is necessary”,
which requires enough related assets. Despite the fact that such an arbitrage is not
usually found, theoretically it can exist. In theory, you are able to walk away with sure
profits having invested no money and taking no risk, which seems too good to be true. It
is the actual nature of pure arbitrage that makes such an opportunity likely to be short
lived. Even the smallest pricing differences will be noticed and acted upon in a market
scrutinized by investors looking for riskless profits. Once noted, these price differences

will be immediately taken advantage of and in the process, disappear.

Yet, there exist studies claiming to show opportunities of pure arbitrage. Sawicki and
Hric (2001) examine 84 Czech stocks that trade on the two Czech exchanges — the Prague
Stock Exchange (PSE) and the Registration Places System (RMS)- and find that prices
adjust slowly across the two markets, and that arbitrage opportunities exist (at least on
paper) —the prices in the two markets differ by about 2%. These arbitrage opportunities
seem to increase for less liquid stocks. While the authors consider transactions cost, they
do not consider the price impact that trading itself would have on these stocks and

whether the arbitrage profits would survive the trading.

Due to this quick exploitation of pricing differences, in order for success at pure arbitrage
to occur two requirements must be fulfilled; they are “access to real-time prices and
instantaneous execution” Damodaran (2014, p. 33). In addition to these requirements one
must first have access to substantial debt at favorable interest rates. Because the pricing
differences making pure arbitrage theoretically possibly will more than likely be very
small, such access to substantial debt can prove helpful since it can “magnify the small

pricing differences” Damodaran (2014, p. 33)

3.2 Relative-value arbitrage
Pairs trading classifies as relative value arbitrage. This involves investing in assets that

can be argued to have relative similar value. However, since this is not pure arbitrage
there is the possibility of losses and it therefore involves risk. This ‘risky arbitrage
strategy’ pairs trading, is said to be market neutral. Meaning that the covariance, beta, is

equal to zero.
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Many securities can be used in relative-value arbitrage. And the combinations are
endless, in pairs trading with options we look at securities on the S&P 500. It is therefore
important to identify the securities that share historical trends under equal industry
classifications. By using sub industry classifications one hope to reduce the chances of
finding cointegrated pairs on the basis of luck. The likelihood of finding pairs without an
economic relationship is dependent in the significance level chosen for the test. Dough,
the significance would never be able to completely eliminate the chance completely.
Originally pairs trading involved taking opposite positions (short and long) in

cointegrated securities.

“When the prices of the two securities diverge, the relative-vale arbitrageur buys one
security and shorts the other, then when the prices converge again, the relative-value
arbitrageur closes the trade” Barclayhedge (2014). Due to the risks associated with
relative-value arbitrage, the major players include large institutional investors such as

hedge funds and investment banks.

Jones and Izabella (2010) state that according to the National Bureau of economic
research, since the collapse of Lehman Brothers in 2008 the US markets have been
inundated by “astonishing” pricing abnormalities — such opportunities on which relative-
value arbitrage strategies depend upon. Furthermore they are not the only markets to see
such discrepancies. Pricing discrepancies opened up on the UK’s sovereign debt market
in 2009 and due to a massive program by the Bank of England to buy back gilts, coupled
with the UK treasury issuing large amounts of bonds are the same time leading to a
“distortion in pricing of UK government bonds of different maturities” Jones and Izabella
(2010). This allowed relative-value arbitrage opportunities to occur as some hedge funds

took advantage of the bond market.

In fact relative-value arbitrage, or pairs trading opportunities can be both common and
successful. A paper Gatev, et al. (2006) found that the investment strategy of pairs

trading was tested against daily data from 1962-2002, the robustness of the excess returns
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indicated that pairs trading profited from the temporary mispricing of close substitutes.
Another important part of this test is the time delay on their test meaning that they
applied the test years after first discovering its profitability. By having a strategy that
performs just as good in sample as out of sample is an indicator of a successful strategy

since it does not rely on over fitting parameters to ‘in sample’ data.

Though, pairs trading have been classified under relative arbitrage, it also have been
categorized under speculative or pseudo arbitrage, which could be considered the
counterpart to pure arbitrage. Where pure arbitrage presents the ideal situation of
‘riskless’ arbitrage, arbitrage in the real world involves at least some risk, and these more

risky arbitrage situations are referred to as pseudo or speculative arbitrage.

According to Damadoran at New York University, pseudo arbitrage is not really
considered arbitrage in the pure sense of the word. He states that in pseudo arbitrage
investors take advantage of what they see as similar (though not identical) “assets that are
mispriced, either relative to their fundamentals or relative to their historical pricing; you
then buy the cheaper asset and sell the more expensive one and hope to make money on
the convergence” Damodaran (p. 14) If they are correct in their assumptions, the

difference should narrow over time, yielding profits Damodaran (2012).

The more an investment strategy moves away from pure ‘riskless’ arbitrage and the more
it exposes investors to significant risk, it becomes categorized as pseudo or speculative
arbitrage strategy Damodaran (2014). However, to be successful when deciding to move
toward pseudo-arbitrage it is important that these risks are kept under control and that the
“financial leverage in your strategy”” Damodaran (2012) is reduced accordingly.
Furthermore, investors should recognize that size can be both wield both positive and
negative results and as more investment funds are obtained and execution costs reduced,
getting “into and out of positions quickly, and without a price impact” Damodaran (2012,

p. 471) will prove more difficult .

It is worth noticing that it is often within the field of pseudo arbitrage we see hedge funds
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in their numerous forms.

4. RISK

4.1 Execution risk
Execution risk; “the chance that a desirable transaction cannot be executed within the

context of recent market prices or within limits proposed by an investor” Gastineau and

Kritzman (1999, p. 130) Investors face execution risk in almost all financial instruments.

Due to the nature of execution within financial instruments it is generally impossible to
close several transactions at exactly the same time. This means there is a possibility that
when one part of the deal is initiated, for whatever reason, the second part of the deal
cannot be closed (or executed) at a profitable price, resulting in an execution that is worse

than expected. This is the most common form of execution risk and is called slippage.

4.2 Convergence risk
In the context of arbitrage strategies, the fact that mean reversion affects conditional

volatility, and therefore risk, is of particular importance. Convergence trades “assume
explicitly that the spread between two positions, a long and a short, is mean reverting,
and if the mean reversion is strong, then the long horizon risk is smaller than the square
root volatility” Allen, et al. (2009, p. 72). Those who manage risk, may often need to
assess the risk involved in a particular trading strategy with a different view of risk, and
such convergence trades may create such a difference Allen, et al. (2009). In these
instances it is common for those managing risk to keep a null hypothesis of market

efficiency.

The risk of a convergence trade is that the expected convergence does not occur, or that it
takes too long, even diverging before converging. The danger of price divergence is that
due to the synthetic nature of leveraged, convergence trades and the fact that they involve
a short position, a trader may run out of capital before the trade can make money in the

long term. In relation to pairs trading the problem would be if the pairs do not converge
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quick enough and therefore the expected mean reversion does not occur before the option

is expired.

While many, if not most economists are of the opinion that markets are self-stabilizing in
the long run, there is a large body of published research to suggest that destabilizing
dynamics can exist in markets. “Convergence trading typically absorbs shocks, but an
unusually large shock can be amplified when traders close prematurely” according to
Kambhu (2006, p. 1). Xiong (2001) found that convergence traders with logarithmic
utility functions could trade in a way that would amplify the affect of market shocks, if
the shock were large enough (to delete their capital), although they usually traded in a
way that was market stabilizing. As a result, when such traders suffered such a capital
loss they would try to reverse their convergence trade positions, driving prices along the

same line as the initial shock Xiong (2001).

4.3 Liquidity risk

Liquidity risk is the risk that stems from the lack of marketability of an investment that
cannot be bought or sold quickly enough to prevent or minimize a loss Nikolaou (2009).
The higher the probability of liquidity, the higher the associated liquidity risk becomes,
and when this possibility becomes certainty the liquidity risk reaches its highest threshold
and illiquidity materialises. According to the European Central Bank “there is an inverse
relationship between illiquidity and liquidity risk, given that the higher the liquidity risk,
the higher the probability of becoming illiquid, and therefore, the lower the liquidity”
Nikolaou (2009, p. 16)

There are two main types of liquidity risk. They are; the risks associated with market
liquidity and the risks associated with funding liquidity. Market liquidity risk refers to an
asset that cannot be sold due to a lack of liquidity in the market. This could be due to the
widening the spread on an offer or making explicit liquidity reserves, for example. On
the other hand, funding liquidity refers to liability that either; can only be met for a price
that is not financially viable, cannot be met when due or that presents a systemic risk

SWIFT (2011)
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A range of internal and external factors can cause liquidity risk. These include, but are
not limited to; high off balance sheet exposure, highly sensitive financial market and
depositors, heavy reliance on corporate deposits and sudden economy shock. However
the European Central bank stresses that the real roots of liquidity risk lie in “information

asymmetries and the existence of incomplete markets” Nikolaou (2009)

Since the GFC the importance of being able to adequately manage liquidity risk has
become increasingly important. Financial institutions are being driven to strengthen and
improve their liquidity risk management strategies due to post-GFC increases in the cost
of liquidity, larger funding spreads, higher volatility and reduced market confidence
SWIFT (2011). According to SWIFT’s 2011 in-depth market survey among cash,
liquidity and liquidity risk managers at financial institutions around the world “82% of
respondents recognise a lack of ability to manage and report the liquidity position at a
firm-wide level on a daily basis” and “91% indicated that they have a lack of ready-made
liquidity risk analytics and business intelligence” SWIFT (2011, p. 6). However,
according to the Principles for Sound Liquidity Risk Management and Supervision
(2008) “a bank should actively manage its intraday liquidity positions and risks to meet
payment and settlement obligations on a timely basis under both normal and stressed
conditions” BIS (2008, p. 20) It is argued that issues surrounding liquidity risk
management relate to a lack of common standards and industry practices SWIFT (2011).
It is further argued that collaborative solutions are needed to resolve such issues in the

future.

4.4 Short squeeze
Short squeeze is observed when “the price of a stock rises significantly and speculators

are forced to cover their positions to limit their losses “Obienugh (2010, p. 347). When a
short squeeze occurs, it generally means that short sellers are being edged out of their
short positions, usually at a loss. Short squeeze has the potential to occur when short
selling and may occur in an automated way if the stop-loss orders of short-sellers were in

place with their brokers Obienugh (2010).
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The benefit of predicting a short squeeze means that one can take advantage of the
situation in which panicked short-sellers are causing a further rise in price due to short
term demand Obienugh (2010). An experienced short-squeezer would buy the stock
which it was on the rise and sell it at its peak, being able to “swoop in” at precisely the
right time Gobel (2013). There are several predictors of short squeeze and they include
short interest percentage, short interest ratio, and daily moving average charts Gobel
(2013). In theory by interpreting the daily moving average charts, a trader is suppose to
be able to predict short squeezes by calculating the short interest percentage and short

interest ratio.

