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1. Summary
Hybrid zones provide an ideal natural experiment to study
the selective forces driving evolution of reproductive barriers
and speciation. If hybrid offspring are less fit than the parental
species, pre-zygotic isolating barriers can evolve and strengthen
in response to selection against the hybrids (reinforcement).
Four contact zones between the intertidal macroalgae Fucus
serratus (Fs) and Fucus distichus (Fd), characterized by varying
times of sympatry and order of species introduction provide an
opportunity to investigate reinforcement. We examined patterns
of hybridization and reproductive isolation between Fs and Fd in:
(i) northern Norway (consisting of two natural sites, 10 000 years
old), (ii) the Kattegat near Denmark (Fd introduced, nineteenth
century) and (iii) Iceland (Fs introduced, nineteenth century).
Using 10 microsatellites and chloroplast DNA, we showed
that hybridization and introgression decreased with increasing
duration of sympatry. The two younger contact zones revealed
13 and 24% hybrids and several F1 individuals, in contrast to
the older contact zone with 2–3% hybrids and an absence of
F1s. Cross-fertilization experiments revealed that the reduction
in hybridization in the oldest zone is consistent with increased
gametic incompatibility.

2. Introduction
The mechanisms of reproductive isolation and speciation are
of central interest in evolutionary biology because of their
role in determining gene flow between formerly interbreeding
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populations [1,2]. The last decade has seen great progress in the study of individual components of
reproductive isolation and provided insights into the genetic basis of particular isolating barriers [3,4].
Yet, reproductive isolation among most species pairs is not due to a single isolating factor, but is a
consequence of a large number of different pre- and post-zygotic barriers [5,6] and their potentially
complex interactions. In the case of hybridizing species, reproductive barriers are more or less permeable,
allowing the sexual transfer of genetic material between species (i.e. introgression). Hybrid zones,
therefore, provide a natural experiment to study the selective forces causing the evolution of reproductive
barriers and ultimately, the mechanisms of speciation.

Hybrid zones exist in many forms: narrow or wide, ephemeral or long lasting, and linear or mosaic
[7–10]. The structure of a hybrid zone and its evolutionary fate largely depend on the fitness of the
hybrid individuals relative to the parental species and three general scenarios are possible [11]. First,
if there is no selection against hybridization and introgression is extensive, all individuals become
hybrids, creating a hybrid swarm or ‘extinction through hybridization’ [12,13]. Second, if introgressed
individuals are genetically stabilized and/or colonize new habitats, novel evolutionary lineages can arise
[14–17]. Finally, if hybrid offspring are less fit than the parental species, pre-zygotic isolating barriers can
evolve and strengthen in response to selection against the hybrids (i.e. increase pre-zygotic reproductive
isolation) in a process called reinforcement [18].

Despite a strong theoretical foundation, the importance of reinforcement in nature remains
controversial [2,19]. Reinforcement may play a larger role in speciation than previously thought [20]
as it can lead to speciation of sympatric populations that have been formerly allopatric [18] or it can
lead to rapid allopatric speciation [21]. Documenting reinforcement in natural populations, however,
remains challenging and must address several criteria [18], including occurrence of hybridization,
selection against hybrids and displacement of a heritable trait perceived by the other sex. Nevertheless,
reinforcement has been documented in an increasing number of vertebrates, insects and plants [21–39].
To our knowledge, no study has examined reinforcement in other eukaryote supergroups.

