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Abstract. If f is an idempotent in a ring Λ, then we find sufficient conditions

which imply that the cohomology rings ⊕n≥0 ExtnΛ(Λ/r,Λ/r) and

⊕n≥0 ExtnfΛf (fΛf/frf, fΛf/frf) are eventually isomorphic. This result al-

lows us to compare finite generation and Gelfand-Kirillov dimensions of the

cohomology rings of Λ and fΛf . We are also able to compare the global

dimensions of Λ and fΛf .

1. Introduction

If M is a Λ-module for some ring Λ, knowledge of the cohomology ring of
M , ⊕n≥0 ExtnΛ(M,M), is useful in the study of the representation theory of
Λ. In view of this, connecting cohomology rings of modules over different rings
can provide helpful information. The main goal of this paper is to find suf-
ficient conditions so that the two cohomology rings

⊕
n≥0 ExtnΛ(Λ/r,Λ/r) and⊕

n≥0 ExtnfΛf (fΛf/frf, fΛf/frf) are eventually isomorphic, where f is an idem-
potent in the ring Λ and r denotes the Jacobson radical of Λ. For greater applica-
bility, our results are stated in the more general setting of graded rings. The paper
[6] contains results that are related to ours. Our work is in part inspired by [1],
where the authors describe situations in which the cohomology groups of one ring
split in the cohomology groups of the other.

To properly summarize the contents of this paper, we introduce some definitions
and notation. Let G be a group and let Λ = ⊕g∈GΛg be a G-graded ring; in
particular, if g, h ∈ G, then Λg · Λh ⊆ Λgh. We denote the identity of G by e, the
graded Jacobson radical of Λ by r, and set re = Λe ∩ r. A G-grading on Λ will be
called a proper G-grading when it satisfies the following conditions: if g 6= e then
Λg · Λg−1 ⊆ re and Λe/re is a semisimple Artin algebra over a commutative Artin
ring C. We also fix the following notation: Given a Λ-module X, we let pdΛ(X)
and idΛ(X) denote the projective dimension and the injective dimension of X over
Λ respectively.

The main Comparison Theorem is Theorem 2.13 which we state below, omitting
some technicalities.

Theorem (Theorem 2.13). Let G be a group and Λ = ⊕g∈GΛg be a properly G-
graded ring. Assume that every graded simple Λ-module has a finitely generated
minimal graded projective Λ-resolution. Suppose that e is an idempotent in Λ and
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let f = 1− e. Assume fΛe ⊆ r. Set Λ∗ to be the ring fΛf and r∗ = frf . Assume
that pdΛ∗(fΛe) = c <∞ and idΛ((Λ/r)e) = b <∞. Then, for n > b+ c+ 2, there
are isomorphisms ExtnΛ(Λ/r,Λ/r) ∼= ExtnΛ∗(Λ∗/r∗,Λ∗/r∗) such that the induced
isomorphism ⊕

n>b+c+2

ExtnΛ(Λ/r,Λ/r) ∼=
⊕

n>b+c+2

ExtnΛ∗(Λ∗/r∗,Λ∗/r∗)

is an isomorphism of Z×G-graded rings without identity.

We also obtain the following applications; see Theorem 3.5. To simplify notation,
we write E(Λ) for the cohomology ring ⊕n≥0 ExtnΛ(Λ/r,Λ/r). Here GKdim(E(Λ))
denotes the Gelfand-Kirillov dimension of E(Λ).

Theorem (Theorem 3.5). Keeping the hypotheses of the above Theorem, the fol-
lowing hold.

(1) Assume that fΛe has a finitely generated minimal graded projective
Λ∗-resolution. The cohomology ring E(Λ) is finitely generated over
Ext0

Λ(Λ/r,Λ/r) ∼= HomΛ(Λ/r,Λ/r) ∼= (Λ/r)op if and only if the cohomology
ring E(Λ∗) is finitely generated as a (Λ∗/r∗)op-algebra.

(2) Assume that Λ is K-algebra, where K is a field and that Λ/r is a finite
dimensional K-algebra. Assume further that both E(Λ) and E(Λ∗) are
finitely generated K-algebras. Then GKdim(E(Λ)) = GKdim(E(Λ∗)).

(3) We have that pdΛ(S) < ∞, for all graded simple Λ-modules S if and only
if pdΛ∗(S∗) <∞, for all graded simple Λ∗-modules S∗.

As already mentioned, the reason for choosing a graded setting is greater ap-
plicability. In particular, if we choose G to be the trivial group, ungraded Artin
algebras Λ can be viewed as a special case of our set-up, see Example 2.3. In this
case, slightly simplifying the theorems above, all simple Λ-modules have finitely
generated minimal projective Λ-resolutions, and fΛe has a finitely generated min-
imal projective Λ∗-resolution. Moreover, in this case pdΛ(S) < ∞ for all simple
Λ-modules if and only if Λ has finite global dimension.