Employing a short squeeze strategy is not without risk. If the stock has peaked, it has the
potential to fall and the success of the strategy will depend on whether the stock can be

successfully sold during its peak Gobel (2013).

4.5 Credit risk
Credit risk is most simply defined as “the potential that a bank borrower or counterparty

will fail to meet its obligations in accordance with agreed terms” BFIS (2000). The
assessment of credit risk involves the borrowers ability to repay investors, who lend their
capital, and when a perceived credit risk is high one will demand a higher rate of interest.

(HKIB) (2010)

Credit risk can be classified into several groups; credit default risk, concentration risk,
country risk etc. Credit default risk may impact all credit-sensitive transactions,
including; loans, securities and derivatives. Concentration risk has the “potential to
produce large enough losses to threaten a banks core operations” UniCredit (2012) and
Country risk involves the loss associated with a sovereign state defaulting on its

obligations or freezing foreign currency payments UniCredit (2012).

There are many sources of credit risk for banks that can exist throughout their everyday

activities, however probably the largest and most obvious are that of loans. Other sources
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of risk include acceptances, interbank transactions, foreign exchange transactions and
more BFIS (2000). Although, through the GFC, it is clear that even for traders there is a
risk of having counterparties not being able to pay back there depth, resulting in
bankruptcy. For a trader the chances of experience trading risk in such form mentioned
above is very low, as the financial bank is standing as the traders counterparty and not the

trader of the opposite position as you.

While ‘credit risk’ refers to the probability of loss due to a borrower or counterparty not
being able to make repayments on their debt; ‘credit management’ is “the practice of
mitigating those losses by understanding the adequacy of both a bank’s capital and loan
loss reserves at any given time” Sas (2014). And according to the Basel Committee
(2000) the effective management of credit risk and an understanding of the relationships
between credit risk and other types of risk are essential components to the long-term
success of any banking institutions BFIS (2000). Since the GFC and the corresponding
“credit crunch” the importance of such management has been highlighted, including a
higher demand for transparency and more strict regulations such as those outlined in the

Basel III Sas (2014).

4.6 Long-Term Capital Management
Long-Term Capital Management (LTCM) was a hedge fund management firm based in

Greenwich, Connecticut that utilized absolute-return trading strategies combined with
high financial leverage. In 1998 they narrowly avoided bankruptcy when “a group of its
major creditors worked out a reconstructing deal that recapitalized the firm” Haubrich
(2007, p. 1). However some say the crisis almost “blew up the worlds financial system”
Jorion (2000, p. 24). It is now known that LTCM severely underestimated its risk due to
its reliance on short-term history and risk concentration Jorion (2000). As such, the

LTCM crisis provides an excellent example of poor risk management in the extreme.
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5. PAIRS TRADING

5.1 Stationarity of variables

Pairs trading relies heavily on econometrical tools like OLS. The assumptions made for
OLS are well known and described in almost every Econometric book, instead some
assumptions will be skipped in order to focus on what is particularly important for this

study, that is stationarity and non stationarity.

Stationary variables should be reverting back to its mean, in other words mean reverting.
“Formally, a time series y; is stationary if its mean and variance are constant over time,
and if the covariance between two values from the series depends only on the length of
time separating the two values, and not on the times at which the variables are

observed.”Hill, et al. (2008, p. 476)
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Ingersoll (1987)

The reason for needing to know if a time series is

stationary or not is due to the danger of retrieving

significant values from a regression on variables

that is unrelated. Running OLS on non-stationary Figur 5-2 First difference
variables can create this problem and analyses like this are called spurious regressions.
To the right is an image of the stock prices of Google, as you can see it is not mean

reverting, it looks like it has both cycles and is trending.

By performing analysis on financial time series like equity’s, it will be evident that the
prices are non-stationary. Hill, et al. (2008, p. 477) state that one of the reasons that stock
prices are not stationary is the chance of bankruptcy. To handle the implication of non-

stationary data advice is often given to take the first difference of the time series.
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Resulting in a price change and not the change itself. Mathematically the first difference

is often shown as Ay = y, — y;_4.

From the difference in Google prices, it can be noted that the fluctuations seemed to be
centered on zero. This is an indication that the time series is now stationary. Another
indicator if a time series is stationary or not can be found by looking at the

autocorrelation of a time series.

Below in figure 5 you can see the autocorrelation of Google with its 60 lags for the no
stationary time series, and the autocorrelation of the same company done on the first
difference in figure 6. As you can see the autocorrelation does not look like it’s dying off
on the price data, but on the first difference it looks too be stationary. For the
autocorrelation plot (figure 6) of the difference it also seems to be mean reverting, where

its mean is zero.
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5.2 Co-integration
The Economic theory whereby time series propose dynamism and the practice of

modeling relationships between economic variables has long been existent. It was
discovered at an early stage that economic variables in many cases are non-stationary.
Accrued knowledge regarding analysis of non-stationary variables has suggested that one

should take the first difference transforming the data to become stationary.

However, it was Granger who suggested in 1981 that a relationship between co-
integration and error correction models existed. Although it was first coined by Engle and
Granger (1987) providing representation, estimation and testing. They discovered that if

two time series are I(1)- in other words non stationary, one would expect the difference



Aleksander Rinaldo 292353

between the two variables to be non stationary - I(I). More precisely, one would expect
that y, — Bx;, where both series are I(1) would produce another time series of I(1).
However, in some cases e; = y; — Bx;, is 1(0). In this case e; is said to be the long run
equilibrium and the deviation from this equilibrium would therefor be stationary with
constant variance. Another noticeable point is that y; and x; share similar stochastic
trends. Since the discovery of this relationship, this theory has been applied to many
different areas, especially within macroeconomics, in aspects such as consumption and
long and short-term interest rate, among others. It was through this relationship that pairs

trading was developed.

In fact, the two economists Engle and Granger (1987) that made this discovery received

the Nobel Prize in economics.

Post the publication a number of papers were dedicated to the discovery, in particularly
Johansen (1991) provided a study focusing on the likelihood ratio test of cointegration
rank. “Conducting inference on the number of cointegrating relations as well as the
structure of these without imposing a priori structural relations. This is accomplished by
fitting the general imposing Vector Autoregressive Model(VAR), which is used to
describe the variation of the data, and then formulating questions concerning structural
economic relations as hypotheses on parameters of the VAR model.”Johansen (1991, p.
3). The paper provided an step by step procedure for addressing problems finding
cointegrating relationships in nonstationary data, problems regarding estimating of this

relationship and last testing economic hypothesis about the structure.

5.3 Method
One of the pioneers of pairs trading, Nunzio Tartaglia, states the reason why the method

works is due to humans having a tendency to trade on stocks that are going up and not
stocks that are going down, and that it is this psychology that has made the strategy so
popular. Avellaneda and Lee (2010) believe the strategy works due to undisciplined

investors who have overreacted. The theory of overreaction has been extensively

29
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reviewed?, although not necessarily in regards to pairs trading but more towards the stock

market in general.

Another argument for the success of pairs trading is the market neutral strategy. By
taking many positions both short and long the portfolio does not co-vary with the market,
and the beta with the portfolio and the market portfolio is zero. Having a market neutral
strategy would also be important when buying options. Because one call and one put is
being bought it would be expected that the covariance with the market should be zero,

and that the market neutrality would still be valid.

5.4 Trading rules
There are countless different signals used when setting up a trading system. How the

operator sets up the trading algorithm will depend on his or her preferences. Some
operators are concerned with long-term movements while others are concerned with

short-term movements; the range can vary from years to seconds.

A very simple method used by Gatev, et al. (2006) involves extracting the standard
deviation of the spread of the normalized price series during the preface when identifying
co-integrated pairs. The deviation would be used as a signal during the trading period.
When the spread increases above a certain number of standard deviations the trader goes
short in the lowest selling stock and long in the highest. Interestingly with such a simple

strategy, a profit was provided after the transaction cost.

Another method is to create a moving average from the shares and adding a standard
deviation above and below the stocks. The moving average would operate as the
equilibrium and a break through two standard deviations above or below the mean would
indicate that the stocks have moved to far apart and are likely to return back to

equilibrium.

2
Kiseok Nam, Chong Soo Pyun, and Stephen L Avard, "Asymmetric Reverting Behavior of Short-Horizon Stock Returns: An
Evidence of Stock Market Overreaction," Journal of Banking & Finance 25, no. 4 (2001).
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5.5 Some clarifications
In theory, pairs trading is a rather simple concept. It attempts to exploit the relationship

where the law of one price is violated. Within academia the focus has been towards two
main forms of pairs trading. The first is statistical arbitrage, where the purpose is to
discover mispricing by analyzing a time series of price information. The second is risk
arbitrage, which according to Hill, et al. (2008) is about the strategy in regards to fusion
between two companies. There has often been confusion surrounding the statement that
statistical arbitrage is risky. This is due to the aforementioned theory that arbitrage is
suppose to be risk free. Yet, this is not the case when it comes to pair trading. Another
common confusion is the mix of terms, leading to the assumption that risk arbitrage and

statistical arbitrage are the same, which is not the case.

Pairs trading includes a range of different strategies and investment programs according

to Gatev, et al. (2006), where the similarity between them can be summarised as:

I.  Signals developed for entering or exiting the market are systematically and rule
based, unlike fundamental analyses.
II.  Unequal positions means that collecting the trades together gives a beta of zero in
regards to market and is therefore market neutral.

III.  Mechanism to generate excess return is statistical.

The spread between the co-integrated pairs are said to be stationary, which would mean
as fore mentioned, that it is an average reverting process with constant variance. It should
be the case that the average of the spread is the equilibrium within that pair. It could be
argued that it would therefore be easier to estimate when the process is starting to diverge
than it would be to estimate when it starts to converge. The problem with this assumption
is the cost of transaction; a small deviation from the equilibrium would not necessarily be
large enough to cover the transaction cost you, which could result in many trades not

providing any profit.

31
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Though the cost of options is used in this paper, a similar problem occurs. To avoid the
problem of entering many positions that do not cover transaction costs, the trade signal
will be made on convergence. This is due to the fact that when looking at a normal
distribution, the further away one moves from its mean the more ‘extreme’ are the events,
and one could expect fewer observations in this ‘extreme’ area. However when observing
a value very close to the mean it does not provide increasingly high probability that the
next value would be even further away from the mean. Therefore, entering on divergence
can impose higher cost because of the lack of a good indicator; consequently this would
mean that one could take many positions, which would not diverge further from

equilibrium.

