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Heart is the powerhouse of circulatory system. The present thesis focuses 
on the Atlantic salmon heart and related diseases. Viral fish diseases are a 
serious challenge to Atlantic salmon aquaculture in Norway and increasing 
numbers of heart malformations have been reported in Atlantic salmon.
The investigated cardiac diseases included cardiomyopathy syndrome 
(CMS), pancreas disease (PD) and recently identified heart and skeletal 
muscle inflammation (HSMI). In spite of this importance, little was known 
about the Atlantic salmon heart anatomy (pacemaker cells), biomarkers and 
heart responses to these diseases. The heart beat initiates in autonomous 
pacemaker cells and propagate impulses to other parts of the heart. This 
thesis identified and characterized the pacemaker tissue located at the 
junction of sinus venosus and atrium in Atlantic salmon. Except PD, the 
other two diseases are diagnosed with increased mortality levels at farms 
and cause huge economical losses to farmers. There was a need for better 
tools to diagnose sick fish before sudden death. Present work identified 
the potential biomarkers to predict these cardiac diseases by blood tests 
non-lethally (without killing) as compared to conventional fish slaughter 
method (histopathology). Additionally, immunopathological responses 
were identified and provided a supplementary tool to predict these above 
mentioned cardiac diseases. It is noteworthy these apparently similar 
cardiac diseases exhibit differences in the immunopathological responses 
in the Atlantic salmon heart.
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Abstract 

 The heart is considered the powerhouse of the cardiovascular system. In 

this thesis, characterization of cardiac pacemaker and potential biomarkers of 

cardiac diseases of Atlantic salmon (Salmo salar L.) were discussed. The normal 

performance of the heart requires balance, whether for coronary circulation, 

the synchrony and effectiveness of myocardial contractions or the influence of 

its nerves and ganglion cells. Neural control is equally important for the power 

and complexity of the heart. The pacemaker is the cardiac neural tissue that is 

responsible for initiation and control of heart beat.  

 This thesis described the location of cardiac pacemaker of Atlantic 

salmon at the junction of sinus venosus and atrium. Morphologically, the 

pacemaker tissue was composed of lightly stained plexiform modified 

cardiomyocytes, wavy appearing nerve bundles with oval, wavy, elongated 

nuclei with pointed ends and large round to pear–shaped postganglionic nerve 

cell bodies (ganglion cells). Novel immuno–localization of the natriuretic 

peptides such as salmon cardiac peptide (sCP) and ventricular natriuretic 

peptide (VNP) in the postganglionic nerve cell bodies at SA junction was 

demonstrated, suggesting their neuromodulatory/neurotransmitter roles in 

teleosts (Atlantic salmon). Besides CD3 as a general T cell marker, novel CD3 

immunostaining in the postganglionic nerve cell bodies of cardiac pacemaker of 

Atlantic salmon was demonstrated, suggesting additional roles of CD3 in 

teleosts and shared similar patterns to mammals. 

 Atlantic salmon aquaculture industry bears huge losses due to viral 

diseases including cardiac viral diseases. Heart and skeletal muscle inflammation 

(HSMI), cardiomyopathy syndrome (CMS) and pancreas disease (PD) are viral 

diseases of marine farmed Atlantic salmon which mainly affect the heart in 

addition to other vital organs. The main findings of these diseases are necrosis 
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and mononuclear inflammatory cells infiltrates affecting different regions of the 

heart. To identify the potential biomarkers of cardiac diseases, blood 

biochemistry markers were correlated to the CMS– and HSMI–affected Atlantic 

salmon. Candidate biomarkers included serum enzymes such as creatine kinase 

(CK) and lactate dehydrogenase (LDH) levels were measured and significantly 

correlated to the cardiac pathology of HSMI–affected fish, suggesting promising 

potential biomarkers to predict the disease (HSMI). Non–significant correlations 

of serum enzymes to CMS–affected fish suggested that serum enzymes could be 

used to differentiate between the HSMI and CMS. 

 Further, immunohistochemistry was performed to identify potential 

markers of cardiac pathological changes of Atlantic salmon affected with similar 

cardiac diseases (CMS, HSMI and PD). The spectrum of inflammatory cells 

associated with the cardiac pathology consisted of mainly CD3Ɛ+ T lymphocytes 

and lymphocytic response dominated over granulocytes in the CMS–, PD– and 

HSMI–affected hearts. Macrophage–like and eosinophilic granular cells were 

identified by rTNFα antiserum in all three investigated diseased hearts, 

particularly in areas surrounding lesions. MHC class II antiserum identified 

strong, moderate and low levels of immunopositive cells in diseased hearts in 

HSMI, CMS and PD respectively. MHC class II immuno–reactivity was mostly 

confined to inflammatory foci and identified lymphocyte– and dendritic–like 

cells. Tissue hypoxia was indicated by moderate levels of HIF1α 

immunoexpression in PD–affected hearts. Increased presence of apoptotic cells 

in the hearts; particularly in CMS– and PD–affected fish was identified. Coupled 

with the increased presence of PCNA+, HIF1α+ and apoptotic cells (identified by 

caspase 3 and TUNEL), these data suggested a high cell turn over where an 

induction of cell and tissue damage/repair occurred in diseased hearts. The CD3, 

MHC class II, PCNA, TNFα, caspase 3 and TUNEL staining were mostly confined 

to lesioned areas in the diseased hearts, pointing to pathological changes and 
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suggesting the markers appear promising as a supplementary tool in the 

identification of lesioned areas in the investigated diseased hearts. Interestingly, 

the apparently similar diseases exhibited differences in the immunopathological 

responses in Atlantic salmon. 
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1. Introduction 

 The heart is considered the powerhouse of the cardiovascular system. 

Several cardiac abnormalities have been reported in farmed Atlantic salmon in 

recent years (Poppe and Ferguson, 2006). In Norway, the occurrence of viral 

cardiac diseases has been increased in farmed Atlantic salmon during last two 

decades (Bornø et al., 2011; Marta et al., 2012). Viral diseases are a serious 

threat to aquaculture industry and the specific viral cardiac diseases of farmed 

Atlantic salmon include cardiomyopathy syndrome (CMS), pancreas disease (PD) 

and recently identified heart and skeletal muscle inflammation (HSMI) (Poppe 

and Ferguson, 2006; Silva et al., 2008). Despite many problems in piscine 

pathology, there has been an increasing focus on heart conditions, and it still 

lacks the important information regarding the heart anatomy (cardiac 

conduction system) and immunopathological responses (Poppe and Ferguson, 

2006; Kongtorp et al., 2006; Solc, 2007). A better understanding of cardiac 

conduction system and cardiac pathological responses are required to study the 

disease pathophysiology and devise the efficient protection/vaccine strategies 

in farmed Atlantic salmon. In the next sections, the available information on 

Atlantic salmon heart, cardiac conduction system, blood biochemistry 

biomarkers, natriuretic peptides, immune system and programmed cell death 

are summarized following the cardiac diseases, with emphasis on viral cardiac 

diseases of Atlantic salmon. 

 

1.1 Heart 

 The fish heart is comparatively smaller than that of vertebrates, 

comprising of 0.1% of the body mass in most species. Active swimming fish 

(salmonid) tend to have bigger hearts than more sedentary fish species 

(Vornanen et al., 2002). The S–shaped Atlantic salmon (Salmo salar L.) heart is 
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located within a pericardial cavity and consists of four serially arranged 

chambers including: (1) the sinus venosus, (2) the atrium, (3) the ventricle and 

(4) the bulbus arteriosus (Fig. 1) (Randall, 1968; Poppe and Ferguson, 2006). The 

teleost heart is considered a venous heart since it only pumps venous blood. 

The fish comprises a single circulatory system which ensures unidirectional 

blood flow (Farrell and Pieperhoff, 2011).  

 The sinus venosus is predominantly composed of connective tissue, and 

collects and stores venous blood (collecting chamber). The sinus venosus is a 

thin walled chamber with a similar volume to the atrium. 

   

Figure 1. Schematic representation of Atlantic salmon heart. SA: sino–atrial valve, AV: 
atrio–ventricular valve, BV: Bulbo–ventricular valve, star: SA node (pacemaker area). 

 

The functional role of sinus venosus is related to the initiation and control of 

heart beat, and serves as a site for the cardiac pacemaker tissue in many fishes 

(Farrell and Jones, 1992; Olson and Farrell, 2006; Poppe and Ferguson, 2006). 

The sinus venosus receives de–oxygenated venous blood from the paired 

Cuverian ducts, hepatic veins and anterior jugular veins and transfers blood into 

the next compartment termed the atrium. The one–way ostial valve between 

atrium and sinus venosus is called as the sino–atrial (SA) valve and is composed 

of connective tissue with sparse and variable arrangement of bundles of cardiac 

muscle (Farrell and Pieperhoff, 2011). The atrium is filled with blood through 
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two mechanisms such as vis–a– fronte (force from in front) by aspirating effect 

of ventricular contraction and vis–a–tergo (force from behind) by the remaining 

energy of venous circulation and/or contraction of the sinus venosus (Poppe and 

Ferguson, 2006; Icardo, 2006). The atrium is a thin–walled muscular chamber of 

trabecular myocardium with an irregular sac–like shape which increases the 

blood capacity of atrium (Fig. 2). The atrium forms a connection between the 

sinus venosus and the ventricle by the sino–atrial (SA) and atrio–ventricular (AV) 

valves and through AV valve blood enters into the ventricle (Farrell and Jones, 

1992). The salmonid ventricle has a highly variable morphology directly linked to 

the specific functional needs of the fish.  

         

 

Figure 2. Micrographs showing the ventricle (left) and atrium (right) of Atlantic salmon 
(H&E stained). Ventricle consists of outer non–trabecular and inner trabecular 
(spongy) layer while atrium consists of trabecular myocardium. 

 

 The Atlantic salmon ventricle is primarily a triangular pyramid in shape 

due to its active life style with the apex pointing caudo–ventrally in contrast to 

more sac–like or tubular hearts of other fish groups (Poppe et al., 2003, Farrell 

and Jones, 1992). The relatively thick–walled, pyramidally shaped ventricle 

suggests distinct advantages in the blood pressure development with the 

pyramidal shape providing the most efficient shape for maximal contraction 
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force per unit mass and volume (Farrell and Jones, 1992; Olsen, 1998). The 

salmonid ventricle is composed of an inner trabecular myocardium (spongy 

layer as in the atrium) and an outer non–trabecular (compact) myocardium (Fig. 

2). The outer compact layer is present in the hearts of teleost and elasmobranch 

fishes (Farrell et al., 2010). The outer non–trabecular muscle tissue is organized 

in a two–layered concentric pattern lying perpendicularly to each other. The 

thickness of compact layer is usually increased with the age (5% in young to 25% 

in adult) but also dependant on other factors including life stage, smoltification, 

sex and physiological demands and health status (Powell et al., 2002). The inner 

trabecular layer is more loosely arranged to form a sponge–like network (Farrell 

and Jones, 1992; Poppe and Ferguson, 2006). Recently Pieperhoff et al. (2009) 

suggested desomosome–like (D) and fascia adhaerens–like (FA) adhering 

junctions between the inner spongy and outer compact myocardium instead of 

previous understanding of connective tissue layer between spongy and compact 

layer in teleost heart. The non–trabecular layer is supplied with coronary 

circulation (oxygenated blood) branching off from hypobranchial artery while 

trabecular layer relies on the luminal venous blood for oxygen supply (Poppe 

and Ferguson, 2006; Roberts and Ellis, 2001).  

Blood enters from the ventricle to the white colored, thick walled, 

fibroelastic cylindrical pear–, or onion–shaped compartment termed the bulbus 

arteriosus. In teleosts, this structure provides a passive dampening effect of the 

peak pulse force through the windkessel effect (Poppe and Taksdal, 2000; 

Farrell and Jones, 1992) as compared to the equivalent structure in 

elasmobranchs where the conus arteriosus is contractile in nature (Satchell, 

1971; Satchell and Jones, 1967). The semilunar valves between the bulbus 

arteriosus and the ventricle prevent the backward flow of blood. The functions 

of the bulbus arteriosus include regulation of blood pressure and depulsator 

(blood flow to the ventral aorta) by gradual contraction/slow elastic recoil 
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(Roberts and Ellis, 2001). The bulbus arteriosus is connected to the ventral aorta 

which lies outside of the pericardial cavity and takes blood to the gills (Farrell 

and Pieperhoff, 2011).  

The above mentioned heart chambers are composed of three layers such 

as (1) pericardium, (2) myocardium (middle) and (3) endocardium (inner) which 

are discussed as below.  

 The heart is enclosed in a membranous sac that separates it from rest of 

the body, termed the pericardium. The pericardium is composed of a layer of 

mesothelial (epithelial–like) cells, connective and fat tissue. The inner part of 

the pericardium is called the epicardium that covers the entire surface of heart 

and is often attached to cardiac chambers. A small amount of pericardial serous 

fluid bathes the heart and reduces the friction between pericardium and the 

heart during each heart beat (Farrell and Pieperhoff, 2011; Poppe and Ferguson, 

2006; Roberts and Ellis, 2001).  

 The endocardium comprises a monolayer of endothelial cells and loose 

connective tissue that covers all of the internal surfaces of the myocardium and 

is in direct contact with the luminal blood. The endothelial monolayer 

particularly, in the atrium is phagocytic in some fishes such as Atlantic cod 

(Gadus morhua), platy (Xiphophorus maculatus), plaice (Pleuronectes platessa) 

and firemouth cichild (Thorichthys meeki), and capable of removing biological 

macromolecules and waste products (Leknes, 2002, 2011; Seternes et al., 2001, 

2007). The endothelium may serve as scavenger cells and is considered a part of 

immune system in these fishes but other fishes (salmonid) do not have these 

properties, although scavenger cells have been identified in the head kidney of 

Atlantic salmon (Froystad et al., 1998; Press and Evensen, 1999).  

 The myocardium is the thickest and most obvious layer, comprising of 

cardiac muscle (myocytes). The cardiac muscle (myocardium) is sandwiched 
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between endocardial and epicardial tissue (Farrell and Pieperhoff, 2011). 

Trabecular and non–trabecular layers consist of specialized spindle–shaped 

(long and narrow) cardiomyocytes which are comparatively smaller in diameter 

in fish (1–12.5 µm) as compared to mammals (10–25 µm) (Farrell and Jones, 

1992). The non–trabecular cardiac myocytes are smaller in diameter than 

trabecular myocytes, providing the shorter diffusion distance from outside to 

the center of the cell and a high ratio of sarcolemmal area to intracellular 

volume (Farrell and Jones, 1992). The cross striated cardiac myocytes consist of 

mostly one centrally located nucleus, numerous mitochondria, variable amount 

of intracellular myoglobin and no T–tubules (Poppe and Ferguson 2006; Farrell 

and Pieperhoff, 2011). Fish cardiomyocytes are capable of regeneration and 

grow by hypertrophy (increase in cell size) as well as hyperplasia (increase in cell 

number) as compared to post–embryonic mammals where cardiomyocytes 

mostly grow by hypertrophy (Becker et al., 2011; Borchardt and Braun, 2007; 

Kikuchi et al., 2010; Major and Poss, 2007; Mommsen, 2001; Poss, 2007; Sun et 

al., 2009; Vornanen et al., 2002; Poppe and Ferguson, 2006; Soonpaa and Field, 

1998). 

 

1.2 Clinical biochemistry markers of cardiac function 

 Compared with other areas of veterinary medicine, fish blood 

biochemistry is not common place due to the lack of reference values 

(physiological and pathological) and in turn there is a very little understanding 

of disease pathogenesis and pathophysiology (Powell, 2006; Lie and Waagbo, 

1988; Chen et al., 2004). However, Lie and Wagboo (1988) and Powell (2006) 

described the normal blood biochemistry ranges for few important components 

for Atlantic salmon. Additionally, blood biochemical profile for other fishes such 

as red lionfish (Pterois volitans), great sturgeon (Huso huso), cultured sturgeon 
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hybrids (Acipenser naccarii female X Acipenser baerii male), black scorpion fish 

(Scorpaena porcus Linneaus, 1758) and Nile tilapia (Oreochromis niloticus) have 

been identified (Almeida et al., 2002; Ishikawa et al., 2007; Celik, 2004; Marco et 

al., 2011; Rajabipour et al.,, 2009; Anderson et al., 2010). Few studies have been 

investigated the relationship between blood biochemistry and cardiac diseases 

of Atlantic salmon (Rodger et al., 1991; Ferguson et al., 1986). In addition, fish 

heart failures are different from mammals due to the fact that teleost 

cardiomyocytes can metabolize lactate and local ischemic lesions are rarely 

identified (Powell, 2006). The creatine kinase (CK) and lactate dehydrogenase 

(LDH) are biochemical enzymes which catalyze anaerobic or aerobic metabolic 

reactions in cells, and are well established biomarkers of cardiac disease in 

humans (Apple et al., 2001; Walker, 2006) and are often used in conjunction 

with other hormonal biomarkers for myocardial dysfunction diagnosis (Walker, 

2006). Both CK and LDH enzymes are released upon cellular degeneration such 

as necrosis. Lactate dehydrogenase (LDH) is involved in the interconversion of 

pyruvate and L–lactate during the final reactions of glycolysis and is present in 

the cytoplasm of all cells (nucleated and non–nucleated cells) (Kemp et al., 

2004). Creatine kinase (CK), on the other hand, is predominantly found in the 

myocyte cytoplasm and in close association with sarcoplasmic reticulum, 

mitochondria and myofibrils with a half life of about 12 h in humans (Walker, 

2006). The creatine kinase levels in blood plasma rise from 4–6 h peaking at 12–

36 h and sustained over 3–4 days in humans where cardiac injury has occurred 

(Kemp et al., 2004). However, raised LDH plasma values are observed from 8–12 

h, peaking within 2–3 days and levels are sustained for duration of 7–10 days 

following cardiac injury (Kemp et al., 2004). In mammals, CK concentrations 

have been related to the irreversible injury such as myocardial necrosis 

(Ishikawa et al., 1997). Several piscine studies have been suggested the clinical 

relevance of blood biochemistry particularly enzymes including CK and LDH 
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(Congleton and Wagner, 2006; Firat et al., 2011; Rajabipour et al., 2009; 

Anderson et al., 2010, Powell, 2006). The elevated CK levels have been reported 

in association with myocytic necrosis seen in pancreas disease (PD) in Atlantic 

salmon (Rodger et al., 1991; Ferguson et al., 1986) and these results suggested 

the clinical importance of CK and LDH in cardiac diseases of Atlantic salmon. 

 

1.3 Cardiac conduction system in teleosts 

 Teleosts such as Atlantic salmon lack a well–formed cardiac conduction 

system as compared to homeothermic vertebrates. The well–formed cardiac 

conduction system has been suggested to have evolved later in the 

homeothermic animals (Solc, 2007). The homeotherm cardiac conduction 

system is a series of specialized tissues in the heart, consists of three main parts, 

the sino–atrial node (SA node or 'pacemaker') which generates the pacemaker 

impulse; the atrio–ventricular node (AV node) which separates the atrial and 

ventricular contractions by delaying the impulse and allows the atrium to 

contract first and then the ventricle to ensure blood flow; and the His–Purkinje 

system (absent in fish) which rapidly conduct the action potential to the 

ventricle (Boyett, 2009; Mikawa and Hurtado, 2007). The subendocardial 

ventricular trabaculae are suggested to serve as functional equivalent of the 

His–Purkinje system in fish (Sedmera et al., 2003). The cardiac conduction 

system is responsible for the initiation and co–ordination of the heart beat 

(Boyett, 2009). The action–potential starts in the autonomous pacemaker cells 

at sino–atrial (SA) junction and propagates impulses to other parts of the heart. 

The action potential may define as the contraction of each cardiomyocyte by an 

electric excitation of the cell membrane in the form of a small voltage change 

(~0.1 V) (Vornanen, 2011). It is suggested that every muscle in the SA area has 

at least one nerve profile (contact) that confirms the functional role of SA area 
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as the initiation and controlling of the heart beat (Yamauchi and Burnstock, 

1968). Teleost pacemaker is composed of intracardiac postganglionic nerve cell 

bodies (ganglion cells), specialized or spindle shaped cardiomyocytes and a 

network of nerve fibers (Laurent et al., 1983; Farrell and Jones, 1992; Vornanen 

et al., 2002; Boyett, 2009; Zaccone et al., 2011). Electrophysiological studies 

have identified the specific conduction system–like cells mainly at the junction 

of the SA area, but also have been reported at the atrio–ventricular (AV) funnel 

and atrio–ventricular (AV) junction (Saito, 1969; Sedmera et al., 2003; Zaccone 

et al., 2011).  

 However, the pacemaker tissue has been identified at the junction of the 

atrium and the sinus venosus in several fish species including rainbow trout 

(Oncorhynchus mykiss), cod (Gadus morhua), eel (Anguilla japonica), plaice 

(Pleuronectes platessa L), bream (Ictalurus nebulosus) and Pacific hagfish 

(Eptatretus stouti) histologically (Yamauchi and Burnstock, 1968; Saito, 1969; 

Santer, 1972; Laurent et al., 1983; Lukyanov and Sukhova, 1983; Poppe and 

Ferguson, 2006; Solc, 2007). Teleost pacemaker has been described as a ring of 

specialized cardiac tissue (nodal tissue) at the sino–atrial (SA) junction. A 

connective tissue sheet surrounds and infiltrates the nodal tissue to divide it 

into semicircular smaller areas. The nerves were identified at the periphery and 

in the nodal tissue at the sino–atrial (SA) junction. The pacemaker tissue has 

only been identified in histological sections from time to time and one of the 

reasons was due to its smaller size (Haverinen and Vornanen, 2007), therefore 

being less obvious in many histological sections of the heart. The pacemaker 

tissue appears lightly stained by haematoxylin and eosin (H&E) staining with 

wider muscle fibers and larger nuclei clearly separated by loose connective 

tissue from the rest of the myocardial cells (Yamauchi and Burnstock, 1968; 

Sedmera et al., 2003; Haverinen and Vornanen, 2007; Solc, 2007).  
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1.4 The heart as an endocrine organ: Natriuretic peptides 

 Earlier, it was believed that the heart is a fully differentiated organ which 

serves only as pump and plays a crucial role in the provision of the circulatory 

flow of the blood (Takei, 2000). However, de Bold et al. (1981) demonstrated 

that rat atrial extracts can induce diuresis/natriuresis and hypotension in rats 

which led to the conclusion of endocrine functions of the heart. The endocrine 

functions of the heart are mainly served by natriuretic peptides (NPs), a group 

of hormones synthesized and secreted mainly by the cardiac myocytes. 

However, the chromaffin cells secreting catecholamines have also been 

identified in the hearts of hagfish (Myxine sp. and Eptaptreus sp.) and lampreys 

(Petromyzon sp. and Lampetra sp.) as compared to teleosts where chromaffin 

cells are located within the walls of the posterior cardinal vein (PCV) and in close 

association with the lymphoid tissue of the kidney. The catecholamines 

produced by the fish chromaffin cells include adrenaline and noradrenaline 

(Reid et al., 1998; Perry and Capaldo, 2011). Natriuretic peptides are 

characterized by 17 amino acid conserved ring structure with N–terminal and C–

terminal extensions where later terminal can typically distinguish individual NPs 

(Fig. 3) (Johnson and Olson, 2008; Inoue et al., 2005). The teleosts NP family 

members include: (1) atrial NP (ANP), (2) B–type NP (BNP), (3) C–type NP (CNP 

1, 2, 3 and 4) and (4) ventricular NP (VNP) (Fig. 3) (Inoue et al., 2005, Takei, 

2000; Takei et al., 1994). Salmon cardiac peptide (sCP), which is structurally and 

functionally similar to mammalian atrial natriuretic peptide (ANP), has been 

identified in the atrium and ventricle of Atlantic salmon (Tervonen et al., 1998; 

Arjamaa et al., 2000; Vierimaa et al., 2006). VNP is a unique peptide with a long 

C–terminal and has been identified so far in the hearts of eel, sturgeon and 

rainbow trout whereas the VNP gene sequence is highly conserved in these 

three fish species (Takei, 2000; Inoue et al., 2005).  
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 Natriuretic peptides mediate their biological functions with the help of 

four natriuretic peptide receptors (NPR). Two receptors such as NPR–A and 

NPR–B contain membrane–bound guanylyl cyclase (GCs) domains and 

collectively termed NPR–GC receptors (Toop and Donald, 2004; Takei, 2000). 

The first NPR–A is suggested as ANP (sCP in Atlantic salmon) and BNP receptor 

while the NPR–B has a high specificity for CNP. 

    

Figure 3. The schematic diagrams showing the basic structure of all piscine members of 
natriuretic peptides. The 17–amino acid ring structure is conserved among all 
members. VNP is only identified in teleost fishes. 

 

 However, NPR–C and NPR–D lack GC domains and NPR–C has equal 

affinity to all four NPs which qualifies it as a clearance receptor whereas the 

NPR–D is a homodimer, structurally similar to the NPR–C and only found in 

fishes (Toop and Donald, 2004; Loretz and Pollina, 2000; Takei, 2000). VNP has 

vasoactive and renal effects owing to its high affinity to both NPR–A and NPR–B 

receptors (Katafuchi et al., 1994; Takei, 2000). Natriuretic peptides play 

important cardioprotective, endocrine and fluid homeostatic roles (Nishikimi et 

al., 2006). Atrial natriuretic peptide (ANP) is mainly released by atrial stretch 

and acts on several organs including the brain, heart, gills, intestine, kidney and 

interrenal tissue to perform different functions (Fig. 4) (Loretz and Pollina, 2000; 

Toop and Donald, 2004; Johnson and Olson, 2008; Takei, 2000). Recently, 
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Johnson and Olson (2009) suggested cardioprotective role of natriuretic 

peptides in salmonid (rainbow trout). 

 

 

Figure 4. Schematic representation of natriuretic peptides functions in different body 
systems. 

 

 Several piscine studies have suggested the additional neuromodulatory 

and/or neurotransmitter roles of NPs in addition to 

cardioprotective/osmoregulatory functions (Donald and Evans, 1992; Donald et 

al., 1992; Vallarino et al., 1996; Tsukada et al., 2007). Besides cardiomyocytes, 

natriuretic peptides (ANP) have been identified from the mammalian cardiac 

conduction system in addition to cardiomyocytes (Hansson, 2002). The ANP has 

been identified in the intracardial ganglion cells and nerve fiber varicosities in 

the bovine conduction system (Hansson and Forsgren, 1993, 1995). These 

findings were further demonstrated in human, cow, sheep, pig and rat (Hansson 

et al., 1997, 1998). Mammalian nerve fiber varicosities have been reported to 

contain ANP as demonstrated by immunohistochemistry in the proximity of 

conduction cells of the AV node and the AV bundle and occasionally in the SA 
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node, bundle branches, septomarginal trabaculae and false tendons (Hansson 

and Forsgren, 1993, 1994; Hansson et al., 1998). The mammalian studies have 

been suggested ANP to act in an autocrine/paracrine fashion on closely found 

conduction cells to influence the pacemaker velocity (Hansson et al., 1998; 

Hansson, 2002). ANP has been suggested to be synthesized in the mammalian 

cardiac conduction system and increased ANP expression has been associated 

with heart diseases or cardiac sympathectomy in humans (Mochizuki et al., 

1991; Hansson et al., 1998). 

  Elevated plasma levels of NPs in humans are associated with the cardiac 

diseases which gives yet another role to NPs to serve as biomarkers to predict 

heart disease (Braunwald, 2008; Minamino et al., 2006). ANP and BNP levels 

have been used as biomarkers in pathological conditions such as heart failure, 

acute myocardial infarction (AMI), hypertension, left–ventricular hypertrophy, 

coronary artery disease, pulmonary hypertension and renal failure (Minamino 

et al., 2006). Commercial assays are available to measure ANP and BNP in blood 

plasma and recombinant BNP (nesiritide) is used to treat heart failure (Woodard 

and Rosado, 2007). 

 

2.1 Immune system 

 The primary goal of the immune system is to recognize self from non–self 

and is an inherited prerequisite for the survival of living organisms (Belosevic et 

al., 2009). The immune system mainly serves to remove invading 

microorganisms that may cause damage (disease) to the body by the 

interactions of cells and soluble molecules. In addition, the immune system is 

involved in the eradication of body’s own stressed and damaged cells and 

protects against tumours (Davies, 2008; Workenhe et al., 2010). It also helps in 
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maintaining homeostasis during growth and development of the body and 

following inflammatory reaction or tissue damage (Magnadottir, 2010).  

Generally, the immune system is categorized as innate (non–specific) 

immune system and adaptive or acquired (specific) immune system. Both innate 

and adaptive systems are mutually dependent on each other and work 

together. Teleost fishes are the earliest vertebrate class which possess both 

innate and adaptive immune responses (possession of lymphocytes, major 

histocompatibility complex (MHC) molecules, immunoglobulin (Ig) and T cell 

receptor (TCR)) and serve as the evolutionary bridge between the mammals and 

invertebrates (Flajnik, 1996; Whyte, 2007). Atlantic salmon, as with other 

teleosts, exhibit both innate and adaptive immune responses (Koppang et al., 

2007; Nam et al., 2003; Liu et al., 2008; Moore et al., 2005). As compared to 

mammals, teleosts lack important lymphoid organs such as lymph nodes, bone 

marrow and Peyer's patches. However, the anterior or head kidney serves as 

the major lymphoid organ in teleosts in addition to the thymus, spleen, 

mucosa/gut–associated lymphoid tissues, and novel intrabranchial lymphoid 

tissue in salmonid (Fletcher and Secombes, 2010; Koppang et al., 2007, 2010; 

Press and Evensen, 1999). 

 

2.1.1 Innate immune system 

 It is well established that the innate immune response is the first line of 

defence present in all multicellular animals against pathogens/foreign materials 

until the adaptive immune response is potent and able to take over (Watts et 

al., 2001; Whyte, 2007). The non–specific immune response gives versatility and 

is particularly important for fishes due to its temperature independence and 

slow nature of teleost specific immune response (Watts et al., 2001). Innate 

immunity does not require prior exposure of the particular pathogen and is 
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served by a variety of germline–encoded, pattern recognition proteins or 

receptors (PRP/R). The PRP/R recognize and bind conserved pathogen 

associated molecular patterns (PAMPs) such as bacterial lipopolysacharides 

(LPS), peptidoglycans, fungal β 1,3–glucan, mannen–binding lectin (MBL), c–

reactive protein (CRP), mannose receptor and double stranded viral RNA and 

bacterial DNA (Magnadottir, 2006, 2010; Whyte, 2007). The piscine innate 

immune system detects and reacts quickly against a broad spectrum of 

pathogens. Toll–like receptors (TLRs) are the transmembrane conserved 

proteins and important PRPs, and recognize PAMPs from fungi, protozoa, 

bacteria and viruses, and form an innate immune response. The TLRs have been 

identified in several fish species (Hynes et al., 2011; Magnadottir, 2010).  

Innate immunity may be categorized into three main components such as 

the physical barriers, the humoral parameters and the cellular components. The 

physical barriers of fish include mucosal and epithelial surfaces of the gills, 

alimentary tract and skin with the mucous layer covering the scales which are in 

direct contact with potentially harmful agents. Antimicrobial peptides, 

complement factors, lysozome, interferon, c–reactive protein, lectin 

(haemagglutinin), haemolysin, transferrin and immunoglobulins have been 

identified from the fish skin mucus which serve as the chemical barriers of the 

fish. Upon activation of the immune system, both humoral and cellular 

components are expressed or up–regulated but without memory (Magnadottir, 

2006, 2010; Saurabh and Sahoo, 2008). 

The humoral parameters comprise special proteins such as complement 

system and are well developed in fishes. It triggers inflammatory or cytokine 

response that controls the cellular components (Dixon and Stet, 2001; 

Magnadottir, 2010). The humoral parameters are expressed either as cell 

receptors or soluble molecules in the plasma and other body fluids 
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(Magnadottir, 2010). The humoral components include the well–developed 

complement system in fishes which consists of the alternative, lectin and 

classical pathways. All three pathways combine to form the lytic pathway that is 

well–developed in teleosts and leads to the opsonisation or directly killing of 

pathogens. All three pathways generate factor C3 which is the central 

component of the complement system and has been identified in teleosts 

(Nakao et al., 2003; Boshra et al., 2006). The activation of C3 results in enhanced 

phagocytosis through opsonisation, immune cells recruitment and promotion of 

inflammatory response, stimulation of B cell proliferation and activation of 

membrane attack complex (MAC) (Whyte, 2007). The initial response of the 

innate immune system includes the actions of neutrophils, macrophages, mast 

cells, dendritic cells, and natural killer cells. These cells are stimulated by PAMPs 

linking through receptors or pathogen uptake and in turn participate in the 

eradication of the pathogens and transmit signals that amplify adaptive immune 

system (Eltzschig and Carmeliet, 2011; Magnadottir, 2010). 