2. Comparison theorem

Let G be a group and let Λ = ⊕g∈GΛg be a G-graded ring; in particular, if
g, h ∈ G, then Λg · Λh ⊆ Λgh. We denote the identity of G by e, the graded
Jacobson radical of Λ by r, and set re = Λe ∩ r. By [5, Corollary 2.9.3], re is the
Jacobson radical of the (ungraded) ring Λe.

A G-grading on Λ will be called a proper G-grading when it satisfies the following
conditions: if g 6= e then Λg ·Λg−1 ⊆ re and Λe/re is a semisimple Artin algebra over
a commutative Artin ring C. If the G-grading is proper, then r = re⊕(⊕g∈G\{e}Λg).

Let Λ = ⊕g∈GΛg be a properly G-graded ring. We denote the category of G-
graded (left) Λ-modules and degree e maps by Gr(Λ). We let gr(Λ) denote the full
subcategory of finitely generated G-graded Λ-modules. We view Λ as a G-graded
Λ-module with Λg living in degree g.

The shifts by elements of G induce a group of endofunctors on Gr(Λ). More
precisely, the shift functor associated to an element h ∈ G is defined as follows:
if X = ⊕g∈GXg is a graded Λ-module, we let X[h] = ⊕g∈GYg, where Yg = Xgh.
Let Φ: Gr(Λ) → Mod(Λ) denote the forgetful functor. If X ∈ gr(Λ) and Y is a
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graded Λ-module, then

HomΛ(Φ(X),Φ(Y )) ∼=
⊕
g∈G

HomGr(Λ)(X,Y [g]) ∼= HomGr(Λ)(X,⊕g∈GY [g]),

see [5, Corollary 2.4.4].
We need one further assumption; namely, if ε is an idempotent element in Λe/re,

then there is an idempotent ε ∈ Λe such that π(ε) = ε, where π : Λe → Λe/re is the
canonical surjection. If a graded ring Λ has this property, we say graded idempotents
lift. Assume that graded idempotents lift in Λ. It follows that if S is simple graded
Λ-module, then S ∼= (Λe/re)ε[g], for some primitive idempotent ε ∈ Λe and some
g ∈ G. We also see that the canonical surjection Λε[g]→ (Λe/re)ε[g] is a projective
cover. The next three examples provide important classes of graded rings satisfying
our assumptions.

Example 2.1. Let K be a field, Q a finite quiver, G a group, and W : Q1 →
G \ {e}. We call W a weight function; see [2]. Setting W (v) = e for all vertices v
in Q, and, if p = an · · · a1 is a path of length n ≥ 1, with the ai ∈ Q1, then set
W (p) = W (an)W (an−1) · · ·W (a1). In this case, we say p has weight W (p). We
G-grade the path algebra KQ by defining (KQ)g to be the K-span of paths p of
weight g. Let I be an ideal in KQ such that I can be generated by elements xi,
such that, for each i, the paths occurring in xi are all of length at least 2 and all
have the same weight. We assume there is an integer t such that all paths of weight
e and length greater than t starting and ending at the same vertex belong to I. Let
Λ = KQ/I. The G-grading on KQ induces a G-grading on Λ.

Note that if a ∈ Q1 with W (a) = g, then a + I is a nonzero element in Λg.
Using that g 6= e, one can show that r is the ideal generated by {a + I | a ∈ Q1}.
It follows that Λ/r is the semisimple ring

∏
v∈Q0

K, which is a semisimple Artin
algebra over K. Furthermore, one may check that re is the ideal in Λe generated
by the elements of the form p + I, where p is a path of length ≥ 1 in Q of weight
e. Thus the G-grading on Λ is a proper G-grading. It is also clear that graded
idempotents lift.

Example 2.2. Let G = Z and let Λ = Λ0⊕Λ1⊕Λ2⊕· · · be a positively Z-graded
ring such that Λ0 is an Artin algebra. It is immediate that Λ is a properly Z-graded
ring in which graded idempotents lift.

Example 2.3. Let Λ be an Artin algebra over a commutative Artin ring C. Let
G be any group and Λe = Λ, and, for g ∈ G \ {e}, Λg = 0. We see that Λ, as a
G-graded ring, is properly G-graded and graded idempotents lift. One choice for
G is the trivial group {e}.

We recall some known results about graded projective resolutions over properly
graded rings in which graded idempotents lift. We leave the proof to the reader.

Lemma 2.4. Let Γ = ⊕g∈GΓg be a properly G-graded ring in which graded idempo-
tents lift and let rΓ denote the graded Jacobson radical of Γ. Suppose X is a finitely
generated graded Γ-module and X/rΓX ∼= ⊕ni=1Si, where each Si is a graded simple

Γ-module. Let Pi
αi−→ Si be graded projective covers for each i and let P = ⊕ni=1Pi.