5.6 PAIRS TRADING AND OPTIONS

5.6.1 Problems when using options

When applying options to pairs trading there are adjustments that need to be made. First
and foremost is the premium. The cost of the premium means that if the stocks do not
diverge too far from each other it would result in a loss, even if the stocks do as predicted
and converge back to equilibrium one might end up with a loss if the spread is not large

enough when entering the market.

The timeframe for the option is also crucial. When going short and long in two stocks the
time period does not affect the cost in the same way as it would do with options. If the
timeframe was increased it may result in a cost of the option being higher than the return
from the trade. The other scenario that would generate problems would be if the
timeframe of the option were too short, resulting in the payment of the premium for an

option, which has not reached the stage of converging back to the equilibrium.

5.6.2 OBSERVATIONS
There are several ways in which the stocks are able to move together and it is important

to clarify how this can occur and what the implication of it would be. I am not going to
outline all possibilities, since there could be many, but I shall detail some. Of course the

easiest and most optimal way is that the two time series within a pair move from each
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other and then convert back to a mean without any form of trending. This would mean
that the equilibrium would be at the same price level at convergence as it was when they

started to diverge from each other.

The other option would be that the stocks converge from each other but do trend. In this
case there could be several options. One option could be that stock number one, with the
highest value, increases in price and never diverges back, but stock two, with the low
price, follows the upward trend at a higher rate then stock one. In this case the time it
takes for the stocks to converge depends on how large the difference of increase is

between the two stocks. This implies that one stock is tracking the other stock.

When looking at two stocks that have equal value it can be hard to establish cause and
affect relationships. However, if looking at an index vs. a stock theory, simple reasoning
would make you see that clearly the stock of one company does not move the value of a

large index. The relationship would in fact be the other way around.

6. METHODOLOGY

6.1 TOOLS:
I chose to use Mathematica because of its versatility, options and simplicity when it

comes to writing code, and in particular because there are such a large number of books

that provide information about the program.

6.2 DATASET:
The sample was obtained from all shares under the S&P 500 from the period January

2000 to August 2013 through backward looking. The date was extracted as daily close
prices from The Centre for Research in Securities Prices (CRSP) and contained every
share within the index or market. CRSP. is one of the 12 Research and Learning Centres

at Chicago Booth. They aim to bridge theory and practice with trusted data solutions.

CRSP data is used by investment practitioners to backtest strategies, as well as to
benchmark investment performance. CRSP. has been responsible for advancing the body

of knowledge in finance, economics and other related fields since 1960. They have
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achieved this by providing research-quality data to both scholarly researchers and

investment practitioners alike.

Implied volatility and historical volatility was extracted for Optionmetrics, which
provides historical option price data, historical volatility implied volatility etc. With over
300 institutional subscribers it is regarded as a high quality data provider. OptionMetrics
(2014)

Number of observed days was 3264 days covering a total of 13 years. The sample period
includes noteworthy events like the Dot Com Crash (DCC) and the Global Financial
Crisis (GFC). The purpose of identifying them is so that we can compare the return
generated during these events with the period’s return that does not contain extreme

events. Data extracted from Thomson Reuters are 3 month US Treasury bill yield.

Because of the high liquidity requirements for securities added to the S&P 500 index
there was no need to initially exclude any securities from the sample. The committee
selecting the securities has requirements of market capitalization that is greater than or

equal to US$ 4.0 Billion among others.

The shares are divided into Global industrial classification sub industries to avoid the
problems pointed out by Do and Faff (2012, p. 264), who state that:

Generating pairs over the entire portfolio can create pairs that are not closely related to
each other and therefore would violate the assumption of the law of one price, due to the

fact that they are not close economic substitutes.

When the pairs are matched only on how close they move together there is a possibility
of neglecting pairs that are co-integrated and have a large reversal in the price spread. It
is important to note that the spread and reversal effect is what generates the return.
Generating pairs that are moving so closely together that the opportunity of divergence

does not come into play would provide no opportunity to gain profit at all.



Aleksander Rinaldo 292353 35

When pairs move closely together there is a chance of opening a trade where the reversal
effect is not large enough to cover the bid-ask bounce and transaction cost even though

the stocks end up converging back to equilibrium.

The test period for co-integrating is based on Do and Faff (2012, Do and Faff (2010,
Gatev, et al. (2006). All three papers used a 12-month period to test and extract pairs,
following 6 months of trading. This would mean that at first, extract 252 trading days,
and then if the pair is co-integrated during this period, trade on that pair. After a 6 month
period go back one year from the last date to test again to see if the pairs are co-
integrated. As long as the pairs are co-integrated this process continues. The number of

cointegrated period’s were 16 735, while number of cointegrated pairs were 1199.

Number of Number

Sub Industry Classification pairs Sub Industry Classification of pairs
Fertilizers & Agricultural
Life Sciences Tools & Services 6 Chemicals 3
Technology Hardware, Storage &
Peripherals 21 Air Freight & Logistics 6
Health Care Distributors 6 Household Products 6
Health Care Equipment 78 Cable & Satellite 6
Property & Casualty Insurance 21 Specialized Finance 3
IT Consulting & Other Services 3 Restaurants 10
Apparel, Accessories & Luxury

Application Software 10 Goods 13
Semiconductors 65 Hypermarkets & Super Centers 1
Data Processing & Outsourced Services 55 Communications Equipment 15
Multi-Utilities 91 Railroads 6
Electric Utilities 78 Diversified Support Services 1
Independent Power Producers & Energy Integrated Telecommunication
Traders 1 Services 10
Managed Health Care 10 Drug Retail 1
Life & Health Insurance 21 Integrated Oil & Gas 6
Pharmaceuticals 36 Airlines 1
Multi-line Insurance 10 Diversified Chemicals 6
Residential REITs 3 General Merchandise Stores 6
Internet Software & Services 10 Health Care Services 6
Biotechnology 21 Homebuilding 3
Semiconductor Equipment 3 Industrial Conglomerates 3
Electrical Components & Equipment 10 Movies & Entertainment 3
Asset Management & Custody Banks 36 Research & Consulting Services 3
Specialized REITs 10 Oil & Gas Dirilling 15
Internet Retail 10 Industrial Machinery 36
Automotive Retail 6 Specialty Chemicals 10
Insurance Brokers 1 Oil & Gas Exploration & 1
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Production
Oil & Gas Exploration & Production 119 Investment Banking & Brokerage

Industrial Gases 3 Automobile Manufacturers
Electronic Components 1 Trading Companies & Distributors
Steel 3 Construction & Engineering
Personal Products 1 Retail REITs
Paper Packaging 3 Apparel Retail
Consumer Finance 6 Consumer Electronics
Aerospace & Defense 55 Leisure Products
Diversified Banks 15 Health Care REITs
Regional Banks 36 Home Improvement Retail
Computer & Electronics Retail 1 Casinos & Gaming
Oil & Gas Equipment & Services 15 Advertising
Metal & Glass Containers 1 Electronic Manufacturing Services
Semiconductors 1 Department Stores

Oil & Gas Storage &
Auto Parts & Equipment 1 Transportation
Systems Software 10 Food Retail
Packaged Foods & Meats 45 Home Furnishings
Construction Machinery & Heavy Trucks 5 Tobacco
Broadcasting 3 Oil & Gas Refining & Marketing

Environmental & Facilities
Soft Drinks 7 Services
Hotels, Resorts & Cruise Lines 6 Specialty Stores

6.3 Sub sample
The datasets are usually split into separate samples in the periods where extreme

events are hitting the market. This is to separate the abnormalities from the general

behavior of the stock market.

Do and Faff (2012, p. 264) reported a change in the profitability during the two bear
markets (DCC & GFC) and even if the profitability of pairs trading on average
declined from 2000 to 2009 there was an increase in the profitability during the
DCC and the GFC. It is therefore important to note these periods when looking at the
result of the trading strategy.

Sub sample Commencing date Ending date9

period

DCC(2000- Nasdaq reaches all time high closing January 2002 Amazon

2002) price(end of the day) at 27.03.2000, whit | announces first quarter
a closing price of 4704.72 profit.

W= @m0 W = O

WoO-~~2NO®

w
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Interval Normal trading period starts 01.01.2003 01.08.2008
(2003-2008)

GFC (2008- September 14.th 2008 Lehman Brothers 31/12/2009 Arbitrary date
2009) Collapse. And the freezing of wholesale to mark end of turbulent
money markets. “Ted Spread” 15-month period.

By looking at an example we can demonstrate how to divide the subsamples. The
“TED spreads” are used as measures of the credit risk for inter-bank lending. From
the graph it can be seen that the TED spread is the difference between the Libor and
the Treasury bill. A higher TED Spread is an indication that the counterparties see
each other as more risky. The sharp increase occurred around September 14.th

2008. This is used to indicate the start of the GFC.

Percent
. A

A A

N \ / L LIBOR (3 mo.)
. m\‘k\ ; \\

25 \/"“f\'\—f—f_”_“‘——-/ TED Spread

154 \ /Af \\/"\V \‘l‘ T-bill (3 mo.)
" VAN VI
V fu

W V\\A,_

00

142 212 3/2 472 5i2 6/2 712 8/2 9/2 102 112 1212

Figur 6-1 TED Spread
"Global Financial Crisis of 20084 “2009 | the Ted Spread A “ an Indicator of Credit Risk A
Increased Dramatically During September 2008" 2013)

6.4 Selecting pairs
When picking the pairs we start by generating all subsets of two under each industry

classification group. Regressing one security upon the other gives us the residuals, which

is needed for further analysis. The deriving of the coefficients and the residuals is
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explained in nearly every econometric textbook®, therefore the formulas will only be
provided after the derivation.
b=XX)"1X"y
§ = XXXy
P, = X(X'X)"1X’
é= (I — P x)y
Where,

XX

, n
C0=gx 3

X'is an nx2 matrix.

b is the coeffecient. In this case b is a 2x1 matrix because we are including the
intercept.

P, is the projection matrix

é = (I — P,)y is the estimated residuals.

This is the straightforward process for simple OLS. Where X is a Nx2 matrix and the
transpose of it provides the 2xN matrix. In column one are the 1 values and in column
two are the X,, values. P, is the projection matrix and the residuals(u) is as seen in the last

formula derived by subtracting the observed y values from the estimated y variables.