The intertidal seaweed genus Fucus (supergroup Heterokonta; Phaeophyta) is an ideal group in which
to study speciation. The genus originated in the North Pacific and after the opening of the Bering Strait
(5.5–5.4 Myr BP), colonized the North Atlantic where it radiated into two distinct lineages that diverged
0.9–2.25 Myr BP: lineage 1 including Fucus distichus, Fucus serratus; and lineage 2 including Fucus spiralis,
Fucus vesiculosus and others [40–45]. Each lineage is characterized by sister taxa that are dioecious
with unisexual (male or female) conceptacles (e.g. F. serratus and F. vesiculosus) and hermaphrodites
with co-sexual conceptacles (e.g. F. distichus and F. spiralis). The dioecy/hermaphroditism character has
undergone multiple-state changes during the evolution of the genus Fucus [40,42,44]. Hybridization is
common within the genus and molecular studies have shown that hybridization is prevalent among
sister taxa (i.e. within one lineage) and mostly involves one dioecious and one hermaphrodite parental
species (e.g. F. serratus × F. distichus [46,47] and F. vesiculosus × F. spiralis [48–52]). A distinguishing feature
of Fucus hybrid zones is the limited gamete dispersal, because egg-produced pheromones effectively
attract sperm only within distances of micrometres to millimetres [53] and settlement of fertilized eggs
most often occurs within 1–2 m of the parent [54,55].

Lineage 1 consists of the dioecious F. serratus (hereafter Fs) with a temperate east Atlantic distribution.
The sister species F. distichus (hearafter Fd) is a hermaphrodite and characterized by an Arctic distribution
(figure 1). The two species diverged 2.25 to 0.9 Myr ago [40,41]. Although several species have been
described within the F. distichus lineage on the basis of morphological characteristics (e.g. [56,57]), current
molecular phylogenetic evidence indicates that none form monophyletic groups and, therefore, from a
phylogenetic standpoint, all are presently considered part of a single species [40,58].

Four contact zones involving Fs and Fd were identified (figure 1): (i) two in Northern Norway where
the two species have been in sympatry for ca 10 000 years after the ice receded from the area since the
Last Glacial Maximum (LGM) and Fs recolonized the Norwegian coast from a refugium in southwest
Ireland [41]; Fd, on the other hand, appears to have survived the LGM in northern Norway based on
mtDNA and microsatellite data [59]; (ii) Iceland (Heimaey), where Fs was introduced from Oslofjord
(Norway), probably via imported raw wood logs, to an endemic population of Fd [60], leading to ca 100
years of sympatry; and (iii) the Kattegat Sea, where Fd (formerly Fucus evanescens) was introduced in
the mid-1890s to an endemic Fs population [61,62], also leading to ca 100 years of sympatry; however,
the source has not been identified owing to the lack of variability at nuclear markers (G. Hoarau and
J. A. Coyer 2010, unpublished data). Crucially, the reproductive seasons of each species overlap in all
zones of sympatry.

The identified contact zones between Fs and Fd, with varying times of sympatry and directionality
of introduction (i.e. Fs to Fd or Fd to Fs), provide a unique opportunity to investigate the presence of
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Figure 1. Sampling locations for Fucus serratus and Fucus distichus. Light grey depicts F. serratusdistribution, black F. distichusdistribution
in the northeast Atlantic and dark grey sympatry. Distribution along the Greenland coast is uncertain and is designated with ‘?’.

reinforcement. Reinforcement is most likely to occur in areas where there is strong selection against
hybrids and restricted gene flow [19], both of which are characteristic of the Fs/Fd hybrids zones
[46,47]. Furthermore, as the evolution of pre-zygotic isolating barriers is expected to result in a reduction
of interspecific mating through time [35], reinforcement will be stronger in older zones of sympatry.
Specifically, populations in northern Norway (10 000 years of contact) should show a lower degree of
hybridization and interspecific fertilization success relative to the younger hybrid zones (100 years) in
the Kattegat and in Iceland.

In this study, we examined patterns of hybridization and reproductive isolation between Fs and Fd
in two young and two old contact zones. Specifically, we: (i) determined the degree of hybridization
and introgression using blind sampling with subsequent identification of parents and hybrids using
both nuclear and chloroplast markers, and (ii) compared the degree of interspecific fertilization success
within and across contact zones.