The cellular innate immunity of fish primarily comprises phagocytic cells 

such as granulocytes (probably neutrophils in fish), monocytes/macrophages, 

and non–specific cytotoxic such as natural killer cells (tumour attacking non–

specific cells in fish) which act on virus infected cells. The increased 

phagocytosis and neutralization of invading microorganisms are the result of the 

opsonisation of pathogens. The uptake of pathogens or linking with PAMPs 

through receptors initiates respiratory or oxidative burst activity (Magnadottir, 

2010; Whyte, 2007).  

 Cytokines consist of the special proteins secreted by the immune cells 

and are key regulators of the immune system (Tizard, 2004, Secombes et al., 

2009). TNFα, as part of innate immune response is the first cytokine released in 

response to different stimuli including bacteria, virus, parasitic infections, 
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trauma, and ischemia/reperfusion (I/R). TNFα is released from macrophages, 

lymphoid cells, mast cells, endothelial cells, fibroblasts and this leads to the 

downstream expression of chemokines (Kelinbongard et al., 2011; Secombes et 

al., 2009).  

 

2.2.2 Adaptive immune system 

 Adaptive immunity may define as the specific host resistance to each 

individual pathogen or microbial agent with the ability of memory to a prior 

pathogen exposure that results in an increased response upon repeated 

exposure (Stevens, 2010). The specific response is achieved by highly specific 

receptors, either cell–bound (T or few B lymphocytes) or secreted (antibody 

production by B lymphocytes) for certain regions (epitopes) of the pathogens 

(Burmester and Pezzutto, 2003). The antigen must be processed inside the cells 

and the antigen fragments bound to these specific antigen presenting receptors 

termed the major histocompatibility complex (MHC) molecules (Tizard, 2004). 

As in mammals, adaptive immunity comprises B and T lymphocytes and antigen 

presenting cells (macrophages and dendritic cells) in teleosts (Ganassin and 

Bolc, 1996). Adaptive or acquired immunity composes of the recognition of cell 

surface MHC–peptide complex by T lymphocytes. This system helps to protect 

the host from infections and represented mainly by helper T (Th) and cytotoxic T 

(Tc) lymphocytes defined by the expression of specific CD4 and CD8 markers 

respectively. The term CD stands for 'cluster of differentiation' and it is referred 

to define cell–surface molecules on leucocytes that are recognized by a given 

set of monoclonal antibodies. There are several CDs identified with each given a 

number (for example: CD3, CD4, CD8 etc.) and each CD may involve in one or 

more functions (Janeway et al., 2001). These molecules serve as co–receptors 

and interact specifically with either major histocompatibility class II or I to 
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determine the discrete stage of T cell development within the thymus. Cytotoxic 

T lymphocytes bind to MHC class I that presents endogenous antigen via the T 

cell receptor (TCR) and the CD8 co–receptor, and kills infected cells. MHC 

molecules interact with either CD4/TCR/CD3 or CD8/TCR/CD3 complexes on 

antigen presenting cells where CD3 serves as an important trigger of T cell 

activation (Fig. 5) (Wang et al., 2009; Sun et al., 1995; Salter et al., 1989).  

   

Figure 5. Schematic diagram of TCR–MHC class I–CD8 (left) and TCR–MHC class II–CD4 

complex (right). TCR: t cell receptor. 

 

The presence of both cytotoxic and helper T cells in teleosts have been 

suggested by functional studies and supported by the expression of T cell 

receptors (TCR), CD8 and CD4 genes in teleosts. The TCR exhibits either α/β or 

γ/δ isotypes in jawed fishes non–covalently bound to CD3 molecules (Koppang 

et al., 2007; Nam et al., 2003). CD3 molecules play an important role in signal 

transduction in the TCR complex and are considered general marker for T 

lymphocytes (Wang et al., 2009; Koppang et al., 2010). Recently three subunits; 

CD3ζ, CD3γδ (forerunner of CD3γ and CD3δ in mammals) and CD3ε were cloned 
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and sequenced in Atlantic salmon (Liu et al., 2008). Besides its role as a T cell 

marker, the CD3 antigen has also been identified in gastric parietal cells, renal 

tubular epithelial cells and cerebellar Purkinje cells in several species including 

humans (Garson et al., 1982; Alroy et al., 2005). Anti–CD3ε antibody has been 

prepared and validated as a pan T cell marker in various Atlantic salmon tissues 

including the heart (Koppang et al., 2010), but the additional roles of CD3 

antibody, besides that of T cell marker, are still undetermined in teleosts.  

 

2.3 Mechanisms of cardiac cell death in fishes 

 The term apoptosis was coined by Kerr et al. (1972) to describe a specific 

morphological pattern of cell death during embryonic development, normal cell 

turn over in healthy adult tissue and atrophy upon hormone withdrawal. 

Apoptosis or programmed cell death is an important process to remove 

damaged or unnecessary cells ensuring normal development of multicellular 

animals. Caspases (cysteine–dependent aspartate protease) are capable of 

mediating immune responses (apoptosis, necrosis and inflammation) and are 

key players in apoptosis (Takle and Andersen, 2007). Caspases comprise pro– 

and catalytic domains and are synthesized as inactive precursor molecules. A 

large (p20) and a small (p10) subunit form catalytic domain which assemble into 

an enzymatically active heterotetrameric complex (p20 + p10) upon proteolytic 

cleavage of proenzyme (Fig. 6). At least 15 caspases have been identified in 

mammals. While many caspases have been identified in Atlantic salmon, there 

are two main subcategories; effectors and initiators that mediate apoptosis by 

either extrinsic or intrinsic pathways.  

 Caspase 3 belongs to the effectors group and can be initiated by both 

extrinsic and intrinsic pathways (Fischer et al., 2005; Gutter, 2000; Takle and 

Andersen, 2007). The extrinsic pathway is initiated upon binding of specific 
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cytokine ligands such as FasL and tumor necrosis factor (TNF)–related 

apoptosis–inducing ligand to the transmembrane death receptors (Fas, DR4 and 

DR5) initiate the extrinsic pathway (Takle and Andersen, 2007). 

 

Figure 6. Schematic diagram showing the proteolytic activation of caspases. Caspases 
are synthesized as single chain inactive precursors consisting of a prodomain and a 
catalytic domain (large and small subunits). For activation, inactive precursor cleaves at 
aspartate residue (Asp; arrow) into a larger and a smaller subunit that finally re–
associate to form a complex comprising of 2 large and 2 small subunits. Adapted from 
Takle and Andersen, 2007. 

 

 The orthologs of human death receptor ligands have been identified in 

fishes including TNF (tnfa and tnfb), CD95/FasL (faslg), Apo2/TRAIL (tnfsf101, 

tnfsf102, tnfsf103 and tnfsf104), and APP (appa) by phylogenetic analysis 

(Eimon and Ashkenazi, 2010). In addition, death receptors are also well 

conserved in humans and fishes, and orthologs of TNFR1 (tnfsf1a), CD95/Fas 

(fas), and DR6 (tnfrsf21) have also been identified in fishes (Eimon and 

Ashkenazi, 2010). The activation of transmembrane death receptors mediate 

downstream activity through recruitment of adaptor proteins such as FADD 

which leads to death inducing signaling complex (DISC) recruitment and drives 

pro–apoptotic signaling through procaspases–8 and –10. Upon activation, 

initiator caspases (caspase 8 and 10) activate second group of caspases, known 
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as effector caspases (caspase–3a, –3b, –6 and –7). Additionally, initiator 

caspases can also activate intrinsic mitochondrion mediated pathway by 

activating pro–apoptotic protein Bid to its active form tBid. After cleavage, tBid 

either activates Bax or enters itself in the mitochondrial membrane and triggers 

release of various apoptosis–inducing factors. Caspase 3 is suggested as key 

protease that promotes cleavage of cytoskeletal and nuclear proteins, resulting 

in apoptosis (Eimon and Ashkenazi, 2010; Takle and Andersen, 2007; Zhao and 

Vinten–Johansen, 2002).                                                               

 

Figure 7. Schematic diagram showing the extrinsic (left) and intrinsic (right) apoptotic 
pathways. Both pathways converge at the activation of effector caspases (caspase–3a, 
–3b, –6 and –7). Green color (tnfb) interaction is based on vertebrates and 
hypothesized in fish. See text for details. Modified from Takle and Andersen, 2007. 
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 Pro–apoptotic Bcl2 family members identified in fish are baxa and baxb 

while anti–apoptotic members include bcl2, bcl2l, mcl1a, mcl1b (Eimon and 

Ashkenazi, 2010). The intrinsic pathway is initiated by stressors such as 

ultraviolet radiation, heat shock, growth factor withdrawal and DNA damage. 

Upon stimulation, pro–apoptotic Bcl–2 family members induce the 

permeablizaion of outer mitochondrial membrane and trigger release of pro–

apoptotic factors. The important pro–apoptotic factors include Smac/DIABLO, 

the serine protease Omi/HtrA2, and cytochrome c which binds the Adaptor 

Apaf–1 and the initiator caspase 9 to form a complex called as apoptosome. The 

mitochondrial factors such as Smac/ DIABLO and the serine protease Omi/HtrA2 

indirectly promote apoptosis by inhibiting a family of anti–apoptotic proteins 

known as inhibitors of apoptosis proteins (IAPs). After assembly, apoptosome 

activates caspase 9 which in turn activates the effector caspases (caspase–3, –6, 

–7) through proteolytic processing. These activated effector caspases culminate 

the apoptotic process through the degradation of key intracellular substrates 

(Eimon and Ashkenazi, 2010; Takle and Andersen, 2007). Cultured 

cardiomyocytes exposed to hypoxia and re–oxygenation have been shown to 

release cytochrome c resulting in the cleavage of effector caspases 3 and 9 

(Kang et al., 2000). In mammals, apoptosis detected in cardiomyopathy has 

been associated with intrinsic mitochondrial pathway and higher caspase 3 

expression observed (Zhao and Vinten–Johansen, 2002). Caspase 2 has been 

suggested to be involved in both extrinsic and intrinsic pathways (Takle and 

Andersen, 2007). Ceramide is a hydrolytic product of sphingomyelin and is 

generated in response to various stresses such as heat shock, oxidative stress, 

ultraviolet and γ–irradiation (Yabu et al., 2001; Yamashita, 2003). The ceramide 

is involved in the activation of effector caspases by intrinsic pathway (Takle and 

Andersen, 2007). The multifunctional tumor suppressor protein P53 determines 

how cell respond to DNA damage, hypoxia and oncogenic signaling (Vousden 
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and Prives, 2009). In response to stressors, P53 stabilizes and activates and 

perform several functions including activating the intrinsic apoptosis pathway 

(Eimon and Ashkenazi, 2010). Recently, pro–apoptotic genes such as Bax, Bcl–x, 

p53 and caspase 6 have been shown to be significantly upregulated in the 

Atlantic salmon exposed to uranium as compared to control fish (Song et al., 

2012). 

Tumor necrosis factor is a multifunctional pro–inflammatory cytokine 

mainly produced by macrophages. TNF can induce apoptosis, necrosis, cell 

proliferation, differentiation and induction of other cytokines. The receptors for 

TNF are present in almost all nucleated cells, making the basis for a very 

complex cytokine network (Idriss and Naismith, 2000; Haugland et al., 2007; 

Beyaert and Fiers, 1994). Fas (also known as APO–1) belongs to the TNFα 

receptor family and is expressed on a variety of cells including cardiomyocytes 

in mammals (Braunwald, 2008). Hypoxia inducible factor–1 (HIF1) is a 

heterodimer basic helix–loop–helix protein that activates the transcription of 

hypoxia inducible genes and other important genes for erythropoiesis, iron 

delivery, angiogenesis, vasomotor tone and ATP metabolism (Chun et al., 2002; 

Wang et al., 1995). It consists of α–subunit (oxygen sensitive) and β–subunit 

(oxygen independent) and one of the most important molecules involved in 

hypoxia (reviewed in Dehne and Brune, 2009; Eltzschig and carmeliet, 2011; 

Semenza et al., 1997; Gale and Maxwell, 2010). Cytokines and especially TNFα 

are capable of activating HIF1 that has been suggested to be involved in 

inflammation, apoptosis and influences adaptive immunity (reviewed in 

Eltzschig and Carmeliet, 2011; Gale and Maxwell, 2010; Dehne and Brune, 

2009). Oxidative stress is one of the major factors causing myocardial damage, 

and HIF1α is suggested to be important in a number of physiological and 

pathological conditions (Poppe and Ferguson, 2006; Hopfl et al., 2004; Huang et 

al., 2004). As in mammals, HIF may play similar roles in fishes including 
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erythropoiesis, hemoglobin synthesis, angiogenesis, changes in gill surface area, 

glycolysis, glucose transport and growth suppression (Nikinmaa and Rees, 

2005). A link between hypoxia and apoptosis has been proposed in fish where 

change in gill surface area has been shown after 1 week of hypoxia in crucian 

carp (Carassius carassius) due to possible apoptosis (Solid et al., 2003). The over 

expression of heart targeted pro–apoptotic protein Nip3a resulted in 

cardiocytes apoptosis which led to abnormal heart development and cardiac 

dysfunction in zebrafish embryos (Wang et al., 2006). Recently, a link between 

atrial natriuretic peptide (ANP) and apoptosis in the heart has been proposed 

where increased ANP expression after being stimulated by heat shock (fish) or 

hypoxia  (mammals) activates caspase–6 or –3 and it may lead to abnormal or 

deviant heart development (Chen et al., 1997; Takle and Andersen, 2007). 

In mammals, two general mechanisms such as apoptosis and necrosis are 

responsible for cell death during myocardial ischemia and reperfusion, and both 

mechanisms determine the final degree of lethal myocardial injury (Zhao and 

Vinten–Johansen, 2002). Since apoptosis is a programmed cell death and energy 

demanding, the energy deprivation in cardiomyocytes could inhibit the terminal 

apoptotic events, but leads to calcium release from the sarcoplasmic reticulum 

(SR). Calcium changes the permeability of the mitochondrial membrane and 

could lead to programmed cell necrosis (Dorn II, 2009). Viral fish diseases are 

among the most destructive diseases of fish aquaculture and induce apoptosis 

(Silva et al., 2008). Fish rhabdoviruses such as spring viremia of carp virus 

(SVCV), infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic 

septicemia virus (VHSV) have all been shown to cause apoptosis (Bjorklund et 

al., 1997). Additionally, betanodaviruses such as greasy grouper nervous 

necrosis virus (ggNNV) has shown to induce apoptosis in sea bass cell culture via 

the extrinsic pathway (Guo et al., 2003). Thus, there is accumulating evidence 

that fish viruses are causing both caspase dependant and independent 
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apoptosis (Silva et al., 2008). The infectious pancreatic necrosis virus (IPNV) is 

the most important virus of birnaviridae that is causing a well characterized 

acute disease in salmonid and a major threat to aquaculture industry (Silva et 

al., 2008). IPNV has been shown to induce apoptosis in salmonid and zebrafish 

cell lines (Hong et al., 1999; 2005). Another salmonid virus such as infectious 

salmonid anemia virus (ISAV) has been shown to trigger in vitro cell specific 

apoptosis in salmonid cell lines such as SHK–1 and CHSE–214 but not in TO cells 

and may not involve the activation of caspase 3 (Joseph et al., 2004). In vitro 

studies using fish cell lines are proposing that apoptosis induced by 

betanodavirus and birnavirus is followed by secondary necrosis and it would 

explain the occurrence of the necrotic histopathology associated with these 

diseases in fishes (Chen et al., 2006; Hong et al., 1998) and subsequently 

supported by further studies (Chen et al., 2010; Chiu et al., 2010; Su et al., 

2009). 

 

3. Cardiac diseases 

 Over the last two decades, increasing numbers of cardiac malformations 

have been identified in marine farmed Atlantic salmon (Poppe and Taksdal, 

2000). Farmed Atlantic salmon (Salmo salar L.) are prone to numerous cardiac 

anomalies such as aplasia or hypoplasia of the septum transversum, abnormal 

location and shape of heart (Poppe and Seirstad, 2003), arteriosclerosis (Poppe 

et al., 2007; Farrell, 2002), ventricular hypoplasia (Poppe and Taksdal, 2000) and 

specific viral cardiac diseases including cardiomyopathy syndrome (CMS) (Poppe 

and Ferguson, 2006; Poppe and Seirstad, 2003; Ferguson et al., 1990; Brun et 

al., 2003; Grotmol et al., 1997), heart and skeletal muscle inflammation (HSMI) 

(Kongtorp et al., 2004, 2004a, 2006) and pancreas disease (PD) (Christie et al., 

1998; Taksdal et al., 2007; Nelson et al., 1995). 
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3.1 Viral cardiac diseases of Atlantic salmon 

 Viral fish diseases are among the most destructive diseases of fish 

aquaculture (Silva et al., 2008). The occurrence of cardiac diseases has increased 

in recent years in Atlantic salmon aquaculture in Norway. In Norway, CMS 

causes economic losses in excess of 66 million NOK annually and a single PD 

outbreak with 500,000 smolts on a fish farm can cause a total loss of 14.4 

million NOK (Brun et al., 2003; Aunsmo et al., 2010). The number of HSMI 

outbreaks has been increased three–fold from 2004 (54 outbreaks) to 2011 (162 

outbreaks) while PD has re–emerged from the beginning of the year 2000 (11 

outbreaks) to 2011 (89 outbreaks) and CMS remained at uniform pattern with 

53 outbreaks in 2010 in Norway (Bornø et al., 2011, Marta et al., 2012). 

 

3.1.1 Heart and skeletal muscle inflammation (HSMI) 

 Heart and skeletal muscle inflammation (HSMI) is a cardiac disease of 

marine farmed Atlantic salmon that mainly affects heart and skeletal muscle. 

HSMI was first reported from mid–Norway in 1999 and has become an 

increasing problem for salmon industry (Kongtorp et al., 2004). HSMI is 

characterized as a disease of low mortality (~20%) but with high morbidity 

(~100%) that commonly affects fish mostly 5 to 9 months after transfer to sea. 

HSMI has been reported from Norway, Scotland and Chile (Kongtorp et al., 

2004a; Ferguson et al., 2005). Macroscopically pale hearts with loose texture, 

pericardial hemorrhages, ascities and pale/stained liver are observed without 

haematocrit changes. Cardiac and red skeletal muscles exhibit the most 

significant histopathological lesions. Lesions first appear and are more frequent 

in heart than in the skeletal muscle (Kongtorp et al., 2004, 2004a). Presently, 

HSMI can be diagnosed by histopathology and differentiated from other similar 

cardiac diseases such as cardiomyopathy syndrome (CMS) and pancreas disease 
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(PD) (Table 1) (Kongtorp et al., 2006). The diagnosis of HSMI is based upon 

histopathological changes and presents as epi–, endo–, and myocarditis as well 

as a pronounced mononuclear cellular infiltration of both trabecular and 

compact layers of ventricular myocardium accompanied by myocytic necrosis, 

myositis and necrosis of red skeletal muscle (Table 1). Affected myocytes show 

signs of degeneration, loss of cardiomyocyte striation and eosinophilia, loss of 

skeletal muscle striation, vacuolation, centralized nuclei and karyorhexis. 

Inflammatory changes are more pronounced as compared to necrotic changes 

in heart and skeletal muscle (Poppe and Ferguson, 2006; Kongtorp et al., 2004, 

2006). HSMI appears to be transmissible in laboratory studies by injecting tissue 

homogenate from diseased fish to healthy fish (Kongtorp et al., 2004). Recently, 

a viral etiology was suggested where a novel piscine reovirus (PRV) was 

associated with HSMI (Palacios et al., 2010). As mammalian reoviruses, PRV is 

also ubiquitous virus and has been identified using unbiased high throughput 

DNA sequencing (Clarke and Tylor, 2003; Palacios et al., 2010). However, PRV 

has not been successfully cultured and low quantities of virus were identified in 

fish with no clinical signs, although at a much lower level than in diseased fish. 

Low levels of PRV have also been identified in wild Atlantic salmon (Palacios et 

al., 2010). PRV RNA has also been found in Atlantic salmon brood fish with no 

clinical signs. However, the absence of PRV RNA from fertilized eggs has been 

suggested that vertical transmission is not a major route for PRV transmission 

(Wiik–Nielsen et al., 2012). The fish surviving from HSMI outbreaks are 

suggested to be lifelong PRV carriers (Wiik–Nielsen et al., 2012). The viral 

etiology has been supported by challenge trials where infective tissue 

homogenate was injected intraperitoneally in fish and HSMI–related lesions 

were identified (Kongtorp and Taksdal, 2009). The association of PRV and HSMI 

was strengthened by a recent study where PRV immunohistochemical staining 



 31 

was performed in the heart using specific antibodies against the PRV capsid 

proteins (Finstad et al., 2012).  

  

3.1.2 Cardiomyopathy syndrome (CMS) 

 Cardiomyopathy syndrome (CMS) is a cardiac disease of Atlantic salmon 

that mainly affects the atrium and trabecular ventricle without involvement of 

the skeletal muscle. It shares similar features with HSMI where both diseases 

cause myocarditis and pericarditis and has been proposed as a late stage of 

HSMI (Table 1) (Amin and Trasti, 1988; Ferguson et al., 1990; Kongtorp et al., 

2006; Poppe and Ferguson, 2006). It was first reported in late–1980s in the 

cultured Atlantic salmon in Norway (Amin and Trasti, 1988; Ferguson et al., 

1990) and subsequently reported from Faeroe Islands and Scotland (Bruno and 

Poppe, 1996; Poppe and Sande, 1994; Rodger and Turnbull, 2000). Later, CMS 

has been identified in wild Atlantic salmon and Chinook salmon (Oncorhynchus 

tschawytscha) in British Columbia, Canada (Brocklebank and Raverty, 2002; 

Poppe and Seirstad, 2003). 

  Amin and Trasti (1988) proposed a viral etiology for CMS due to the 

presence of intranuclear eosinophilic inclusion bodies in unaffected 

cardiomyocytes situated adjacent to degenerated myocardium. Recently, the 

experimental transmission of CMS has been shown in unvaccinated Atlantic 

salmon smolts using intraperitoneal injection of infected tissue homogenate. 

CMS is a disease of adult, primarily Atlantic salmon; however, post–smolt fish 

have been identified with same type and severity of CMS lesions but in limited 

numbers (Fristvold et al., 2009). CMS has also been successfully transmitted in 

adult salmon (1.1 kg) using Scottish and Norwegian tissue homogenates, leading 

to the conclusion that similar disease conditions occur in both countries (Bruno 

and Noguera, 2009). The above mentioned challenge trials supported the viral 
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etiology of CMS in Atlantic salmon (Bruno and Noguera, 2009; Fristvold et al., 

2009).  

 Recently, a totivirus has been identified in Atlantic salmon by high 

throughput DNA sequencing (Løvoll et al., 2010). The virus has been identified 

from several natural CMS outbreaks and from fish where CMS had been induced 

through experimental transmission. As compared to piscine reovirus (PRV), 

totivirus is not ubiquitous and suggested to be more closely associated with 

disease outbreaks (Løvoll et al., 2010). Totivirus is a naked double–stranded 

RNA virus and the proposed name is piscine myocarditis virus (PMCV) belonging 

to family Totiviridae (Haugland et al., 2011). PMCV is approx. 50 nm in diameter 

with genome size of 6,688 bp and consists of three open reading frames (ORFs) 

(Haugland et al., 2011). PMCV RNA has also been identified in healthy Atlantic 

salmon brood fish and fertilized eggs. It is suggested that PMCV RNA may be 

transferred from parental fish to progeny but requires further assessment 

(Wiik–Nielsen et al., 2012). In addition, a distinct strain of PMCV has also been 

identified in healthy marine Atlantic argentine (Argentina silus) which is a 

pelagic species and lives at the depth of 600 m (Bockerman et al., 2011; Tengs 

and Bockerman, 2012). Recently, experimental infection by intraperitoneal 

injection of PMCV has induced CMS specific lesions in Atlantic salmon and viral 

loads were correlated with histopathological changes (Timmerhaus et al., 2011). 

Histopathological findings of CMS include necrosis and inflammation of 

trabecular myocardium of the ventricle and atrium, epicarditis and a cellular 

infiltrate including mainly lymphocytes and macrophages (Table 1). Rupture of 

the atrium or sinus venosus has been reported at terminal stages of CMS 

(Ferguson et al., 1990; Poppe and Ferguson, 2006). CMS may occur in adult 

salmon 12–18 months after sea transfer (Ferguson et al., 1990). Present study 

identified protein casts in kidney collecting tubules and melanin deposits in the 
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CMS–affected hearts (unpublished) and in agreement with Fristvold et al. (2009) 

who reported melanisation in experimentally induced CMS fish. 

 

3.1.3 Pancreas disease (PD) 

 Pancreas disease is an economically important disease of marine farmed 

Atlantic salmon in UK, Ireland, Scotland and Norway (Kongtorp et al., 2010; 

Herath et al., 2012). In Atlantic salmon, pancreas disease (PD) has been known 

since 1976  and given its name due to the histopathological changes in pancreas 

(Munro et al., 1984) in addition to skeletal and cardiac muscle (Ferguson et al., 

1986). Pancreas disease (PD) was first reported in Norway in 1989 (Poppe et al., 

1989) and an associated virus was first isolated from diseased Atlantic salmon in 

Ireland (Nelson et al., 1995) and subsequently identified from the west coast of 

Norway in 1998 (Christie et al., 1998). Salmon pancreas disease virus (SPDV) is 

the causative agent of pancreas disease in Atlantic salmon (McLoughlin and 

Graham, 2007) and later identified as an alphavirus (Weston et al., 1999). A 

condition called ‘sleeping disease’ (SD) has been identified in fresh water 

farmed rainbow trout (Oncorhynchus mykiss) and exhibits similar 

histopathology to PD (Boucher and Baudin–Laurencin, 1994, 1996). The sleeping 

disease virus (SDV) has been identified as causative agent of SD in France which 

is an atypical alphavirus (Castric et al., 1997; Villoing et al., 2000). Both SPDV 

and SDV viruses belong to the family Togaviridea and genus Alphavirus. A name 

salmonid alphavirus (SAV) has been proposed for these two closely related 

subtypes of the same virus species (Weston et al., 2002).  

 To date, at least six subtypes of SAV exist such as SAV1 (Weston et al., 

1999), SAV2 (Villoing et al., 2000), SAV3 (Hodneland et al., 2005), SAV4, 5 and 6 

(Fringuelli et al., 2008). Except SAV2 which is the causative agent of SD, all other 

subtypes (SAV1, 3, 4, 5 and 6) are related to PD (Fringuelli et al., 2008). The 
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subtypes SAV1, 4 and 6 identified in Ireland, SAV1, 2, 4 and 5 found in Scotland 

and SAV3 only detected in Norway (Hodneland et al., 2005; Hodneland and 

Endresen, 2006; Fringuelli et al., 2008 ). However, the Norwegian veterinary 

institute (NVI) identified SAV2 from two separate outbreaks in Atlantic salmon 

in Norway (www.vetinst.no). Recently SAV RNA has also been identified by real–

time PCR (qPCR) in wild marine non–salmonid flatfish such as common dab 

(Limanda limanda), long rough dab (Hippoglossoides platessoides) and plaice 

(Pleuronectes platessa) in Scotland (Snow et al., 2010). For all six SAV subtypes, 

cohabitant challenge models have been successfully established (Graham et al., 

2011) and in turn produced long term immunity in fish (Houghton, 1994; Lopez–

Doriga et al., 2001). The virus transmission and shedding have been suggested 

by both faecal and mucosal routes (Graham et al., 2011). SAV is capable of 

horizontal transmission (Houghton and Ellis, 1996; McLoughlin et al., 1996) and 

recently Kongtorp et al. (2010) rejected virus transmission from parents to 

offspring and suggested a minor role of vertical transmission in the spread of 

SAV3.  

 During the last decade, PD has re–emerged and has become a major 

economical and animal welfare issue for farmed Atlantic salmon in Europe 

(McLoughlin and Graham, 2007). PD has been reported from different regions of 

Europe including Ireland, Scotland, UK, Spain, Italy and Norway (Ferguson et al., 

1990; Christie et al., 1998; Crockford et al., 1999; Graham et al., 2007; McVicar, 

1987; Poppe et al., 1989; Rowly et al., 1998; Taksdal et al., 2007). PD has also 

been reported from USA but without virus isolation and genetic data (Kent and 

Elston, 1987). Pancreas disease–related mortality ranges from 1 to 42 % in 

natural outbreaks and an individual outbreak may last for 3–4 months 

(McLoughlin et al., 2002; Christie et al., 2007). The PD affected fish show 

inappetence, lethargy, yellow faecal casts as well as an increased mortality. The 

acute disease phase lasts up until 10 days at 2–14°C with lesions in heart and 
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pancreas as dominating features. The acute phase is followed by a sub–acute 

phase 10–21 days after the onset of clinical signs with lesions in pancreas, heart 

and skeletal muscles, and a chronic phase after 21–42 days with lesions in 

muscles as dominating feature, and then subsequently a recovery phase 

(McLoughlin et al., 2002, McLoughlin and Graham, 2007). The important 

pathological changes involve severe losses of exocrine pancreas, cardiac and 

skeletal myopathies, epicarditis, focal gliosis of brain stem, white skeletal 

muscle degeneration and functionally unknown cells in kidney with cytoplasmic 

eosinophilic granules (Table 1) (Taksdal et al., 2007; Christie et al., 2007). 
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Table 1. Main tissues affected and histopathological lesions appeared in fish affected 

with cardiomyopathy syndrome (CMS), heart and skeletal muscle inflammation (HSMI) 

and pancreas disease (PD). (compiled from Kongtorp et al. 2004). 

Tissue  Lesions          CMS        HSMI          PD 

  description    

 

Heart    Epicarditis   +  +  + 

   Compact–   –  +  + 

   myocarditis and  

    degeneration 

    Spongy–   +  +  + 

   myocarditis and  

   degeneration 

 

Skeletal   Inflammation and  –  +  + 

muscle degeneration 

 

Liver   Necrosis of    –  –  + 

    hepatocytes 

 

Pancreas  Necrosis of   –  –  + 

     exocrine tissue. 
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4. Aims of the study 

Viral fish diseases are a serious threat to fish farming industry and 

presently the number of cardiac diseases outbreaks have increased significantly 

in Atlantic salmon in Norway compared to the last two decades. In the present 

study, all of the work was focused on the Atlantic salmon heart.  

At the start of the study, there was no peer reviewed data relating to the 

location and morphology of the cardiac conduction system of Atlantic salmon. 

The first part of the study focused on the morphology and localization of the 

cardiac pacemaker tissue of Atlantic salmon due to its functional significance in 

heart beat and the fact that most cardiac diseases also affect the cardiac 

pacemaker in humans. Natriuretic peptide and CD3 have been suggesting 

additional roles in cardiac pacemaker in mammals. Thus, to identify these roles 

in teleost (Atlantic salmon), immunoexpression of natriuretic peptides (sCP and 

VNP) and CD3 were also demonstrated in the cardiac pacemaker of Atlantic 

salmon. 

Due to lack of tools for non–lethal diagnosis, the CMS– and HSMI–

affected fish were only diagnosed by the increased mortality levels at farm. 

Second part of the study included the identification of potential biomarkers and 

associated them with the cardiac pathology of Atlantic salmon affected with 

cardiac diseases.  

Additionally, little was known about the cardiac pathological responses of 

Atlantic salmon affected with specific viral cardiac diseases such as CMS, PD and 

the more recently identified HSMI due to lack of specific markers. To address 

these issues, specific antibodies were used as markers and the third part of this 

work focused on characterizing and comparing the cardiac pathological changes 
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of Atlantic salmon affected with similar cardiac diseases such as HSMI, CMS and 

PD. 

The specific aims of the present study could be summarized as follows: 

(1) To characterize the localization and morphology of the cardiac pacemaker 

tissue of Atlantic salmon.  

(2) To identify the additional roles of natriuretic peptides and CD3 in the cardiac 

pacemaker tissue of Atlantic salmon.  

(3) To identify the potential biomarkers of cardiac diseases of Atlantic salmon. 