Unit root test for stationarity is then conducted to test whether the time series is stationary
or not. It is known as a augmented Dickey-Fuller (ADF) test. “Since we cannot observe
e;, we test the stationarity of the least square residuals, é; = y, — b; — bx,, using a

Dickey-Fuller test.”Do and Faft (2010).

m
Aér=a+yé,_,+ Z asAé;_ + v,

s=1

Where;

3

William H. Greene, Econometric Analysis, 7th ed. (Boston: Prentice Hall, 2012); R Carter Hill, William E Griffiths, and Guay C
Lim, Principles of Econometrics, vol. 5 (Wiley Hoboken, NJ, 2008); Marno Verbeek, A Guide to Modern Econometrics, 4th ed.
(Chichester: Wiley, 2012).
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Aép =8 —é

y = (p — 1) is the first coefficient
Aé;_, = first difference (é;_1 — é;_5)
a;= the second coefficient

a is the intercept

v, 1s the estimated residuals

Hy:y =0, Hi:y=1

If Hy is not rejected it would be concluded that the series is nonstationary. This can easily
be seen from the model due to the fact that a random error term would be left if y equals
zero. By rejecting H, it is concluded that the time series is stationary. The summation of
the lags of the first difference is calculated to make sure that the autocorrelation is taken
out of the residuals so that one is left with v,, which is random. The autocorrelation that
1s persistent can be seen in the earlier plot of the autocorrelation function. The number of

lags can be increased until it is certain that the v; does not contain an autocorrelation.

Some econometricians have discussed the problem of using an ADF test on the residuals.
“Because the OLS estimator ‘chooses’ the residuals in a cointegrating regression to have
as small a sample variance as possible, even if the variables are not cointegrated, the OLS
estimator will make the residuals ‘look’ as stationary as possible. “Hill, et al. (2008, p.
489). This means that by using a simple test such as the ADF test it may result in getting

a type one error, where the hypothesis of non-stationary too often is being rejected.

We can overcome this problem by using Phillips and Ouliaris (1990) (PP) test. The test is
very similar to the Dicky Fuller test, but there are a couple of advantages to using PP. As
with the ADF test, the PP test corrects for autocorrelation, but at the same time a lag
length does not need to be specified. The other advantage is that by modifying the Dickey
Fuller test statistic, the test is robust in relation to the general form of heteroskedastisity

in the error term.

39
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To simply describe the test I have extracted the setup from the
manual:STATA"Http://Www.Stata.Com/Manuals13/Tspperron.Pdf - Google Search"
2014)

Yi=a+tpyi-1te

122/\

z =n(/A) —1)— == (2% = Yon)
p n 2 25% n on
on Pn—1 1 7 A 1 nx*xo
Z, = |22 naz _E*(A%_Vo‘n)*r* .
e An "
n
A 1 AN A
anzzzuiui—]
i=j+1
q
;12—1;0 + 2 1- J )lJAVo
n m qg+17%"
j=1
1 n
Sﬁ:n—k. u?

An alternative approach is to account for serial correlation in the regression residuals, and
by doing so one could use Newey-West methodology. In essence, this is the Phillips
Perron test but then applied to the regression residuals. This has been programmed into
mathematica, where the result has been back tested with Eviews and Stata to make sure

that the programming is giving the correct result.

6.5 The ordinary least square and its correction to Newey West (HAC. standard
erros).
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T T
V) = O x0TSO x(e))
t=1 t=1

H-1
T

T

S*—l* ezxx+l* w; * ecee i(XgXy i + XXy 1)

_2 trt T j sCs—j\Asts—j shs—j
t=1 s=j+1

The square root of the diagonal of matrix V* is the newey west standard errors.

The last formula is giving the HAC standard errors. Since this is a very straightforward
concept covered in almost all econometric books, no further explanation will be entered
into. For reference, the specific formulas and a deeper explanation for this is provided in

Verbeek (2008, p. 126)

6.6 Trading strategy
The trading indicator used reflects Reverre (2001, p. 476),

where
A — MA;,
050(4)
Where:
A, is the difference between the two shares.
MAs;,, is the moving average over the last 50 days on the difference between the shares.

050(A), is the standard deviation of the difference the last 50 days.

The prices used for calculating trading signals are close price adjusted for dividends.
Since we divide by the standard deviation we end up with a distribution where the
standard deviation is equal to one. Indicator m is therefore representing the mispricing in
terms of standard deviations. When m is equal or less than -2 we buy a put on stock 1 and

a call on stock 2.
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Time to expiry is set to from 0 to 60 days, exiting on the third Friday in any month, if this
Friday does not exist due to holidays etc. the closest date before is chosen. Since one year
of significant co-integration provides a trading period of 6 months, a limit has been set
such that it is not possible to enter a trade after the third Friday in the last month of the 6-
month trading period. For companies entering the S&P500 prior to the start of the trading
these months would be June and December. However if the company does enter the
S&P500 after 2000, the 6™ month would be dependent on when the date the company
entered the S&P500.

After entering a trade, a new option price is calculated every day, where only the strike is
fixed at the same level as when entering the trade. If the value of the option is increased,
generating an annual return of 20 or more percent the paper is sold. If during the period
this does not occur the option is held to expiry. It is important to notice that the all

options entered are at the money(ATM).

6.7 The Black —Scholes —Merton Model
The Black-Scholes-Merton-Model was developed in the 1970°s. The development of the

model was based on many of the previous assumptions that were applied when trying to
estimate option prices. However Fischer Black, Myron Scholes and Robert Merton had a
breakthrough - and that was choosing the correct discount rate to use for the payoffs. The
payoffs had already been correctly calculated, but by using the capital asset pricing model
Black, Scholes and Merton were able to show the relationship between the market-

required return on the option and the required return on the stock.

“In general, it seems clear that the higher the price of the stock, the greater the value of
the option. When the stock price is much greater than the exercise price, the option is
almost sure to be exercised. The current value of the option will thus be approximately
equal to the price of the stock minus the price of a pure discount bond that matures on the
same date as the option, with a face value equal to the striking price of the option.”Black

and Scholes (1973, p. 638)
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When calculating the options price we need to make assumptions. A probability

distribution for the stock price development is required.

The Black-Scholes-Merton models underlying the assumptions derived by Black, Scholes
and Merton are as follows:
I.  Stock price behavior corresponds to the lognormal model with y and o constant.
II.  There are no transaction costs or taxes. All securities are perfectly divisible.
III.  There are no dividends on the stock during the life of the option.
IV.  There are no riskless arbitrage opportunities.
V.  Security trading is continuous.
VI.  Investors can borrow or lend at the same risk free rate of interest.
VII.  The short-term risk free rate of interest, r, is constant

Black and Scholes (1973, p. 640)

wu: Expected return on the stock
o:Volatility of the stock price

Thus we assume:
AS
<~ ¢(u At ,a? At)

Where AS is the change in stock price in time At. As ¢ (m, v) a mean and variance can
be seen as well as the denotation of normal distribution. Hull (2008) expands upon this by
stating that due to this assumption, the stock price of any further time would be expected

to have a lognormal distribution.

The fact that the lognormal distribution only operates as zero or above is expected since a
company with a stock price at zero would be bankrupt. If we plot the Google stock prices
in a histogram we can see how the distribution looks to be an approximate for the

lognormal distribution.

The expected value (or mean) of S, is Spe#T and its variance is S2e2#T (e?’T — 1)
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Figur 6-2 Google Stock Price

When a variable has the lognormal distribution, then its natural logarithm is normally
distributed. Looking at the return of the security in figure 9, it is apparent that the return

also simulates a normal distribution.
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Figur 6-3 Google Stock Price

It is worth noting with the stock return, that the “fat” tails are representing, for example,

the GFC, as well as other such extreme events.

6.8 Expected return.
It is to be expected that when an investor is looking at different securities they would

demand higher return from the securities that impose more risk than from the securities
with a lower risk. Therefore a lower risk implies lower return and a higher risk implies
higher return. The interest rate also affects the stock return, the higher the interest rate the
higher the expected return for any stock, because the risk that would result from taking

money out of the bank and investing it in a security would need to be paid for.
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Hull (2008) Specifies that the stock price return is

1 S
ST = SOeRT -—-> =_Ln_T,
T So

“R the continuously compounded return actually realized over a period time of length T

years.”Hull (2008)

When attempting to estimate the price of the options, the general Black-Scholes-Merton
Model will be used. In order to estimate the price it is crucial to be able to apply the

correct volatility.

6.9 Volatility

Volatility in the market originates from new information reaching the market. “New
information causes people to revise their opinions about the value of the stock™ Hull
(2008, p. 302). This reevaluation of the stock, in some cases, would change the price of

the stock, causing volatility in the market.

By having historical prices for a stock it is easy to estimate historical volatility with
standard deviations. The stock prices used in these calculations come in intervals, and the

intervals used through this paper are in days.

Definitions:
n + 1: Number of observations
S;: Stock price at the end of ith interval, where i=0,1...n

T: Length of time interval in a year
u: = In L

To estimate the standard deviation of u;:

21 _
S=\/E ?zl(ui —U)z

or

45
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2| Lyn o2 _ 1 RTAY:
S= n-1 i=1 ul n(n—l) (lel ul)

u; = Whereu is the mean of the u;

Hull (2008, p. 306) states that “difficulties arises when choosing the value for n”. The
suggestion is that a larger number of n would provide a more accurate value. However,
the larger the timeframe, the more likely it is that the old values would have no
relationship to the next period’s volatility. It is exactly this point that makes it difficult to

choose the value of n.

Take note that there is an importance when it comes to trading day vs. calendar day. The
volatility per annum is calculated from the volatility per trading day using the formula:

Volatility per annum = Volatility per trading day

* \/ Number of trading days per annnum

There are many different recommendations when it comes to picking the time frame that
should be used. Hull (2008), suggests using the same time interval as period to expiry
when estimating volatility. For example if you are estimating an option with a year to

expiry you could use one-year historical volatility.

Although the estimated volatility has been extracted from OptionMetrics, the use of
timeframe has been chosen on the basis of Hull (2008) recommendations. Therefore since
the longest timeframe a option can have is set to two months, I have chosen to extract 60
days volatility from dataset provided from OptionMetrics (2014). How realistic this
volatility is certainly up for discussion as stochastic volatility is an extremely large and
challenging area within finance. One could try to test with different GARCH models
however in the industry one would expect hedge funds to develop specific models for

each security.
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6.10 The Black-Scholes-Merton Pricing Formulas
The presentation here is the developed through the studies of Merton (1971) ,Black and

Scholes (1973) and Merton (1976)

c=S,e "N(d,)—Ke'"N(d,)

p=Ke"N(—d,)-S,e " N(—d,)

where ,
ln(SO/K)+(r—q+0'2/2)T

d
1 6\/7

In(S,/K)+(r—qg—0c°/2)T
d2=n( 0/ )O(-r;/?q ° ) =dl_o-\ﬁ

Black and Scholes (1973, p. 644)

Please note that the call and the put in these formulas have the q value in them, which
represent dividends, this would mean that we are able to take into account the dividends

when there are stocks that pay dividends.