3. Material and methods
3.1. Sampling
Hybridization among Fs and Fd was examined at all contact zones: (i) Kirkenes (n = 47) and Tromsø
(northern Norway) (n = 192), where both species are native and have been in sympatry for ca 10 000
years; (ii) Heimaey (Iceland) (n = 96), where F. serratus was introduced ca 100 years ago; and (iii) Blushøj
(Kattegat, Denmark) (n = 286), where Fd was introduced ca 120 years ago. At both Tromsø and Blushøj,
two 2 × 12 m plots were established to investigate micro-scale differences in hybridization, with the long
axis perpendicular to the shoreline (beginning at the shallowest appearance of Fd and finishing at the
deepest occurrence of F. serratus). Owing to physical constraints at Kirkenes and Heimaey, only one plot
was established. Within each plot, a small tissue sample was excised in situ from all post-recruit (more
than 10 cm) individuals without a priori species identification. Tissues were stored in silica gel crystals
prior to genetic analysis. All data from Blushøj are from Coyer et al. [46].

3.2. DNA extraction and microsatellite analysis
DNA was extracted from ca 5 mg of silica-dried tissue as described in Hoarau et al. [41]. We used
10 microsatellite loci: FsA198, FsB113, FsB128, FsD39, L20, L38, L58, L94, FeF172 and FsF4 from Coyer
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et al. [46]. PCR reaction mixtures and conditions are described in Coyer et al. [46]. All genotypes were
visualized on an ABI 377 or on a 3500XL automatic sequencer (Life technologies) and analysed with
GENESCAN software (Life technologies).

3.3. Chloroplast marker
We used a portion of the ribulose-1,5-bisphosphate carboxylase operon (Rubisco; chloroplast) to identify
the egg-producing parent for hybrids, as the parental species differed by a 33 bp indel [63]. PCR reactions
and conditions are described in Coyer et al. [63] and parental identity was detected by sizing of PCR
products on an ABI 377 or on a 3500XL automatic sequencer (Life technologies).

3.4. Molecular data analysis
Genetic diversity using Nei’s [64] non-biased Hexp, estimators of FIS and FST (Wright [65]) as f and θ , [66],
and allele frequencies were estimated using the software GENETIX 4.02 [67]. Multilocus heterozygosity
(MLH) was defined as the number of heterozygous loci per individual and ranged from 0 to 10.

Admixture of microsatellite genotypes was analysed with STRUCTURE [68], which uses a Bayesian
approach to identify K user-defined clusters of individuals that are genetically homogeneous. Sampled
individuals were assigned either to clusters or jointly to two or more clusters if their genotypes
indicated admixture. All analyses were replicated 10 times for each location independently (table 1)
to ensure proper convergence of the Markov chain Monte Carlo (MCMC) with the parameters: ancestry
model = admixture (to account for recent divergence and shared ancestral polymorphisms); frequency
model = independent; burn-in = 1 000 000; MCMC length = 2 000 000 post-burn-in and K = 2 (to account
for the parental species). The analysis with STRUCTURE produced for each individual, an admixture
coefficient (IFS) defined as the proportion of membership to the F. serratus cluster.

The power of admixture analyses to detect hybridization in Fucus was evaluated by simulation using
HYBRIDLAB (v. 1.0) [69] as described previously [46]. Simulations were repeated 10 times for each location
independently and these results were used to define the boundaries of the IFS admixture coefficient (95%
confidence intervals) for: (i) pure F. serratus, (ii) pure F. distichus, and (iii) F1 hybrids.

3.5. Fertilization success (pre-zygotic isolation)
Reproductive receptacles (consisting of 100s of conceptacles) from both species were collected within
each of the contact zones (except Kirkenes). Receptacles were packed individually in aluminium foil
and transported to the laboratory in a cooler box within 36–48 h. A reciprocal crossing design was used
for Blushøj, Tromsø and Heimaey, using five Fd females, five Fs males, five Fs females and five Fd
males, resulting in 25 Fd conspecific crosses, 25 Fs conspecific crosses and 2 × 25 interspecific crosses.
Additionally, negative controls consisting of eggs only (no sperm added) were used for all females. All
specimens were genotyped with 10 microsatellite loci and analysed as described above (e.g. STRUCTURE)
to determine species identity.