(4) To characterize and compare the specific markers of cardiac pathological 

changes of Atlantic salmon affected with similar cardiac diseases such as HSMI, 

CMS and PD.  
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5. Summary of papers 

Paper I: This study describes the location of the primary pacemaker at the sino–

atrial (SA) junction and the localization of salmon cardiac peptide (sCP) and 

ventricular natriuretic peptide (VNP) in Atlantic salmon (Salmo salar L.). The 

pacemaker tissue appeared lightly stained and composed of: (1) wavy nerve 

bundles with oval elongated wavy appearing nuclei with pointed ends, (2) 

ganglion cells (12–22 µm) with granular cytoplasm and (3) wide muscle fibers 

with large nuclei (modified cardiomyocytes) clearly distinguishing them from the 

other myocardial cells. Pacemaker tissue was further evaluated using 

immunohistochemical staining. Immunoreactivity of natriuretic peptides (sCP 

and VNP) antisera showed specific staining in pacemaker ganglion cells in 

addition to the cardiomyocytes. Positive staining with anti–CD3ε antisera in the 

pacemaker ganglion cells is a novel finding in teleosts and is consistent with 

observations in mammals. In conclusion, the Atlantic salmon pacemaker was 

shown to be located at the SA node and to harbor sCP and VNP peptides, 

suggesting a possible neuromodulatory and/or neurotransmitter role for these 

cardiac hormones within the teleost heart. 

 

Paper II: Heart and skeletal muscle inflammation (HSMI) and cardiomyopathy 

syndrome (CMS) are putative viral cardiac diseases of Atlantic salmon. This 

study examined the levels and correlated the serum enzymes creatine kinase 

(CK) and lactate dehydrogenase (LDH) to the histopathology of clinical 

outbreaks of HSMI and chronic CMS in farmed Atlantic salmon. A total of 75 fish 

from 3 different HSMI outbreaks, 30 chronic CMS fish and 68 fish from 3 non–

diseased fish groups were used as the study population (N = 173). Serum CK and 

LDH levels correlated significantly with the total inflammation and total necrosis 

scores for HSMI fish (P = 0.001). However, no correlation was identified for 
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enzyme levels and histopathology scores for chronic CMS fish. The significantly 

increased CK and LDH levels and their positive correlations to histopathology 

differentiate HSMI from CMS clinically suggesting the potential use of enzymes 

for screening for HSMI is promising. 

 

Paper III: Heart and skeletal muscle inflammation (HSMI) is a disease of marine 

farmed Atlantic salmon where the pathological changes associated with the 

disease involve necrosis and an infiltration of inflammatory cells into different 

regions of the heart and skeletal muscle. The aim of this work was to 

characterize cardiac changes and inflammatory cell types associated with a 

clinical HSMI outbreak in Atlantic salmon using immunohistochemistry. 

Different immune cells and cardiac tissue responses associated with the disease 

were identified using different markers. The spectrum of inflammatory cells 

associated with the cardiac pathology consisted of mainly CD3Ɛ+ T lymphocytes, 

moderate numbers of macrophages and eosinophilic granulocytes. Proliferative 

cell nuclear antigen (PCNA) immuno–reaction identified significantly increased 

nuclear and cytoplasmic staining as well as identifying hypertrophic nuclei. 

Strong immunostaining was observed for major histocompatibility complex 

(MHC) class II in HSMI hearts. Although low in number, a few positive cells in 

diseased hearts were detected using the mature myeloid cell line 

granulocytes/monocytes antibody indicating more positive cells in diseased 

than non–diseased hearts. The recombinant tumor necrosis factor–α (TNFα) 

antibody identified stained macrophage–like cells and endothelial cells around 

lesions in addition to eosinophilic granular cells (EGCs). These findings suggested 

that the inflammatory response in diseased hearts comprised mostly CD3+ T 

lymphocytes and eosinophilic granular cells and hearts exhibited high cell turn 

over where DNA damage/repair might be the case (as identified by PCNA, 
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caspase 3 and terminal deoxynucleotidyl transferase nick–end labeling (TUNEL) 

reactivity).  

 

Paper IV: Heart and skeletal muscle inflammation (HSMI), cardiomyopathy 

syndrome (CMS) and pancreas disease (PD) are diseases of marine farmed 

Atlantic salmon (Salmo salar) which commonly affect the heart in addition to 

the skeletal muscle, liver and pancreas. The main findings of these diseases are 

necrosis and inflammatory cells infiltrates affecting different regions of the 

heart. In order to better characterize the cardiac pathology, study of the 

inflammatory cell characteristics and cell cycle protein expression was 

undertaken by immunohistochemistry. Immunohistochemistry was performed 

on paraffin embedded hearts from confirmed diseased cases applying specific 

antibodies. The inflammatory cells were predominantly CD3Ɛ+ T lymphocytes 

while few eosinophilic granulocytes were identified. The PD diseased hearts 

exhibited moderate hypoxia inducible factor–1α (HIF1α) immuno–reaction that 

suggested tissue hypoxia while recombinant tumor necrosis factor–α (rTNFα) 

antibody identified putative macrophages and eosinophilic granular cells (EGCs) 

in addition to endocardial cells around lesions. There were strong to low levels 

of major histocompatibility complex (MHC) class II immunostaining in the 

diseased hearts associated with macrophage–like and lymphocyte–like cells. 

The diseased hearts expressed strong to low levels of apoptotic cells identified 

by caspase 3 and terminal deoxynucleotidyl transferase nick–end labeling 

(TUNEL) staining. The strong signals for proliferative cell nuclear antigen (PCNA) 

and TUNEL, and moderate levels of caspase 3 immuno–reactivity suggested a 

high cell turnover where DNA damage/repair might be occurring in the diseased 

hearts.  



 42 

6. General discussion 

 

6.1 Cardiac conduction system of Atlantic salmon  

 The aims of the first study were the localization and detailed 

morphological description of the cardiac conduction system of Atlantic salmon 

(Salmo salar L.). At the start of the study, there was no conclusive data about 

the localization and morphology of the cardiac conduction system in Atlantic 

salmon. The morphological study of the pacemaker tissue was important owing 

to its functional significance (action–potential). The action–potential initiates in 

the autonomous pacemaker cells at sino–atrial (SA) junction and propagates 

impulses to other parts of the heart during contraction in fish (Vornanen et al., 

2002; Vornanen, 2011) and suggests the importance of pacemaker tissue of 

Atlantic salmon. In humans, most cardiac diseases also affect the cardiac 

conduction system and pathological changes in the conduction system have 

been observed in several mammalian diseases including myotonic dystrophy, 

sudden coronary death, coronary atherosclerosis, cardioneuropathy, West Nile 

virus infection, Parkinson's disease, chagas disease and Aujeszky's disease 

(Cramer et al., 2011; Fujishiro et al., 2008; Orimo et al., 2007; James, 1983, 

1985; Ottaviani et al., 2003; Rassi Jr et al., 2009; Rossi, 1982; Nguyen et al., 

1988; Opeskin et al., 2000). Additionally, cardiac arrhythmias have been 

reported without specialized pacemaker cells in fishes (Farrell and Jones, 1992). 

These data highlight the importance of localization and detailed morphological 

study of cardiac pacemaker of Atlantic salmon. 

 In fish, the identification and localization of the pacemaker tissue was 

considered ambiguous due to the relatively small size of the heart and the 

pacemaker center (Haverinen and Vornanen, 2007). Haverinen and Vornanen 

(2007) identified the pacemaker at the sino–atrial (SA) junction in rainbow trout 
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(Oncorhynchus mykiss) but the study focused mainly on the electrophysiology of 

the pacemaker without investigating the tissue morphology of the pacemaker. 

To ensure the presence of the pacemaker tissue in the samples, the heart must 

be carefully removed from the pericardial cavity, ensuring the inclusion of the 

sinus venosus and atrium in the samples (Paper I). The primary pacemaker tissue 

was identified as discrete bundles at the sino–atrial (SA) junction (Paper I) and in 

agreement with other salmonids (rainbow trout and brown trout) and several 

other fish species (Yamauchi and Burnstock, 1968; Lukyanov and Sukhova, 1983; 

Haverinen and Vornanen, 2007; Zaccone et al., 2009a, 2009). Haverinen and 

Vornanen (2007) have shown the circular distribution of pacemaker in rainbow 

trout and supports our observation of circular distribution of pacemaker tissue 

at the SA node in Atlantic salmon (Figure 8A and B). 

             

Figure 8. A, A schematic diagram of Atlantic salmon heart and pacemaker area (within 
the box) was shown on both sides forming a ring at SA node. B, Low power view of 
sino–atrial junction showing a circular distribution of nodal tissue (pacemaker). Arrow: 
elastic tissue.  

 

The loose connective tissue separated the neural tissue from surrounding 

cardiomyocytes and infiltrated into the nodal tissue, dividing it in several small 

semicircular areas (Paper I) and in agreement with other salmonid (Haverinen 

and Vornanen, 2007). The highly innervated modified myocardiocytes were 

identified in the atrial region close to the junction of the sinus venosus and the 

atrium (Paper I) and other piscine studies have suggested that every muscle in 

A B 
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the SA area has at least one nerve profile (contact) (Yamauchi and Burnstock, 

1968; Zaccone et al., 2011). The subendocardial pacemaker tissue was 

composed of three cell types: (1) plexiform modified myocardiocytes that 

appeared lightly stained than the rest of atrial myocardiocytes; (2) wavy 

appearing nerve bundles with oval, wavy, elongated nuclei with pointed ends; 

(3) large round to pear–shaped postganglionic nerve cell bodies (ganglion cells) 

with granular cytoplasm (Nissle bodies) and prominent nucleoli in the nuclei. 

The size of ganglion cells was in range of 12–22 µm. The pacemaker tissue 

(ganglion cells) was identified by H&E and cresyl violet staining at the SA 

junction. Other stain such as Gomori’s methenamine silver stain was also used 

to identify the nerve fibers and ganglion cells at the SA junction (Paper I). The 

nerve bundles or postganglionic nerve cell bodies were not identified in the 

ventricle of Atlantic salmon (Paper I) (Solc, 2007). Through the identification and 

detailed morphological description of the cardiac pacemaker, the first aim of 

the study was fulfilled. 

 Multifunctional natriuretic peptides (NPs) are involved in key 

physiological functions including cardioprotection in salmonid (Johnson and 

Olson, 2009). The accumulating evidence from mammalian and piscine studies 

has proposed additional neuromodulatory and/or neurotransmitter roles of NPs 

(Donald and Evans, 1992; Donald et al., 1992; Hansson, 2002; Vallarino et al., 

1996; Tsukada et al., 2007). Natriuretic peptides (ANP) have been identified in 

the intracardial ganglion cells and nerve fiber varicosities in the bovine 

conduction system (Hansson and Forsgren, 1993). Similar findings were further 

demonstrated in cardiac conduction system of other mammals such as human, 

sheep, pig and rat (Hansson et al., 1997, 1998). In light of these studies, ANP 

was proposed to act in an autocrine/paracrine fashion on conduction cells to 

influence the pacemaker velocity in mammals (Hansson et al., 1998; Hansson, 

2002). ANP synthesis has been shown in the mammalian cardiac conduction 
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system and increased ANP expression has been associated with heart diseases 

or cardiac sympathectomy in humans (Mochizuki et al., 1991; Hansson et al., 

1998). Present study performed immunohistochemistry by using natriuretic 

peptides (sCP and VNP) antisera and identified specific staining in the 

intracardiac ganglion cells in Atlantic salmon (Paper I). Previously, the 

immunohistochemical localization of natriuretic peptides has been 

demonstrated in the neural tissue (brain) and heart of several fishes such as 

Atlantic hagfish (Myxine glutinosa) and gulf toadfish (Opsanus beta), African 

lungfish (Protopterus annectens) and cartilaginous elasmobranch fish 

(Scyliorhinus canicula) (Donald and Evans, 1992; Donald et al., 1992; Vallarino et 

al., 1990, 1996) and in agreement with the immunolocalization of natriuretic 

peptides in the present study (Paper I). The specific NPs binding sites have been 

shown in the neural tissue of Atlantic hagfish (Myxine glutinosa) and eel 

(Anguilla japonica) (Donald et al., 1999; Tsukada et al., 2007), supporting the 

existence of NPs binding sites and receptors in the cardiac neural tissue 

(pacemaker). Besides cardioprotective functions, additional neuromodulatory 

and/or neurotransmitter roles of NPs have been suggested in fishes (Donald and 

Evans, 1992; Donald et al., 1992; Vallarino et al., 1996; Tsukada et al., 2007). 

Recently, Zaccone et al. (2009a, 2009) have shown the specific binding sites for 

neurotransmitters such as substance P and galanin (GA) in the cardiac 

pacemaker tissue at the SA junction in ray–finned fish (Polypterus bichir bichir) 

and teleosts such as rainbow trout (Oncorhynchus mykiss), mullet (Mugil 

cephalus) and Nile catfish (Synodontis nigriventris), supporting the existence of 

NPs neural tissue binding sites and possible effects on the cardiac pacemaker 

tissue. In view of above–mentioned studies, the localization of sCP and VNP in 

the cardiac pacemaker tissue suggested their additional neurotransmitter 

and/or neuromodulatory roles particularly relative to the cardiac pacemaker in 

Atlantic salmon (Paper I) and fulfilled the second aim of the study. 
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6.2 Clinical biochemistry biomarkers of Atlantic salmon 

 After achieving the first two aims, the work was focused to identify 

potential biomarkers of cardiac diseases in Atlantic salmon and correlated them 

with histopathology. According to Biomarkers Definitions Working Group 

(2001), ‘a biomarker is defined as a characteristic that is measured and 

evaluated as an indicator of normal biologic process, pathogenic process, or 

pharmacologic process to a therapeutic intervention’. 

 In paper II, the clinical biochemistry biomarkers were identified and 

correlated with cardiac diseases of Atlantic salmon. The diseases CMS and HSMI 

are presently diagnosed by histopathology which is a lethal method. Fish must 

be killed to perform the standard paraffin wax protocol and H&E staining on 

heart and other vital organs. The H&E stained slides are examined under the 

microscope for pathological changes (necrosis and inflammation) characteristic 

of CMS and HSMI. Both CMS and HSMI are noticed on farms with increased 

mortality rates. CMS causes huge losses due to the mortality in pre–harvest 

adult fish while HSMI and PD significantly decreases the fish filet quality due to 

lesions in the skeletal muscle (Larsson et al., 2012; Poppe and Ferguson, 2006; 

Kongtorp, 2009). Recently, the piscine reovirus (PRV) and piscine myocarditis 

virus (PMCV) are associated with the HSMI and CMS respectively but Koch's 

postulates are unfulfilled to date (Løvoll et al., 2010; Palacios et al., 2010). The 

piscine reovirus is ubiquitous and identified in both diseased and non–diseased 

fish. In addition, both PRV and PMCV have been identified from healthy Atlantic 

salmon broodfish and PMCV was also identified in marine Atlantic argentine 

(Bockerman et al., 2011; Wiik–Nielsen et al., 2012), and in turn may limit the 

potential diagnosis of these diseases by virus isolation or identification by PCR.  

 The current situation demands proper tools to diagnose or predict the 

disease as early as possible using suitable biomarkers. Biomarkers include 
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enzymes, hormones, biological substances, markers of cardiac stress and 

malfunction, and myocyte injury (Braunwald, 2008). The biomarkers of 

inflammation (C–reactive protein (CRP)), myocyte stress (natriuretic peptides) 

and myocyte injury (troponin I, creatine kinase and lactate dehydrogenase) 

were tested in Atlantic salmon to fulfill the third aim of the study. CRP is an 

acute–phase reactant protein synthesized by liver in response to inflammation. 

The troponin (Tn) complex comprises 3 proteins such as TnC (calcium binding 

protein), TnI (inhibits actin from binding to myosin heads) and TnT (binds 

tropomyosin) (Jaffe et al., 2006; Tibbits and Moyes, 1992). Troponin complex 

helps regulate excitation–contraction coupling in the cardiomyocytes. Cardiac 

injury results in detachment of cTnI from actin and leakage into the general 

circulation. Therefore, the higher levels of cTnI in serum/plasma are considered 

to be a highly specific and sensitive biomarker of myocardial injury and necrosis 

(Reynolds and Oyama, 2008).  

 Present study used human CRP and natriuretic peptide (ANP, BNP) assays 

but did not identify any correlation to the HSMI–affected fish serum while cTnI 

assay could not be measured in the samples. The reason(s) may include the lack 

of cross–reactivity among human and Atlantic salmon assays. Additionally, Jaffe 

et al. (2006) have reported the fluctuating levels of CRP in response to acute 

illness including myocardial injury in humans.  

 Other biomarkers of myocyte injury such as creatine kinase (CK) and 

lactate dehydrogenase (LDH) were used to correlate with histopathology 

(inflammation and necrosis) of HSMI– and chronic CMS–affected Atlantic 

salmon (Paper II). The term chronic–CMS was used to refer CMS–affected fish 

that were sampled approx. 6 months after peak mortality phase of disease. 

Several piscine studies have measured the blood biochemical parameters 

particularly enzymes including CK and LDH (Rajabipour et al., 2009; Anderson et 
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al., 2010, Powell, 2006). CK and LDH are biochemical enzymes that are present 

in almost all cell types and are released upon cellular degeneration such as 

necrosis (Kemp et al., 2004; Walker, 2006). CK and LDH levels in blood plasma 

sustain over 3–4 days to 7–10 days in humans following cardiac injury 

respectively (Kemp et al., 2004) and provided an opportunity to extrapolate 

from human studies and use them as biomarkers in teleosts (Atlantic salmon) 

due to their prolong presence in the blood. In big game fish (Chrysophrys 

auratus), plasma CK and LDH exhibit the physiological stress responses after 

capture, probably because of muscle damage that release the enzymes in 

plasma (Wells et al., 1986). Boucher (1990) has shown the serum enzymes CK 

and LDH levels respond to temperature variations in rainbow trout. 

Furthermore, CK concentrations have been associated with irreversible injury 

such as myocardial necrosis in mammals (Ishikawa et al., 1997). In Atlantic 

salmon, PD–affected fish have shown the significantly increased CK levels 

(Rodger et al., 1991; Ferguson et al., 1986) and above mentioned studies led to 

the hypothesis of clinical importance of CK and LDH in cardiac diseases of 

Atlantic salmon.  

 To the best of our knowledge, this was the first study which performed 

extensive correlations among enzyme levels and different anatomical regions of 

heart and skeletal muscle of CMS– and HSMI–affected fish. The significantly 

increased CK and LDH levels were identified in HSMI–affected fish and in 

agreement with previous studies where significantly increased CK levels were 

identified in PD–affected fish (Rodger et al., 1991; Ferguson et al., 1986). The 

significant serum enzyme correlations were identified in different HSMI disease 

phases (start, peak and late phases) that were based on the mortality levels at 

farms (Paper II). There were significant correlations between CK levels and 

individual anatomical regions for HSMI–affected fish. Most of the individual 

parameters identified significant correlations to LDH levels for HSMI–affected 
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fish. Taken together, CK and LDH levels identified significant correlations to total 

inflammation and total necrosis scores. However, there were no significant 

correlations identified for chronic CMS–affected fish and one of reasons may 

include the delayed sampling (6 months after disease outbreak) and enzymes 

levels drop down to normal ranges in that period due to the fact the enzymes 

levels peak for 10–12 days in humans (Paper II). The ranges for CK and LDH 

enzymes levels were identified for diseased (chronic CMS– and HSMI–affected 

fish) and non–diseased fish (Paper II). HSMI is suggested as a disease with more 

inflammatory lesions than necrosis (Kongtorp et al., 2004; Kongtorp, 2009) and 

current study concurs with the previous studies (Paper II). Histopathological 

scores (for inflammation and necrosis) of HSMI– and CMS–affected fish were 

significantly different and comparatively higher than non–diseased fish except 

necrosis scores of CMS–affected fish which were not significant. These 

significantly higher enzymes levels and their significant correlations to 

histopathology supported the potential use of serum enzymes for screening of 

HSMI–affected fish is promising (Paper II). 

 

6.3 Cardiac pathological responses of Atlantic salmon affected with 

cardiac diseases 

  The investigated cardiac diseases (CMS, HSMI and PD) have been 

associated with inflammation and necrosis in the heart, however, an overall 

evaluation of the cardiac pathological responses in Atlantic salmon was 

unexplored (Poppe and Ferguson, 2006). To determine the cardiac pathological 

responses, broader investigations were performed to identify the specific 

biomarkers in Atlantic salmon. In papers III and IV, markers (antibodies) were 

used to identify and compare the cardiac pathological responses in Atlantic 

salmon heart affected with HSMI, PD and CMS. Through immunohistochemistry, 
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specific antibodies were tested on HSMI–, CMS– and PD–affected paraffin 

embedded hearts to fulfill the third and fourth aims of the study. Presently 

histopathological findings are used to diagnose HSMI and CMS and 

immunohistochemistry has been suggested as a useful addition in the diagnostic 

tools for these diseases (Finstad et al., 2012). Immunohistochemistry is not a 

quantitative assay but recent studies showed a linear correlation between the 

results of measuring quantitative RNA expression by real time PCR and 

semiquantitative protein expression by immunohistochemistry (Barton and 

Levine, 2008; O'Connor et al., 2010). 

 

6.3.1 Nature of inflammatory cells 

 The involvement of mononuclear lymphocyte–like cells in all three 

investigated diseases is a well–known fact (Ferguson et al., 1990; Poppe and 

Ferguson, 2006; Kongtorp et al., 2004, 2006; Taksdal et al., 2007; Christie et al., 

2007). Inflammation is suggested as a protective mechanism to tissue damage, 

irrespective of the cause, and if the tissue injury did not completely damage the 

effected tissue (Roberts and Rodger, 2001). Lymphocyte like–cells have been 

reported in trabecular (PD, HSMI and CMS) and non–trabecular (HSMI and PD) 

layers of the heart in the investigated diseases (Paper II) (Poppe and Ferguson, 

2006; Kongtorp, 2009). Inflammatory cells have not been characterized in 

Atlantic salmon particularly affected with cardiac diseases (Kongtorp, 2009). 

Until recently, it was not possible to characterize these inflammatory cells due 

to non–availability of specific markers (antibodies), but nowadays several 

salmonid–specific antibodies are available and validated, including CD3ɛ 

(Koppang et al., 2010; Boardman et al., 2012), CD8α (Hetland et al., 2010, 2011; 

Olsen et al., 2011) and recombinant tumor necrosis factor–α (rTNFα) (Zou et al., 

2003). There were moderate levels of CD3ɛ+ cells in atria as compared to strong 

levels in the HSMI–affected ventricles, specifically in the affected areas with 
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inflammatory foci and degenerative changes (Paper III). This observation was 

supported by moderate severe lesions reported in atria as compared to 

ventricles in HSMI–affected fish (Kongtorp et al., 2006) and subsequently by 

moderate levels of CD3ɛ immunostaining identified in the early stages of 

soybean enteropathy in Atlantic salmon (Lilleeng et al., 2009). The CD3ɛ 

immunostaining of HSMI–affected hearts was significantly different from non–

diseased fish where only few CD3ɛ+ cells were identified (Paper III) and in 

agreement with Koppang et al. (2010) where few CD3ɛ+ cells were identified in 

non–diseased heart. Interestingly, there were differences in CD3ɛ 

immunoexpression among three investigated diseases where HSMI–affected 

hearts presented with strong levels of CD3ɛ immunopositive cells as compared 

to moderate levels in CMS– and PD–affected hearts (Paper IV). Besides a 

general T cell marker, CD3 has been suggested to have additional roles and the 

CD3 immunolocalization has also been identified in gastric parietal cells, renal 

tubular epithelial cells and cerebellar Purkinje cells in several species such as 

human, mouse, rat, quail and guinea pig (Garson et al., 1982; Alroy et al., 2005). 

Recently, Xu et al. (2010) suggested the involvement of CD3 in the normal 

development of retinal ganglion cells in mice. To test these additional roles of 

CD3 in teleosts (Atlantic salmon), cardiac pacemaker tissue was stained with 

CD3ɛ antiserum. It identified specific positive immunostaining in postganglionic 

nerve cell bodies, suggesting additional roles of CD3 in Atlantic salmon (Paper I). 

The novel CD3ɛ immuno–reaction in Atlantic salmon cardiac neural tissue shares 

similar pattern to that of mammals but requires further studies to determine its 

functional significance.  

 The CD8 is considered the main marker of cytotoxic T lymphocytes and 

part of the T cell receptor (TCR). Cell mediated cytotoxicity has been suggested 

by CD8α+ lymphocytes in rainbow trout (Takizawa et al., 2011). Besides low 

levels of CD8α positive staining, CMS–affected hearts expressed more CD8α+ 
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cells as compared to other diseased (HSMI– and PD–affected hearts) and non–

diseased hearts (Paper IV). The CD8 immunostaining was confined to 

lymphocyte–like cells in diseased and non–diseased hearts (Papers III and IV). 

Timmerhaus et al. (2011) have shown the correlation between histopathology, 

viral loads and CD8+ T cells, suggesting the involvement of CD8+ T lymphocytes 

in clearing the experimental PMCV infection in Atlantic salmon. The low levels of 

CD8α+ cells have been suggested to have protective roles in Atlantic salmon 

(Hetland et al., 2011). Few CD8α+ cells have been identified in parasitic infection 

of rainbow trout and infectious salmon anaemia (ISA) infection of Atlantic 

salmon (Hetland et al., 2011; Olsen et al., 2011). Present study suggested that 

mononuclear inflammatory cells were predominantly CD3ɛ+ in all investigated 

diseases (Papers III and IV).  

 However, moderate levels of immunostaining were observed using rTNFα 

antiserum where immunopositive cells included macrophage–like and 

eosinophilic granular cells (EGCs) in all three investigated diseases. rTNFα+ cells 

were located in the areas surrounding lesions (Papers III and IV). Due to central 

role of TNFα in inflammation and immunity, it has been suggested as 

inflammatory biomarkers in salmonids (Haugland, 2008). Macrophages are the 

main antigen presenting cells (APC), although dendritic cells have also been 

identified in fish, and shown to present antigen to T lymphocytes and to secrete 

cytokines (TNFα) (Lovy et al., 2008; Magnadottir, 2010; Tizard, 2004). 

Eosinophilic granular cells were also identified in bulbus arteriosus in diseased 

and non–diseased fish (Papers III and IV) and supported by Amin and Trasti, 

(1989) who reported abundant EGCs in bulbus arteriosus and at borders 

between bulbus arteriosus and ventricle of Atlantic salmon. Qin et al. (2001) 

have shown the production of TNFα by macrophages in rainbow trout and 

histopathological observations have identified macrophage–like cells in CMS– 

and HSMI–affected hearts that support our observation of immunopositive 
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macrophage–like cells in Atlantic salmon by rTNFα antiserum in the present 

study (Papers III and IV) (Ferguson et al., 1990; Kongtorp, 2009). The rTNFα 

immunostaining for HSMI–affected hearts was significantly different from non–

diseased hearts (Paper III). EGCs as functional analogue of the mammalian mast 

cells are also recruited at the site of inflammation in teleosts (Reite and 

Evensen, 2006) and are likely to be involved in enhancing T cell activation by 

presenting antigens and release of TNFα similar to that seen in mammalian mast 

cells (Hogan et al., 2008; Rothenberg and Hogan, 2006). It has been previously 

suggested that the final stages of EGCs maturation take place locally in teleosts 

(Reite and Evensen, 2006) and rainbow trout gill explants showed a significant 

increase in EGCs as compared to controls upon stimulation with LPS and TNFα 

(Holland and Rowley, 1998). In mammals, the antigen presentation ability of 

mast cells has been demonstrated by in vitro stimulation of mast cells with LPS 

and IFN–γ which induced the MHC class II expression, and subsequently by 

showing in vivo increased presence of MHC class II+ mast cells recorded by 

inflammatory stimuli (Leishmania major) in situ (Kambayashi et al., 2009). The 

increased presence of EGCs has been reported in several salmonid conditions 

including acanthocephalan infection, ectoparasites (Ichthyobodo sp.) infection 

and ulcerative dermal necrosis of nasal epithelium, suggesting the recruitment 

of EGCs in persistent inflammatory conditions of salmonid (reviewed in Reite 

and Evensen, 2006). The above mentioned studies were in agreement with the 

present findings of moderate levels of EGCs in diseased hearts which were likely 

to be either recruited at the lesioned sites (heart) or possibly involved in T cell 

activation by performing antigen presenting roles but it requires further 

assessment to confirm (Papers III and IV). 

 Another monoclonal rainbow trout anti–granulocytes/monocytes 

antibody was used which identified few granulocyte/monocytes–like cells in 

diseased and non–diseased hearts (Papers III and IV). These results suggested 
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that lymphocytic response dominant over granulocytes in the investigated 

diseased hearts and spectrum of inflammatory cells associated with the cardiac 

pathology consisted of mainly CD3Ɛ+ T lymphocytes in CMS–, PD– and HSMI–

affected hearts (Papers III and IV). 

 

6.3.2 MHC class I and II antigen presentation 

 Strong levels of MHC class I immuno–reaction were identified in diseased 

and non–diseased fish hearts because MHC class I molecules are abundantly 

expressed in nearly all known cell types (Randelli et al., 2008). MHC class I 

presents peptides derived from cytosolic proteins and the pathway termed 

cytosolic and endogenous pathway. Viruses infect the cells by entering the 

cytoplasm and endogenous pathway presents these virus infected cells to T 

lymphocytes. MHC class I molecules exclusively interact with CD8+ cytotoxic T 

lymphocytes (CTL). Generally apoptosis results as the outcome of the virus–

infected cells by CTL to prevent infection of the neighboring cells (Randelli et al., 

2008). In the present study, macrophage–like cells were observed in diseased 

hearts by MHC class I immunostain which were suggested important for clearing 

of tissue of infected or necrosed cells whereby performing similar functions in 

piscine as in mammals (Boshra et al., 2006; Ferguson et al., 1990; Magnadottir, 

2006; Tizard, 2004). MHC class I immuno–reaction identified the perinuclear 

myocardial and endocardial staining in the diseased (HSMI–, CMS– and PD–

affected) hearts. However, non–diseased hearts were identified predominantly 

with endocardial MHC class I immunostaining (Papers III and IV) (Dijkstra et al., 

2003; Hetland et al., 2010).  

 MHC class II molecules, on the other hand, bind peptides for presentation 

to the CD4+ T helper cells by the exogenous pathway (Randelli et al., 2008). MHC 

class II molecules are expressed on antigen presenting cells such as dendritic 
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cells, macrophages, B and T lymphocytes, and possibly epithelial cells and is 

considered important molecule for initiation of adaptive immune responses 

(Glimcher and Kara, 1992; Koppang et al., 2004; Toda et al., 2011). MHC class II 

β chain antiserum used in the present study has already been used in several 

studies to identify T lymphocytes, epithelial cells, multinucleated giant cells 

(MGC), macrophages and dendritic–like cells in Atlantic salmon (Koppang et al., 

2003, 2003a, 2004; Kongtorp, 2009; Morrison et al., 2006). MHC class II 

immuno–reactivity was mostly confined to inflammatory foci and identified 

lymphocyte– and dendritic–like cells in the diseased hearts (Papers III and IV). 

This observation was in line with a previous study where Lovy et al. (2008) 

identified increased numbers of dendritic–like cells in the gills of rainbow trout 

affected with microsporidial gill disease (MGD) as compared to non–diseased 

gills. The increased MHC class II immunoexpression in HSMI–affected hearts was 

significantly different from non–diseased hearts (Paper III). Previously, the same 

MHC class II antiserum has been used to immunostain HSMI–affected hearts 

and identified moderate levels of staining (Kongtorp, 2009) and supports our 

observation of increased presence of MHC class II+ cells in HSMI–affected hearts 

(Paper III). Interestingly, MHC class II immunopositive cells frequency were 

different among three diseases with strong, moderate and low levels to no 

staining in HSMI–, CMS– and PD–affected hearts respectively (Paper IV). Atlantic 

salmon infected with amoebic gill disease has been identified with increased 

number of MHC class II+ cells in the gills and MHC class II positive cells were 

suggested as indictor of immune cell trafficking and possible contribution in the 

antigen presentation (Morrison et al., 2006). Additionally, the increased 

presence of MHC class II+ cells have also been described in granulomatous 

uveitis associated with vaccination in Atlantic salmon (Koppang et al., 2004). 

Low levels of MHC class II immunostaining in PD hearts may be explained by a 

transcriptional study where induction of MHC class I but not II has shown in 
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different organs including heart in Atlantic salmon infected with infectious 

salmon anaemia virus (ISAV) (Jorgensen et al., 2007). In Atlantic salmon, MHC 

class I and II expression experiments have shown transcriptional regulatory 

mechanisms similar to those in mammals (Koppang et al., 1998, 1999). The 

inflammatory spectrum of diseased hearts was predominantly comprised CD3Ɛ+ 

and MHC class II+ cells, suggested the inflammatory cells as activated T helper 

cells; however, this assumption requires CD4 antibodies to identify the 

immunopositive inflammatory cells in the diseased hearts (Papers III and IV).  