Where:

N(x) = cumulative probability function for a standardized normal variable.
Sy~ is the stock price

K -> is the strike price

r > is the risk free interest rate

T-> is the time to expiration and

o-> is the volatility of the stock price

N(d,*) and N(d,)

* The limit of the natural logarithm of x as x approaches one is zero, by entering at the money the d1 and d2 as in the formula gets

reduced.
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“The N(d,) is the probability that a call option will be exercised in a risk neutral world.
And SoN(d,)e™ is the expected stock price at time T in a risk neutral world when stock

price less than the strike price are counted as zero. ““ Hull (2008)

7. Result

7.1 Estimation of option prices
The dataset from OptionMetrics provided only the bid ask spread. A mean was therefore

chosen for the options with high liquidity, and then the implied, and historical volatility
was used to estimate the prices to see if one were able to get an estimated option price
similar to the historical price from OptionMetrics. This is an example of the real price

seen in the market and the historical price.

20F | | s
1.5+ -

i 1« RP
10+ -
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0.0t | | ]
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Figur 7-1 Comparison between real historical price and estimated option price.
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ABC-_Real Price ABC--Price Hist.V
Mean 0.744565 Mean 0.707429
Median 0.6125 Median 0.524613
o 5 Max 2.03268
o 0025 Min 0.0865404
Variance 0.250414 variance g.2a0823
aorione 0 500414 Std.Dev 0.499823
Skewness 1.1237 Skewness 11
Kurtosis 3.67129 Eur;z%lé t Variati z§2;;§4
Coefficient Variation 0.672089 et gon arrarion 0
coefticlent V s 7025 T.Stat.Jarque 10.7759
T.stat. q : (')262362 PValue 0.0337196

alue . Sum 32.5417
Ssum 34.;286 sum Sq. Dev 11.242
Sum Sq. Dev 11. Observation 46
Observation 46

As we can see from this result the BSM model does a fairly good job estimating the
option price. However this was not the case for all options. A larger output was generated
and can be found in Appendix A.

7.2 CALCULATION OF RESULT

Because of the extreme result I see it as necessary to provide an example of how the
return is calculated. Firstly, take a look at the shortenings made:

D= Days to expiry,

PA= Price on the underlying security A

PB= Price on the underlying security B

TI= Trading Indicator

VA=Volatility on the underlying security A

VB= Volatility on the underlying security B

DA= Dividend payed by security A

DB= Dividend payed by security B

Call A= Equals daily Option price with same strike as set when entering; in this case I
entered 25 feb. 2002.

RP= Return on period

D DD DD

D Date PA PB TI VA VB DA B | A B CallA RP
1 25feb20 27. 44.8 2.455555 0.2876 0.2041 0.0 0.072280 0.099819 0.927153
02 9 95 969 91 84 95 463 0 462 551
1 26feb20 27. 46.0 3.725668 0.2880 0.2135 0.072280 0.099839 0.780879
7 02 67 25 515 8 76 463 0 506 437
1 27feb20 27. 46.0 3.288944 0.2844 0.2108 0.072280 0.099859 0.747250
6 02 68 9 13 11 28 463 0 553 899
1 28feb20 27. 46.7 3.774775 0.2835 0.2110 0.072280 0.099879 0.503463
5 02 2 7 738 58 43 463 0 605 954
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In the sample you can see that the price changes from 0.927153551 to 3.431563031
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05 743
47.5 0.050994
25 054
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25 651
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65 544
46.8 2.204388
5 221
46.8 1.839932
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46.9 1.200370
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85 413
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0.099959
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3.431563 2.701180

031
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5.119144
282
4.964213
132
6.219656
172
5.832491
899
5.164340
061
4.966105
606
4.568048
007

0

917

producing a return over the period 25feb2002 to 01mar2002 of 2.701180917. This shows

how an adjustment in price can make a huge change in volatility, which in turn produces

a large change in option price. Return that provided over 1000% annual return was

removed from the sample since this would be unrealistic and would be the case of

companies with poor liquidity, therefore the values would be unobservable in the market.

7.3 RESULT YEARLY

The result was quite extreme and so I would like to point out that the need for further

studies to be done on historical option prices to see if the strategy would be profitable.

Year
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010

Return
21.64%
29.93%
27.18%
22.65%
17.62%
29.99%
27.67%
21.85%
27.33%
18.22%

Sharp Ratio
4,578
5.11406
1.20492
4.12026
3.4747
2.11654
0.952911
1.73623
1.82158
1.59783

50
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2011 30.85% 2.48927
2012 19.30% 1.79839

It is immediately clear that this is not a realistic; there are several reasons for this.
However, it is mostly because of the fact that the liquidity is not taken into account. On
top of that, the dividend provides a problem in the cases where the dividend is almost as
large as the security price. Subtracting such a large value from an option means that the
option is valued at almost zero. When an option the days after dividend is payed again is
estimated and is in the money the return on the option is extreme. It is therefore made an
adjustment, removing options that costs less then five cent. The sharp ratio and the return
is correlated at approximately 0.92 from the Pearson Correlation test. A high correlation
would be expected since return is used to calculated the sharp ratio. The sharp Ratio is a
risk measure that is often used however criticisms of its use have been sine in later papers
within mathematics for example Bailey, et al. (2013) Pseudo-Mathematics and Financial
Charlatanism, because of the violation when using it on returns that are not normally

distributed.

7.3.1 RETURN 2002

1000 |

Figur 7-2 Return Plot 2002

Figure 11 shows the histogram of the return of 2002. It is clear that most of the

transactions end up being out of the money and therefore produce 100% negative return.
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The annual return is driven by the options that are providing extreme profit. The
probability of experiencing these huge returns when trading on real world data on would
expect to be extremely low. In fact any of these returns are so high that one can almost

guarantee that they would not be traded in the real market.

Using a portfolio and weighting the investment based on significance level of the shares
produced the same return plus minus 2% per year. There were no indication of
particularly strong correlation between return and significance level. The portfolio was
subject to days with huge return but also days with huge drawdowns. These drawdowns

came on days where almost all of the options produced 100% negative return.

Looking at the return over the entire period shown in figure 12 provide the same result,

annual return are driven by extreme profit but most of the return is negative.

1500 -

1000 |-

500 |-

o 2 4 6 8 10

Figur 7-3 Return Plot for 2002-2013

8. WELL KNOWN BIASES

8.1 Survivorship bias

Many losing funds are closed and merged into other funds to hide poor performance, and

as such, ‘mutual fund attrition’ can cause problems for researchers Elton, et al. (1996)
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The exemption of such funds from performance studies occurs because these funds no
longer exist. The causes of the attrition is either because “their performance is very poor
over a period of time or because their total market value is sufficiently small so that
management judges that it not longer pays to maintain the fund” Elton, et al. (1996, p.
1098). However, to only study funds that survive will in turn overstate the measured

performance of the funds and thus creates survivorship bias.

In Elton, Gruber & Blake’s 1996 study, they showed that survivorship bias appeared
larger in the small-fund sector than in large mutual funds. Although now, most of the
more recent performance studies have strived to eliminate such bias by “incorporating all
available data on fund returns” Carpenter and Lynch (1999, p. 339). However several
problems are still met by researchers when trying to eliminate survivorship bias.
Carpenter and Lynch (1999) state that some level of survivorship bias is inevitable if
complete data sets on dissolving funds are unavailable. They also state that even when
samples include all available data “some methodologies introduce survivorship bias by

imposing minimum survival requirements” Carpenter and Lynch (1999, p. 339).

Correction for attrition and its corresponding bias is important on many levels. Samples
that do not correct for attrition will “overstate the return that mutual funds earn for their
investors” Elton, et al. (1996, p. 1098). Because funds with differing objectives may have
differing rates of attrition, it may also differentially impact the return reported for mutual
funds with different goals and for these reasons attempts should be made to avoid it

(Elton, Gruber, Blake).

8.2 Look ahead bias
Look ahead bias is found in studies that includes information or data that would not have

been available or subsequently known during the time period being analysed Baquero, et
al. (2005); Daniel, et al. (2009). Many researchers have found results that show look-
ahead bias methodologies will materially bias statistics, by having requirements that
mean funds must survive a minimum period of time after a ranking period Carpenter and

Lynch (1999); Baquero, et al. (2005).
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The impact of look-ahead bias is “exacerbated for hedge funds due to their greater level
of total risk” Baquero, et al. (2005, p. 2). In fact, Baquero suggests that look-ahead bias
poses a serious problem. In fact, without correcting for look-ahead bias, average returns
of poorly performing funds may be overestimated by as much as 3.8% per year Baquero,

et al. (2005)

It is considered very difficult, if not impossible, to conduct a simulation of the
performance of investment strategies completely void of look-ahead bias; and one can
never be 100% sure that the bias has in fact been removed. Daniel, et al. (2009).
However, Daniel etc suggests that one way to address these biases “requires first
recognising their existence, and then to model how survival probabilities depend on
historical returns, funding age and aggregate economy-wide shocks” Daniel, et al. (2009,
p.- 9) .Because the hedge fund industry is highly unregulated, a careful analysis is
required in order to eliminate look-ahead bias as datasets can be subject to backfilling

biases. Baquero, et al. (2005).

8.3 Data Snooping
Data snooping bias is the result of using data mining to uncover relationships in data.

The process of data mining involves automatically testing huge numbers of hypotheses
against a single data set by extensively searching for combinations of variables that may
show a correlation. Due to the fact that typically new data sets on which to test
hypotheses cannot be create independently of the data, data snooping bias becomes an
issue (Sullivan). Sullivan states that “the common practice of using the same data set to
formulate and test hypotheses introduces data-snooping biases, which if not accounted
for, invalidate the assumptions underlying classical statistical inference” Timmermann, et

al. (1998, p. 98).

This problem has been practically unavoidable in analysis of time-series data and the
main issue in combating data snooping lies in the lack of sufficiently simple and practical

methods capable of assessing the potential dangers of data snooping in a given situation
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White (2000). However, a 2000 paper by White published in Econometrica suggests that
their new procedure, the ‘Reality Check’ provides “simple and straightforward
procedures for testing the null that the best model encountered in a specification search
has no predictive superiority over a given benchmark model, permitting account to be

taken of the effects of data snooping” White (2000, p. 1115)

9. Summary

9.1 Criticisms

Many research studies involve bias in one-way or another. To what extent the bias affects
the results of the study varies and thus so the quality does also. In this study there are a
couple of things the reader should be aware of, however, through careful reading of this

paper, it may have already been noticed.

First is the ‘backward ‘ looking on the S&P 500. This imposes survivorship bias, because
you are running a test on data where only the companies that have survived through the in
sample period (ISP), have been tested. If this was conducted by going long and short, it

would have imposed bigger problems since there would be longer periods in trade.