Crosses were performed in sterile plastic culture plates containing 3 ml sterile seawater at 5◦C and
each cross and control was replicated four times using 10 oogonia (80 eggs) in each replicate. Fs is a
dioecious species, with receptacles from a mature individual possessing conceptacles containing either
antheridia or oogonia. The sex of Fs individuals was determined microscopically. Fs receptacles were
stored overnight at 4◦C. The addition of ice-cold sterilized seawater induced conceptacles to release eggs
and sperm, which were collected and washed once in sterile seawater before further use.

As Fd is a hermaphroditic species with individual conceptacles within the receptacle containing
both antheridia and oogonia, collecting eggs after release from conceptacles was inappropriate, because
eggs from such preparations were potentially already fertilized by conspecific sperm. To prevent self-
fertilization during gamete extraction from Fd, eggs were collected with a pipette immediately after
sectioning receptacles with a razor blade in order to disrupt the conceptacles and then sequentially
washed (×3) in 10 ml sterile seawater to dilute any accompanying sperm and minimize/eliminate self-
fertilization. Sperm from Fd was also obtained by sectioning as previously described, but sections were
immediately placed in a small mesh bag (50 µm mesh size) that allowed free passage of the small sperm
(5–6 µm dia.), but retained the larger eggs (70–100 µm dia.). The bags were then placed in a culture dish
previously inoculated with eggs for 2 h. Fertilization success was evaluated after 48 h and confirmed
after one week with the development to embryos. Successes of the various combinations were compared
using ANOVA and Tukey’s post hoc test.
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Figure 2. Relationship between individual MLH and introgression (IFS) for the ‘old’ ((a,b) Kirkenes and Tromsø) and the ‘young’ contact
zones ((c,d) Blushøj and Heimaey). Boxes depict results from the simulation analysis: stippled= pure species; dark grey= F1 hybrids.
Individuals were further classified by the origin of their chloroplasts: open circles= F. distichus, filled circles= F. serratus.

4. Results
4.1. Molecular characterization of the hybrid zones
The number of hybrids did not differ between plots within Tromsø and within Blushøj (data not shown);
hence, data from both plots were subsequently pooled. Differentiation between parental species was
strong with the highest FST estimates in the two younger contact zones (Heimaey 0.69, Blushøj 0.63)
compared to the two locations in the older contact zones (Kirkenes 0.60; Tromsø 0.47) (all p < 0.001).
In all four locations, the parental species showed different levels of genetic diversity with the highest
level of heterozygosity in the dioecious Fs and the lowest in hermaphroditic Fd (table 1). Heterozygote
deficiencies (FIS) were equally high for Fd at all four locations (table 1).

In the oldest contact zones (Kirkenes and Tromsø locations), no F1 hybrids were found and
introgressed individuals accounted for only 2.1% of the 47 individuals and 3.1% of the 192 individuals,
respectively (table 1 and figure 2). By contrast, 8.3% and 3.7% F1 hybrids, and 23.9% and 12.9%
introgressed individuals were found in the youngest contact zones (Heimaey and Blushøj, respectively).
All F1 and almost all hybrids (53 out of 68) were characterized by an Fd chloroplast (figure 2). In both
Tromsø and Blushøj, several individuals with an Fs microsatellite genotype possessed an Fd chloroplast,
but the reverse was never found.

4.2. Fertilization success
Conspecific fertilization successes (both Fd × Fd and Fs × Fs) did not differ significantly among the
three contact zones examined (Kirkenes not tested) (67–49%, p = 0.1199) (figure 3). In the young contact
zones at Heimaey and Blushøj, interspecific fertilization successes involving Fd egg and Fs sperm were
comparable to the conspecific success (38% and 43%, respectively), but the interspecific fertilization
successes involving Fs egg and Fd sperm were significantly lower than the conspecific crosses (24% and
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Figure 3. Fertilization success (the presence of one-week-old embryos) for all combinations of laboratory crosses (sample size= 100).
Black= Tromsø, white= Heimaey, grey= Blushøj, Kirkenes not tested. Means grouped by a horizontal line are not significantly
different from each other (Tukey post hoc, p> 0.05).