 

6.3.3 Programmed cell death 

 The myocytic necrosis is a common finding in all three investigated 

diseased hearts (Poppe and Ferguson, 2006). Together apoptosis and necrosis 

determine the final degree of lethal myocardial injury (Zhao and Vinten–

Johansen, 2002). In Paper IV, caspase 3 and TUNEL staining identified strong to 

moderate levels of apoptotic cells in the investigated diseased hearts and in 

agreement with significantly increased caspase 3 immunostaining identified in 

the teleost gills (Thalassoma pavo L.) exposed to cadmium (Brunelli et al., 2011). 

Recently, caspase–3–mediated apoptosis has been shown in the regenerating 

spinal cord in teleost (Apteronotus leptorhynchus), suggesting its role in tissue 

replacement after injury (Sirbulescu and Zupanc, 2009). Additionally, pro–

apoptotic genes such as Bax and Bcl–x have been shown significantly 

upregulated in Atlantic salmon exposed to uranium (U) as compared to controls 

(Song et al., 2012). The increased presence of caspase 3+ cells has also been 

noted in the adult brain of brown ghost knifefish (Apteronotus leptorhynchus) 

affected with aneuploidy (Rajendran et al., 2008) and significantly increased 

caspase 3 staining identified in the intestine of soybean meal (SBM)–induced 

enteritis in Atlantic salmon (Bakke–McKellep et al., 2007). The above mentioned 
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studies support the increased presence of apoptotic cells (identified by caspase 

3 and TUNEL) in the diseased hearts in the current study (Papers III and IV). The 

increased number of apoptotic cells (in CMS and PD–affected hearts) could be 

explained by the marked tissue regeneration (heart) capacity in Atlantic salmon 

affected with the investigated diseases (Ferguson et al., 1990; Kongtorp, 2009; 

McLoughlin et al., 2002; Taksdal et al., 2007). As apoptosis is a highly ordered 

and energy demanding process, energy deprivation in cardiomyocytes could 

inhibit the terminal apoptotic events, and could lead to the programmed cell 

necrosis (Dorn II, 2009). CMS and PD were the cardiac diseases identified with 

more cardiac necrotic changes as compared to HSMI where mononuclear cells 

infiltration predominated (Papers II and IV) (Kongtorp et al., 2004, 2004a; 

Grammes et al., 2012). This was reflected by the moderate to low levels of 

TUNEL and caspase 3+ cells in HSMI–affected hearts respectively (Paper III) and 

corroborated by low levels of caspase 3 immunostaining in HSMI–affected 

hearts (Grammes et al., 2012). Recently, a transcriptomic study of PMCV 

injected fish has shown the correlation of CMS–related lesions and upregulation 

of T cells and apoptotic genes at peak cardiac pathology/viral load (8 weeks post 

infection) in the hearts (Timmerhaus et al., 2011). This was in agreement with 

the increased presence of apoptotic cells in the CMS and PD–affected hearts 

(Paper IV).  

 As in mammals, fish viruses are also capable of inducing apoptosis in the 

hosts (Hay and Kannourakis, 2002; Silva et al., 2008). Phylogenetic analysis of 

piscine reovirus (PRV) associated with HSMI disease in Atlantic salmon revealed 

that PRV lies taxonomically in between the orthoreovirus and aquareovirus. PRV 

comprises 10 dsRNA genome segments and in line with orthoreoviruses as 

compared to aquareoviruses consisted of 11 segments (Palacios et al., 2010). 

Although, the structural and functional properties of PRV are undetermined to 

date but sequence homologies suggested PRV closer to mammalian 
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orthoreoviruses (Finstad et al., 2012; Palacios et al., 2010). In mammals, 

reoviruses including orthoreoviruses induce apoptosis in a wide variety of 

cultured cells (in vitro) and in target tissues (in vivo) including the heart and CNS 

(Clarke et al., 2005). Reoviruses induce apoptosis by regulating several 

important genes (TNF ligand, Bid, Smac) related to extrinsic and intrinsic 

apoptosis pathways and apoptosis considered critical mechanism by which 

disease is triggered in the host (Clarke and Tyler, 2003; Clarke et al., 2005). As 

suggested by Kongtorp (2009), the HSMI–associated virus possesses the 

immunoregulatory properties. The cytopathic effect of chum salmon reovirus 

(CSV) has shown the apoptosis and syncytia (large multinucleated giant cells 

formed by the fusion of neighboring cells) formation in salmonid cell lines 

including epithelial–like CHSE–214, fibroblast–like RTG–2 and 

monocyte/macrophage–like RTS11 cell lines. The hemotypic aggregation was 

observed in RTS11 instead of syncytia formation that suggested the potential for 

CSV to modulate macrophage functions (DeWitte–Orr and Bols, 2007). Apart 

from giant cells, the above mentioned studies support the present observation 

of increased numbers of apoptotic cells in HSMI–affected hearts and suggest 

the similar cellular responses to those found in other orthoreoviruses (Paper III). 

Mammalian alphaviruses such as Sindbis virus (SIN) and Semliki forestvirus (SFV) 

have shown to induce apoptosis in both cell cultures and target organs (Kiver, 

2009), and further syncytia and apoptosis have also been shown in CHSE–214 

cell culture by Norwegian salmonid alphavirs (SAV3) (Skotheim, 2009; Yousaf, 

2008). Infectious pancreatic necrosis virus (IPNV) has been shown to regulate 

apoptosis and necrosis death pathways through the upregulation of TNFα in 

zebrafish cell culture (Wang et al., 2011) and it is likely that other fish RNA 

viruses including PRV, SAV or PMCV follow the similar patterns of cell death but 

it requires further assessment. Besides necrotic changes, apoptosis has also 

been reported in heart and pancreas tissues of Atlantic salmon in natural and 
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experimentally induced SAV3 infection by histopathology (Taksdal et al., 2007). 

Recently, in vitro apoptosis has been shown in the chum salmon heart–1 cells 

(CHH–1) and CHSE–214 cells infected with SAV1 (Herath, 2010). The presence of 

apoptosis in heart cell line (CHH–1) supports the apoptosis identified in the 

hearts of the investigated diseases particularly PD. IPNV and viral nervous 

necrosis virus (VNNV) have been shown to induce apoptosis followed by 

secondary necrosis in cell cultures (Chen et al., 2006; Chen et al., 2010; Chiu et 

al., 2010; Hong et al., 1998; Su et al., 2009) and support the current findings of 

strong levels of both apoptosis (identified by caspase 3 and TUNEL) and necrosis 

(identified by H&E staining) cells in PD– and CMS–diseased hearts (Paper IV). 

However, further evaluation is required to determine if apoptosis follows 

necrosis in the investigated diseases, although, apoptosis and necrosis were 

observed in the present study (Papers III and IV). Comparatively TUNEL 

identified more positive cells than caspase 3 immunostaining (Papers III and IV) 

due to the reason that TUNEL positivity might also indicate necrosis as 

suggested by Bianciardi et al. (2006). 

 

6.3.4 Tissue hypoxia 

 PD–affected fish have shown significant reductions in antioxidant status 

including blood plasma and liver vitamin E levels as compared to healthy fish 

(Ferguson et al., 1986) and further confirmed by Rodger et al. (1991). At that 

time, the marked decreased levels of vitamin E were suggested to be as a 

consequence of the disease instead the cause of the disease (Ferguson et al., 

1986). Presently it is known that the anti–oxidant shift (oxidative stress) is a 

well–established effect of infectious diseases and feature of cell death (Hay and 

Kannourakis, 2002), and suggested as major source of myocardial damage in 

salmonid viral diseases instead of viruses itself (Poppe and Ferguson, 2006).  It is 
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suggested that the increase in reactive oxygen species (ROS) during 

inflammation contributes to HIF1α accumulation and activation (Dehne and 

Brune, 2009). HIF1α is a transcriptional factor that is upregulated under hypoxia 

and is considered essential for normal heart physiology and particularly plays 

important roles in cardiac conditions such as ischemia and pressure overload 

(Hopfl et al., 2004; Gale and Maxwell., 2010; Dehne and Brune, 2009). HIF1α 

immunostaining showed moderate levels of staining in PD–affected hearts; 

while low levels were identified in CMS– and HSMI–affected hearts as compared 

to low to no staining in non–diseased hearts (Papers III and IV). Being a 

transcriptional factor, HIF1α is upregulated under hypoxic conditions and 

moderate levels of HIF1α immunostaining in PD–affected hearts suggested 

possible myocardial hypoxia (Hopfl et al., 2004; Gale and Maxwell, 2010; Dehne 

and Brune, 2009). Caretti et al. (2007) have shown in vivo overexpression of 

HIF1α in hypoxic myocardium in mammals. Immunohistochemical studies 

identified HIF1α+ cells in several tissues including heart under normoxia in 

mammals, although increased expression was observed under hypoxia (Stroka 

et al., 2001). The marked increase in HIF1α expression has been observed in 

salmonid cell cultures upon hypoxia, although, low levels of HIF1α levels were 

also expressed under normoxia (Soitamo et al., 2001). HIF1α protein 

stabilization and degradation have been suggested similar mechanisms in 

mammals and teleosts, although in salmonids (rainbow trout and chinook 

salmon) stabilization occurred at much higher oxygen levels than in mammals, 

suggesting HIF1α roles in piscine physiology (Stroka et al., 2001; Soitamo et al., 

2001). It supports our observation of low levels of HIF1α immunostaining in 

normoxic non–diseased hearts (Papers III and IV). Recently, Terova et al. (2008) 

have shown the significantly increased HIF1α expression by real time PCR in 

response to acute and chronic hypoxia in teleost (seabass, Dicentrarchus 

labrax). During development stages of Baltic salmon (Salmo salar), HIF1α 
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protein expression increased with age as identified by Northern and Western 

blot analysis (Vuori et al., 2004), and HIF1α protein has been shown to be 

expressed in tissues derived from salmonid liver, gonad, embryonic tissues 

(Soitamo et al., 2001), and in cardiac and skeletal muscle in the present study 

(Papers III and IV). The disturbances in HIF1α functions have been associated 

with Baltic salmon yolk–sac fry mortality (M74–syndrome) and increased HIF1α 

expression has been identified in Atlantic salmon affected with vertebral 

column deformity (Sanchez et al., 2011; Vuori et al., 2004). In humans, HIF1α 

expression may lead to cardiac degeneration, dysfunction and leading to heart 

failure (Bekeredjian et al., 2010; Lei et al., 2008). Moreover, TNFα which is 

rapidly released after infection has been suggested to activate HIF1 in mammals 

(Dehne and Brune, 2009) and may strengthen the increased TNFα and HIF1α 

immunoexpression in response to cardiac diseases of Atlantic salmon in the 

present study (Papers III and IV).  

 

6.3.5 Mitotic activity 

 Proliferative cell nuclear antigen (PCNA) is a well conserved protein 

identified in all eukaryotic species based on sequence, structural and functional 

similarities (Strzalka and Ziemienowicz, 2011). PCNA was first identified in the 

serum of some patients with systemic lupus erythematosus (Miyachi et al., 

1978). PCNA serves as probably the most commonly used marker for cellular 

proliferation and surrogate marker for DNA synthesis, cell cycle control, DNA 

repair and apoptosis (Soonpaa and Field, 1998; Eldridge and Goldsworthy, 1996; 

Chapman and Wolgemuth, 1994; Panday and Wang, 1995; Strzalka and 

Ziemienowicz, 2011). It has been suggested as marker of cell proliferation in 

myocardial hypertrophy, myocarditis, valvular heart disease, ischemic heart 
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disease and cardiomyopathy in humans (Matturri et al., 1997, 2002; Arbustini et 

al., 1993).  

 Moderate levels of PCNA immuno–reaction were observed in HSMI–

affected diseased hearts and were significantly different from a low number of 

PCNA+ cells in non–diseased hearts (Paper III) (Grammes et al., 2012). PCNA 

staining was localized to the nuclei and cytoplasm as well as hypertrophic nuclei 

(Papers III and IV). Additionally, strong to moderate levels of immuno–reactivity 

resulting from PCNA were observed in CMS– and PD–affected hearts 

respectively while focal low levels of immuno–reactivity were identified in non–

diseased hearts (Paper IV) and supported by other piscine studies (Zenker et al., 

1987; Ortego et al., 1995; Borucinska et al., 2008). The significant increase in the 

number of PCNA+ cells has been suggested as an indicator of high cell turn over 

and recruitment in Atlantic salmon affected with amoebic gill disease (Morrison 

et al., 2006; Adams and Nowak, 2003) and subsequently in the intestine of 

Atlantic salmon infected with soybean meal (SBM)–induced enteritis (Bakke–

McKellep et al., 2007). The intense and high levels of immunostaining 

cardiomyocytes with anti–PCNA antibodies suggested active myocardial 

hyperplasia in diseased hearts (Papers III and IV). Heart regeneration has been 

shown in CMS–, PD– and HSMI–affected fish (Ferguson et al., 1990; Kongtorp, 

2009; McLoughlin et al., 2002; Taksdal et al., 2007). Furthermore, Kongtorp 

(2009) has described complete heart regeneration in post–clinical phase of 

HSMI–affected fish despite disease severity. Many cells have been lost in HSMI–

affected heart, however, surviving endocardial and epicardial cells in HSMI–

affected fish were suggested to be involved in the regenerating process. 

Additionally, it was hypothesized that scar formation was not important and 

fibrotic tissue cleared in healing phase following HSMI outbreak (Kongtorp, 

2009). Fish retain the ability of heart remodeling after development as 

compared to mammals where heart regeneration capacity is not completely lost 
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but severely limited in postnatal and adult hearts (Becker et al., 2011; Kikuchi et 

al., 2010; Major and Poss, 2007; Mommsen, 2001; Poss, 2007; Sun et al., 2009; 

Vornanen et al., 2002; Poppe and Ferguson, 2006; Soonpaa and Field, 1998). For 

example, Jopling et al. (2010) have shown zebrafish heart regeneration by 

cardiomyocyte dedifferentiation and proliferation without involvement of stem 

or progenitor cells. Cardiac remodeling has also been described by showing the 

thickening of compact ventricle layer of Atlantic salmon infected with amoebic 

gill disease (AGD) (Powell et al., 2002) and supported the increased presence of 

PCNA+ cells in diseased hearts as identified in Papers III and IV. PCNA 

immunostaining suggested high levels of cell division activity in diseased hearts 

and identified hypertrophic nuclei which have been suggested representing 

compensatory hypertrophy in CMS–affected hearts in Atlantic salmon (Papers III 

and IV) (Ferguson et al., 1990).  

 Taken together, the increased presence of PCNA+ cells and strong to 

moderate levels of apoptosis and hypoxia suggested a high cell turn over where 

an induction of cell and tissue damage/repair occurring in diseased hearts 

(Papers III and IV). 
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7.1 Conclusions  

 The current study successfully identified and characterized the cardiac 

pacemaker tissue in Atlantic salmon at SA junction and subsequently 

demonstrated immunoexpression of natriuretic peptides (sCP and VNP) and 

CD3 in the cardiac pacemaker, suggesting their additional roles in cardiac neural 

tissue. Based on the observations in Paper I, to identify the cardiac pacemaker 

in fish (Atlantic salmon), the heart must be carefully removed from the 

pericardial cavity, ensuring the inclusion of the sinus venosus and atrium in the 

samples. Furthermore, biomarkers of clinical biochemistry and cardiac 

pathological changes were identified and validated in the cardiac diseases of 

Atlantic salmon (Papers II and III). Presently, HSMI and CMS are mostly 

diagnosed by histopathology and immunohistochemistry would be beneficial as 

a supplementary tool for these cardiac diseases. In end, the identified specific 

markers (antibodies) were used to characterize and compare the cardiac 

pathological responses in Atlantic salmon affected with HSMI, CMS and PD 

(Papers III and IV). It is noteworthy these apparently similar cardiac diseases of 

Atlantic salmon exhibited differences in cardiac immunopathological responses 

in the heart. 

 

In summary: 

 

 Location and detailed morphology of Atlantic salmon pacemaker at SA 

node were described. 

 Novel neuromodulatory/neurotransmitter roles of natriuretic peptides 

(sCP and VNP) and additional CD3 roles were suggested in teleosts 

(Atlantic salmon). 
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 Inflammatory cells comprised mainly CD3Ɛ+ T lymphocytes in all 

investigated diseases and lymphocytic cell population dominated over 

granulocytes. 

 Moderate levels of eosinophilic granular cells (EGCs), and macrophage–

like were identified in all three investigated diseases. MHC class II+ cells 

included antigen presenting cells including lymphocyte– and dendritic–

like cells. 

 Strong to moderate levels of apoptotic cells were identified besides 

necrosis in all investigated diseases. 

  The active myocardial hyperplasia was indicated in diseased hearts due 

to pronounced and extensive PCNA immunostaining of cardiomyocytes 

and suggested the induction of cell and tissue damage/repair occurring in 

the diseased hearts. 

 PD–affected hearts appeared comparatively more hypoxic than CMS– 

and HSMI–affected hearts due to moderate levels of HIF1α 

immunoexpression. 

 The CD3, MHC class II, PCNA, TNFα, caspase 3 and TUNEL staining were 

confined to the lesioned areas in the diseased hearts, pointing to the 

pathological changes and appeared promising in the identification of 

lesioned areas in the investigated diseased hearts. 
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7.2 Future prospects 

 The present study performed the characterization of cardiac pacemaker 

of Atlantic salmon and the detailed evaluation of pathological changes of 

cardiac pacemaker tissue in response to cardiac diseases. Mononuclear cells 

infiltrations (lymphocyte–like cells) were observed in the pacemaker tissue 

besides other heart compartments such as atrium and ventricle in the 

investigated diseases. Ganglionitis and neuritis (cardioneuropathy) were 

identified in the cardiac pacemaker at SA node of CMS–, PD– and HSMI–affected 

fish (unpublished). Cardioneuropathies have been observed with atrial 

arrhythmia such as sustained sinus tachycardia and sinus arrhythmia, atrial 

fibrillation, sino–atrial block and sinus sick syndrome in humans (Rossi, 1985). 

Recently, autonomic dysfunction due to reduced heart rate has been identified 

in hamsters infected with West Nile virus, pointing the reduced heart rate may 

lead to sudden cardiac death (Wang et al., 2011a). Additionally, subtle cardiac 

conduction system pathology has been associated with sudden unexpected 

death in epilepsy patients due to cardiac arrhythmia (Opeskin et al., 2000). The 

above mentioned data led to the hypothesis that Atlantic salmon heart with 

cardioneuropathy may exhibit cardiac arrhythmia due to the pathological 

changes in cardiac neural tissue. For example, despite severe degenerative 

heart lesions, CMS–affected fish remain alive and die mostly at harvesting stage, 

suggesting similar mechanisms of cardiac arrhythmias in teleosts as in mammals 

(Ferguson et al., 1990; Opeskin et al., 2000; Poppe and Ferguson, 2006; Wang et 

al., 2011a). No mortality has been identified in PMCV injected CMS challenge 

trials, pointing the lack of additional stressors which were required for mortality 

(Timmerhaus et al., 2011). HSMI–affected dead fish exhibit more severe 

inflammation as compared to moribund or healthy fish, suggesting more intense 

immune reaction blown out of proportion (Kongtorp, 2009). Taken together, 

these observations highlight the importance of cardioneuropathy in fish and 
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suggest carrying out studies to characterize the pathological changes of cardiac 

pacemaker of Atlantic salmon, their functional significance on the heart 

performance and potential association with mortality are necessary. Novel sCP 

and VNP immunostaining should be supported by the identification of receptor 

binding sites of [125I] sCP and VNP in the cardiac neural tissue of Atlantic salmon. 

Furthermore, immunolocalization of NP receptors including NPR–A, NPR–B and 

NPR–C will be useful. It will strengthen the neurotransmitter/neuromodulatory 

roles of natriuretic peptides and further explores cardiac autonomic nervous 

system of heart in Atlantic salmon. The serum enzymes (CK and LDH) levels 

were measured and correlated to histopathology in diseased and non–diseased 

fish in the present work. The identification and evaluation of serum enzymes in 

Paper II enabled use CK and LDH as biomarkers, which may become relatively 

cheap and easily available assays to the local farmers. Longitudinal studies 

should be performed at the farms and enzymes levels measured throughout the 

production cycle. It will establish normal and diseased enzymes ranges, and in 

turn contributes in limited piscine clinical biochemistry. Moreover, Atlantic 

salmon–specific clinical biochemical assays should be developed. It will provide 

us non–lethal diagnostic tools to diagnose heart diseases that are causing huge 

economic losses to Atlantic salmon aquaculture. Immunohistochemical markers 

are supplementary tools to identify protein expression at tissue levels and there 

is a need for more antibodies. As the apparently similar cardiac diseases 

exhibited differences in immunopathological responses in Atlantic salmon, so 

the care should be taken to devise protection/vaccination strategies regarding 

these diseases separately. The research should be continued to produce more 

Atlantic salmon–specific polyclonal and monoclonal antibodies particularly CD4 

antibodies to confirm the presence of T helper cells suggested by the present 

study.  
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a  b  s  t  r  a  c  t

This  study  describes  the  location  of  the  primary  pacemaker  at  the sino-atrial  (SA)  junction  and  the local-
ization  of  salmon  cardiac  peptide  (sCP)  and  ventricular  natriuretic  peptide  (VNP)  in Atlantic  salmon  (Salmo
salar  L.).  The  pacemaker  tissue  appeared  lightly  stained  and  composed  of:  (1) wavy  nerve bundles  with
oval  elongated  wavy  appearing  nuclei  with  pointed  ends,  (2)  ganglion  cells (12–22  �m)  with  granular
cytoplasm  and  (3) wide  muscle  fibers  with  large  nuclei  (modified  cardiomyocytes)  clearly  distinguishing
them  from  the other  myocardial  cells.  Pacemaker  tissue  was  further  evaluated  using immunohistochem-
ical  staining.  Immunoreactivity  of natriuretic  peptides  (sCP  and  VNP)  antisera  showed  specific  staining
in  pacemaker  ganglion  cells  in  addition  to the  cardiomyocytes.  Positive  staining  with  anti-CD3� antis-
era  in  the  pacemaker  ganglion  cells  is  a novel  finding  in  teleosts  and  is  consistent  with  observations  in
mammals.  In  conclusion,  the  Atlantic  salmon  pacemaker  was  shown  to be  located  at the  SA node  and  to
harbor  sCP  and VNP  peptides,  suggesting  a possible  neuromodulatory  and/or  neurotransmitter  role  for
these  cardiac  hormones  within  the  teleost  heart.

© 2012 Elsevier GmbH. All rights reserved.

Introduction

The S-shaped teleost fish heart consists of four serially arranged
chambers that include: (1) the sinus venosus, (2) the atrium, (3) the
ventricle and (4) the bulbus arteriosus (Randall, 1968). The heart
shape, in particular the ventricle in fish, is highly variable depend-
ing upon specific functional needs. The ventricle is composed of
an inner trabecular layer (spongy layer as in the atrium) and an
outer non-trabecular (compact) layer. Compared to the ventricle,
the atrium is a thin trabecular chamber with an irregular sac-like
shape. The atrium forms a connection between the sinus venosus
and the ventricle by the atrio-ventricular (AV) valve that ensures

Abbreviations: AEC, 3-amino-9-ethyl carbazole; ANP, atrial natriuretic peptide;
BNP,  B-type natriuretic peptide; BSA, bovine serum albumin; CNP, C-type natriuretic
peptide; DAB, 3,3′-diaminobenzidine; dH2O, distilled water; AV, atrio-ventricular;
H&E,  hematoxylin and eosin; NP, natriuretic peptides; PBS, phosphate buffered
saline;  PBST, PBS with 0.1% Tween 20; PVA, polyvinyl alcohol; PVDF, polyvinyli-
dene  fluoride; rt-ANP, recombinant rainbow trout atrial natriuretic peptide; SA,
sino-atrial; sCP, salmon cardiac peptide; SDS, sodium dodecyl sulfate; SDS-PAGE,
sodium  dodecyl sulfate polyacrylamide gel electrophoresis; TCR, T cell receptors;
VNP,  ventricular natriuretic peptide.
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a unidirectional flow of blood. The sinus venosus is predominantly
composed of connective tissue. It is related to the initiation and
control of heartbeat and serves as a site for the cardiac pacemaker
in many fishes (Farrell and Jones, 1992; Jobling, 1995; Olson and
Farrell, 2006; Poppe and Ferguson, 2006).

Ectotherms lack a well-formed cardiac conduction system in
contrast to endotherms. It has been suggested that the cardiac con-
duction system evolved later in endothermic animals (Sedmera
et al., 2003; Solc, 2007). The mammalian cardiac conduction sys-
tem consists of three main parts, the sino-atrial node (SA node or
‘pacemaker’), the atrio-ventricular node (AV node) and the His-
Purkinje system (which is absent in fish). The action-potential starts
in the autonomous pacemaker cells and propagates impulses to
other parts of the heart. Irregular and slow contraction rates have
been reported in the absence of specialized pacemaker cells. The
pacemaker is composed of intracardiac postganglionic nerve cell
bodies (ganglion cells) and a network of nerve fibers and is respon-
sible for the initiation of the heart beat (Laurent et al., 1983; Farrell
and Jones, 1992; Voranen et al., 2002; Boyett, 2009; Zaccone et al.,
2011). Specific conduction system-like cells have been identified
mainly at the junction of the SA area, but also have been reported
at the atrio-ventricular (AV) funnel and atrio-ventricular (AV) junc-
tion (Saito, 1969; Zaccone et al., 2009a,b, 2011).
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Histologically, the pacemaker tissue has been identified at the
junction of the atrium and the sinus venosus in several fish species
such as rainbow trout, cod, eel, plaice and bream (Yamauchi and
Burnstock, 1968; Saito, 1969; Santer, 1972; Laurent et al., 1983;
Lukyanov and Sukhova, 1983; Poppe and Ferguson, 2006; Solc,
2007). Haverinen and Vornanen (2007) described the pacemaker
as a ring of specialized cardiac tissue (nodal tissue) at the sino-
atrial (SA) junction in rainbow trout (Oncorhynchus mykiss). This
study mainly focused on the electrophysiology of the pacemaker
without investigating the tissue morphology of the pacemaker. A
connective tissue sheet surrounded and infiltrated the nodal tis-
sue to divide it into smaller areas. Nerves were identified at the
periphery and in the nodal tissue at the sino-atrial junction. The
identification and localization of pacemaker cells is ambiguous and
one of the reasons was based on their smaller size (∼0.2 mm in
width, diameter and ∼3 mm in length) in a 200–300 g rainbow
trout at the sino-atrial junction (Haverinen and Vornanen, 2007).
Pacemaker tissue appears lightly stained by hematoxylin and eosin
(H&E) staining with wider muscle fibers and larger nuclei clearly
separated by loose connective tissue from the rest of the myocar-
dial cells (Yamauchi and Burnstock, 1968; Sedmera et al., 2003;
Haverinen and Vornanen, 2007; Solc, 2007).

Natriuretic peptides (NP) are a group of hormones originally
described by de Bold et al. (1981), synthesized and secreted mainly
by the heart. The four NP members identified in vertebrates include:
(1) atrial NP (ANP), (2) B-type NP (BNP), (3) C-type NP (CNP) and (4)
ventricular NP (VNP). VNP has been identified so far in the heart of
teleosts (atrium and ventricle) such as eel, sturgeon and salmonid
(rainbow trout) with the VNP gene sequence highly conserved in
these three fishes (Takei, 2000; Inoue et al., 2005). VNP is a unique
peptide with a long COOH-terminal tail sequence and has vasoac-
tive and renal effects owing to its high affinity to both NPR-A and
NPR-B receptors (Katafuchi et al., 1994; Takei, 2000). The specific
antibodies against synthetic salmon cardiac peptide (sCP), which
is structurally and functionally similar to mammalian atrial natri-
uretic peptide (ANP), have been used to localize and quantify the
sCP in the atrium and ventricle of Atlantic salmon (Tervonen et al.,
1998; Arjamaa et al., 2000; Vierimaa et al., 2006). Immunohisto-
chemical localization of ANP has been identified in the intra-cardial
ganglion cells and nerve fiber varicosities in the bovine conduction
system (Hansson and Forsgren, 1993). These findings were further
demonstrated in human, cow, sheep, pig and rat. Mammalian nerve
fiber varicosities have been reported to contain ANP as demon-
strated by immunohistochemistry in the proximity of conduction
cells of the AV node and the AV bundle and occasionally in the SA
node, bundle branches, septomarginal trabeculae and false tendons
(Hansson and Forsgren, 1993, 1994; Hansson et al., 1998; Hansson,
2002). ANP has been suggested to be synthesized in the mammalian
cardiac conduction system and increased ANP expression has been
reported associated with heart diseases or cardiac sympathectomy
(Mochizuki et al., 1991; Hansson et al., 1998). Immunolocaliza-
tion of salmon cardiac peptide (sCP) and ventricular NP (VNP) has
been established in atrial and ventricular myocytes (Arjamaa et al.,
2000; Loretz et al., 1997), however, the localization in the cardiac
conduction system (pacemaker) of Atlantic salmon has not been
described.

The CD3 molecule plays an important role in signal transduction
in T cell receptors (TCR) complex and is a specific marker for T
lymphocytes (Wang et al., 2009; Koppang et al., 2010). Besides its
role as a T lymphocyte marker, CD3 antigen has also been identified
in gastric parietal cells, renal tubular epithelial cells and cerebellar
Purkinje cells in several species including humans (Garson et al.,
1982; Alroy et al., 2005). Anti-CD3� antibody has been prepared
and validated as a pan T cell marker in various Atlantic salmon
tissues including the heart (Koppang et al., 2010), but the addi-
tional roles of CD3 antibody, besides that of T cell marker, are still

undetermined  in teleosts. To answer this question, we used the
salmon CD3� antibody to identify the cardiac pacemaker localiza-
tion of Atlantic salmon by immunohistochemistry. Recently cloned
genes and antibodies against these genes (sCP, VNP and CD3�)
in Atlantic salmon have provided us with tools to identify their
localization in relation to the cardiac pacemaker of Atlantic salmon.

In this study, the morphology and location of the cardiac pace-
maker tissue and the immunohistochemical distributions of sCP,
VNP and CD3� were demonstrated using specific antibodies against
sCP, VNP and CD3� respectively in the pacemaker of Atlantic
salmon (Tervonen et al., 1998; Koppang et al., 2010).

Materials and methods

Histology

The  hearts from naive Atlantic salmon weighing between 0.5
and 3 kg were collected from two  sea farms (n = 20 + 30) Wenberg
Fiskeoppdrett, Fauske and Gildeskål Forskningsstasjon AS (GIFAS),
Gildeskål, respectively. Fish were maintained from smolts for
approximately 1–3 years with an average weight range (0.7–2.5 kg)
at the Mørkvedbukta research station, Bodø, Norway in 2 m3

tanks supplied with fresh ambient sea water (range 7–8 ◦C) and
fed 0.7% of body weight with a commercial pelleted diet (Spirit,
Skretting, Stavanger, Norway) three times weekly (n = 20). All
fish were sacrificed by a blow to the head. Fish were carefully
dissected and the heart removed from the pericardial cavity,
ensuring that the sinus venosus along with the atrium were
included in the samples. Hearts were fixed in 10% neutral phos-
phate buffered formalin solution (Sigma–Aldrich Norway AS, Oslo,
Norway) and processed by standard protocols for histological
procedures (dehydration, embedding in paraffin wax, sectioning
3 �m thick, and staining). Additional staining procedures such
as Gomori’s methenamine silver stain (Sigma–Aldrich, Norway)
and cresyl violet (Sigma–Aldrich, Norway) as described elsewhere
(Downing, 1992) were performed to demonstrate nodal tissue
(nerve fibers and ganglion cells).