Yet, buying options with the max length of two months to expiry combined with a low
number of companies going bankrupt in the ISP it is expected that this bias would not
have any significant effect on the results presented. Nevertheless, there are examples of
companies that have been quickly removed from the index through the trading period, for

example Goldman Sachs. Which could impose different results.

Second is the trading signal used. There are two things that make the trading signal
questionable, the first being the squaring of the values. Squaring is a well-known way of
dealing with negative values, but it provides an obvious problem, the large values are
weighted more. One simple way of overcoming this obstacle, especially in a simple

calculation of standard deviation is to use absolute values instead of squaring.
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Figur 9-1 Return Plot for 2002-2013

You can see from the diagram that the difference is clearly increasing with larger values.
The reason for using standard deviation instead of absolute value is simply because it is
the same indicator used with previous research on pairs trading which would make the
research more comparable. The major problem with using this indicator is the underlying
assumption of normal distribution. I therefore tested for normal distribution between two
cointegrated shares to see if they were normally distributed. Among the 11 distribution
tests I used were Anderson Darling, Cramer-von and Mises, Jarque -Bera ALM, in the
small sample I tested none of the differences were normally distributed at a 5%

significant level.

Yet, trading strategies that rely on standard deviation is not unusual. One can also find
arguments of the central limit theory, however this is clearly misguiding since the central
limit theorem is based on a large sample without extreme values, and the stock market is

subject of fat tail distribution imposing extreme values.

Third are the adjustments of the BSM model. Even though the adjustment of dividend is
taken into account the taxation of the dividend payed out and the effect it has on the
underlying is not. This imposes a problem because the change in the underlying when

dividend is payed out differs among the companies.

Forth is the choice of volatility. Estimation of stochastic volatility often implies specific

models to specific companies due to the fact that the strategy is applied on a large scale it
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was not considered possible to estimate the volatility for each company. However, could
try to apply the general GARCH 1.1 model to estimate the volatility seeing to what

extend the result would be altered.

Fifth is the liquidity. Although only a quick comparison was made with the bid ask price
of historical option prices it was easy to see that most of the option taken place
theoretically did not exist in the market. Therefore it would be interesting to see how
many estimated options were found and traded in the historical one. The quick look

suggested a very low percentage.

Another limitation is that the calculations have also been coded, all the way down to the
matrix calculations. Before any of the coding was applied it was compared with eviews
and Stata to make sure that the formulas/functions applied into mathematica were
producing the correct result. The computations of different distributions were done for
the normal distribution, but due to the fact that the code was extremely slow I was forced

to use the code already built into mathematica.

In addition to this, the matrix calculations were shown to be significantly faster using the

function like least square or linear solve in Mathematica.

One of the challenges with using a system like Mathematica is the lack of built in
packages for econometrics, however the limitations of the system is only the users
mathematical knowledge. Although no problems occurred when programing least square
or newey west/white heteroskedasticity consistent standard errors, I did have a problem
with computing Johanson Cointegration test and the timeframe I had to work within

forced me to abandon it.

The bias that might occur due to this is the potential for a problem with the loss of quality
of the Johansen test — which is the vector error correction model (VECM) allowing for

the testing of cointegrating where it is possible to have shifts in the distribution and
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where one is able to include for a short and a long term relationship. This in addition with

the usage of maximum likelihood allowed the quality of cointegration to really stand out.

If given a larger timeframe I would have spent time making sure that the Johansen test

were computed correctly so that I would be able to do the test.

9.2 CONCLUSION AND FURTHER RESEARCH

This paper shows how an extreme gap can occur between real world trading and
estimations. Aside from this, there is little else to comment on other to state the need for

further studies using real historical prices to see if the strategy is profitable.
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8td.Dev 0.6053568
gkewness 1.33878 H,
Furtosis 3.67%07
Coeffioient Variation 0.810%07
T.8tat.Jarque 19.8482
Bvalue 0.00736522
Sum 40.3527
Sum 8q. Dev 19.4614
Observation 54
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MA--Real Prioce
Mean 4.58083
Median 2.13
Max 54.45
g Min 0.055
l Varianoe 73.2758
« RP 3td.Dev 8.5603¢
{{ 10 ¢ Skewmess 5.40543
J g * PHV  purtosis 45.0465
m | _J Coeffioient Variation | 1.71863
ANy T.3tat.Jarque 29530.
- - = - FValue 0
Sum 1798.11
Sum 2q. Dev 26380.7
Observation 361
MA--Frioce Hist.V
Mean 5.41265
Median 2.68302
Max 852.14
Min 0.
Varianoe 84.2815
8td.Dev 5.1805
Skewneszs 4.65155 },
Furtosis 33.4605
Coeffioient Variation 1.69612
T.Stat.Jarque 15886.6
PValue 0
Sum 1853.97
Sum 8q. Dev 30341.3
Observation 361
MA--Real Prioe
Mean 4.98093
Median 2.13
Max 54.45
Min 0.055
Varianoe 73.2798
3td.Dev £8.56036
, Skewness 5.40943
Furtosis 45.0465
Coeffioient Variation 1.71863
T.3tat.Jarque 29530.
FValue 0
Sum 1758.11
Sum 3q. Dev 26380.7
Observation 361
MA--Frioce Im.Vol
Mean 7.68075
Median 4.83804
Max 97.6628
Min 0.60471
Varianoe 84.1066
8td.Dev 9.17056
gskewness 4.65471 H N
Furtosis 35.5448
Coeffioient Variation 1.13402
T.Stat.Jarque 17%48.4
FValue 0
Sum 2772.75
Sum Sg. Dev 30278.4
Observation 361
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NOV--Real Prioe

Mean 2.2215¢6

Median 1.41

Max 23.45

Min 0.035

Varianoe 8.552€63
. RP 3td.Dev 2.52445

r Skewmess 4.22821 P

* PHV  zurtosis 24.8687

Coeffioient Variation 1.31618

T.3tat.Jarque 15380.5

FValue ]

Sum 1455.82

Sum 8q. Dev S€10.53

Cbservation €57

NOV--Prioe Hist.V

Mean 2.53%02

Median 1.75221

Max 22.6577

Min 1.96456x 10 F

Varianoe 9.2328%

gtd.Dev 3.03857

gkewness 3.7211 }r

Furtosis 20.5438

Coeffioient Variation 1.19675

T.8tat.Jargque 1015S5.

PValue 0

Sum 1668.14

Sum Sq. Dev 6056.78

Observation 657

NOV--Real Prioce
Mean 2.22196
Median 1.41
Max 23.45
Min 0.035
Varianoe 8.55263
. RP 3td.Devw 2.524459
skewness 4.22821 .
* PIV rurtosis 24.8687

Coeffioient Variation 1.31618
T.3tat.Jarque 15380.5
FValue 0
Sum 1455.82
Sum 2q. Dev S5€10.53
Observation €57

NOV--Price Im.Vol

Mean 2.84308
Median 2.02943
Max 24.6803
Min 0.124514
Varianoe 9.24857
8td.Dev 3.04115
gkewness 3.88726 38
Furtosis 22.3581
Coeffioient Variation 1.06367
T.8tat.Jarque 12174.7
PValue 0

Sum 1867.91
Sum 8q. Dev 6067.06
Observation 657
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NSC--Real Prioe
Mean 1.€1548
Median 1.0875
Max 20.75
Min 0.075
Varianoe 5.25174
« RP 3td.Dev 2.30038
, Skewmess 5.87318
« PHV Furtosis 45.7645
Coeffioient Variation 1.42045
T.3tat.Jarque 15342.4
FValue ]
Sum 278.55
Sum 3q. Dev S04.887
Observation 172

NSC--Prioe Hist.V

Mean

Median

Max

Min

Varianoe
8td.Dev
gkewness
Furtosis
Coeffioient Variation
T.Stat.Jarque
Pvalue

Sum

Sum 8q. Dev
Observation

2.28772
1.6506

21.8409

0.0745359

6.85309

2.61734

4.7474 }.
33.6368

1.1443

8051.31

0

393.487

1171.88

172

N8C--Real Prioce

Varianoe
« RP 3td.Dev
r Skewness
* PIV rortosis
Coeffioient Variation
T.3tat.Jarque

Fvalue
Sum
3um 3g. Dew
Observation
NSC--Prioce Im.Vol
Mean 2.10224
Median 1.56035
Max 22.5056
Min 0.2613397
Varianoe 6.55842
8td.Dev 2.56054
skewness 5.81518 }},
Furtosis 45.0221
Coeffioient Variation 1.2182
T.8tat.Jarque 14825.5
PValue o
Sum 361.584
Sum 8g. Dev 1121.49
Observation 172

1.61948
1.0875
20.75
0.075
5.25174
2.30038
5.87318
45.7645
1.42045
15342.4
-]
278.55
504.887
172
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NVDA- -Real Frioe

Mean 0.574688
Median 0.405
Max 5.325
Min 0.04
Varianoe 0.30352¢6
3td.Dev 0.550832
Skewness 3.04556
Furtosis 17.3
Coeffioient Variation 0.958662
T.3tat.Jarque 13211.1
Fvalue o
Sum T45.545
Sum 8q. Dev 353.€73
Observation 1258

NVDA--Price Hist.V

Mean
Median
Max

Min
Varianoe
std.Dev
gskewness
Furtosis

Coeffioient Variation

T.8tat.Jargue
PvValue

Sum

Sum 8g. Dev
Observation

0.561315
0.383406
5.42418

0.0000577832

0.406405
0.63749%
3.16282
16.5781
1.13572
12871.1
0
728.587
527.108

1298

}e
NVDA--Real Frioe

Mean 0.574688
Median 0.405
Max 5.325
Min 0.04
Varianoe 0.303526
3td.Dev 0.550932
Skewvness 3.04556
Furtosis 17.3
Coeffioient Variation 0.958662
T.3tat.Jarque 13211.1
FValue 0
Sum T45.945
Sum 2q. Dev 353.673
Observation 1258

NVDA--PFrioce Im.Vol

Mean

Median

Max

Min

Varianoe
8td.Dev
gkewness
Furtosis
Coeffioient Variation
T.Stat.Jargue
PValue

Sum

Sum 8g. Dev
Observation

0.740148
0.55613%
5.50514
0.0557084
0.378234
0.615007
2.95003
16.304
0.830%27
11581.9
0
960.70%
450.57
1298
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PCLN--Real Prioce
Mean 7.17248
Median 4.35
Max €8.25
Min 0.07s
Varianoe 62.3283
. RP 3td.Dev 7.85483
Skewness 2.08589
* PHV  purtosis 5.03806
Coeffioient Variation 1.10071
T.3tat.Jarque 2611.23
Fvalue ]
Sum 8248.35
Sum 2q. Dev 71615.2
Observation 1150