10%, respectively, p < 0.001) (figure 3). In sharp contrast, both interspecific crosses showed significantly
(p < 0.001) lower success (less than 1.1%) in the oldest contact zone at Tromsø (Kirkenes not tested).

5. Discussion
Natural selection can drive speciation by ‘reinforcing’ those mechanisms preventing hybridization when
hybrids are maladaptive. As maladaptive hybrids can be viewed as energetically expensive ‘mistakes’,
pre-zygotic mechanisms may evolve to prevent hybridization. These mechanisms range from preventing
mating behaviour (through enhancement of species recognition systems) to preventing gamete
recognition (fertilization). In particular, pheromones and gamete surface receptor polysaccharides have
been reported from a wide variety of eukaryotic species (see [33,35] and references therein) including the
brown algae (fucoserratene in F. vesiculosus and F. serratus) [70]. However, these recognition molecules
have primarily been studied in the context of gamete attraction rather than as possible pre-zygotic
isolation mechanisms.

The pattern of greater pre-zygotic isolation in sympatry relative to allopatry is one of the main
signatures of reinforcement and has been termed reproductive character displacement’ [19,36]. However,
establishing an empirical case for reinforcement remains difficult because isolation is not necessarily
due to a single isolating factor, but a consequence of several pre- and (possibly) post-zygotic
barriers and their interactions. Nevertheless, a number of criteria have been proposed to demonstrate
reinforcement [18,33] including heterospecific mating (gene flow between parental species), presence
of maladaptive hybrids, frequency of hybridization between populations across time, reproductive
character displacement, and the absence of alternative explanations (e.g. ecological divergence via local
selection or temporal isolation).
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The Fd × Fs hybrid zones we examined meet some of the reinforcement criteria. First, hybridization

is occurring or has occurred in all contact zones. Both younger contact zones show a high percentage
of hybrids (13–24%) and several F1 individuals. Despite low contemporary hybridization in the older
contact zone, there is evidence that hybridization has occurred in the past, as ca 3% of the individuals
genotyped in the ‘old’ contact zones carry alleles from the other species (table 1 and figure 2).
Furthermore, one individual with a pure Fs nuclear genotype and a Fd chloroplast DNA was found
in Tromsø, resulting from past introgression.

Second, hybridization between Fs and Fd appears to be maladaptive. the Blushøj F1 hybrids showed
a lower fitness compared with the parental species, with selection coefficients against hybrids ca 80%
[46] and reproductive F1 hybrids showed reduced fertility, mostly owing to lower egg quality (e.g. fewer
and more variably sized eggs per receptacle). Additionally, laboratory crosses with eggs from F1 hybrids
were significantly less successful both in Blushøj [47] and Heimaey where lower egg quality was also
observed (J. A. Coyer and G. Hoarau 2002, unpublished data). Survivorship and fertility of F1 hybrids
were not assessed at Tromsø and Kirkenes as no F1 hybrids were found in the field. In Fucus, as in several
other species, reduction of fertility and potential sterility appear before hybrid inviability [12,71,72].