Immunostaining

Immunostaining was performed according to Haugarvoll et al.
(2008) with slight modifications. Briefly, 3 �m cardiac sec-
tions (n = 3–7) were mounted on poly-l-lysine coated slides
(Sigma–Aldrich, Norway) and dried at 50 ◦C for 30 min. Sections
were deparaffinized with xylene followed by a graded series of
ethanol. Antigen unmasking was undertaken by autoclaving the
slides at 121 ◦C for 21 min  in 10 mM  citrate buffer, pH 6.0 contain-
ing 0.1% Tween 20 (Sigma–Aldrich, Norway). Slides were kept at
room temperature for 20 min  and then washed twice with distilled
water (dH2O) for 2 min. All incubations were performed in a closed-
lid humidity chamber. To inhibit endogenous peroxidase activity,
the slides were incubated with 3% H2O2 (Sigma–Aldrich, Norway)
in methanol for 10 min  at room temperature. Then slides were
washed twice with phosphate buffered saline (PBS). The sections
were incubated in 5% bovine serum albumin (BSA) (Sigma–Aldrich,
Norway) in PBS for 1 h. After BSA removal, slides were incubated
with primary antibodies such as polyclonal rabbit anti-salmon
CD3� antibody (Koppang et al., 2010), polyclonal goat anti-salmon
cardiac peptide (sCP) serum (Pelle-210497) (Tervonen et al., 1998;
Arjamaa et al., 2000) and polyclonal goat anti-vendace ventricular
natriuretic peptide (VNP) serum (F978-250701) overnight at 4 ◦C.
Following incubation, slides were washed three times with PBS
with 0.1% Tween 20 (PBST) (Sigma–Aldrich, Norway), pH 7.4 for
5 min  each. Slides were incubated with secondary antibodies (sc-
2020, donkey anti-goat IgG, Santa Cruz Biotechnology, Santa Cruz,
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Fig. 1. Diagram and micrographs of the cardiac pacemaker area at the sino-atrial junction. (A) A schematic diagram of Atlantic salmon heart and area for histological and
immunological investigation (within the red box). (B) Low power view of sino-atrial (SA) junction and area within black box is shown in (C). Arrow: elastic tissue. (C) Enlarged
image of selected part (black box) of pacemaker area from (B). Arrow head: cardiomyocytes, arrow: modified cardiomyocytes. (D) Distribution of ganglion cells (12–22 �m
in  size) and nerves in pacemaker tissue. n, nerve; g, ganglion cells. (E and F) Cluster of ganglion cells identified by H&E and cresyl violet staining respectively. g, ganglion cells.
(G)  Nerve fibers and ganglion cells were identified by Gomori’s methenamine silver staining. e, erythrocytes; g, ganglion cells; n, nerve. (For interpretation of the references
to  color in this figure legend, the reader is referred to the web version of this article.)

CA, USA or goat anti-rabbit IgG, Vector Laboratories, Burlingame,
CA, USA) in 1.5% BSA in PBS for 30 min  at room temperature.
Slides were washed three times with PBST at room temperature
for 5 min  each. Slides were incubated with 3,3′-diaminobenzidine
(DAB; Sigma–Aldrich, Norway) or 3-amino-9-ethyl carbazole (AEC;
Sigma–Aldrich, Norway) for 5 min  and then washed with distilled
water (dH2O) for 5 min. Slides were dipped in hematoxylin for
10 sec for counterstaining and then dehydrated in a graded series

of  ethanol for 10 sec each followed by xylene and mounted with
polyvinyl alcohol (PVA) mounting media, pH 8.2 (Histolab, Oslo,
Norway) or ImmunoHistoMount (Sigma–Aldrich, Norway). Nega-
tive controls included primary antibodies replaced with 1.5% BSA
in PBS while specificity was  confirmed using pre-immune serum
(CD3), and pre-adsorption controls in which primary antibody (sCP
antiserum) was incubated with sCP antigen and/or recombinant
rainbow trout atrial natriuretic peptide (rt-ANP) (10−4 mol  L−1 and
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Fig. 2. Natriuretic peptides immunostaining in the cardiac pacemaker tissue of Atlantic salmon. (A) Anti-salmon cardiac peptide (sCP) and (B) anti-vendace VNP immunos-
taining of ganglion cells in pacemaker. Arrow: ganglion cells. (C) Negative control by replacing primary antibody with 1.5% BSA in PBS. (D and E) Pre-adsorption test using
10−6 mol  L−1 rt-ANP and sCP antigen identified weak staining in ganglion cell. (F) No was  staining identified at 10−4 mol  L−1 (rt-ANP). Arrow: ganglion cells.

10−6 mol  L−1) at 4 ◦C overnight. Slides were evaluated by light
microscopy using an Olympus microscope BX51 equipped with
CellB software (Olympus Corporation, Tokyo, Japan).

Western blot

Approximately 30 mg  of three Atlantic salmon frozen hearts
were minced on ice and transferred to tubes containing RIPA
buffer (150 mmol  L−1 NaCl, 50 mmol  L−1 Tris–HCl at pH 8.0, 1%
Triton X-100, 0.5% sodium deoxycholate and 0.1% SDS) and son-
icated until the tissue was dissolved at 4 ◦C. The suspension was
collected, centrifuged at 13,000 × g for 30 min  at 4 ◦C and the
supernatant collected. 50 �g supernatant was used and separated
by SDS-PAGE 12% separating gels with 4% stacking gels using a
Mini Protean Tetra Cell (BioRad, Hercules, CA, USA) at 100 V for
100 min  by following protocol described by Laemmli (1970). Sam-
ples were blotted on polyvinylidene fluoride (PVDF) membrane
and incubated with vendace VNP antiserum (1:1000 or 1:500)
overnight at 4 ◦C and visualized with 3,3′-diaminobenzidine (DAB)
(Sigma–Aldrich, Norway). Negative control included primary anti-
body replaced with 1% BSA in PBS with 0.5% Tween 20 (PBST)
(Sigma–Aldrich, Norway).

Results

Histology

Pacemaker (nodal tissue) seen as discrete bundles was  iden-
tified at the sino-atrial (SA) junction with evident sinus venosus
elastic tissue (Fig. 1A and B). Nodal tissue was  separated from sur-
rounding tissue by loose connective tissue, which also infiltrated
the nodal tissue, dividing it in several small semicircular areas. The
densely innervated myocardial cells were identified in the atrial
region close to the junction of the sinus venosus and the atrium
(Fig. 1C). The pacemaker was  located sub-endocardially and was
composed of three cell types: (1) plexiform modified muscle cells
that appeared more lightly stained than the atrial myocardial cells;
(2) wavy appearing nerve bundles of lightly stained fibers with
oval, wavy, elongated nuclei with pointed ends; (3) large round
to pear-shaped postganglionic nerve cell bodies (ganglion cells)
(12–22 �m)  with a granular cytoplasm and nuclei with prominent
nucleoli were also identified in the pacemaker tissue (Fig. 1C and
D). The clusters of ganglion cells were identified by H&E and cresyl
violet staining at the SA junction (Fig. 1E and F). The nerve fibers
and ganglion cells were also identified with Gomori’s methenamine
silver stain at the SA junction (Fig. 1G).
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Fig. 3. Anti-CD3� immunostaining in the cardiac pacemaker tissue of Atlantic salmon. (A) Ganglion cells of pacemaker showed granular cytoplasmic CD3� staining. (B and
C)  No staining was observed using either pre-immune serum or primary antibody replaced with 1.5% BSA in PBS, respectively. Arrow: ganglion cells.

Immunostaining

Natriuretic peptides immunostaining using salmon cardiac
peptide (sCP) and vendace ventricular natriuretic peptide (VNP)
antisera showed specific staining in the intracardiac ganglion cells
(Fig. 2A and B). Negative controls in which the primary antibodies
were replaced with BSA did not stain cardiomyocytes, ganglion cells
or nerve fibers (Fig. 2C). Pre-adsorption controls showed the stain-
ing in a dose-dependent manner where the sCP antiserum blocked
with sCP antigen and 10−6 mol  L−1 recombinant rainbow trout ANP
identified weak staining in the ganglion cells respectively (Fig. 2D
and E). However, the 10−4 mol  L−1 recombinant rainbow trout ANP
did not identify any staining in the pacemaker tissue (Fig. 2F).
Anti-CD3� immunostaining was evident (granular staining) in the
ganglion cells (Fig. 3A). Pre-immune CD3� serum or BSA did not
identify any positive staining in the pacemaker tissue respectively
(Fig. 3B and C).

Western  blot

The  specificity of polyclonal goat anti-vendace VNP antibody
was tested on the heart tissue of Atlantic salmon to confirm the
cross reactivity. The VNP antibody identified a single band of
approximately 14 kDa in the heart. No visible band could be iden-
tified in the negative control (Fig. 4).

Discussion

The present study identified the cardiac pacemaker of Atlantic
salmon at the sino-atrial junction, in agreement with other closely
related salmonids such as brown trout (Salmo trutta) and rain-
bow trout (Oncorhynchus mykiss) as well as in Atlantic cod (Gadus
morhua), catfish, mullet (Mugil cephalus), Nile catfish (Synodon-
tis nigriventris) and bichir (Polypterus bichir bichir Geoffory St.
Hillaire, 1802) (Yamauchi and Burnstock, 1968; Lukyanov and
Sukhova, 1983; Haverinen and Vornanen, 2007; Zaccone et al.,
2009a,b). Tissue identified as the pacemaker was visible only in the
hearts where the sino-atrial junction was included in the sections.

Pacemaker  tissue was presented as several nerve bundles sur-
rounded by loose connective tissue that also infiltrated the tissue,
dividing it into smaller semicircular areas. Pacemaker tissue was
composed of ganglion cells, innervated with network nerve fibers
and modified cardiomyocytes identified within and around the
nodal tissue and was  in agreement with the rainbow trout pace-
maker (Haverinen and Vornanen, 2007). The cluster of ganglion
cells and nerves were also identified by Gomori’s methenamine and
cresyl violet stains at the junction of the sinus venosus and atrium.
The morphological study of the pacemaker tissue was important
owing to its functional significance. The pacemaker is the area
where excitation is initiated and leads to the activation of all cells of
the heart during contraction (Voranen et al., 2002). No nerve bun-
dles or intracardiac ganglion cells were identified in the ventricle
of Atlantic salmon and this is in line with other studies where con-
ducting tissue bundles have not been identified by histology in the
ventricle of the fish (Solc, 2007).

Fig. 4. Western blot analysis of heart tissues of Atlantic salmon (n = 3) by using
polyclonal  goat anti-vendace VNP antibody (1:1000 and 1:500). Negative control
was performed by replacing primary antibody with 1% BSA in PBST. Lanes 1–3 were
incubated with polyclonal goat anti-vendace VNP (1:500), lanes 4–6 incubated with
polyclonal goat anti-vendace VNP antibody (1:1000) and lanes 8–10 incubated with
1% BSA in PBST. H1: heart 1, H2: heart 2, H3: heart 3, M:  PageRulerTM prestained
protein  ladder (SM0671, Fermentas GmbH, St. Leon-Rot, Germany).
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Recently, CD3� antiserum was prepared and validated in the
different tissues of Atlantic salmon including the heart (Koppang
et al., 2010). The CD3 antibody normally recognizes all mature
T cells. Immunostaining using the above described CD3� anti-
serum identified specific staining in the ganglion cells of Atlantic
salmon pacemaker. To the best of our knowledge, novel anti-
CD3�+ immunostaining in the cardiac pacemaker tissue has not
been reported previously in teleosts. Such immunostaining in
the ganglion cells was in agreement with the previous studies
where normal Purkinje cells of the cerebellum showed anti-CD3+

immunostaining in several mammals such as human, mouse, rat,
quail and guinea pig (Garson et al., 1982). The CD3 antigen was  for-
merly considered specific for T lymphocytes, but it has also been
identified in gastric parietal cells and renal tubular epithelial cells of
several species (Alroy et al., 2005) indicating additional roles of CD3
besides T cell identification. Anti-CD3� immunostaining in teleost
ganglion cells shares a similar pattern to that of mammals and
requires further studies to determine its functional significance.

Natriuretic peptides (NP) play important cardioprotective and
fluid homeostatic roles. ANP is mainly released by atrial stretch and
acts on several organs including the brain, heart, gills, intestine, kid-
ney and interrenal tissue to perform different functions (Loretz and
Pollina, 2000; Toop and Donald, 2004; Johnson and Olson, 2008).
Salmon cardiac peptide (sCP) has been isolated from atrial and ven-
tricular myocytes (Tervonen et al., 1998) and its localization and
specificity have been demonstrated in Atlantic salmon cardiomy-
ocytes (Arjamaa et al., 2000). The present study used the same
antiserum (sCP) and identified the localization of sCP in the cardiac
pacemaker tissue of Atlantic salmon where anti-sCP immunos-
taining was evident. However, the functional significance of sCP
and VNP in the pacemaker is still undetermined. However, ven-
dace VNP antiserum also identified positive immunostaining in
the ganglion cells of the Atlantic salmon pacemaker. The specific
cross-reactivity of anti-vendace VNP antibody to Atlantic salmon
heart tissue was confirmed by Western blot and identified approx-
imately 14 kDa band and is in line with eel proVNP (Takei et al.,
1994). The non-specific bands were faintly visible at higher pri-
mary antibody dilutions (1:1000) as compared to lower dilutions
(1:500) and can be reduced by further titration of primary antibody.
The recombinant rainbow trout ANP (rt-ANP) was used for pre-
adsorption controls due to its structural and functional similarities
to sCP (Tervonen et al., 1998; Vierimaa et al., 2006) in addition to
sCP antigen which blocked the sCP antiserum in a dose-dependent
manner and identified no staining or weak staining from higher to
lower doses of rt-ANP respectively.

Immunohistochemical localization of natriuretic peptides has
been established in the brain and heart of Atlantic hagfish (Myx-
ine glutinosa) and gulf toadfish (Opsanus beta). Anti-sCP and VNP
sera identified neural tissue (ganglion cells) and were in agree-
ment with the previous studies which identified natriuretic peptide
immunoreactive perikarya in the different regions of the brains
of several fishes such as Atlantic hagfish (Myxine glutinosa), spiny
dogfish (Squalus acanthias), gulf toadfish (Opsanus beta), African
lungfish (Protopterus annectens) and cartilaginous elasmobranch
fish (Scyliorhinus canicula) (Donald and Evans, 1992; Donald et al.,
1992; Vallarino et al., 1990, 1996), supporting the localization of
natriuretic peptides (sCP and VNP) in the heart neural tissue (pace-
maker). The specific neural tissue binding sites using 125I-rat ANP
and NPR-A receptors have been shown in the different regions of
the brain of Atlantic hagfish and eel (Anguilla japonica) (Donald
et al., 1999; Tsukada et al., 2007) suggesting the existence of NPs
binding sites and receptors in the cardiac pacemaker (ganglion
cells). Several piscine studies have suggested the neuromodulator
and/or neurotransmitter roles of NPs in addition to cardioprotec-
tive/osmoregulatory functions (Donald and Evans, 1992; Donald
et al., 1992; Vallarino et al., 1996; Tsukada et al., 2007). Similarly,

the  mammalian studies have shown the localization of NPs in the
cardiac conduction system (Hansson, 2002).

Mammalian ganglion cells and nerve fiber varicosities have been
shown to exhibit specific immunostaining for ANP at the SA node
area (Hansson and Forsgren, 1993; Hansson et al., 1997). ANP was
also shown to be synthesized in the cardiac conduction system of
normal rats and the increased ANP levels were recorded after car-
diac sympathectomy (Hansson et al., 1998). Although, the effects of
NPs (sCP and VNP) were not investigated on pacemaker tissue in the
current study, preliminary human studies have proposed that ANP
may  act in an autocrine/paracrine fashion on closely found con-
duction cells to influence the pacemaker velocity (Hansson et al.,
1998). Active receptors were suggested in Purkinje fibers to fulfill
the functions (Hansson et al., 1998; Hansson, 2002).

Recently the specific binding sites for neurotransmitters such as
substance P and galanin (GA) have been shown in the pacemaker
tissue at the SA junction in ray-finned fish (bichir) and teleosts
(mullet and Nile catfish) (Zaccone et al., 2009a,b), supporting the
existence of NPs neural tissue binding sites and possible effects
on the cardiac pacemaker tissue. The identification of NPs and
their binding sites in piscine neural tissue (brain) supported the
localization of sCP and VNP in the cardiac pacemaker tissue and sug-
gested additional neurotransmitter and/or neuromodulator role(s)
of piscine NPs (sCP and VNP) particularly in relation to the cardiac
pacemaker. Immunohistochemical localization of CD3� and natri-
uretic peptides (sCP and VNP) in teleost (Atlantic salmon) shared
a similar fashion to mammalian counterparts and requires further
studies to find its significance in teleosts (Hansson, 2002; Tsukada
et al., 2007).

This  study provides a detailed morphological description of car-
diac pacemaker in Atlantic salmon and demonstrated the novel
localization of piscine CD3� and natriuretic peptides (sCP and VNP)
in the pacemaker tissue by immunohistochemistry. The presence of
these peptides in the pacemaker tissue suggests their potential neu-
rotransmitter and/or neuromodulatory role for sCP and VNP in the
heart conduction system (Hansson and Forsgren, 1994; Hansson,
2002).
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Heart and skeletal muscle inflammation (HSMI) and cardiomyopathy syndrome (CMS) are putative viral cardiac diseases of
Atlantic salmon. This study examined the levels and correlated the serum enzymes creatine kinase (CK) and lactate dehydrogenase
(LDH) to the histopathology of clinical outbreaks of HSMI and chronic CMS in farmed Atlantic salmon. A total of 75 fish from
3 different HSMI outbreaks, 30 chronic CMS fish, and 68 fish from 3 nondiseased fish groups were used as the study population
(N = 173). Serum CK and LDH levels correlated significantly with the total inflammation and total necrosis scores for HSMI
fish (P = 0.001). However, no correlation was identified for enzyme levels and histopathology scores for chronic CMS fish. The
significantly increased CK and LDH levels and their positive correlations to histopathology differentiate HSMI from CMS clinically
suggesting the potential use of enzymes for screening for HSMI is promising.

1. Introduction

The marine farmed Atlantic salmon (Salmo salar L.) exhibits
a variety of cardiac diseases, and the reason for this likely
includes low activity in relatively confined spaces, continuous
food supply, low oxygen level, crowding, stress in handling,
and temperature [1]. The cardiac anomalies and defects of
Atlantic salmon include aplasia or hypoplasia of the septum
transversum, abnormal location and shape of heart [1],
arteriosclerosis [2, 3], and ventricular hypoplasia [4], but
specific diseases include cardiomyopathy syndrome (CMS)
[5–7], pancreas disease (PD) [8–10], and heart and skeletal
muscle inflammation (HSMI) [11, 12]. Annual economical
losses due to cardiomyopathy syndrome (CMS) alone have
been estimated up to C 4.5–8.8 millions [7].

Heart and skeletal muscle inflammation (HSMI) is a
disease of marine farmed Atlantic salmon reported from
Norway, Scotland and Chile. HSMI is a disease which mainly
affects heart and red skeletal muscle. It is typically a disease
of moderate mortality (∼20%) but high morbidity (∼100%)
that affects fish 5 to 9 months after transfer to sea. Presently,

HSMI can be diagnosed by histopathology and presents
as epi- and endocarditis as well as mononuclear cellular
infiltration of both trabecular and compact layers of ventricle
myocardium accompanied by myocytic necrosis [11–14].
HSMI is transmissible in laboratory studies by injecting
tissue homogenate from diseased fish to healthy fish [11, 15],
and recently piscine reovirus (PRV) has been suggested to
be associated with HSMI infection [16, 17]. Lesions first
appear and are more frequent in heart than red skeletal
muscle. Affected myocytes show signs of degeneration, loss
of cardiomyocytes striation and eosinophilia, loss of skeletal
muscle striation, vacuolation, centralized nuclei, and karyor-
rhexis. There are more inflammatory changes as compared to
necrotic changes in heart and red skeletal muscle [1, 12, 13].
HSMI has become more significant where outbreaks have
increased from 54 in 2004 [18] to 162 cases reported in 2011
[19].

Cardiomyopathy syndrome (CMS) is a cardiac disease of
Atlantic salmon with a suggested totiviral etiology [20] that
mainly affects atrium and trabecular ventricle myocardium
without involvement of skeletal muscle. It shares similar
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features with HSMI where both cause myocarditis [1]. His-
topathological changes include necrosis and inflammation of
trabecular layer of ventricle and atrium, epicarditis, cellular
infiltrates of mainly mononuclear lymphocytes and macro-
phages, and rupture of atrium or sinus venosus macro-
scopically [1, 5]. CMS affects adult salmon after 12–18
months of sea transfer, and recently a totivirus (piscine
myocarditis virus (PMCV)) is proposed as causative agent
for cardiomyopathy [5, 17, 20, 21]. The piscine myocarditis
virus is a double-stranded RNA virus with diameter of
50 nm and 6688 bp genome size [21]. The haematological
tests and serum analysis for fish, compared with other areas
of veterinary medicine, are not common place compared
to higher vertebrates due to the lack of reference values
for clinical chemistry (physiological and pathological) and
understanding of disease pathogenesis and pathophysiology
[22–24]. There is a strong need for blood biochemistry
ranges especially where the etiology is unclear (HSMI and
CMS) since the associated viruses can be present asymp-
tomatically [17, 25]. Biochemical enzymes such as creatine
kinase (CK) and lactate dehydrogenase (LDH) are well-
established biomarkers of cardiac disease in humans [26]
and are often used in conjunction with other hormonal
biomarkers for a myocardial dysfunction diagnosis [27].
Both enzymes are released upon cellular degeneration such
as necrosis. Lactate dehydrogenase (LDH) is involved in the
interconversion of pyruvate and L lactate during the final
reactions of glycolysis and is present in the cytoplasm of all
cells (nucleated and nonnucleated cells). In humans, raised
LDH plasma values are observed from 8 to 12 h, peaking
within 2–3 days, and levels are sustained for duration of 7–10
days following cardiac injury [28]. Creatine kinase (CK), on
the other hand, is found in the myocyte cytoplasm, sarcoplas-
mic reticulum, mitochondria, and myofibrils with a half-life
of about 12 h in humans. Creatine kinase levels in blood
plasma rise from 4 to 6 h peaking at 12–36 h and sustained
over 3-4 days in humans where a cardiac injury has occurred
[28]. The creatine kinase concentrations are related to the
irreversible injury associated with myocardial necrosis in
mammals (dogs) [29]. The elevated CK levels have been re-
ported in association with myocytic necrosis seen in pancre-
as disease (PD) in Atlantic salmon [30, 31], and these results
suggested that CK could be a useful candidate indicator of
cardiac diseases in Atlantic salmon.

The aims of the present study were to measure the serum
CK and LDH levels and examining their relationship to the
cardiac diseases (HSMI and CMS) of Atlantic salmon.

2. Material and Methods

2.1. Fish Sampling. Seven groups of Atlantic salmon (Salmo
salar L.) were involved in this study. All samples from
diseased fish were taken from the farms diagnosed with
both diseases by National Veterinary Institute, Oslo, Norway
(NVI) and further histopathology was performed to confirm
the disease diagnosis during the study. Group 1 (n = 28)
consisted of fish (S1) collected from a confirmed HSMI
outbreak at a sea site during the peak mortality of the HSMI

episode. Group 2 (n = 16) comprised fish (S0) collected from
a confirmed HSMI sea cage outbreak two months after peak
mortality period. Group 3 (n = 31) included fish (S0) from
a sea cage site collected during the early onset of a HSMI
outbreak. The clinical phase of the disease has been defined
as the time period with increased mortality at farm due to
HSMI [32]. The disease phase was determined from the peak
mortality time at the farm [16]. All diseased groups were
in the sea phase of salmon production and opportunistic
samples collected from diseased cages on each farm. All
three diseased farms were widely distant from each other
in Nordland county, Norway. Group 4 (n = 30) included
chronic CMS infected fish (S2) and had confirmed CMS
outbreak in the past, and sampling was performed 6 months
after CMS outbreak. Diseased groups included fish with
average weight range (600–1000 g) for HSMI and (6000–
7000 g) for CMS fish.

Group 5 (n = 28) was nondiseased fish which were taken
from a study where Atlantic salmon (S0) had been made
anaemic using phenylhydrazine, and cardiac hypertrophy
had been characterized [33]. Group 6 (n = 20) consisted
of nondiseased, apparently healthy fish (S0 + S1) kept in a
laboratory facility (University of Nordland, Mørkvedbukta
Research Station, Bodo, Norway) in 2 m3 tanks with fresh
ambient sea water (temperature range 7-8◦C) and fed 0.7%
commercial feed (Spirit, Skretting, Stavanger, Norway) of
their body weight three times weekly. Group 7 (n = 20) com-
prised of apparently healthy, nondiseased Atlantic salmon
(S1) from the sea cages. Nondiseased groups included fish
with average weight range (400–2000 g).

2.2. Blood Collection. All fish were killed by a blow to the
head or overdose of tricaine methanesulfonate (MS222)
(100 mg mL−1). Blood was collected immediately from the
caudal vein with a 5 mL syringe using 23 G needle, allowed
to clot in Eppendorf tubes for 2–4 h, centrifuged at 8,000 g
for 5 min, and the serum collected except group 4 where
heparinised blood plasma was collected and frozen at−20◦C.

2.3. Serum Analysis. All samples were frozen and sent on dry
ice to Norwegian School of Veterinary Sciences, Oslo Central
Laboratory and to the Nordland Hospital, Department of
Medicine Biochemistry, Bodo for creatine kinase (CK) and
lactate dehydrogenase (LDH) analysis. Creatine kinase (CK)
and lactate dehydrogenase (LDH) were measured by using
ADIVA 1650 (Siemens Medical Solution Diagnostics Inc.,
Tarrytown, NY, USA) at Norwegian school of veterinary
sciences, Oslo central laboratory and ADVIA 1650/1800
(Bayer Diagnostics, Tarrytown, NY, USA) at Nordland
Hospital, Department of Medicine Biochemistry, Bodo on
the basis of their enzyme activity and measured by increase
in absorbance at 340/410 nm. Both laboratories used the
same methods. Briefly the principle of the procedures for
LDH and CK is as follows: LD catalyzes the conversion
of L lactate to pyruvate in the presence of nicotinamide
adenine dinucleotide (NAD). The enzyme activity of LD is
proportional to the rate of production of NADH (reduced
NAD). Creatine kinase reacts with creatine phosphate and
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ADP to form ATP which is coupled to the hexokinase-G6PD
reaction, generating NADPH. The concentrations of NADH
and NADPH were measured by the increase in absorbance at
340/410 nm for LDH and CK, respectively.

2.4. Histopathology and Scoring Method. To correlate bio-
chemical enzymes (CK and LDH), histopathology was
method of choice for diagnosis of HSMI. Hearts, skeletal
red and white muscle from below the dorsal fin and above
the lateral line, and other vital organs, were collected and
fixed in 10% neutral phosphate-buffered formalin solution.
External and internal visual examination was performed in
addition to histological observation of other vital organs
for other abnormalities or signs of overt disease in the fish.
Tissues were processed by a standard paraffin wax protocol
(dehydrated, embedded in paraffin, 3 µm thick sectioned
and H and E stained) and examined for changes (necrosis
and inflammation) characteristic of HSMI [11]. The case
definition for HSMI includes inflammation and necrosis of
trabecular and compact ventricle myocardium, epicarditis,
endocarditis, mononuclear inflammatory cell infiltration,
and a higher level of inflammation compared with necrosis
while supportive signs may also include inflammation and
necrosis of red skeletal muscle, atrium, and absence of
pancreatic lesions [32]. A semiquantitative assessment of
each slide was adapted from McLoughlin et al. [34] for
scoring histopathological findings in heart and muscle tissues
obtained from seven groups of fishes used in this study. It has
been used and established in PD, a similar cardiac disease to
HSMI and CMS (Table 1).

2.5. Different Anatomical Regions. The scoring method was
used for the detailed study of the tissue in anatomically
distinct areas of the heart and skeletal muscle: (1) atrial
trabecular myocardial inflammation, (2) and necrosis, (3)
atrial epicarditis, (4) ventricle compact myocardial inflam-
mation, (5) and necrosis, (6) ventricle trabecular myocardial
inflammation, (7) and necrosis, (8) ventricle epicarditis,
(9) skeletal muscle inflammation, (10) and necrosis. A
total inflammation score was determined from the summed
scores of all parameters (atrial and ventricular trabecular
inflammation, atrial and ventricular epicarditis, ventricle
compact inflammation, and skeletal muscle inflammation)
and total necrosis score determined from the summed scores
of all parameters (atrial and ventricular trabecular necrosis,
ventricle compact necrosis, and skeletal muscle necrosis).
The sum scores of inflammation and necrosis in heart
and skeletal muscle were correlated with the biochemical
enzymes (CK and LDH) levels. Total inflammation and total
necrosis scores were correlated to the HSMI plus nondiseased
fish and the CMS fish plus nondiseased fish to differentiate
the enzymatic effects in each disease separately.

2.6. Slides Evaluation. Slides were evaluated blindly by two
persons, histopathological results compared between the
groups and correlated with respective biochemical enzymes
values for each sample. Sometimes the conflict for slide score
was around 0.5–1 between two persons, and then they agreed

Table 1: Semiquantitative lesion scoring system adapted from
McLoughlin et al. [34]. System covers heart and skeletal muscle
lesions separately. Lesions starting from 0 (healthy tissue) to 3
(severe changes). (a) Heart lesion classification. (b) Skeletal muscle
classification.

Score Description

(a)

0 Normal appearance

1 Focal myocytic necrosis ± inflammation (<50 fibers affected)

2
Multifocal myocytic necrosis ± inflammation (50–100 fibers
affected)

3
Severe diffuse myocytic necrosis ± inflammation (>100
fibers affected)

(b)

0 Normal appearance

1 Focal myocytic necrosis ± inflammation

2 Multifocal myocytic necrosis ± inflammation

3 Severe diffuse myocytic necrosis ± inflammation

after discussing case definition and scoring system on most
suitable score for the slide.

2.7. Statistical Analysis. Spearman rank coefficient corre-
lations were performed using SigmaPlot (10.0) and were
considered statistically significant at P values ≤0.05. The
mean histopathology (total inflammation and total necrosis
scores) and enzyme (CK and LDH) values were analyzed
using Kruskal-Wallis One Way Analysis of Variance on ranks
with differences isolated using Dunn’s post hoc analysis. Data
were presented as mean ± SD.

3. Results

The highest and lowest mean CK values were identified in
HSMI fish group 1 = 16479.25±1844.49 IU.L−1 and nondis-
eased fish group 5 = 1581.71 ± 425.33 IU.L−1 respectively.
However, the highest and lowest mean LDH values were
identified in HSMI fish group 2 = 1838.25 ± 957.47 IU.L−1

and nondiseased fish group 5 = 235.39 ± 27.43 IU.L−1,
respectively. The mean CK and LDH values for CMS fish
were (5207.93 ± 967.81 IU.L−1) and (426.2 ± 60.68 IU.L−1),
respectively (Table 4).

Diseased group 1 (HSMI fish) had significantly the
highest levels for CK activity as compared to other HSMI
groups 2 and 3 (Kruskal-Wallis One-Way Analysis: H =
65.217, d.f. = 6; (P ≤ 0.001) (Figure 2(a)). However,
LDH activity levels were higher in HSMI fish (group 3) as
compared to other HSMI fish (groups 1 and 2) (Kruskal-
Wallis One-Way Analysis: H = 73.838, d.f. = 6; P ≤ 0.001)
(Figure 2(b)). The CMS (group 4) CK and LDH values were
significantly different from nondiseased fish (groups 5, 6,
and 7) (Figures 2(a) and 2(b)).

The scoring grades which were used to score the inflam-
matory changes represented by micrographs (Figure 1) and
reflected the semiquantitative scoring system which was
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Grade 0

50 µm

(a)

Grade 1

50 µm

(b)

Grade 2

50 µm

(c)

Grade 3

50 µm

(d)

Figure 1: The representative micrographs of the semiquantitative scoring system described in Table 1, represented the heart histopathology.
Grade 0: no pathological changes. Grade 1: minor inflammatory lesions comprises of focal subendocardial mononuclear leukocytes. Grade
2: several distinct lesions with moderately increased number of mononuclear leukocytes. Grade 3: severe lesions where almost all myofibres
have been replaced by inflammatory cells, predominantly by mononuclear lymphocyte-like cells. Arrow: inflammation. Scale bars = 50 µm.

Table 2: Total mean (± SD) scores of inflammation and necrosis for HSMI (groups 1, 2, and 3), CMS (group 4), and nondiseased fish
(groups 5, 6, and 7) in heart and heart with skeletal muscle. Different letters represent significant differences between groups (P < 0.05).

Parameter Nondiseased HSMI CMS

Inflammation

Heart 0.83± 0.30 5.30± 1.16 2.44± 1.39

Heart + muscle 0.99± 0.16a 5.59± 1.03b 2.44± 1.39c

Necrosis

Heart 0.35± 0.36 2.01± 1.34 0.1± 0.40

Heart + muscle 0.62± 0.45a,c 2.92± 1.15b 0.38± 0.68c

applied to each anatomical region of the heart (atrium, com-
pact and trabecular ventricular myocardium, pericardium)
and the red skeletal muscle (Table 1).