PCLN--Frioe Hist.V

Hean 5.97351
Median 6.53555
Max 74.376
Min 0.
Varianoe 109.536
8td.Dev 10.4688
gkewness 1.84535 },
Furtosis 7.463%
Coeffioient Variation 1.04966
T.8tat.Jarque 1628.72
BEValue o
Sum 11465.5
Sum S8q. Dev 1259526,
Observation 1150
PCLN--Real Prioce
Mean T7.17248
Median 4.35
Max €8.25
Min 0.075
Varianoe €2.3283
« RP 3td.Dev 7.85483
, Skewmess 2.08589
« PIV Furtosis S5.03806
Coeffioient Variation 1.10071
T.3tat.Jarque 2611.23
Fvalue ]
Sum 8248.35
Sum 2q. Dev 71615.2
Observation 1150

PCLN--Frioe Im.Vol

Mean 12.4073%
Median 5.57514
Max 76.3081
Min 0.545711
Varianoe 93.5636
g8td.Dev S5.67314
Skewness 2.01593 }},
Furtosis 8.41818
Coeffioient Variation 0.7795%4
T.8tat.Jarque 2210.88
FvValue o

Sum 14265.1
Sum Sq. Dev 107511,
Observation 1150

APPENDIX B
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Joining price and vol

ClearAll["Global  *"]
Aleksander Rinaldo

(1= << AleksanderRinaldo”

Data Import

sp = Import["/Users/aleksanderrinaldo/Desktop/Dataset
adjusted by Thomas/crsp clean s&p500.csv"];

vol

Import["/Users/aleksanderrinaldo/Desktop/Dataset
adjusted by Thomas/60 day vol.csv"'];

int = Flatten[
Import|["/Users/aleksanderrinaldo/Desktop/Dataset adjusted by Thomas/correct
interest.xlsx"], 1];

class = Flatten[Import|[
"/Users/aleksanderrinaldo/Desktop/Dataset adjusted by Thomas/cl.xlsx"], 1];

n21= mulig = Import["/Users/aleksanderrinaldo/muligCorrectEx.mx"] /.
{x_l S_y a_} »{x,s,a,0,0,0.};

Volatility

pick = Cases[Intersection[vol[[All, 2]], sp[[All, 2]]], Except["ticker"]];

join[datal_, data2_, i_] :=Block[{sn = i, dl1 = datal, d2 = data2, v,
sel, d1P, d2P, keep, d1P2, iS, p, pr, date, dString}, sel[sn] = True;
d1lP = Select[dl, sel[#[[2]]] &];
d2P = Select[d2, sel[#[[2]]] &];
iS = Intersection[d1P[[All, 1]], A2P[[All, 1]]1];
date = Sort[DateList[#] & /@ iS];
dString =
(ToLowerCase@DateString[#, {"Day", "MonthNameShort", "Year"}]) & /@date;
p={#, __ } &/@dString;
v = Flatten[Cases[d2P, #, 1, 1] & /@p, 1];
pr = Flatten[Cases[dlP, #, 1, 1] & /@p, 1];
insertColumn[pr, v[[All, 3]], -1]
1

volP = join[sp, vol, #] & /@pick;

Interest

intRule = Cases[int, {{y_, m_, x_, s },bi_Y o {y, m, v }»1i];
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intRange = DateRange[ {2000}, {2014}];
joint = Transpose[{intRange, intRange /. intRule}];

converg = Cases[joint,
{x_, y_} » {ToLowerCase@DateString[x, {"Day", "MonthNameShort", "Year"}], y}1;

interestRule = Cases[converg, {x_, y_} »x->y];

aInterst([x_, rul_] :=Block[{d =x, r = rul},
insertColumn[d, d[[All, 1]] /. xr, -1]]

addingInterest = aInterst[#, interestRule] & /@volP;

Sorting Into groups

subIndustries = {n_, _ , #, _ } :> {n, #} & /@Union[class[[3 ;;, 3]1]1;
pp = Cases[class, #] & /@ subIndustries;

scom = Subsets[#, {2}] & /@pp;

jPair = Flatten[Cases[#, {{x_, __ }, {v_, __}} :> {x, v}] & /@scom, 1];

ts[xdata_, xpair_, xts_] :=
Block[{data = xdata, jP = xpair, en, two, pEn, pTo, bes, a, b, cmp, tf = xts,
df, ma, stbi, diff, ts, date, aP, bP, dA, dB, vA, vB, i, ise, kov, ei},
en = jP[[1]];

two = jP[[2]];
PEn = Flatten[Select[data, MatchQ[#[[1, 2]], en] &], 1];
pTo = Flatten[Select[data, MatchQ[#[[1, 2]], two] &], 1];

ise = Intersection[pEn[[All, 1]], pTo[[All, 1]]1];
If [Length[ise] > 60,
Scan[bes[#] = True; &, ise];
a = Select[pEn, bes[#[[1]]] &];
b = Select[pTo, bes[#[[1]]] &];
cmp = MapThread[Join[#1, #2] &, {a, b}];
df = cmp[[All, 3]] -cmp[[All, 9]];
diff = Drop[df, tf-1];
ma = MovingAverage[df, tf];
stDi =
Table[StandardDeviation[df[[1+n ;; tf+n]]], {n, O, Length[diff] -1}];
ts = PadLeft[ ((diff -ma) / stDi), Length[cmp]];
date = cmp[[All, 1]]; aP = cmp[[All, 3]]; dA = cmp[[All, 4]];
bP = cmp[ [All, 9]]; dB = cmp[[All, 10]]; VA = cmp[[All, 5]];
vB = cmp[ [All, 11]]; i = cmp[[All, 12]];
kov = Transpose|[ {date, aP, bP, ts, vA, vB, dA, dB, i}];
ei =
insertRow[kov, {"Date", "PA", "PB", "TS", "VA", "VB", "DA", "DB", "I"}, 1];
insertRow[ei, {en, two, "", "", """, "", "", """, ""},1]11]

addTSignal = DeleteCases[ts[addingInterest, #, 50] & /@ jPair, Null];
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Testing for cointegration

s[sig_] :=Block[{d = sig, ms, range, eR, f, vB, v, ru, rul, nw, modell, model,
rull, val, residuals, #, menu, pValue, lengthPvalue, 1f, fE, dob},
ms = SplitBy[d[[3 ;;]], DateList[#[[1]]1][[2]] &];
vB = Cases[#, {g_,a_,b_,v___}» {g, Log[a] // N, Log[b] // N, v}] & /@ms;
range = Table[List[1+n, 18 +n], {n, 0, 500000, 6}];
eR = DeleteCases[If[#[[2]] < Length[ms[[All]]], #] & /@range, Null];
£f=vB[[#[[1]] ;; #[[2]]]] & /@eR;
fE=ms[[#[[1]] ;; #[[2]]]] & /@eR;
v = Position[f, DirectedInfinity[h_]];
model = If[Length[Vv] <1,
LinearModelFit [Flatten[#[[1 ;; 12]], 1][[All, 2 ;; 3]], b, b] &/@f,
ru = Cases[v, {s____, x_}» {s, x+1}];
val = Extract[f, #] & /@ru;
rul = Thread[v[[All]] -» val];
nw = ReplacePart[f, rul];
LinearModelFit [Flatten[#[[1 ;; 12]], 1]1[[All, 2 ;; 3]], b, b] & /@nw];
residuals = #["FitResiduals"] & /@model;
H = UnitRootTest [#[[All]], Automatic, "HypothesisTestData"] & /@ residuals;
pValue = Partition[Flatten[#["TestData", All] & /@H, 1] [[All, 2]], 4];
menu = Join[{"UnitRootTest:", "Dickey-Fuller F",
"Dickey-Fuller T", "Phillips-Perron F", "Phillips-Perron T"},
pValue[[#]]] & /@Range[Length[pValue]];
lengthPValue = Table[Length[Select[pValue[[t]], #< 0.10 &]],
{t, 1, Length[pValue]}];
1f = Range[Length[f]];
dob = MapThread [
If[# === 4, Prepend[Join[d[[1l ;; 2]], Flatten[fE[[#2]][[13 ;;]]1, 111, #3]1] &,
{lengthPValue, 1£f, menu}]]

enComb = s[#] & /@ addTSignal;

pick2 = Cases[enComb, {{"UnitRootTest:", _ }, _}, -1];

Trading System

Pairs trading with vanila options

Data

n2i= pick2 = Import["/Users/aleksanderrinaldo/pick2 2.mx"];
infasg= ivi = ((1.20) ~ (1 /250)) -1;

In[1459):= ivi

outf1459]= 0.000729552
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Code

n4= fA[px_, dts_, int_] := Block[{s = px, dove = dts, nDD, diff, i = int, interest, p},
nDD = dove[[#]] &@@ {1 ;; # &@@Position[dove, s[[1]]1]1[[1]1]};
interest = i[[#]] &@@ {1 ;; & & @@Position[dove, s[[1]]1]1[[1]]1};
diff = Length[DayRange[s[[1]], #]] -1 & /@nDD;
p = PadRight |
MapThread[s[[7]] *e” (-H2 % (#1/360)) &, {diff, interest}], Length[dts]];
p /. (Select[Reverse[p], #>0&, 1]1[[1]] » O)
1

ns= £B[px_, dts_, int_] := Block[{s = px, dove = dts, nDD, diff, i = int, interest, p},
nDD = dove[[#]] &@@ {1 ;; # &@@Position[dove, s[[1]]1]1[[1]]1};
interest = i[[#]] &@@ {1 ;; # &@@Position[dove, s[[1]]]1[[1]1]};
diff = Length[DayRange[s[[1]], #]] -1 & /@nDD;
p = PadRight[
MapThread[s[[8]] *e” (-#2 % (#1/360)) &, {diff, interest}], Length[dts]];
p /. (Select[Reverse[p], #>0&, 1][[1]] -» O)
]

6= dec[corrected_] := Module[{x = corrected, dts, aP, a, upA, bP, upB},

dts = DateList[#] & /@x[[All, 1]];

(*Ax)

aP=Cases[x, {d_,h__ ,f ,y ,xr_}/; £>0:>{DateList[d], h, £, y, r}];

upA = If [Length[aP] > 0,
insertColumn[x, Total [#] & /@ (fA[#, dts, x[[All, -1]]] & /@aP"), -1],
insertColumn[x, Table[0, {Length[dts]}], -1]1];