Third, patterns observed in the Fd × Fs hybrid zones are consistent with the presence of reproductive
character displacement. In contrast to virtually all previous studies of reinforcement, which have
compared populations of plants and animals in regions of sympatry to those in allopatry, we examined
sympatric populations differing in the time of sympatry (100 to 10 000 years), as reinforcement is
expected to result in a reduction of interspecific mating through time ([35] and references therein). Our
molecular data suggest that hybridization has decreased with the time of contact. Although based on
only two locations per age, both of the younger contact zones revealed a high percentage of hybrids
(13–24%) and the presence of F1 individuals. By contrast, hybridization was very low (2–3%) and no
F1 individuals were found in either of the old contact zones in northern Norway (table 1 and figure 2).
Our cross-fertilization experiments further suggested that the reduction in hybridization observed in
Tromsø was the result of increased gametic incompatibilities. Whereas interspecific fertilization success
(Fd egg and Fs sperm) was comparable to conspecific crosses in the younger contact zones, interspecific
fertilization successes decreased to virtually zero in Tromsø (figure 3). While our results cannot provide
conclusive evidence for reinforcement (i.e. increased isolation in sympatry compared with allopatry
using the temporal comparison) because of low replicates, they are consistent with patterns that would
be expected over such a period of time.

In this context, we reviewed a new contact zone in Bergen Harbour, where Fd was introduced to
Fs within the past 10 years, where we expected to see many hybrids. Unexpectedly, a genetic survey
conducted in 2008 found no hybrids (G. Hoarau and J. A. Coyer 2008, unpublished data). At least
three aspects of the Bergen population, however, can temper the contradiction. First, the source of Fd
to Bergen Harbour is unknown and to date, impossible to trace (G. Hoarau and J. A. Coyer 2008,
unpublished data). The source of Fd in Bergen could be northern Norway and subsequently, a population
already displaying strong reinforcement. Second, the phenological overlap in Bergen Harbour is reduced
(K. Sjøtun 2008, personal communication) compared with all other zones of contact, thus limiting the
temporal window for hybridization. This difference in observed phenology at Bergen, in fact, suggests
a northern origin of Fd [73]. Finally, F. distichus is an order of magnitude more abundant than F. serratus
in Bergen Harbour (J. A. Coyer, K. Sjøtun and G. Hoarau 2008, unpublished data), thus further limiting
the likelihood of hybridization (which requires threshold densities of gametes). These results further
highlight the difficulties in definitively proving reinforcement. Nevertheless, we consider the temporal
approach involving contact zones compelling (especially, the older ones).

Ecological divergence caused by strong local selection is also a potentially contributing mechanism,
especially when gamete recognition systems are weak (reviewed in [74], see also [75,76]). Although Fd
and Fs can differ in position on the intertidal shore, with Fd occurring slightly higher on the shore
than Fs, wide areas of intermixing were the rule at all four contact zones and our sampling occurred
within the areas of intermixing (table 1). Furthermore, no pattern of microhabitat utilization was detected
in a detailed spatial analysis of the parental species and F1 hybrids at Blushøj: mature plants were
intermingled and F1 hybrids occurred throughout the intermingled area rather than clustered around
either parental species or themselves [46]. Similar observations were made at Tromsø (J. A. Coyer and
G. Hoarau 2010, unpublished data). Nevertheless, microhabitat differentiation cannot be entirely ruled
out. In addition, no phenological differences were apparent as reproductive seasons of both parental
species overlapped in all zones of sympatry and sexually mature individuals of both species were
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abundant when we sampled (G. Hoarau and J. A. Coyer 2010, personal observation); contrary to the
situation in Bergen.

Changes in the mating system, such as increased/decreased self-fertilization in plants, can be another
mechanism for reproductive character displacement (reviewed in [36]). Selfing may thus promote pre-
zygotic isolation. In the hermaphroditic Fd, high inbreeding coefficients (up to 10× higher than Fs) have
been routinely found in broad surveys (Coyer et al. [59]), whereas in the dioecious Fs, this is seldom the
case (Coyer et al. [47]). However, no evidence for mating system change was observed, as inbreeding
coefficients (FIS) for Fd were not significantly different among the contact zones (table 1) and increased
levels of self-fertilization did not occur. As shown in this study, as well as Coyer et al. [46], hybridization
is asymmetrical with Fd providing the egg most of the time (figure 3). To our knowledge, no model of
hybrid zones has considered a mixed mating system and little more can be said at the present time. What
we do know, however, is that hybrids are almost never formed between Fucus species with the same
mating systems.