Seven fish groups were compared on the basis of inflam-
mation and necrosis scores. Inflammatory mononuclear
cells were more frequent as compared to focal areas of
necrosis in heart tissue, but the opposite was apparent
in the red skeletal muscle where necrosis predominated.
The mean total inflammation (Kruskal-Wallis One-Way
Analysis: H = 111.216, d.f. = 2; (P ≤ 0.001) and total necrosis
(Kruskal-Wallis One-Way Analysis: H = 90.484, d.f. = 2; (P ≤
0.001) scores of HSMI and CMS fish were significantly differ-
ent from nondiseased fish with the exception of total necrosis

scores of CMS fish which were not significantly different
from nondiseased fish (Table 2). More lesions were present
in the heart as compared to the skeletal muscle (Table 2).
Total inflammation scores ranged from 1 to 11 in diseased
groups while 0 to 3.5 in nondiseased groups. Total necrosis
scores ranged from 0 to 7 for diseased groups while from
0 to 3 for nondiseased groups. Total necrosis (Kruskal-
Wallis One-Way Analysis: H = 118.135, d.f. = 6; (P ≤
0.001) (Figure 3(b)) and total inflammation (Kruskal-Wallis
One-Way Analysis: H = 119.558, d.f. = 6; (P ≤ 0.001)
(Figure 3(a)) scores were compared for all seven groups
and identified higher scores in HSMI group 1 while being
significant and lower in the group 2 and 3 as compared
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Figure 2: The box plots of (a) creatine kinase (CK) and (b) lactate dehydrogenase (LDH) enzymes activity values in the serum/plasma of
Atlantic salmon for all seven groups (N = 173). Group 1 (n = 28) and group 2 (n = 16) represented fish from an acute and late phase of a
HSMI outbreak, respectively, while group 3 (n = 31) represented values from fish from an early phase of HSMI. Group 4 (n = 30) included
chronic CMS fish. Group 5 (n = 28), group 6 (n = 20), and group 7 (n = 20) represented values from nondiseased fish. Bars with different
letters represented significant differences between groups (P < 0.05). (◦) denotes outliers.

to none to low level of changes seen in nondiseased fish
(groups 5, 6, and 7) (Figures 3(a) and 3(b)). In general,
muscle necrosis and inflammation (cardiac and skeletal)
were negligible to mild in nondiseased fish (groups 5, 6,
and 7) as compared to CMS and HSMI fish (groups 1, 2, 3,
and 4). Total inflammation and total necrosis results of all
HSMI-diseased fish (groups 1, 2, and 3) were significantly
different from nondiseased groups (groups 5, 6, and 7) with
the exceptions of total necrosis scores of CMS fish (group 4)
which was not significantly different from nondiseased fish
(group 6) (Figures 3(a) and 3(b)).

The histopathology scores (sum score of heart and
muscle necrosis and inflammation) were correlated with
serum/plasma CK and LDH levels. The correlations which
were made among CK enzyme levels, and different anatom-
ical parameters of all fish groups excluding CMS fish (group
4) gave significant relationships (P ≤ 0.001) (Table 3). The
significant correlations of CK levels to individual parameters
included atrial inflammation (S coeff. = 0.451, P < 0.001),
atrial necrosis (S coeff. = 0.252, P = 0.002), atrial epicarditis
(S coeff. = 0.314, P < 0.001), ventricle compact layer
inflammation (S coeff. = 0.440, P < 0.001), ventricle compact
layer necrosis (S coeff. = 0.249, P = 0.002), ventricle trabec-
ular inflammation (S coeff. = 0.526, P < 0.001), ventricle

trabecular necrosis (S coeff. = 0.283, P < 0.001), ventricle
epicarditis (S coeff. = 0.333, P < 0.001), skeletal muscle
necrosis (S coeff. = 0.206, P = 0.035), and skeletal muscle
inflammation (S coeff. = 0.169, P = 0.084). The CK enzyme
levels significantly and positively correlated with the both
total inflammation (S coeff. = 0.552, P < 0.001) and total
necrosis (S coeff. = 0.526, P < 0.001) scores (Table 3). The
LDH levels were also correlated in the same manner as above
for CK which showed significant relationships (P = 0.05)
(Table 3). The significant correlations for LDH levels to dif-
ferent parameters were atrial inflammation (S coeff. = 0.254,
P = 0.002), ventricle compact layer inflammation (S coeff. =
0.297, P = 0.001), ventricle trabecular inflammation (S coeff.
= 0.166, P = 0.049), skeletal muscle inflammation (S coeff. =
0.373, P = 0.001), ventricle epicarditis (S coeff. = 0.20, P =
0.016), and skeletal muscle necrosis (S coeff. = 0.414, P =
0.001) (Table 3). However, few non-significant relationships
were identified for LDH and anatomical parameters such
as ventricle compact layer necrosis (S coeff. = 0.080, P =
0.341), ventricle trabecular necrosis (S coeff. = 0.052, P =
0.534), atrial necrosis (S coeff. = 0.034, P = 0.688), and
atrial epicarditis (S coeff. = −0.049, P = 0.558). There
were significant positive correlations between LDH levels
and the total inflammation (S coeff. = 0.266, P < 0.001)
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Figure 3: The box plots of all seven groups of Atlantic salmon on the basis of (a) total inflammation and (b) total necrosis in the heart and
skeletal muscle (N = 173). Group 1 (n = 28) and group 2 (n = 16) represented fish from an acute and late phase of a HSMI outbreak,
respectively, while group 3 (n = 31) represented values from fish from an early phase of HSMI, and group 4 (n = 30) included chronic CMS
fish. Group 5 (n = 28), group 6 (n = 20), and group 7 (n = 20) represented values from nondiseased (non-HSMI) fish. Higher scores of
inflammation and necrosis were found in diseased (groups 1, 2, 3, and 4) fish while low levels of scores in nondiseased (groups 5, 6, and 7)
fish were present. Bars with different letters represented significant differences between groups (P < 0.05). (◦) denotes outliers.

Table 3: The Spearman correlation coefficient for anatomically distinct regions of the HSMI and CMS infected fish to creatine kinase (CK)
and lactate dehydrogenase (LDH). P values given in parentheses.

Parameter
HSMI CMS

CK LDH CK LDH

Ventricle compact necrosis 0.249 (0.002) 0.080 (0.341) — —

Ventricle trabecular necrosis 0.283 (<0.001) 0.052 (0.534) 0.198 (0.291) 0.122 (0.516)

Atrium necrosis 0.252 (0.002) 0.034 (0.688) 0.327 (0.077) 0.242 (0.195)

Skeletal muscle necrosis 0.206 (0.035) 0.414 (0.001) 0.068 (0.719) −0.024 (0.899)

Ventricle compact inflammation 0.440 (<0.001) 0.297 (0.001) — —

Ventricle trabecular inflammation 0.526 (<0.001) 0.166 (0.049) 0.157 (0.405) −0.043 (0.822)

Atrial inflammation 0.451 (<0.001) 0.254 (0.002) 0.108 (0.580) 0.052 (0.790)

Ventricle epicarditis 0.333 (<0.001) 0.20 (0.016) 0.340 (0.065) 0.309 (0.096)

Atrium epicarditis 0.314 (<0.001) −0.049 (0.558) — —

Muscle inflammation 0.169 (0.084) 0.373 (0.001) — —

Total inflammation 0.552 (<0.001) 0.266 (<0.001) 0.089 (0.635) −0.075 (0.691)

Total necrosis 0.526 (<0.001) 0.247 (0.003) 0.355 (0.075) 0.240 (0.209)

and total necrosis (S coeff. = 0.247, P < 0.003) scores
(Table 3). The correlations between CK enzyme levels and
different anatomical parameters of all fish groups excluding
HSMI fish (groups 1, 2, and 3) identified non-significant
relationships (P = 0.05) (Table 3). The correlations made
between CK levels and different anatomical regions were

atrial inflammation (S coeff. = 0.108, P = 0.580), atrial
necrosis (S coeff. = 0.327, P = 0.077), ventricle trabecular
inflammation (S coeff. = 0.157, P = 0.405), ventricle
trabecular necrosis (S coeff. = 0.198, P = 0.291), ventricle
epicarditis (S coeff. = 0.340, P = 0.065), and skeletal muscle
necrosis (S coeff. = 0.068, P = 0.719). The LDH levels
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Table 4: Blood serum enzymes in different fish groups (Mean ± SE).

Creatine kinase (IU.L−1) Lactate dehydrogenase (IU.L−1)

Group 1 16479.25± 1844.49 697.43± 56.61

Group 2 10280± 5246.18 1838.25± 957.47

Group 3 8333.34± 1709.08 966± 71.94

Group 4 5207.93± 967.81 426.2± 60.68

Group 5 1581.71± 425.33 235.39± 27.43

Group 6 7098.35± 2916.95 1027.9± 334.04

Group 7 10297.15± 1531.11 423.3± 53.06

were also correlated in the same manner as above for CK
and included atrial inflammation (S coeff. = 0.052, P =
0.790), atrial necrosis (S coeff. = 0.242, P = 0.195), ventricle
trabecular inflammation (S coeff. = −0.043, P = 0.822),
ventricle trabecular necrosis (S coeff. = 0.122, P = 0.516),
ventricle epicarditis (S coeff. = 0.309, P = 0.096), and
skeletal muscle necrosis (S coeff. = −0.024, P = 0.899). The
combined CMS and nondiseased group’s correlations with
CK levels were also made in the same manner as described
above and identified correlations for total inflammation (S
coeff. = 0.089, P = 0.635) and total necrosis (S coeff. =
0.355, P = 0.075) scores (Table 3). There were non-signif-
icant negative and positive correlations between LDH levels
and total inflammation and total necrosis for CMS group,
respectively (Table 3).

4. Discussion

The CK and LDH values of all seven fish groups were com-
pared and diseased fish (HSMI) identified with significantly
higher enzymes levels as compared to nondiseased fish.
The significantly higher and lower mean enzymes levels in
diseased and nondiseased fish, respectively, were consistent
with the CK enzyme ranges already reported in farmed
Atlantic salmon affected with a similar pancreas disease (PD)
[30, 31]. The highest mean LDH levels were identified at the
earlier phase of HSMI disease while highest CK levels were
present in acute phase of the disease. Previous in vivo studies
identified the increased CK and LDH activities in Atlantic
salmon and Nile tilapia (Oreochromis niloticus) treated with
tributyltin (TBT) and cadmium, respectively [35, 36].

Histopathology was used as a method of choice to
diagnose the diseases (HSMI and CMS). This study described
the histopathology in the heart and skeletal muscle by
using a semiquantitative scoring system that addressed the
pathological changes in both tissues (cardiac and somatic
muscle). The diseased fish showed the histopathological
changes in the heart and skeletal muscle similar to HSMI and
in hearts for CMS fish [5, 11, 13]. The histological changes
were identified in both atrium and ventricle (compact and
trabecular) of HSMI fish while mostly ventricular trabecular
layer was involved in CMS fish. The histopathological
changes were compared for all seven fish groups, and hearts
were identified with most tissue damage and suggested to be
the contributing source of enzymes (CK and LDH) which

released upon cellular damage and in line with Rodger et al.
[30] that suggested the significantly higher CK levels due to
myopathy in PD-affected Atlantic salmon.

The mean CK levels and histopathology scores for acute
phase HSMI fish (group 1) were doubled than early or late
phase of HSMI fish (groups 2 and 3), and mean CK levels
(group 1) were up to four times greater than nondiseased fish
(groups 5 and 6). These higher CK levels and total inflamma-
tion scores were suggested to be the disease (HSMI) outcome
and supported the notion that fish included in group 1 were
in the acute phase of disease whereas groups 2 and 3 were not
in clinical phase of a HSMI outbreak. The acute phase of the
disease (HSMI) corresponded to higher mortality rates on
the farm and creatine kinase levels in blood sustained over 3-
4 days in humans where a cardiac injury has occurred [28].

The HSMI-infected fish showed significantly higher
histopathological scores as compared to the nondiseased fish.
The higher histopathological scores were consistent with the
higher CK levels in diseased fish as compared to nondiseased
fish, supported the higher enzymes levels likely due to
myopathy. The total inflammation scores were doubled as
compared to the total necrosis scores in all HSMI fish which
were considered as clinical sign of HSMI while necrosis being
suggested as a secondary effect [13, 15]. The mean CK and
LDH levels and total necrosis scores for chronic CMS fish
were equal or lower to the nondiseased fish suggested no
correlation to CMS fish and supported the hypothesis that
increased enzymes levels identified in the HSMI fish were
related to myopathy [30, 31]. The fish cages that experienced
the CMS outbreak showed high inflammation scores as
compared to other cages on the same farm that were not
diagnosed with CMS, and both CMS and non-CMS fish had
higher values of enzymes indicating that CK and LDH were
not correlated to the chronic CMS fish histopathology scores.

The significantly positive correlations were identified
with biochemical enzymes (CK and LDH) and histopatho-
logical changes in HSMI-affected Atlantic salmon [12, 24].
The histopathological scores for anatomically distinct areas
of heart and skeletal muscle were correlated significantly with
respective CK and LDH levels of the fish (P = 0.05). The
serum enzymes (CK and LDH) correlations have been used
previously to find significant relationships in great sturgeon
(Huso huso) and rainbow trout (Oncorhynchus mykiss) [24,
37, 38]. The correlations between histopathology (inflamma-
tion and necrosis) and enzymes (CK and LDH) values were
significant and positive, and suggested the HSMI disease
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effects on blood biochemistry of Atlantic salmon and con-
sistent with mammalian studies where blood biochemistry
is changed in pathological conditions and used to predict
the disease [29, 36]. The correlation of CK levels to HSMI
histopathology appeared useful due to the release of CK after
tissue injury and potential contribution in limited piscine
blood biochemistry [28]. However, the CMS group showed
non-significant correlations between histology and enzymes
and suggested that blood biochemistry of Atlantic salmon
might not be affected due to chronic CMS disease. Another
reason for no correlation of chronic CMS fish might include
the time of fish sampling which was conducted 6 months
after acute phase of disease while biochemical enzymes (CK
and LDH) release rapidly following tissue injury with peak
levels for 10–12 days in human [28]. It was also supported
by the fact that chronic CMS fish did not show signs (higher
mortality levels) and severe histopathological lesions charac-
teristic of acute phase of disease suggesting the late or chronic
phase of disease. However, further studies are required to
completely understand the CMS disease effects on the blood
biochemistry. Histopathology is still a diagnostic method of
choice in clinical case of HSMI even though the recent iden-
tification of a reovirus associated with the disease allows the
possibility of identifying infected animals. However, asymp-
tomatic Atlantic salmon have been identified with piscine
reovirus and piscine myocarditis virus by RT-qPCR [17, 25].
However, it is a terminal procedure performed after the onset
of disease and there has been as observed increase mortality
level on farm, and mis-diagnosis may result with diseases
such as PD and CMS presenting similar pathological changes
to HSMI [12]. The blood biochemistry tests may prove useful
and have been proved useful in the detection and diagnosis of
metabolic disturbances in a number of diseases [39]. The use
of serum enzymes to diagnose the cardiac diseases in humans
is a common practice and a well-established method. The
CK and LDH levels are affected in the cardiac diseases and
serve as disease indicators in humans [26]. Previous attempts
at measuring CK values were made in similar disease such
as pancreas disease (PD) but were not correlated directly
and extensively with histopathology [30, 31]. These studies
have been shown the significantly increased CK levels and
suggested the tissue damage as source of enzyme. HSMI fish
exhibited higher mean histopathology scores and enzymes
(CK and LDH) levels, and serum enzymes showed significant
positive correlations to histopathology which supported
the notion that CK and LDH levels were affected due to
natural HSMI outbreak. The use of CK and LDH enzymes
haematological levels for pathological changes at least for
HSMI appeared promising and a potential contribution in
the limited piscine blood biochemistry by identifying the
enzyme ranges in the above-mentioned fish groups [22].

In conclusion, the present study measured the CK and
LDH levels in diseased and nondiseased Atlantic salmon
and correlated significantly to the histopathology of Atlantic
salmon affected with natural HSMI outbreaks while being
non-significant to chronic CMS. The significantly higher CK
levels correlated positively and significantly to HSMI patho-
logical changes, suggesting that the potential use of serum
enzymes for screening HSMI is promising. The findings of

the present study should be considered as a contribution
to the more extensive research necessary to understand
biological activities (enzymes) and the pathological changes
of Atlantic salmon.

Acknowledgments

The authors would like to thank Anil Amin for assistance
in histology, Dr. Silvia Spirova, Dr. Erik Wilkinson, Ørjan
Wenberg, Dr. Johan Johansen, and Kristin Dahlen for
providing samples and Thoresen Stein Istre and Ane Lise
Mohus for enzyme analysis.

References

[1] T. T. Poppe and H. W. Ferguson, “Cardiovascular system,” in
Systemic Pathology of Fish: A Text and Atlas of Normal Tissue
Responses in Teleosts, and Their Responses in Disease, H. W.
Ferguson, Ed., pp. 141–167, Scotian Press, London, UK, 2006.

[2] T. T. Poppe, T. Taksdal, and P. H. Bergtun, “Suspected myocar-
dial necrosis in farmed Atlantic salmon, Salmo salar L.: a field
case,” Journal of Fish Diseases, vol. 30, no. 10, pp. 615–620,
2007.

[3] A. P. Farrell, “Cardiorespiratory performance in salmonids
during exercise at high temperature: insights into cardiovas-
cular design limitations in fishes,” Comparative Biochemistry
and Physiology A, vol. 132, no. 4, pp. 797–810, 2002.

[4] T. T. Poppe and T. Taksdal, “Ventricular hypoplasia in farmed
Atlantic salmon Salmo salar,” Diseases of Aquatic Organisms,
vol. 42, no. 1, pp. 35–40, 2000.

[5] H. W. Ferguson, T. T. Poppe, and D. J. Speare, “Cardiomyopa-
thy in farmed Norwegian salmon,” Diseases of Aquatic Organ-
isms, vol. 8, pp. 225–231, 1990.

[6] S. Grotmol, G. K. Totland, and H. Kryvi, “Detection of a
nodavirus-like agent in heart tissue from reared Atlantic salm-
on Salmo salar suffering from cardiac myopathy syndrome
(CMS),” Disease of Aquatic Organisms, vol. 29, no. 2, pp. 79–
84, 1997.

[7] E. Brun, T. T. Poppe, A. Skrudland, and J. Jarp, “Cardiomyopa-
thy syndrome in farmed Atlantic salmon Salmo salar: occur-
rence and direct financial losses for Norwegian aquaculture,”
Diseases of Aquatic Organisms, vol. 56, no. 3, pp. 241–247,
2003.

[8] T. Taksdal, A. B. Olsen, I. Bjerkås et al., “Pancreas disease in
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a b s t r a c t

Heart and skeletal muscle inflammation (HSMI) is a disease of marine farmed Atlantic salmon where the
pathological changes associated with the disease involve necrosis and an infiltration of inflammatory
cells into different regions of the heart and skeletal muscle. The aim of this work was to characterize
cardiac changes and inflammatory cell types associated with a clinical HSMI outbreak in Atlantic salmon
using immunohistochemistry. Different immune cells and cardiac tissue responses associated with the
disease were identified using different markers. The spectrum of inflammatory cells associated with the
cardiac pathology consisted of mainly CD3þ T lymphocytes, moderate numbers of macrophages and
eosinophilic granulocytes. Proliferative cell nuclear antigen (PCNA) immunoereaction identified signif-
icantly increased nuclear and cytoplasmic staining as well as identifying hypertrophic nuclei. Strong
immunostaining was observed for major histocompatibility complex (MHC) class II in HSMI hearts.
Although low in number, a few positive cells in diseased hearts were detected using the mature myeloid
cell line granulocytes/monocytes antibody indicating more positive cells in diseased than nonediseased
hearts. The recombinant tumor necrosis factorea (TNFa) antibody identified stained macrophageelike
cells and endothelial cells around lesions in addition to eosinophilic granular cells (EGCs). These find-
ings suggested that the inflammatory response in diseased hearts comprised of mostly CD3þ

T lymphocytes and eosinophilic granular cells and hearts exhibited high cell turnover where DNA
damage/repair might be the case (as identified by PCNA, caspase 3 and terminal deoxynucleotidyl
transferase nickeend labeling (TUNEL) reactivity).

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The occurrence of cardiac diseases in Norwegian Atlantic
salmon (Salmo salar) aquaculture has increased in recent years as
heart and skeletal muscle inflammation (HSMI) has become an
increasingly important disease. Such disease outbreaks have
increased from 54 (2004) to 162 cases reported in 2011 [1]. HSMI is
a disease of marine farmed Atlantic salmon reported not only in
Norway, but also in Scotland and more recently Chile. HSMI has
a putative viral etiology and mainly affects heart and skeletal
muscle. It is typically a disease of moderate mortality (w20%) but

highmorbidity (w100%) that typically affects fish 5e9months after
transfer to sea. Macroscopically pale hearts with loose texture,
pericardial hemorrhages, ascities and pale/stained liver are
observed without haematocrit changes. The cardiac and red
skeletal muscles exhibit the most significant histopathological
lesions [2]. Presently, HSMI can be diagnosed and differentiated
from other similar cardiac diseases based upon histopathological
changes and presents epie, endoe, and myocarditis as well as
a pronounced mononuclear cellular infiltration of both trabecular
and compact layers of ventricular myocardium accompanied by
myocytic necrosis, myositis and necrosis of red skeletal muscle
[2e5]. HSMI appears to be transmissible in laboratory studies by
injecting tissue homogenate from diseased to healthy fish [5].
Recently, a viral etiology was suggested where piscine reovirus was
associated with HSMI, although Koch’s postulates to date remains
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unfulfilled [6,7]. Lesions first appear and are more frequent in heart
than skeletal muscle. Affected myocytes show signs of degenera-
tion, loss of cardiomyocyte striation and eosinophilia, loss of skel-
etal muscle striation, vacuolation, centralized nuclei and
karyorhexis. Inflammatory changes are more pronounced as
compared to necrotic changes in heart and skeletal muscle [2,3,8].

The classification of pathological changes becomes more
important in the absence of causative agent (s) particularly in case
of HSMI where the aetiology needs to be confirmed. The MHC class
II immunostaining has been performed with HSMI, although the
nature of the inflammatory immune response has not been inves-
tigated or characterized [9]. Innate immunity is the first line of
defense present in vertebrates against pathogens and mediates the
response by activation of neutrophils, macrophages, mast cells,
dendritic cells, and natural killer cells. These cells are capable of
eradicating pathogens and transmit signals that amplify adaptive
immune response in vertebrates [10]. Adaptive immunity is
a crucial mechanism to protect the host from infections and rep-
resented mainly by helper T (Th) cells and cytotoxic T (Tc)
lymphocytes defined by expression of CD4 and CD8 molecules
respectively. These molecules serve as coereceptors and interacts
specifically with either major histocompatibility class II or I to
determine the discrete stage of T cell development within the
thymus. Cytotoxic T lymphocytes bind to MHC class I that presents
endogenous antigen via T cell receptor (TCR) and the CD8
coereceptor, and kills infected cells [11e13]. Presence of both
cytotoxic and helper T cells in teleosts have been suggested by
functional studies and supported by the expression of T cell
receptors (TCR), CD8 and CD4 genes in teleost [14]. The TCR exhibits
either a/b or g/d types in jawed fish nonecovalently bound to CD3
molecules [14,15]. The CD3 molecules play an important role in
signal transduction in TCR complex. Recently three subunits; CD3z,
CD3gd (forerunner of CD3g and CD3d in mammals) and CD3 3were
cloned and sequenced in Atlantic salmon [16].

Cysteineeaspartic proteases (caspases) mediate immune
responses (apoptosis, necrosis and inflammation) and are key
component of apoptosis or programmed cell death. Caspases
comprise of pro and catalytic domains and synthesized as inactive
precursor molecule. Upon activation, the inactive proeenzyme
transfers into enzymaticallyeactive heterotetrameric complex. At
least 15 caspases have been identified in mammals while many
important caspases have been identified in Atlantic salmon
(reviewed in Ref. [17]). There are two main subcategories of cas-
pases, effectors and initiators that mediate apoptosis by either
extrinsic or intrinsic pathways. Caspase 3 belongs to the effectors
group and can be initiated by both extrinsic and intrinsic pathways
[17,18]. Terminal deoxynucleotidyl transferase nickeend labeling
(TUNEL) and caspase 3 immunostaining have been used as markers
of irreversible apoptosis in chronic heart failure in humans [19].
Hypoxia inducible factore1 (HIF1) is a heterodimer consisting of
aesubunit (oxygen sensitive) and besubunit (oxygen independent)
and is one of the most important molecules involved in hypoxia,
inflammation, apoptosis and influences adaptive immunity
(reviewed in [10,20,21]. The oxidative stress is considered as one of
major factors for causing damage to the myocardium and HIF is
suggested as being essential for normal heart physiology and
particularly plays important role in cardiac conditions such as
ischemia and pressure overload [8,22]. Two TNFa genes of
246eamino acids were identified in Atlantic salmon [23] and being
a part of innate immune response reacts to different forms of stress
like infection, trauma, ischemia/reperfusion (I/R) [24]. A large
amount of soluble TNFa is released by inflammatory stimuli
(bacteria, virus, parasite and ischemia) from macrophages,
lymphoid cells, mast cells, endothelial cells, fibroblasts and
neuronal tissue and may serve as biomarker for heart failure

(reviewed in Ref. [24]). TNF can induce apoptosis or necrosis and
receptors for TNF are present in almost all nucleated cells making
the basis for a very complex cytokine network [23,25,26]. The
proliferative cell nuclear antigen (PCNA) is a common marker for
cellular proliferation and is widely accepted as a surrogate marker
for DNA synthesis, marking PCNA cells in early G1 phase and
Sephase of the cell cycle, DNA repair and apoptosis [27e30].

The aim of the present study was to characterize immunological
responses and cardiac pathology associated with HSMI by immu-
nohistochemistry [9]. Apoptosis and cell damage were studied
using TUNEL and caspase 3 antibody, hypoxia transcription factor
by HIF1a antibody, mitotic activity by PCNA antibody, proin-
flammatory cytokine TNFa by rTNFa antibody, granulocytes/
monocytes by a marker expressed onmature myeloid cell lineage, T
lymphocytes by CD3 3and CD8 antibodies, and antigen presenting
cells by MHC class I and II staining.

2. Materials and methods

2.1. Antibodies

The antibodies used in this study included mab PCNA 10 iden-
tifying proliferative cell nuclear antigen (PCNA) (aePCNA, Dako,
Glostrup, Denmark) (1:150) [31], mammalian polyclonal caspase 3
(sce7148, Santa Cruz Biotechnology, Santa Cruz, CA) (1:500),
mammalian polyclonal hypoxia inducible factor (HIF1a) (sce8711,
Santa Cruz Biotechnology, Santa Cruz, CA) (1:200), Ø127 MHCII
against salmon major histocompatibility complex (MHC) class II
b chain (1:1000) [31,32], monoclonal rainbow trout granulocyte/
monocytes antibody recognize mature myeloid cell lineage
(1:2000), polyclonal antiesalmon CD3 3 antibody (1:400) [33],
polyclonal rabbit antietrout TNFa antibody (1:500) [34], mono-
clonal antibodies Sasa CD8 alpha F1e29 and Sasa MHC I alpha
F1e34 [35e37].

2.2. Atlantic salmon hearts

Atlantic salmon hearts were collected from 2 confirmed
outbreaks of HSMI (The Norwegian Veterinary Institute, Norway) at
early and peak mortality phases, and naive fish hearts were
collected to serve as controls in this study. The control
(nonediseased) fish were maintained from smolts for w1 year at
the Mørkvedbukta Research Station, University of Nordland, Bodø,
Norway. The fish were kept in 2 m3 tanks supplied with fresh
ambient sea water (range 7e8 �C) and fed commercial fish pellets
(Spirit, Skretting, Stavanger, Norway) 0.7% feed of their bodyweight
three times weekly. All fish were sacrificed by a blow to head. The
fish were examined by autopsy in addition to histological obser-
vation of the hearts and other vital organs (gills, liver, kidney,
skeletal muscle and spleen) for any other abnormalities or signs of
overt disease in the nonediseased fish. The diagnosis of the disease
wasmade by histopathology of hearts and red skeletal muscle [5,9].
The number of heart sections range (3e10) for diseased group and
(3e7) for nonediseased group were used for each antibody reac-
tion to compare the results.

2.3. Immunohistochemistry on paraffin heart sections

Hearts were fixed in 10% neutral phosphate buffered formalin
solution and processed by a standard paraffin wax protocol
(dehydrated, embedded in paraffin and 3 mm thick sections).
Immunostaining was performed by following the protocol
described by Haugarvol et al. [31]. Briefly, 3 mm thick heart sections
were cut and mounted on polyeLelysine (SigmaeAldrich, Norway)
coated slides, dried at 50 �C for 30 min, deparaffinized in xylene
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(three changes for 5 min each), rehydrated in an ethanol series
(100%e80%, 10 min each) and finally rehydrated in distilled water
(dH2O). Antigen unmasking was undertaken by autoclaving the
slides at 121 �C for 21 min in a glass box in 10 mM citrate buffer, pH
6.0 containing 0.1% Tween 20 (SigmaeAldrich, Norway). Slides
were kept at room temperature for 20 min and then washed twice
with distilled water for 2 min each. All incubations were performed
in a closedelid humidity chamber. To inhibit endogenous
peroxidase activity, the slides were incubated with 3% H2O2
(SigmaeAldrich, Norway) in methanol for 10 min at room
temperature. The sections were incubated in 5% bovine serum
albumin (BSA) (SigmaeAldrich, Norway) in phosphate buffered
saline (PBS) (SigmaeAldrich, Norway) for 1 h at room temperature.
After removal of the BSA, slides were incubated with primary
antibodies in 1.5% BSA in PBS overnight (w16 h) at 4 �C. Following
morning, slides werewashed three times with PBSwith 0.1% Tween
20 (PBST) (SigmaeAldrich, Norway), pH 7.4 for 5 min each. Slides
were then incubated with secondary antibodies conjugated to
horseradish peroxidase (HRP) (sce2020, donkey antiegoat or
sce3837, goat antierabbit, Santa Cruz biotechnology) in 1.5% BSA in
PBS for 60 min at room temperature. Slides were washed three
times with PBST for 5 min each. Slides were either incubated with
3, 30ediaminobenzidine (DAB) or 3eaminoe9eethylcarbazole
(AEC) (SigmaeAldrich, Norway) for 5 min and then washed with
distilled water (dH2O) for 5 min. Slides were dipped in haema-
toxylin for 10 s for counterstaining and then passed through graded
ethanol and xylene for 10 s each and mounted with polyevinyl
alcohol (PVA) mounting media, pH 8.2 (Histolab, Oslo, Norway).
Negative controls were performed by replacing primary antibody
with 1.5% BSA in PBS.

2.4. Immunohistochemistry using CD8 and MHC I mouse mabs

The protocol was followed according to the Tyramide Signal
Amplification (TSA) Biotin system (PerkinElmer/NEN Life Science,
Boston, MA, USA) for CD8 and MHC I antibodies. The above
mentioned protocol in Section 2.3 was adopted until antigen
retrieval step. Briefly slides were treated with 3% H2O2
(SigmaeAldrich, Norway) in methanol for 10 min at room
temperature followed by washed twice in PBS. Slides were blocked
with TNB blocking buffer (0.1 M TRISeHCl, pH 7.5, 0.15 MNaCl, 0.5%
blocking reagent supplied in the TSA system) for 1 h followed by
incubation of slides with primary antibodies in TNB buffer over-
night (w16 h) at 4 �C. Slides were washed three times with PBS for
5 min each. To detect the primary antibodies, slides were incubated
with HRP labeled antiemouse secondary antibody (sce3697, goat
antiemouse, Santa Cruz biotechnology) diluted in TNB blocking
buffer for 1 h at room temperature. Three times PBS washing was
performed as after primary antibody step. Slides were incubated
with biotinyl tyramide amplification reagent followed by
streptavidinehorseradish peroxidase (SAeHRP), both reagents
were provided with the kit. Slides were visualized using
3eaminoe9eethyl carbazole (AEC; SigmaeAldrich, Norway) as
substrate. Slides were counter stained with haematoxylin for 10 s
andmounted using ImmunoHistoMount (SigmaeAldrich, Norway).
Negative controls included the primary antibodies replaced with
TNB blocking buffer and unamplified control (include all reagents
except TSA reagents).