(*bx*)

bP = Cases[x, {d_, h £ ,y_,r_}/;y>0:> {DateList[d], h, £, y, r}];

upB = If [Length[bP] > 0,
insertColumn[upA, Total[#] & /@ (fB[#, dts, x[[All, -1]]] & /@bP"), -1],
insertColumn[upA, Table[0, {Length[dts]}], -1]1;

insertColumn[upB, Length[DateRange [#, DateList[x[[-1, 1]]]]] -1 & /@dts, 1]]

nito4= plus[data_, in_, call_, put_] :=
Block[{s = data, p = put, c = call, strikePut, strikeCall, puts,
aaReturn, bbReturn, dta, dtb, interests = in, calls, pl, cl},
strikePut = s[[1, 3]] »p;
strikeCall = s[[1, 4]] *c;
pl = PadRight [putA[#, strikePut] & /@s[[1 ;; -2]], Length[s]];
puts = ReplacePart[pl, h_: (0.20*s[[1, 3]]) /; h==1&&p1[[1]] ==0];
cl = PadRight[callB[#, strikeCall] & /@s[[1 ;; -2]], Length[s]];
calls = ReplacePart[cl, h_: (0.20*s[[1, 4]]) /; h=1&&cl[[1]] ==0];
dta = insertColumn[s, puts, -1];
dtb = insertColumn[s, calls, -1];
{aaReturn[dta, interests, strikePut], bbReturn[dtb, interests, strikeCall]}]
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nss8= aaReturn[dta_, interests_, strikePut_] :=
Block[{v = dta, r = interests, on, k, strike = strikePut, return, returnDisc},

return =1+ (#-v[[1, -1]]) / (v[[1, -1]]) &/ev[[All, -1]];
returnDisc = MapThread[#/ (1+r) ~ (v[[1, 1]] - #2) &, {return, v[[All, 1]]}]-1;
If [Length[on = Flatten[Position[returnDisc, h_/; h>r, 1, 1]]] > O,

{v[[#, 2]] &eeon, "P'a", v[[1, -111,

(return[[#]] &@@on) -1, v[[1, 2]], Vv[[#, -1]] &@@on},
{vl[-1, 2]], "p'a", v[[1, -1]], I£f[0 < (strike-v[[-1, 3]]),
(strike- (v[[-1, 3]]1+v[[1, -1]1)) / (v[[-1, 3]1] +vI[[1, -1]1]),
-11, v[[1, 2]], "HTE"}]]

nfs577- bbReturn[dta_, interests_, strikeCall_] :=
Block[{v = dta, r = interests, on, k, strike = strikeCall, return, returnDisc},
return=1+ (#-v[[1, -1]]) / (v[[1, -1]]) &/ev[[All, -1]];
returnDisc = MapThread[#/ (1 +x) ~ (v[[1, 1]] -#2) &, {return, v[[All, 1]]}] -1;
If [Length[on = Flatten[Position[returnDisc, h_/; h>r, 1, 1]]1] > O,
{v[[#, 2]] &e@on, "C'b", v[[1, -1]],
(return[[#]] &@@on) -1, v[[1, 2]], Vv[[#, -1]] &@@on},
{vIl[-1, 2]], "¢'b", v[[1, -1]], I£[0< (Vv[[-1, 4]] - strike),
(v[[-1, 4]] - (strike+vVv[[1l, -1]])) / (strike+vVv[[1l, -1]]),
-1], v[[1, 2]], "HTE"}]]

nis50:- minus[data_, in_, call_, put_] :=
Block[{s = data, p = put, c = call, strikePut, strikeCall, puts, aaReturn,
bbReturn, dta, dtb, interests = in, calls, maaReturn, mbbReturn, pl, cl},
strikePut = s[[1, 4]] *p;
strikeCall =s[[1l, 3]] *c;
pl = PadRight [putB[#, strikePut] & /@s[[1 ;; -2]], Length[s]];
puts = ReplacePart[pl, h_:» (0.20*s[[1, 4]]) /; h==1&&p1[[1]] ==0];
cl = PadRight[callA[#, strikeCall] & /@s[[1 ;; -2]], Length[s]];
calls = ReplacePart[cl, h_:» (0.20*s[[1, 3]]) /; h==1&&cl[[1]] ==0];
dtb = insertColumn[s, puts, -1];
dta = insertColumn[s, calls, -1];
{maaReturn[dta, interests, strikeCall], mbbReturn[dtb, interests, strikePut]}]

niis61:- maaReturn[dta_, interests_, strikeCall_] :=
Block[{v = dta, r = interests, on, k, strike = strikeCall, return, returnDisc},
return =1+ (#-v[[1, -1]1]) / (v[[1, -1]]) &/@ev[[All, -1]];
returnDisc = MapThread[#/ (1+x) ~ (v[[1, 1]] - #2) &, {return, v[[All, 1]]}] -1;
If [Length[on = Flatten[Position[returnDisc, h_/; h>r, 1, 1]1]] >0,
{v[[#, 2]] &@@on, "C'a", v[[1, -1]],
(return[[#]] &@@on) -1, v[[1, 2]], Vv[[#, -1]] &@@on},
{v[[-1, 2]], "c'a", v[[1, -1]], If[0 < (Vv[[-1, 3]] - strike),
(v[[-1, 3]] - (strike+v[[1l, -1]])) / (strike+vVv[[1l, -111),
-11, v[[1, 2]], "HTE"}]]

nis62- mbbReturn[dta_, interests_, strikePut_] :=
Block[{v = dta, r = interests, on, k, strike = strikePut, return, returnDisc},

return=1+ (#-v[[1, -1]1]) / (v[[1, -1]]) &/@ev[[All, -1]];
returnDisc = MapThread[#/ (1 +x) ~ (v[[1, 1]] - #2) &, {return, v[[All, 1]]}]-1;
If [Length[on = Flatten[Position[returnDisc, h_/; h>r, 1, 1]1]] >0,

{v[[#, 2]] &@eon, "P'b", v[[1, -1]],

(return[[#]] &@@on) -1, v[[1, 2]], V[[#, -1]] &@@on},
{v[[-1, 2]], "P'b", v[[1, -1]], If[0 < (strike-v[[-1, 4]]),
(strike- (v[[-1, 4]1+vI[[1, -1]1])) / (v[[-1, 4]1] +v[[1, -111),
-1], v[[1, 2]]1, "HTE"}]]

Printed by Wolfram Mathematica Student Edition



6 | test 2.nb

3= compsN[neededx_, data_, interestyD_, call_, put_] := Block]|
{s, ndX = neededx, fix = data, pk, st, nD, ptrn, enD, rng, trD, nter, trd, ex, r,
exr, rose, exD, tradDat, correct, returnTrade, pos, d, dat, vt, lastMonth, vv},
dat = Cases[fix, {sa_, da_, ka_, ja_, va_, sj_, fj_, 03_, a_}1;
s=dat[[4;;, 4]];
pk = Select([s, #22 | |H<-2&, 1];
st = Position[s, #] & @@ pk;
d = DateList[#] & /@Cases[dat[[4 ;;, 1]], _String];
ptrn = Flatten[d[[#]]] &@@st /. {v_, p_, i_, j___} =
{{v.p,w_,j}Y/;wz i, {v,p+1, _, j} /; MemberQ[d, {v, p+1, _, j}]1,
{v+1,1, _, j} /; MemberQ[d, {v+1, 1, , j}] &&p = 12};
exr = Flatten[Cases[ndX, #] & /@ptrn /. {t_, n_,o_,b_,i_, j_} =
Identity[{t, n, v_, b, i, j} /; v< o], 1];
vv = DeleteCases[Cases[d, #] & /@exxr, {}];
exD = Last[Last[vv]];
tradDat =dat[[(#1+3 ;; #2 +3) &@@Flatten[{st, Position[d, exD]}]11]];
correct = dcc[tradDat];
returnTrade = If[correct[[1l, 5]] > O, plus[correct, interestyD, call, put],
minus [correct, interestyD, call, put]];
vt = Join[#, {0, 0}] & /@ {returnTrade};
pos = Position[DateList[#] & /@d,
Last[Sort[{DateList[#[[1]]], DateList[#2[[1]]]} & @@ returnTrade]]] + 4;
Join[dat[[1;; 3]], dat[[#;;]] &@@pos[[1]], vt]]

4= putA[ld_, strike_] :=
Block[{s = 1d, k = strike}, FinancialDerivative[{"European", "Put"},
{"StrikePrice" » k, "Expiration" - s[[1]] / 252}, {"InterestRate" - s[[-3]],
"Volatility" - s[[6]], "CurrentPrice" -» (s[[3]]-s[[-2]]1)}]11]
putB[ld_, strike_] :=Block[{s = 1d, k = strike},
FinancialDerivative[{"European", "Put"},
{"StrikePrice" » k, "Expiration" - s[[1]] / 252}, {"InterestRate" - s[[-3]],
"Volatility" - s[[7]], "CurrentPrice" -» (s[[4]]-s[[-1]1)}]11]
callA[ld_, strike_] :=Block[{s = 1d, k = strike},
FinancialDerivative[{"European", "Call"},
{"StrikePrice" » k, "Expiration" - s[[1]] / 252}, {"InterestRate" - s[[-3]],
"Volatility" - s[[6]], "CurrentPrice" -» (s[[3]]-s[[-2]])}]1]
callB[ld_, strike_] := Block[{s = 1d, k = strike},
FinancialDerivative[{"European", "Call"},
{"StrikePrice" -» k, "Expiration" -» s[[1]] / 252}, {"InterestRate" - s[[-3]],
"Volatility" - s[[7]], "CurrentPrice" - (s[[4]]-s[[-1]])}]1]
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test 2.nb

nig= returnN[data_, exInterest_, anToDInterest_, call_, put_] :=
Module[{z = data, x = exInterest, dT, led, 1P, tL, rUl,
nw, nededEx, exPos, signal, joinReturn, rr, nEwRule, rule,
te, nest, return, nE, a, al, a2, a3, i = anToDInterest},
dT = DateList[#] & /@z[[4 ;;, 1]];
led = Last[Intersection@e {dT, x}];
1P = (Position[dT, led][[1, 1]]) +3;
tL = Length@dT + 3;
a=z[[1P;; tL, 4]];
rule = Identity[{fo___ , #, fa___} +» {fo, 1, fa}] & /@a;
nw=2z /. rule;
nE = Range[dT[[1, 1]], dT[[-1, 1]] -1];
nededEx = Union@Flatten[Cases[x, #] & /@
Join[{#, s__} & /@nE, {{dT[[-1, 1]]1,s_, p_}/; s s dF[[-1, 2]1]}], 1];
nest = FixedPointList[If[Length[Select[#,
Function[{f}, £[[4]] = 2 || £[[4]] = -2], 1]] > O,
compsN[nededEx, #, i, call, put], {{1,1, 1,1, 1}}] &, nw];
return = Union@Cases [Flatten[nest, 1], {zo_, za_, zi_, zu_} » {zo, za}];
Join[z[[1 ;; 3]], return]]
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