We hypothesized that sexual trait(s) accounting for reinforcement in Fucus would most likely occur
at the level of gamete attraction and/or recognition. Gamete recognition proteins/genes in marine
organisms have been investigated mainly in marine invertebrates (mussels, snails and sea urchins)
[76,77]. In these systems, positive selection (as assessed by high sequence divergence and more non-
synonymous than synonymous substitutions) for sperm-egg interaction proteins has been found in
closely related and sympatric species of sea urchins [78,79], but not for species in allopatry [80]. Sympatry
among closely related species also seems to be associated with increased sperm specificity. In sea urchins,
for example, crosses between allopatric species pairs require substantially less sperm for fertilization than
crosses involving sympatric pairs [81]. The sperm binding protein fss27 in Fucus has long been known
and shares a number of chemical properties with sea urchin bindin gamete recognition protein [82–84].
Recognition between eggs and sperm has been hypothesized to be based upon a receptor mechanism
involving ligands (oligosaccharide side-chains of egg surface glycoproteins) and complementary binding
proteins [84]. However, the protein and its ligand remain to be sequenced.

Another important evolutionary mechanism potentially occurring at the level of gamete
attraction/recognition is sexual conflict [85,86]. For example, an overabundance of sperm increases the
risk of polyspermy (multiple sperm entry), which will prevent subsequent development of embryos.
Under these conditions, male and female gametes have different priorities: males for fast entry into
eggs, females for prevention of polyspermy and slow sperm entry. Any mutation that makes it more
difficult to fertilize eggs can concomitantly lower the effective concentration of sperm, thereby allowing
eggs to block polyspermy. Thus, a conflict over fertilization rates arises in which females are selected for
lower egg–sperm affinity, whereas males are selected for higher affinity. This affinity ‘arms race’ could
lead to divergences in the gamete recognition system and thus to reproductive character displacement,
independent from reinforcement [76,87].

Fucus species display a fast and sodium-dependent block to polyspermy [88,89]. Consequently,
polyspermy rates in natural populations are higher in brackish (F. vesiculosus [90]) relative to fully
marine habitats (F. ceranoides [91], F. distichus [92]). Three of the contact zones examined in this study
(Tromsø, Kirkenes and Heimaey) were fully marine and although the Blushøj site could vary between
near fully marine (30 psu) to semi-brackish (20 psu) over a time scale of hours to days, polyspermy in
F. vesiculosus most commonly occurs at less than 6.5 psu [90]. Consequently, polyspermy is unlikely to
drive sexual conflict among Fd and Fs gametes in the contact zones we examined. An additional outcome
of divergence from sexual conflict is lower conspecific fertilization success (reviewed in [36]), which was
not observed in our study. Therefore, the most parsimonious explanation for the pattern we observed in
Fd × Fs hybrid zones is probable reinforcement of pre-zygotic isolation mechanisms.

6. Conclusion
The genus Fucus, with the combination of contemporary radiation (e.g. F. radicans within the past
400–2000 years; [93], secondary contact zones (e.g. Coyer [46]), extensive hybridization (e.g. [46,50]),
and a well-supported phylogenetic [40,42,44] and phylogeographic framework [18,19], e.g. F. serratus
[41], e.g. F. distichus [58], e.g. F. vesiculosus and F. spiralis [43]) provides evolutionary biologists with a
system phylogenetically distant from, but complementary to, plants and animals. While the results of our
study of Fd × Fs hybrid zones do not prove reinforcement, they are consistent with reinforcement of pre-
zygotic isolation as shown by the decreasing rates of hybridization and interspecific fertilization success
with increasing time of sympatry. Evidence for reinforcement will be most compelling when observed



10

rsos.royalsocietypublishing.org
R.Soc.opensci.2:140538

................................................
in species pairs with a well-corroborated historical biogeographical framework, as it the case in Fucus
(e.g. [21]).
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