2.5. TUNEL staining

TUNEL was performed using 3 mm sections of heart tissues using
an ApopTag� Plus Peroxidase In Situ Apoptosis Detection Kit
(CHEMICON� Int. Inc. USA). The sections were deparaffinized
through a graded series of xylene and alcohol and then pretreated

with freshly made IHC Select� Proteinase K (20 mg/ml) (Millipore)
for 15 min at room temperature and washed twice in distilled
water (dH2O) for 2 min each. All incubations were performed in
a closedelid humidity chamber. The endogenous peroxidase was
quenched by using 3% hydrogen peroxide (SigmaeAldrich, Norway)
in PBS for 5min at room temperature. Slides were rinsed twicewith
dH2O for 5 min each. The dH2O was aspirated around the sections
and immediately dipped in equilibration buffer at 75 ml 5 cm�2 for
10 s. The equilibration buffer was removed from slides and dipped
in working strength TdT enzyme at 55 ml 5 cm�2 and incubated
slides in a humidified at 37 �C for 1 h. The slides were dipped in
working strength stop/wash buffer, agitated for 15 s and then
incubated for 10 min at room temperature. The slides were washed
with 3 changes of PBS for 1 min each and then dipped in
antiedigoxigenin conjugate at 65 ml 5 cm�2 and incubated for
30 min at room temperature. Slides were washed with 4 changes of
PBS for 5 min each. Sections were carefully blotted and dipped in
peroxidase substrate at 75 ml 5 cm�2 and incubated for 3e6 min at
room temperature. The sections were washed three times in dH2O
for 1 min each, then counter stained with 0.5% (W:V) methyl green
(SigmaeAldrich, Norway) for 10 min and washed in dH2O. The
slides were finally washed in 100% Nebutanol (SigmaeAldrich,
Norway), dehydrated through graded alcohols and xylene for
2 min and mounted with polyevinyl alcohol (PVA) mounting
media, pH 8.2 (Histolab, Oslo, Norway). All reagents were provided
with the kit or otherwise mentioned. Positive (provided with the
kit) and negative control by replacing active TdT with equilibration
buffer was performed. Slides were evaluated by light microscopy
and apoptotic cells were identified by both positive staining and
morphological signs of apoptosis.

2.6. Western blot

Western blot was performed to confirm the antibody specificity
where nonesalmonid homologous antibodies were used in
immunohistochemistry against Atlantic salmon tissue. Approxi-
mately 30 mg of frozen tissue (kidney, spleen and skeletal muscle)
was minced on ice and transferred to tubes containing RIPA buffer
(150 mmol l�1 NaCl, 50 mmol l�1 TriseHCl at pH 8.0, 1% Triton
Xe100, 0.5% sodium deoxycholate and 0.1% SDS) supplemented
with protease inhibitor cocktail (Complete ULTRA tablets, Mini
EASYpack, Roche Diagnostics, GmbH, Germany) and sonicated until
the tissue dissolved at 4 �C. The homogenate was centrifuged at
13,000 g for 30 min at 4 �C and the supernatant collected. The
50e100 mg tissue in each well and HeLa þ CoCl2 cell lysate
(sce24679, Santa Cruz Biotechnology, Santa Cruz, CA) as positive
control were separated by denaturing SDSePAGE using 12% and 8%
polyacrylamide gels for caspase 3 and HIF1a respectively by
following the protocol described by Laemmli [38]. Samples were
blotted on polyvinylidene fluoride (PVDF) membrane and incu-
bated with caspase 3 (1:500) and HIF1a (1:100) antibodies and
detected by enhanced chemiluminescence (ImmobilonWestern kit
(Millipore)). The specificity of mab PCNA 10 identifying prolifera-
tive cell nuclear antigen (PCNA) (aePCNA, Dako, Glostrup,
Denmark) has already been demonstrated in Atlantic salmon [31].

2.7. Slide evaluation

A semiequantitative scoring system was adopted for positive
cell frequency that has been widely used [35,36,39] and graded as
(no staining ¼ 0, weak staining ¼ 1, moderate staining ¼ 2, strong
staining ¼ 3) where strong staining ¼ severe diffuse staining,
moderate staining ¼ multifocal staining or many positive cells,
weak staining ¼ focal staining or few positive cells and no staining.
The slides were evaluated by light microscopy using Olympus
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microscope BX51 equipped with CellB software (Olympus Corpo-
ration, Tokyo, Japan). The scoring grades of diseased and
nonediseased fish were compared by ManneWhitney rank sum
test using SigmaPlot (10.0�) and were considered statistically
significant at P values � 0.05.

3. Results

There were moderate numbers of CD3 3
þ cells in the atria of

diseased as compared to nonediseased hearts that showed low

numbers of immunopositive cells (Fig. 1A and B). Diseased ventri-
cles showed strong positive immunostaining as compared to
nonediseased hearts that identified few CD3 3

þ cells (Fig. 1C and D).
The CD3 3 immunoereactivity was mostly identified in
lymphocyteelike cells around areas with pathological changes and
significantly different from nonediseased fish (P ¼ 0.002). The
nonesignificant low numbers of CD8þ cells were observed in both
diseased and nonediseased atria (Fig. 1E and G) and ventricles
(Fig. 1F and H), staining lymphocyteelike cells. A nonesignificant
strong MHC class Iþ immunoereaction was observed in both

Fig. 1. AntieCD3 3and CD8 immunostaining on diseased (A, C, E and G) and nonediseased (B, D, F and H) hearts of Atlantic salmon respectively. (A, C) Abundant CD3 3
þ cells (arrow)

in atrium (at) and ventricle (vt) of diseased salmon especially around inflamed areas. (B, C) Few CD3 3
þ cells in atrium (at) and ventricle (vt) of nonediseased salmon. (B) Den-

driteelike cells in the heart (star). (E, F, G and H) Few CD8þ lymphocyteselike cells in atrium (at) and ventricle (vt) of diseased and nonediseased Atlantic salmon.
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diseased and nonediseased atria (Fig. 2A and B) and ventricles
(Fig. 2C and D). MHC class I antibody identified myocardial and
endothelial staining in diseased hearts as compared to
nonediseased where endothelial staining was dominant. However,
MHC class II bþ immunostaining was strongly positive in HSMI
diseased hearts (Fig. 2E and G) and significantly different
(P � 0.001) from low levels in nonediseased hearts (Fig. 2F and H).
The immunopositive cells were found around focal affected areas in

the endocardium and myocardium in addition to mononuclear
lymphocyteelike cells (Fig. 2G and H). MHC class II b staining
also identified dendriteelike cells in the diseased heart (Fig. 2E).
The rTNFaþ cells showed moderate levels of immunoereactivity in
the diseased atria (Fig. 3A) and ventricles (Fig. 3C) which were
significantly different (P ¼ 0.016) from nonediseased fish where
few positive cells were observed (Fig. 3B and D). The antierTNFa
reaction identified macrophages (Fig. 3A, insert) and eosinophilic

Fig. 2. MHC class I and II b chain immunoereactivity of diseased (A, C, E and G) and nonediseased (B, D, F and H) hearts of Atlantic salmon respectively. (A, B, C and D) The strong
levels of MHC class I immunostaining were observed (arrow) in atrium (at) and ventricle (vt) of diseased and nonediseased salmon. (E, G) MHC class II immunoereaction showed
moderate levels of staining (arrow) in atrium (at) while strong levels in the ventricle (vt) of diseased salmon especially around the inflamed areas with cytoplasmic staining of
mononuclear lymphocyteselike cells (arrow head). Dendriteelike cells (star) identified in the heart. (F, H) FewMHC class II immunoereactive cells were identified in atrium (at) and
ventricle (vt) of nonediseased salmon.
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granular cells in the diseased hearts where the scattered granules
were easily seen (Fig. 3A, C and C, insert). Overall, mature myeloid
like cell line antibody against granulocytes/monocytes immunos-
taining was nonesignificant and low in numbers (Fig. 3E and G) but
still could be differentiated with more positive cells present in
diseased as compared to nonediseased hearts (Fig.3F and H).
TUNEL staining showed moderate levels of staining for diseased
hearts (Fig. 4A and C) as compared to low levels of positive cells
identified in nonediseased hearts (Fig. 4B and D). Similarly there

was moderate levels of PCNA immunoereaction in HSMI diseased
hearts (atrium and ventricle) (Fig. 4E and G) and significantly
different (P ¼ 0.012) from a low number of positive cells in
nonediseased hearts (Fig. 4F and H). PCNA showed distinctive
nuclear and cytoplasmic staining (Fig. 4E and G) as well as identi-
fied hypertrophic nuclei (Fig. 4E, insert). There were
nonesignificant low levels of HIF1aþ cells in both diseased (Fig. 5A
and C) and nonediseased hearts (Fig. 5B and D). The
nonesignificant low levels of caspase 3 immunopositive cells were

Fig. 3. Anti rTNFa and mature myeloid cell line granulocytes/monocytes immunostaining on diseased (A, C, E and G) and nonediseased (B, D, F and H) hearts of Atlantic salmon
respectively. (A, C) Moderate levels of rTNFaþ cells were identified in atrium (at) and ventricle (vt) of diseased salmon (B, D) while few positive cells observed in nonediseased
hearts. (A and C)The insets showed macrophageelike and eosinophilic granulocytes (H&E) respectively. (E, F, G and H) Few granulocyteþ cells were present in diseased and
nonediseased hearts.
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observed in diseased hearts (Fig. 5E and G) while few positive cells
were seen in nonediseased hearts (Fig. 5F and H). The caspase 3
staining was mostly endothelial presumably in areas of necrosis
(Fig. 5E, F and G).

As shown in Fig. 6, Western blot analysis of caspase 3 antibody
identified procaspase 3 (w40 kDa) and caspase 3 (w12 kDa) bands
while the middle band may correspond to p20 (w21 kDa) which
was evident in the kidney. The HIF1a antibody identified a band of
w70 KDa in the skeletal muscle (Fig. 6).

4. Discussion

Heart and skeletal muscle inflammation (HSMI) is considered as
a disease with more inflammatory changes than necrotic changes
[2,3] and this study was aimed to identify and characterize the
different cell types that infiltrated the infected fish hearts, the
majority of which appear mononuclear and distinctively
lymphocyteelike by H&E staining. There were very few CD8þ cells
in the diseased or nonediseased hearts, staining lymphocyteelike

Fig. 4. TUNEL and PCNA immunostaining for detection of apoptosis and cell proliferation on diseased (A, C, E and G) and nonediseased (B, D, F and H) hearts of Atlantic salmon
respectively. (A, C) Low and moderate levels of staining were identified in atrium (at) and ventricle (vt) for TUNEL staining in HSMI hearts respectively (B, D) while low numbers of
apoptotic cells were identified in nonediseased hearts. (E, G) Strong PCNAþ immunoereactive cells in diseased atrium (at) and ventricle (vt), and (F, H) low levels of PCNAþ cells
were identified in the atrium (at) and ventricle (vt) of nonediseased salmon hearts. The hearts presented with granular nuclear (arrow) and cytoplasmic (arrow head) staining. (E)
The inset showed hypertrophic nucleus identified by PCNA antibody.
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cells and in line with Hetland et al. [36]. The low numbers of CD8þ

cells have been suggested to have protective roles in the immune
defense of Atlantic salmon against infectious salmon anaemia virus
(ISAV) [36]. There were, however, strong levels of staining with the
antieCD3 3antisera identified in the diseased hearts (HSMI) and
specifically in affected areas with inflammatory foci and degener-
ative myocytes. The staining was significantly different from
nonediseased hearts where only a few CD3 3

þ cells could be
observed. There were more CD3 3

þ cells present in ventricles as
compared to atria in diseased hearts. The low number of CD8þ cells

and higher number of CD3 3
þ cells suggested these inflammatory

lymphocyteelike cells were predominantly CD3 3
þ T cells in HSMI

disease similar to those identified in gill associated lymphoid tissue
of salmon [33,7]. AntieMHC class I staining showed a strong
positive staining reaction in mononuclear cells, myocardium and
endothelium in diseased hearts as compared to nonediseased
hearts where endothelial staining was dominant, consistent with
the findings from other viral diseases of Atlantic salmon [35,36,40].
MHC class I molecules are abundantly expressed in nearly all
known cell types [40]. Besides the presentation of antigenic

Fig. 5. AntieHIF1a and caspase 3 immunostaining on diseased (A, C, E and G) and nonediseased (B, D, F and H) hearts of Atlantic salmon respectively. (A, B, C and D) The low
numbers of HIF1aþ cells were identified in diseased and nonediseased atria (at) and ventricles (vt). (E, F, G and H) The low levels of endocardial immunostaining were observed for
caspase 3 in diseased and control hearts. (G) The caspase 3 immunostaining appeared predominantly in affected areas (star).
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peptides to cytotoxic T lymphocytes, MHC class I molecules are also
responsible for other biological functions including celletoecell
communication and receptoremediated transemembrane signal
transduction (reviewed in Ref. [41]. The strongly positive staining
observed using MHC class II b antisera was mostly confined to
regions of tissue damage and mononuclear cell infiltrations. Being
antigen presenting molecules, MHC class II has been shown to be
expressed on the leucocyte lineage (dendritic cells, macrophages, B
cells and T cells) and epithelial cells [31,42]. Previously, MHC
class IIþ cells have been suggested as T lymphocytes with HSMI [9].
The present study concurs with this interpretation andMHC class II
cytoplasmic staining was confined to the myocardium,

endocardium and mononuclear inflammatory cells. The MHC class
II b chain antisera has been used for morphological studies before
and identified specific staining for epithelial cells, multinucleated
giant cells (MGC), macrophages and dendriteelike cells [43e45].
The MHC class II has been suggested to be involved in immune cell
trafficking and antigen presentation in Atlantic salmon affected
with amoebic gill disease [45]. The common regulatory mecha-
nisms have been suggested for MHC class I and II expression in
Atlantic salmon [46]. These findings may support the present study
where strong levels of staining for both MHC class I and II with
HSMI were observed. Moreover, the significantly increased
expression of MHC class IIþ cells have been reported in Atlantic
salmon affected with granulomatous uveitis and amoebic gill
disease [43,45].

There were significant moderate levels of rTNFaþ cells in the
diseased hearts while few cells were identified in the nonediseased
hearts. The staining was mostly confined to macrophages and
eosinophilic granule cells (EGCs) as well as in endocardium. EGCs
were easily identified with their scattered granular appearance and
were also rTNFaþ in the bulbus arteriosus. TNFa enhances EGCs
recruitment in conjunctionwith LPS [47] but as an analogue of mast
cells [48], are likely to be involved in enhancing Tcell activation and
release of TNFa similar to that seen inmammalianmast cell [49,50].
TNFa is known to be produced by macrophages in rainbow trout
and mammalian eosinophilic granulocytes that were also sug-
gested as antigen presenting cells [51e53]. Few functional studies
have been conducted in teleosts and one of the in vitro study in
rainbow trout showed that recombinant TNFa (rTNFa) enhanced
the leucocyte migration and phagocytic activity. This study used
the same recombinant rainbow trout TNFa antibody which has
been shown specific by Western blot [34]. Another in vivo study in
gilthead seabream showed rapid recruitment of phagocytic gran-
ulocytes to the injection site and the induction of granulopoiesis in
the head kidney by rTNFa [54]. These studies may explain the
possible reasons of increased number of macrophages/granulocytes
due to increased expression of rTNFa that might attract macro-
phages/EGCs to the site of action in HSMI hearts than nonediseased
hearts. The use of monoclonal rainbow trout granulocytes/mono-
cytes antibody recognized mature myeloid like cells in the hearts.
Therewas overall low signal strength in immunoereactive cells and
in addition, only few positive cells were identified in the diseased
hearts. However, they could be differentiated from nonediseased
hearts where very few cells were stained. This staining was also
supported by rTNFa antibody which also stained moderate
numbers of granular cells including EGCs in HSMI affected as
compared to nonediseased hearts. It reflected that the inflamma-
tory responsewas not primarily comprised of granulocytes in HSMI
affected hearts. TUNEL identified nonesignificant moderate levels
of staining for apoptotic cells in diseased hearts while caspase 3
presented with low levels of staining in the diseased hearts due to
the fact that HSMI is a disease of more inflammation than necrosis/
apoptosis [2,3,8] and in line with Grammes et al. [55]. Western blot
analysis confirmed the specificity of caspase 3 antibody and iden-
tified procaspase 3 (w40 kDa) and caspase 3 (w12 kDa) bands and
in linewith Chiou et al. [56] while themiddle bands (w21 kDa)may
correspond to the p20 that is formed by the cleavage of procaspase
3 to caspase 3 in mammals [57]. The p20 band was not strong in
immunoblot analysis of spleen tissue and might be explained by
the rapid clearing of cells containing activated caspase 3 and thus
contributed little to total proteins extracted from the tissue [58].
Over expression of caspase 3 cDNA into fish cell cultured cells and
zebrafish resulted in extensive apoptosis and ceramide generation
[59]. It might suggest the direct role of caspase 3 in inducing
apoptosis. Environmental stresses such as UV light, heat shock
and geirradiation triggered apoptosis and caspase 3 activity in

Fig. 6. Western blot analysis of different tissues of Atlantic salmon by using
mammalian polyclonal antibodies (Caspase 3 and HIF1a). (A) The procaspasee3
(w40 kDa), caspase 3 (w12 kDa) and p20 (w21 kDa) bands were identified in the
kidney while first two were visible in spleen. (K Kidney, S spleen, M PageRuler�
prestained protein ladder (Fermentas GmbH, Norway). (B) A band of same size
(w70 kDa) was identified in skeletal muscle and positive control (HeLa þ CoCl2 cell
lysate) by using HIF1a antibody. (PC positive control, SM skeletal muscle and M
PageRuler� prestained protein ladder).
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zebrafish embryo [60]. The presence of apoptotic cardiomyocytes in
diseased and nonediseased hearts has been shown in many
mammalian studies but higher in diseased groups than normal
(reviewed in Ref. [61]). Necrosis being rapid in nature while energy
demanding apoptosis may coedetermine the final degree of lethal
myocardial injury after ischemia and reperfusion in mammals
(reviewed in Ref. [62]). The mammalian reovirus has also been
shown to induce apoptosis in heart and central nervous system
(reviewed in Ref. [63]) while recently the chum salmon reovirus has
been shown to induce apoptosis and macrophage modulation in
salmonid cell culture [64]. The caspase 3 antibody identified lower
number of positive cells than TUNEL staining in the hearts affected
with chronic heart failure [19]. Although not pathognomic for
reovirus infections, the cellular responses seen with HSMI, the
putative agent of which is the piscine reovirus (PRV) are associated
with that seen with other reovirusecaused pathological changes
(mammals and chum salmon) [63,64].

Being a highly conserved eukaryotic protein, PCNA showed
significant strong granular staining suggesting the Sephase of the
cell cycle while the significant increased cell proliferation has been
described in many fish species in normal and diseased conditions
[30,65e70]. The significant increase in PCNAþ cells suggested an
increased cell turnover and recruitment with amoebic gill disease
in Atlantic salmon [45,71]. The pronounced and extensive staining
of cardiomyocytes in HSMI affected hearts suggested active
myocardial proliferation. A few PCNAþ cells were also identified in
the nonediseased hearts. This is to be expected since the heart is
a dynamic organ capable of remodeling [8]. We suggest that the
HSMI hearts were more active with increased cell division in the
disease condition. PCNA staining also demonstrated the presence of
hypertrophic nuclei in HSMI affected hearts supporting cardiac
hypertrophy. PCNA has been suggested as marker of cell prolifer-
ation in human myocardial hypertrophy, myocarditis, valvular
heart disease, ischemic heart disease and cardiomyopathy [72e74].
The low levels of HIF1aþ cardiomyocytes were identified in
diseased and nonediseased hearts. Reports suggested that HIF1a
expression may lead to cardiac degeneration, dysfunction and
leading to heart failure in humans [75,76]. The presence of HIF1a
staining in normal organs has been proposed their physiological
roles in tissue homeostasis which may explain the low levels of
HIF1a staining in normal hearts in this study. Recently, hypoxia has
been quantified in Atlantic salmon and suggested its possible
involvement in vertebral column deformity (VCD) [77]. Moreover,
TNFa which is rapidly released after infection, has been suggested
to activate HIF1 in mammals and may explain the expression of
HIF1a in HSMI hearts [20].

There were significantly higher numbers of positive cells iden-
tifiedwith antibodies such as CD3 3, MHC class II, rTNFa and PCNA in
HSMI hearts. In addition, strong levels of CD3 3and MHC class II
staining suggested the mononuclear lymphocyteelike cells as
activated T helper cells but require further studies for confirmation.
This study characterized the involvement of CD3 3 lymphocytes,
macrophages and granulocytes (identified by rTNFa and
antiegranulocytes antibodies), and antigen presenting molecules
(identified by MHC class I and II staining) in the hearts of Atlantic
salmon affected with HSMI. The lymphocytic responses dominated
the inflammation over granulocytic infiltrates. The increased
number of PCNAþ cells with increased expression of caspase 3 and
TUNEL suggested an induction of cell and tissue repair occurring
and apoptosis in the HSMI hearts.
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haematoxylin and eosin, HIF: hypoxia inducible factor, HRP: horseradish peroxidase, HSMI: 

Heart and skeletal muscle inflammation, MHC: major histocompatibility complex, PBS: 
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PAGE: sodium dodecyl sulfate– polyacrylamide gel electrophoresis, TCR: T cell receptors, 
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Abstract 

 

Heart and skeletal muscle inflammation (HSMI), cardiomyopathy syndrome (CMS) 

and pancreas disease (PD) are diseases of marine farmed Atlantic salmon (Salmo salar) which 

commonly affect the heart in addition to the skeletal muscle, liver and pancreas. The main 

findings of these diseases are necrosis and inflammatory cells infiltrates affecting different 

regions of the heart. In order to better characterize the cardiac pathology, study of the 

inflammatory cell characteristics and cell cycle protein expression was undertaken by 

immunohistochemistry. Immunohistochemistry was performed on paraffin embedded hearts 

from confirmed diseased cases applying specific antibodies. The inflammatory cells were 

predominantly CD3
+
 T lymphocytes while few eosinophilic granulocytes were identified. The 

PD diseased hearts exhibited moderate hypoxia inducible factor–1α (HIF1α) immuno–

reaction that suggested tissue hypoxia while recombinant tumor necrosis factor–α (rTNFα) 

antibody identified putative macrophages and eosinophilic granular cells (EGCs) in addition 

to endocardial cells around lesions. There were strong to low levels of major 

histocompatibility complex (MHC) class II immunostaining in the diseased hearts associated 

with macrophage–like and lymphocyte–like cells. The diseased hearts expressed strong to low 

levels of apoptotic cells identified by caspase 3 and terminal deoxynucleotidyl transferase 

nick–end labeling (TUNEL) staining. The strong signals for proliferative cell nuclear antigen 

(PCNA) and TUNEL, and moderate levels of caspase 3 immuno–reactivity suggested a high 

cell turnover where DNA damage/repair might be occurring in the diseased hearts. 
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1. Introduction 

 

 The marine farmed Atlantic salmon (Salmo salar) are prone to numerous cardiac 

disorders including aplasia or hypoplasia of the septum transversum, abnormal location and 

shape of heart (Poppe and Seierstad, 2003), arteriosclerosis (Poppe et al., 2007; Farrel, 2002), 

ventricular hypoplasia (Poppe and Taksdal, 2000) and specific viral diseases such as 

cardiomyopathy syndrome (CMS) (Poppe and Ferguson, 2006; Poppe and Seierstad, 2003; 

Ferguson et al., 1990; Brun et al., 2003; Grotmol et al., 1997), heart and skeletal muscle 

inflammation (HSMI) (Kongtorp et al., 2004, 2006) and pancreas disease (PD) (Christie et al., 

1998; Taksdal et al., 2007; Nelson et al., 1995). 

 

 HSMI is a disease of marine farmed Atlantic salmon that mainly affects heart and red 

skeletal muscle. It is characterized as disease of low mortality (20%) but with high morbidity 

(100%) that affects fish mostly after 5 to 9 months transfer to sea and has been reported from 

Norway, Scotland and Chile (Kongtorp et al., 2004a; Ferguson et al., 2005). HSMI is 

diagnosed by histopathological investigation with changes including epicarditis, mononuclear 

cell infiltration in both spongy and compact layers of ventricle and necrotic myocytes. 

Affected myocytes show signs of degeneration, loss of striation and eosinophilia, vacuolation, 

central nuclei localisation and karyorhexis (Poppe and Ferguson, 2006; Kongtorp et al., 2004, 

2006). Recently, a viral etiology was suggested where piscine reovirus was associated with 

HSMI, nevertheless, Koch’s postulates remained unfulfilled (Wiik–Nielsen et al., 2012; 

Palacios et al., 2010).  

 

 Pancreas disease (PD) was first described in Atlantic salmon in Norway in 1989 

(Poppe et al., 1989) although an associated alpha virus was first isolated from diseased 
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Atlantic salmon from the west coast of Norway in 1998 (Christie et al., 1998). During last 

decade, PD has emerged to become a major economical and animal welfare problem for 

farmed Atlantic salmon in Europe. It has been reported from different regions of Europe such 

as Ireland, Scotland, UK, Spain, Italy and Norway (Ferguson et al., 1990; Christie et al., 1998; 

Taksdal et al., 2007; Poppe et al., 1989; McVicar, 1987; Rowley et al., 1998; Graham et al., 

2003, 2007; Crockford et al., 1999). The mortality ranges from 1 to 42 % in natural outbreaks 

and outbreak lasts for 3–4 months (McLoughlin et al., 2002; Christie et al., 2007). The fish 

show inappetence, lethargy, yellow faecal casts and increased mortality. The acute phase of 

PD at 2–14°C lasts up until 10 days with inflammatory lesions in pancreas and heart as 

dominating features. This is followed by a sub–acute phase 10–21 days after onset of clinical 

signs with lesions in pancreas, heart and muscles, and a chronic phase after 21–42 days with 

lesions in muscles as dominating feature, and then subsequently a recovery phase 

(McLoughlin et al., 2002, Taksdal et al., 2007). The pathological changes involve severe 

losses of exocrine pancreas, cardiac and skeletal myopathies, epicarditis, focal gliosis of brain 

stem, white skeletal muscle degeneration and functionally unknown cells in kidney with 

cytoplasmic eosinophilic granules (Taksdal et al., 2007; Christie et al., 2007). 

 

 Cardiomyopathy syndrome (CMS) is a cardiac disease with a suggested totiviral 

etiology of Atlantic salmon that mainly affects atrium and trabecular ventricle without 

involvement of skeletal muscle. It shares similar features with HSMI where both diseases 

cause myocarditis (Poppe and Ferguson, 2006; Palacios et al., 2010; Ferguson et al., 1986; 

Løvoll et al., 2010). It was first reported in late–1980s in the cultured Atlantic salmon in 

Norway (Amin and Poppe, 1989; Ferguson et al., 1990) and also subsequently reported in the 

wild salmon (Poppe and Seierstad, 2003). Recently a piscine myocarditis virus (PMCV) 

belonging to family totiviridae was proposed as causative agent for cardiomyopathy (Wiik–
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Nielsen et al., 2012; Løvoll et al., 2010; Haugland et al., 2011) and viral etiology was also 

supported by two separate challenge trials (Bruno and Noguera, 2009; Fristvold et al., 2009). 

Histopathological findings include necrosis and inflammation of trabecular myocardium of 

the ventricle and atrium, epicarditis and a cellular infiltrate includes mono–nuclear leucocytes. 

The rupture of the atrium or sinus venosus was also reported at terminal stages of CMS 

(Ferguson et al., 1990; Poppe and Ferguson, 2006). CMS may occur in adult salmon after 12–

18 months of sea transfer and causes economic losses up to € 8.8 million annually in Norway 

(Ferguson et al., 1990; Brun et al., 2003). The number of HSMI outbreaks has been increased 

three times from 2004 (54 outbreaks) to 2010 (162 outbreaks) while PD has re–emerged from 

the beginning of the year 2000 (11 outbreaks) to 2011 (89 outbreaks) and CMS remained at 

uniform pattern with 53 outbreaks in 2010 in Norway (Bornø et al., 2011; Marta et al., 2012). 

 

 The heart is the common organ involved in all three of these apparently similar cardiac 

diseases and gives us an opportunity to characterize putative cardiac immunological 

differences using cell and cell cycle protein markers applying immunohistochemistry. Atlantic 

salmon as with other teleosts exhibits both innate and adaptive immune responses (Koppang 

et al., 2007; Nam et al., 2003; Liu et al., 2008; Moore et al., 2005). Initially, the innate 

immune system responds to pathogens include the actions of neutrophils, macrophages, mast 

cells, dendritic cells, and natural killer cells. These cells participate in the eradication of the 

pathogens and transmit signals that amplify adaptive immune response (Eltzschig and 

Carmeliet, 2011). Adaptive or cellular immunity comprises of the recognition of cell surface 

MHC–peptide complex by T lymphocytes. This system helps to protect the host from 

infections and represented mainly by helper T (Th) and cytotoxic T (Tc) lymphocytes defined 

by the expression of specific markers CD4 and CD8 respectively. MHC molecules interact 

with either CD4/TCR/CD3 or CD8/TCR/CD3 complex on antigen presenting cells where 
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CD3 serves as important trigger of T cell activation (Wang et al., 2009; Sun et al., 1995; Salter 

et al., 1989). TNFα as part of innate immune response reacts rapidly to different forms of 

stimuli such as bacteria, virus, parasitic infections, trauma, and ischemia/reperfusion (I/R) 

(reviewed in (Kleinbongard et al., 2011)). The cytokines and specially TNFα are capable of 

activating HIF1 that has been suggested to be involved in inflammation, apoptosis and 

influences adaptive immunity (reviewed in (Eltzschig and Carmeliet, 2011; Gale and 

Maxwell, 2010; Dehne and Brune, 2009)). Oxidative stress is one of the major factors causing 

damages to myocardium, and HIF1α is suggested to be important in physiological and 

pathological conditions (Poppe and Ferguson, 2006; Hopfl et al., 2004; Huang et al., 2004). 

Apoptosis or programmed cell death is an important process to remove damaged or 

unnecessary cells ensuring normal development of multicellular animals. Caspases (cysteine–

dependent aspartate protease) are capable of mediating immune responses (apoptosis, necrosis 

and inflammation) and are key players in apoptosis (Takle and Andersen, 2007). Terminal 

deoxynucleotidyl transferase nick–end labeling (TUNEL) is used for in situ detection of 

cleaved DNA. Taken together, TUNEL and active caspase 3 immunostaining have been 

suggested as better approaches for detection of apoptosis in chronic heart failure (CHF) in 

humans (De–Boer et al., 2000). Proliferative cell nuclear antigen (PCNA) is suggested to be 

most commonly used marker for cellular proliferation and is widely accepted as a surrogate 

marker for DNA synthesis. PCNA is a marker for cells in different phases of the cell cycle, 

DNA repair and apoptosis (Soonpaa and Field, 1998; Eldridge and Goldsworthy, 1996; 

Chapman and Wolgemuth, 1994; Panday and Wang, 1995).  

 

 The present study was aimed to characterize and differentiate the immunological 

responses associated with apparently similar diseases (CMS, PD and HSMI) by 

immunohistochemistry. The markers for apoptosis and cell damage were studied using 
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TUNEL and polyclonal antibodies against caspase3, hypoxia transcription factor by HIF1α, 

mitotic activity by PCNA, pro–inflammatory cytokine TNFα by anti–recombinant trout 

TNFα, as well as monoclonal antibodies against salmonid granulocytes/monocytes by a 

marker expressed on mature myeloid cell lineage, T lymphocytes by CD3ε and CD8, and 

antigen presenting cells by MHC class I and II staining. 

 

2. Materials and Methods 

 

2.1. Hearts 

 

 Atlantic salmon hearts were collected from confirmed outbreaks of HSMI (n = 3–10), 

CMS (n = 3–7) and PD (n = 3–7). All of the HSMI, CMS and PD outbreaks were diagnosed 

and confirmed by National Veterinary Institute, Oslo, Norway (NVI) using PCR (for pancreas 

disease virus) and histopathology. Hearts from naive fish were collected as controls (n = 3–7). 

The control (non–diseased) fish were maintained from smolts for ~1 year at the 

Mørkvedbukta research station, University of Nordland, Bodø, Norway in 2 m³ tanks supplied 

with fresh ambient sea water (range 7 – 8°C) and fed with commercial fish pellets (Spirit, 

Skretting, Stavanger, Norway) 0.7%  of their body weight three times weekly. Fish were 

regularly monitored for mortalities and aberrant behavior. All fish were sacrificed by a blow 

to head in accordance with national regulations for research animals. The fish were examined 

by autopsy in addition to histological observation of the hearts and other vital organs 

including such as gills, liver, kidney and spleen for other abnormalities or signs of overt 

disease (Table 1). The diagnosis of the diseases was confirmed during the study by 

histopathology, a method of choice for the above mentioned diseases (Kongtorp, 2008; Poppe 

and Ferguson, 2006). Diseased and non–diseased hearts were fixed in 10% neutral phosphate 
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buffered formalin solution and processed by a standard paraffin wax protocol (dehydrated, 

embedded in paraffin and 3 µm thick sections).  

 

2.2. Antibodies  

 

 The antibodies used in this study included polyclonal rabbit proliferative cell nuclear 

antigen (PCNA) (sc–7907, Santa Cruz Biotechnology, Santa Cruz, CA) 1:150, polyclonal 

rabbit caspase 3 (sc–7148, Santa Cruz Biotechnology, Santa Cruz, CA) 1:500, polyclonal goat 

hypoxia inducible factor (HIF1α) (sc–8711, Santa Cruz Biotechnology, Santa Cruz, CA) 

1:200, polyclonal rabbit anti–salmon major histocompatibility complex (MHC) class II β 

chain 1:1000 (Koppang et al., 2003), mab 21 anti–rainbow trout granulocytes/monocytes 

antibody recognizes a marker expressed on mature myeloid cell lineage 1:2000, polyclonal 

rabbit anti–salmon CD3ε antibody 1:400 (Koppang et al., 2010) and polyclonal rabbit anti–

trout tumor necrosis factor–α  (TNFα) antibody 1:500 (Zou et al., 2003). Anti–salmon mouse 

monoclonal antibodies included Sasa CD8 alpha F1–29 and Sasa MHC I alpha F1–34 

(Hetland et al., 2010, 2011; Olsen et al., 2011). 

 

2.3. Immunohistochemistry on Atlantic salmon hearts 

 

 Immunohistochemistry was performed on the heart sections by following the protocol 

described by Haugarvoll et al. (2008). The heart sections were mounted on poly–L–lysine 

(Sigma–Aldrich, Norway) coated slides, dried at 50º C for 30 min, deparaffinized in xylene 

using three changes for 5 min each, followed by graded ethanol baths from 80% to absolute 

alcohol for 10 min each and rehydrated in distilled water (dH2O). Antigen retrieval was 

performed by autoclaving the slides at 121ºC for 20 min in a box in 10 mM citrate buffer, pH 
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6.0 containing 0.1% Tween 20 (Sigma–Aldrich, Norway). Slides were kept at room 

temperature for 20 min and then washed twice with distilled water for 2 min each. All 

incubations were performed in a closed–lid humidity chamber. To inhibit endogenous 

peroxidase activity, the slides were incubated with 3% H2O2 (Sigma–Aldrich, Norway) in 

methanol for 10 min at room temperature.  The sections were incubated in 5% bovine serum 

albumin (BSA) (Sigma–Aldrich, Norway) in phosphate buffer saline (PBS) (Sigma–Aldrich, 

Norway) for 1 h at room temperature. After removal of the BSA, slides were incubated with 

primary antibodies in 1.5% BSA in PBS overnight (~16 hours) at 4 ºC.  Following day, slides 

were washed three times with PBS with 0.1% Tween 20 (PBST) (Sigma–Aldrich, Norway), 

pH 7.4 for 5 min each. After washing, slides were incubated with secondary antibodies 

conjugated to horseradish peroxidase (HRP) (sc–2020, donkey anti–goat or sc–3837, goat 

anti–rabbit, Santa Cruz biotechnology) in 1.5% BSA in PBS for 60 min at room temperature. 

Slides were washed three times with PBST at room temperature for 5 min each. Slides were 

incubated with 3, 3'–diaminobenzidine (DAB; Sigma–Aldrich, Norway) or 3–Amino–9–

ethylcarbazole (AEC; Sigma–Aldrich, Norway) for 5 min and then washed with distilled 

water for 5 min. Slides were dipped in haematoxylin for 10 sec for counterstaining and then 

passed through graded ethanol and xylene for 10 sec each and mounted with poly–vinyl 

alcohol (PVA) mounting media, pH 8.2 (Histolab, Oslo, Norway). Negative controls included 

primary antibody replaced with 1.5% BSA in PBS. 

 

2.4. Immunohistochemistry using anti–salmon CD8 and MHC class I mouse mabs 

 

 The immunohistochemistry was performed by following Tyramide Signal 

Amplification (TSA) Biotin system (PerkinElmer/ NEN Life Science, Boston, MA, USA) for 

CD8 and MHC class I antibodies. The protocol was performed as described in section 2.3 

until antigen retrieval. The slides were treated with 3% H2O2 (Sigma–Aldrich, Norway)  in 
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ethanol for 10 min at room temperature followed by washed twice in PBS to avoid 

endogenous peroxidase. The sections were blocked with TNB blocking buffer (0.1 M TRIS–

HCl, pH 7.5, 0.15 M NaCl, 0.5% blocking reagent supplied in the TSA system) for 1 hour at 

room temperature followed by incubation of slides with primary antibodies in TNB buffer 

overnight at 4 ºC. Following morning slides were washed three times with PBS for 5 min 

each. Slides were incubated with HRP labeled anti–mouse secondary antibody (sc–3697, goat 

anti–mouse, Santa Cruz biotechnology) diluted in TNB blocking buffer for 1 hour at room 

temperature to detect the primary antibodies. Three times PBS washing was performed as 

mentioned above after secondary antibody step. Slides were incubated with biotinyl tyramide 

amplification reagent followed by streptavidin–horseradish peroxidase (SA–HRP) (provided 

with the kit). Slides were incubated for 5 min with 3–amino–9–ethyl carbazole (AEC; Sigma–

Aldrich, Norway) substrate. Slides were counterstained with haematoxylin for 10 sec and 

mounted using ImmunoHistoMount (Sigma–Aldrich, Norway). The negative controls were 

performed by replacing primary antibodies with TNB blocking buffer and unamplified 

controls that included all reagents except TSA reagents. 

 

2.5. Western blot 

 

 The frozen tissues such as kidney, liver, gills, skeletal muscle and spleen (approx. 30 

mg) were minced on ice and transferred to tubes containing RIPA buffer (150 mmol l
–1

 Nacl, 

50 mmol l
–1

 Tris–Hcl at pH 8.0, 1% Triton X–100, 0.5% sodium deoxycholate and 0.1% SDS) 

supplemented with protease inhibitor cocktail (cOmplete ULTRA tablets, Mini EASYpack, 

Roche Diagnostics, GmbH, Germany) and homogenized by ultrasonic device at 4°C. Proteins 

samples (50–100 µg) and HeLa + CoCl2 cell lysate (sc–24679, Santa Cruz Biotechnology) as 

positive control were separated by denaturing SDS–PAGE using 12% polyacrylamide gels for 
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PCNA and caspase 3 antibodies and 8% polyacrylamide gel for HIF1α antibody by following 

the protocol described by Laemmli (1970). Samples were blotted on polyvinylidene fluoride 

(PVDF) membrane by following Koppang et al. (2003) and tested for mammalian polyclonal 

PCNA (1:1000), caspase 3 (1:500) and HIF1α (1:100) antibodies. The secondary antibodies 

(1:5000) conjugated to horseradish peroxidase (HRP) (sc–2020, donkey anti–goat or sc–3837, 

goat anti–rabbit, Santa Cruz biotechnology) were used and detected by enhanced 

chemiluminescence (Immobilon Western kit (Millipore)).  

 

2.6. TUNEL staining 

 

 TUNEL staining was performed by following ApopTag® Plus Peroxidase In Situ 

Apoptosis Detection Kit (CHEMICON® Int. Inc. USA). Briefly, the hearts were 

deparafinised through graded series of xylene and alcohol and then pretreated with freshly 

made IHC Select® Proteinase K (20 µg ml
–1

) (Millipore) for 15 min at room temperature and 

washed twice in distilled water (dH2O) for 2 min each. The endogenous peroxidase was 

quenched with 3% hydrogen peroxide (Sigma–Aldrich, Norway) in PBS for 5 min at room 

temperature. Slides were rinsed twice with dH2O for 5 min each. Slides were carefully 

aspirated and immediately dipped in equilibration buffer at 75 µl 5 cm
–2

for 10 s. The working 

strength TdT enzyme was used as 55 µl 5 cm
–2 

and incubated in a humidified at 37°C for 1 

hour. Slides were dipped in working strength stop/wash buffer, agitated for 15 s and then 

incubated for 10 min at room temperature. The slides were washed with 3 changes of PBS for 

1 min each and then dipped in anti–digoxigenin conjugate at 65 µl 5 cm
–2

 and incubated for 

30 min at room temperature in a humidified chamber. Slides were washed with 4 changes of 

PBS for 5 min each. Sections were carefully blotted and dipped in peroxidase substrate at 75 

µl 5 cm
–2 

and incubated for 3–6 min at room temperature. Sections were washed thrice in 
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dH2O for 1 min each. Slides were counter stained with 0.5% (W:V) methyl green (Sigma–

Aldrich, Norway) for 10 min and washed three times in dH2O. Finally, the slides were washed 

in 100% N–butanol (Sigma–Aldrich, Norway). Positive control (provided with the kit) and 

negative control by replacing TdT with equilibration buffer was performed. Slides were 

dehydrated in a graded series of alcohols, cleared in xylene for 2 min and mounted with poly–

vinyl alcohol (PVA) mounting media, pH 8.2 (Histolab, Oslo, Norway). All reagents were 

either supplied with the kit or mentioned. The apoptotic cells were identified by both positive 

staining and morphological signs of apoptosis. 

 

2.7. Slides evaluation 

 

 The slides were evaluated by light microscopy using Olympus microscope BX51 

equipped with Cell
B
 software (Olympus Corporation, Tokyo, Japan). A semi–quantitative 

scoring system for positive cell frequency was adopted that has been widely used (Hetland et 

al., 2010, 2011; Koo et al., 2009) and graded as (no staining = –, weak staining = +, moderate 

staining = ++, strong staining = +++) where strong = severe, diffuse staining; moderate = 

multifocal staining or many positive single cells; low = focal staining or few positive cells; 

and no staining. A variation in staining intensity and frequency was present between different 

antibodies. 

 

3. Results 

 

 Strong levels of CD3ε
+ 

immunoreactivity were found in HSMI–diseased hearts (Fig. 

1C) as compared to moderate levels in CMS– and PD–affected hearts, and low levels 
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identified in non–diseased hearts (Fig. 1A, B and D). Immunoreactivity was mostly identified 

around areas with pathological changes. There were low levels of cytotoxic T (CD8) positive 

cells in both diseased and non–diseased hearts (Fig. 1E, F, G and H). The CD8 

immunostaining appeared cytoplasmic in the mono–nuclear cells (lymphocytes–like cells). 

Strong levels of MHC class I immunoreactivity was identified in both diseased and non–

diseased hearts (Fig. 2A, B, C and D) where immunostaining was myocardial as well as 

endocardial in diseased hearts (Fig. 2A, B and C) as compared to predominantly endocardial 

localization in non–diseased hearts (Fig. 2D). The MHC class I immuno–reaction was also 

identified in macrophage–like cells in diseased heart (Fig. 2A, insert). However, anti–MHC 

class II β chain immunostaining showed moderate reaction in CMS–affected hearts (Fig. 2E), 

low levels to no staining in PD–affected hearts (Fig. 2F) while strong levels observed in 

HSMI–affected hearts (Fig. 2G). There was low reactivity of MHC class II β chain in non–

diseased hearts (Fig. 2H). The MHC class II β chain antibody identified dendrite–like cells 

(Fig. 2E, insert) and lymphocyte–like cells (Fig. 2G, insert), and staining pattern was 

myocardial (Fig. 2E and F) as well as endocardial (Fig. 2G) which was obvious especially 

around lesioned areas. Moderate levels of immunoreactivity were found using rTNFα 

antibody in CMS–, PD– and HSMI–affected hearts (Fig. 3A, B and C) while low levels 

identified in non–diseased hearts (Fig. 3D). Immuno–reaction was predominantly confined to 

eosinophilic granular cells (Fig. 3C, insert), macrophage–like cells (Fig. 3B, insert) and in 

areas surrounding lesions (Fig. 3A, insert, B and C). Strong to moderate immuno–reactivity 

resulting from PCNA positive cells were observed in all three investigated heart diseases (Fig. 

3E, F and G) while focal low levels of immuno–reactivity were identified in non–diseased 

hearts (Fig. 3H). PCNA immunostaining was cytoplasmic as well as nuclear where 

hypertrophic nuclei were also identified in diseased hearts. The HIF1α immuno–reaction 

identified moderate levels of positive cells, especially in damaged cardiomyocytes, in PD–
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affected hearts (Fig. 4B) and low levels to no staining in CMS–, HSMI–affected and non–

diseased hearts (Fig. 4 A, C and D). Moderate levels of caspase 3 immunoreactivity were 

identified in CMS– and PD–affected hearts (Fig. 4E and F) while low levels to no 

immunostaining were found in HSMI–affected and non–diseased hearts respectively (Fig. 4G 

and H). TUNEL staining identified strong levels of apoptotic cells in CMS–affected hearts 

(Fig. 5 A), moderate levels of positive cells in PD– and HSMI–affected hearts (Fig. 5 B and 

C) and low to no staining in non–diseased hearts (Fig. 5D). The mab 21 for 

granulocytes/monocytes staining identified low levels of immuno–reaction in diseased  (Fig. 

5E, F and G) and non–diseased hearts (Fig. 5H).  

 

 Western blot analysis was performed to show the specificity of mammalian polyclonal 

antibodies (PCNA, caspase 3 and HIF1α antibodies). Three subunits were identified with 

caspase 3 antibody. Procaspase 3 (~40 KDa) and caspase 3 (~12 KDa) bands were identified 

in both tissues while middle band of ~21 KDa that may correspond to P20 subunit was visible 

in kidney (Fig. 6A). PCNA antibody showed single band (~30 KDa) in all tissue samples (Fig. 

6B) while HIF1α antibody gave a band at ~70KDa (Fig. 6C).  The immunohistochemistry 

findings of three diseased (HSMI, CMS and PD) and non–diseased hearts were summarized 

(Table 2). 

 

4. Discussion 

 

 In this study, we have addressed immunopathological features of heart manifestations 

in CMS–, PD–, and HSMI–affecting Atlantic salmon. So far, only very limited information on 

the pathological responses of these apparently similar cardiac diseases have been available, 

and this study might be a useful addition in order to provide differential diagnostic criteria. 
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Disease outbreaks involving cardiac manifestations have increased dramatically in farmed 

Atlantic salmon during last decade (Bornø et al., 2011). This study was aimed to identify, 

characterize and differentiate the inflammatory cell populations, responses and cell cycle 

proteins associated with cardiac pathological changes in the above mentioned diseases. The 

inflammatory cells infiltrating different cardiac compartments appeared to be mono–nuclear 

and lymphocyte–like as identified with H&E staining. The cytotoxic T cells (CD8) staining 

(Hetland et al., 2010, 2011; Olsen et al., 2011) identified few lymphocyte–like cells in 

diseased and non–diseased hearts. However, CMS–affected hearts identified with more CD8
+
 

cells as compared to other diseased and non–diseased hearts. The low levels of CD8
+
 cells in 

diseased hearts have been suggested to have protective roles in Atlantic salmon (Hetland et 

al., 2011). Anti–CD3ε antibody identified large numbers of T cells in the diseased hearts with 

the majority of these cells being localized in areas of inflammatory foci, while few CD3ε
+
 

cells were present in non–diseased hearts. The inflammatory cell population comprised of 

predominantly CD3
+
 T lymphocytes in the investigated diseased hearts. 

  

 There were strong levels of MHC class I staining in diseased and non–diseased hearts 

and in line with previous findings that MHC class I are abundantly expressed in nearly all 

known cell types (Dijkstra et al., 2003). The MHC class I staining identified macrophage–like 

cells in addition to myocardial and endocardial staining where later was dominant in non–

diseased hearts (Dijkstra et al., 2003; Hetland et al., 2010). However, the MHC class II 

staining identified strong levels of staining in HSMI– and moderate levels of staining in 

CMS–affected diseased hearts. The MHC class II staining was mostly confined to 

inflammatory foci and identified lymphocyte–like and macrophage–like cells. In addition, 

myocardial and endocardial staining was evident in the hearts by MHC class II antibody. As 

an antigen presenting molecule, MHC class II has been shown to be expressed on cells of the 
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leucocyte lineage (dendritic cells, macrophages, B and T cells) and epithelial cells 

(Haugarvoll et al., 2008; Glimcher and Kara, 1992). Previously, cells stained with MHC class 

II have been suggested as T lymphocytes, epithelial cells, multinucleated giant cells (MGC), 

macrophages and dendrite–like cells (Koppang et al., 2003a, 2004). The MHC class II cells 

has been indicative of immune cell trafficking and suggested to be involved in antigen 

presentation in Atlantic salmon affected with amoebic gill disease (Morrison et al., 2006). The 

common regulatory mechanisms have been suggested for the expression of MHC class I and 

II in Atlantic salmon (Koppang et al., 1999). Recently, a CMS transcriptomic study identified 

the up–regulation of T–lymphocytes (CD3 and CD8), MHC and apoptotic genes, and also 

correlated with histopathological changes (Timmerhaus et al., 2011). The increased presence 

of MHC class II
+ 

cells have been described in granulomatous uveitis and amoebic gill disease 

of Atlantic salmon (Koppang et al., 2004; Morrison et al., 2006). These studies were in line 

with the strong to moderate levels of MHC class II staining observed in diseased hearts in the 

present study. The strong to moderate levels of CD3
+
 and MHC class II

+ 
cells in diseased 

hearts suggested the cardiac inflammatory cells as activated T helper cells; however this 

assumption requires further assessment for confirmation.  

 

 The rTNFα antibody identified eosinophilic granulocytes (EGCs), macrophage–like 

cells and endocardial staining where EGCs were easily identified with their scattered granular 

appearance. Eosinophilic granulocytes were also identified in bulbus arteriosus of diseased 

and non–diseased hearts. Moderate levels of rTNFα staining were observed in all investigated 

diseased hearts. TNFα is a proinflammatory cytokine that is one of the very first responses to 

pathological insult and is produced by activated macrophages and T cells at site of 

infection/inflammation (see reviews (Van Snick, 1990; Moller and Villiger, 2006; Brouckaert 

et al., 1993)). TNFα enhances EGCs recruitment in conjunction with LPS (Olszewski et al., 
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2007) but as an analogue of mast cells (Reite and Evensen, 2006; Qin et al., 2001), are likely 

to be involved in enhancing T cell activation and release of TNFα similar to that seen in 

mammalian mast cell (Hogan et al., 2008; Rothenberg and Hogan, 2006). Recently Wee et al. 

(2011) have shown that TNFα regulates the lymphocyte trafficking in sheep. TNFα has been 

produced by macrophages in rainbow trout and mammalian eosinophilic granulocytes which 

were capable of antigen presentation (Qin et al., 2001, Hogan et al., 2008; Rothenberg and 

Hogan, 2006). There is a general lack of functional studies in teleosts, but one of the in vitro 

study suggested that the recombinant TNFα (rTNFα) enhanced the leucocyte migration and 

phagocytic activity in rainbow trout (Zou et al., 2003). The current study identified 

macrophage–like cells and eosinophilic granulocytes by using the same rTNFα antibody (Zou 

et al., 2003). In addition, García–Castillo et al. (2004) have demonstrated the rapid 

recruitment of phagocytic granulocytes to the injection site and the induction of 

granulopoiesis in the head kidney by rTNFα. The presence of macrophages/eosinophilic 

granulocytes in the current study was suggested to be activated/migrated in the hearts due to 

above mentioned diseases (CMS, PD and HSMI) of Atlantic salmon but further studies are 

required to confirm this assumption. The mature myeloid cell lineage granulocytes/monocytes 

staining were low in all diseased and non–diseased hearts supporting the lymphocytic (CD3
+ 

T cells) nature of infiltrating cells in diseased hearts. The mab 21 was produced to recognize a 

marker on granulocytes/monocyte cells, but not against B–cells, T–cells, thrombocytes or 

erythrocytes progenitors. The lymphocytic response dominated the inflammation over 

granulocytic infiltrates.  

 

 Western blotting confirmed the cross reactivity of mammalian polyclonal antibodies to 

Atlantic salmon tissue. Western blot analysis of caspase–3 antibody identified procaspase–3 

(~40 kDa) and caspase 3 (~12 kDa) bands and in line with Chiou et al. (2009) while the 
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middle bands (~21 kDa) may correspond to the p20 that is formed by the cleavage of 

procaspase–3 to caspase–3 in mammals (Chiou et al. 2009; Fernandes–Alnemri et al., 1994). 

The p20 form was not detected by immunoblot analysis of spleen tissue and might be 

explained by the rapid clearing of cells containing activated caspase 3 and thus contributed 

little to total proteins extracted from the tissue (Krajewska at al., 1997). The polyclonal PCNA 

antibody identified a single band of ~30 kDa. PCNA is a highly conserved eukaryotic protein 

suggesting the cell division. This study identified strong to moderate levels of PCNA staining 

in diseased hearts and in agreement with previous studies (Zenker et al., 1987; Ortego et al., 

1995). In addition, significant increase in the number of PCNA
+
 cells has been suggested as 

high cell turn over and recruitment in Atlantic salmon affected with amoebic gill disease 

(Morrison et al., 2006; Adams and Nowak, 2003). The active myocardial hyperplasia was 

indicated in diseased hearts due to pronounced and extensive immunostaining of 

cardiomyocytes. The low levels of PCNA staining in non–diseased hearts may be explained 

by the dynamic nature of hearts capable of remodeling (Becker et al., 2011; Poss, 2007; Sun 

et al., 2009; Vornanen et al., 2002; Poppe and Ferguson, 2006). PCNA staining suggested high 

cell division activity in diseased hearts and also identified hypertrophic nuclei. In humans, 

PCNA has been suggested as a marker of cell proliferation in myocardial hypertrophy, 

myocarditis, valvular heart disease, ischemic heart disease and cardiomyopathy (Matturi et al., 

1997, 2002; Arbustini et al., 1993).  

 

 The specificity of polyclonal HIF1α antibody was demonstrated. HIF1α antibody 

identified a band of ~70 kDa that was in line with rainbow trout HIF1α (Soitamo et al. 2001). 

The HIF1α showed moderate levels of staining in PD–infected hearts, while low levels were 

identified in CMS– and HSMI–infected hearts. HIF1α is a transcriptional factor that is 

upregualted under hypoxia, and moderate levels of HIF1α staining in PD–infected hearts 
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suggested possible hypoxic hearts (Hopfl et al., 2004; Gale and Maxwell., 2010; Dehne and 

Brune, 2009). HIF1α staining in diseased hearts was also supported by the fact that HIF1α is 

involved in inflammation, apoptosis and can influence adaptive immune response. However, 

induced hypoxia has not shown any effect on the severity of PD in Atlantic salmon that was 

suggested due to either low levels of hypoxia or fish acclimatized to the hypoxic conditions 

(Anderson et al., 2010). The caspase 3 and TUNEL staining identified strong to moderate 

levels of apoptotic cells in diseased hearts. The caspase 3 identified cytoplasmic staining in 

cardiomyocytes and in line with De–Boer et al. (2000) and Krajewska at al. (1997).  The CMS 

and PD are the cardiac diseases identified with more degenerative changes as compared to 

HSMI where inflammatory changes dominated in the heart (Kongtorp et al., 2004, 2004a; 

Grammes et al. 2012). These findings were pointing the high cell turn over in the hearts where 

DNA damage/repair might be the case (as identified by PCNA, caspase 3 and TUNEL 

reactivity) (Table 2) (Ferguson et al., 1986; Poppe and Ferguson, 2006; Kongtorp et al., 2004, 

2006). In addition, the transcriptomic profile of CMS–affected fish has shown the 

upregulation of apoptosis genes, supporting the strong to moderate levels of apoptosis 

staining in diseased hearts (Timmerhaus et al., 2011). 

  

 Comparatively, the current investigation identified the strong levels of CD3 and MHC 

class II immunostaining in HSMI–affected hearts as compared to moderate to low levels in 

CMS– and PD–affected heart. The moderate levels of HIF1α immuno–reactivity identified in 

PD–affected hearts as compared to low levels of staining in CMS– and HSMI–affected hearts. 

The strong levels of PCNA immuno–reaction identified in CMS–affected hearts as compared 

to moderate levels in HSMI– and PD–affected hearts. The moderate levels of caspase 3 

immunostaining identified in CMS– and PD–affected hearts as compared to low levels of 

staining in HSMI–affected hearts. TUNEL staining identified strong levels in CMS–affected 
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hearts as compared to moderate levels in PD– and HSMI–affected hearts. However, there 

were no differences for CD8, MHC class I, TNFα and granulocytes/monocytes staining 

between the three investigated diseases. The CD3, MHC class II, PCNA, TNFα, caspase 3, 

HIF1α and TUNEL staining were confined to the lesioned areas in the diseased hearts, 

pointing to the pathological changes and appeared promising in the identification of lesioned 

areas in the investigated diseased hearts. The strong levels of TUNEL– and PCNA
+
 cells with 

moderate levels of caspase 3 and HIF1α staining suggested an induction of cell and tissue 

damage/repair occurring in the diseased hearts. In conclusion, the immunohistochemical 

approach appeared promising to identify and differentiate the cardiac immunological 

responses at least for the given investigated diseases (HSMI, CMS and PD). 
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Table 1. Main tissues affected and histopathological lesions appeared in the investigated 

diseases (Cardiomyopathy syndrome, CMS, Heart somatic muscle inflammation HSMI and 

pancreas disease PD. (compiled from Kongtorp et al. (2004)). 

 

Tissue  Lesions   CMS  HSMI  PD 

  description    

 

Heart  Epicarditis   +  +  + 

  Compact–   –  +  + 

  myocarditis and  

  degeneration 

  Spongy–   +  +  + 

  myocarditis and  

  degeneration 

Skeletal  Inflammation and  –  +  + 

muscle  degeneration 

Liver  Necrosis of    –  –  + 

  hepatocytes 

Pancreas Necrosis of   –  –  + 

  exocrine tissue. 
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Table 2. Comparative scoring of different immunohistochemical markers in the hearts of 

Atlantic salmon (Salmo salar L.). HSMI: heart and skeletal muscle inflammation, CMS: 

cardiomyopathy syndrome, PD: pancreas disease and control: non–diseased fish. 

    

Antibodies     Hearts  

HSMI  CMS  PD  Control 

CD3ɛ   +++  ++  ++  + 

CD8   +  +  +  + 

MHCI   +++  +++  +++  +++ 

MHCII  +++  ++  +/–  + 

mab21   +  +  +  + 

rTNFα  ++  ++  ++  + 

PCNA   ++  +++  ++  + 

HIF1α   +  +  ++  +/– 

Caspase 3  +  ++  ++  +/– 

TUNEL  ++  +++  ++  + 

 
Strong staining = +++, moderate staining = ++, focal staining = +, no staining = –. 
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Figure legends 

 

Figure 1. Anti–CD3ε and CD8 immunostaining in CMS–, PD–, HSMI–affected and non–

diseased hearts of Atlantic salmon. (A and B) Moderate and (C) strong levels of CD3ε
+ 

cells 

(arrow) were identified in the diseased hearts especially around inflamed areas. (D) Low 

levels of CD3ε
+ 

cells were also present in non–diseased heart. (E, F, G and H) Few CD8
+ 

cells 

were identified in diseased and non–diseased Atlantic salmon hearts.  

 

Figure 2. MHC class I and II β chain immunoreactivity in diseased (CMS, PD and HSMI) 

and non–diseased hearts of Atlantic salmon. (A, B, C and D) The strong levels of MHC class I 

staining was observed (arrow) in diseased and non–diseased salmon hearts. (A and B) The 

diseased hearts exhibited both myocardial and endocardial staining while (D) later was 

dominant in non–diseased hearts. The inset shows (A) MHC class I
+
 macrophage–like cell. 

(E) MHC class II staining showed moderate levels of staining (arrow) in CMS–affected hearts 

while (G) strong levels of staining was identified in HSMI–affected hearts especially around 

inflamed areas. (F and H) There was low to no staining in PD–affected and non–diseased 

hearts. The insets show (E) MHC class II
+
 dendrite–like cells and (G) lymphocyte–like cells.  

 

Figure 3. Anti–rTNFα and PCNA immunostaining in diseased (CMS, PD and HSMI) and 

non–diseased hearts of Atlantic salmon. (A, B and C) Moderate levels of staining was 

observed for rTNFα
+ 

cells in CMS–, PD – and HSMI–affected hearts (D) while low levels of 

staining observed in non–diseased hearts. The insets show (A) myocardial staining, (B) 

macrophage–like cells and (C) eosinophilic granulocytes (H&E). (E, F and G) Strong to 

moderate levels of PCNA positivity was observed in CMS–, HSMI– and PD–affected hearts 

(H) while low levels of PCNA
+
 cells were identified in non–diseased hearts. The hearts 
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presented granular nuclear (arrow) and cytoplasmic (star) staining. Hypertrophic nuclei 

observed in diseased heart (arrow head). 

 

Figure 4. Anti–HIF1α and caspase 3 immunostaining in diseased and non–diseased hearts of 

Atlantic salmon. (B) The moderate level of HIF1α
+
 cells were identified in PD–affected hearts 

while (A, C and D) low levels to no staining was identified in CMS–, HSMI–affected and 

non–diseased hearts. The inset shows (B) mono–nuclear cell. (E and F) The moderate levels 

of staining observed for caspase 3 in CMS– and PD–affected hearts while (G and H) low 

levels to no staining were identified in HSMI–affected and non–diseased hearts. 

 

Figure 5. TUNEL and mature myeloid cell lineage granulocytes/monocytes immunostaining 

for detection of apoptosis and granulocytes/monocytes in diseased (CMS, PD and HSMI) and 

non–diseased hearts of Atlantic salmon. (A) The strong levels of staining were identified for 

TUNEL in CMS–affected hearts (B and C) while moderate levels of staining were identified 

in PD– and HSMI– affected hearts. (D) Low levels of apoptotic cells were identified in non–

diseased hearts. (E, F, G and H) Low levels of immuno–reaction were identified for 

granulocytes/monocytes in diseased and non–diseased salmon hearts.  

 

Figure 6. Western blot analysis of polyclonal antibodies such as (a) caspase 3, (b) PCNA and 

(3) HIF1α. Atlantic salmon tissues were separated by denaturing SDS–PAGE electrophoresis 

in 12% (caspase 3 and PCNA) and 8% polyacrylamide gels. Bound antigens were detected 

using enhanced chemiluminescence. (A) The caspase 3 antibody identified procaspase–3 (~40 

kDa), caspase–3 (~12 kDa) and p20 (~21 kDa) bands in the kidney while first two were 

visible in spleen. (K Kidney, S spleen, M PageRuler™ prestained protein ladder (Fermentas 

GmbH, Norway) (B) PCNA antibody identified single band (~30 kDa) in all four tissues. (G 
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gills, K Kidney, L liver, S spleen, M PageRuler™ prestained protein ladder). (C) The HIF1α 

antibody identified a band of same size (~70 kDa) to the positive control (HeLa + CoCl2 cell 

lysate) in the skeletal muscle by HIF1α antibody. (PC positive control, SM skeletal muscle, M 

PageRuler™ prestained protein ladder).  
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Heart is the powerhouse of circulatory system. The present thesis focuses 
on the Atlantic salmon heart and related diseases. Viral fish diseases are a 
serious challenge to Atlantic salmon aquaculture in Norway and increasing 
numbers of heart malformations have been reported in Atlantic salmon.
The investigated cardiac diseases included cardiomyopathy syndrome 
(CMS), pancreas disease (PD) and recently identified heart and skeletal 
muscle inflammation (HSMI). In spite of this importance, little was known 
about the Atlantic salmon heart anatomy (pacemaker cells), biomarkers and 
heart responses to these diseases. The heart beat initiates in autonomous 
pacemaker cells and propagate impulses to other parts of the heart. This 
thesis identified and characterized the pacemaker tissue located at the 
junction of sinus venosus and atrium in Atlantic salmon. Except PD, the 
other two diseases are diagnosed with increased mortality levels at farms 
and cause huge economical losses to farmers. There was a need for better 
tools to diagnose sick fish before sudden death. Present work identified 
the potential biomarkers to predict these cardiac diseases by blood tests 
non-lethally (without killing) as compared to conventional fish slaughter 
method (histopathology). Additionally, immunopathological responses 
were identified and provided a supplementary tool to predict these above 
mentioned cardiac diseases. It is noteworthy these apparently similar 
cardiac diseases exhibit differences in the immunopathological responses 
in the Atlantic salmon heart.
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