Then

(1) For each i = 1, . . . , n, Pi ∼= Γεi[g], for some idempotent εi ∈ Γ and g ∈ G.

(2) The map P
⊕n

i=1αi−−−−−→ ⊕ni=1Si is a graded projective cover.
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(3) If P
β−→ X is a graded map such that the following diagram commutes

X
π // X/rΓX

P

β

OO

⊕iαi // ⊕ni=1Si,

where π is the canonical surjection, then β : P → X is a graded projective
cover. Moreover, ker(β) ⊆ rΓP .

(4) If 0→ K
σ−→ P

β−→ X → 0 is a short exact sequence in Gr(Γ) with P finitely
generated, such that σ(K) ⊆ rΓP , then β is a graded projective cover.

(5) Suppose that

P• : · · · → P 2 δ2−→ P 1 δ1−→ P 0 δ0−→ X → 0

is a graded projective Γ-resolution of X with each Pn finitely generated.
Then P• is minimal if and only if, for n ≥ 1, δn(Pn) ⊆ rΓP

n−1.
(6) If P and Q are finitely generated graded projective Γ-modules and α : P → Q

is a map in gr(Γ), then there are primitive idempotents εi and ε′j and
elements gi and hi of G, i = 1, . . . ,m and j = 1, . . . , n, for some integers
m and n such that
(a) P ∼= ⊕mi=1Γεi[gi],
(b) Q ∼= ⊕nj=1Γε′j [hj ], and
(c) viewing (a) and (b) as identifications, α is given by an n ×m matrix

(γj,i), where γj,i ∈ ε′jΓh−1
j gi

εi.

(7) Keeping the notation and assumptions of part (5), we see that P is a min-
imal graded projective resolution of X if and only if the matrices that give
the δn, n ≥ 0, all have entries in rΓ.

(8) The forgetful functor Φ is exact, preserves direct sums, and, if Y is a graded
Γ-module, Φ(Y ) is a projective Γ-module if and only if Y is a graded projec-
tive Γ-module. Thus, Φ takes graded projective Γ-resolutions to projective
Γ-resolutions.

�

Let e be an idempotent in Λe. We say that (e, f) is a suitable idempotent pair if
f = 1− e and fΛe ⊆ r. Note that if (e, f) is a suitable idempotent pair, then, since
e and 1 are homogeneous of degree e, so is f . Furthermore, if (e, f) is a suitable
idempotent pair, then HomΛ((Λ/r)e, (Λ/r)f) = HomΛ((Λ/r)f, (Λ/r)e) = 0. Note
that if (e, f) is a suitable idempotent pair, then (f, e) is also a suitable idempotent
pair.

For the remainder of this section, we fix a suitable idempotent pair (e, f). Let
Λ∗ = fΛf and r∗ = frf . The G-grading of Λ induces a G-grading on Λ∗ and it is
not hard to show that r∗ is the graded Jacobson radical of Λ∗.

The main tool in this section is the functor F : Gr(Λ) → Gr(Λ∗) given by
F = fΛ ⊗Λ −. Let H : Gr(Λ∗) → Gr(Λ) be given by H = HomΛ∗(fΛ,−). Note
that for X in Gr(Λ) and Y in Gr(Λ∗), the Λ∗-module F (X) = fΛ ⊗Λ X and
the Λ-module H(Y ) = HomΛ∗(fΛ, Y ) have induced G-gradings obtained from the
gradings of X, Y and fΛ. The next result is well-known.

Proposition 2.5. Keeping the above notation, we have that
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(1) the functor F is exact,
(2) (F,H) is an adjoint pair, and
(3) fΛ ∼= Λ∗ ⊕ fΛe, as left Λ∗-modules.

�

The functor H is exact if and only if fΛ is a left projective Λ∗-module, and,
by Proposition 2.5(3), H is exact if and only if fΛe is a left projective Λ∗-module.
Note that F (Λe) ∼= fΛe does not, in general, have finite projective dimension as a
left Λ∗-module, as the example below demonstrates.

Example 2.6. Let Q be the quiver

u◦
a
// v◦ b
zz

Let I be the ideal generated by ba and b2 and let Λ = Q/I. Taking e = u and
f = v, we see that fΛe has infinite projective dimension viewed as a left Λ∗-module
where Λ∗ = fΛf .

We abuse notation by denoting the forgetful functor from Gr(Λ∗) to Mod(Λ∗)
also by Φ. We also use F to denote the functor fΛ⊗Λ− from Mod(Λ) to Mod(Λ∗).
The meaning of both F and Φ will be clear from the context.

We note that if X is a graded Λ-module, then F (Φ(X)) ∼= Φ(F (X)) and if

P• : · · · → P 2 δ2−→ P 1 δ1−→ P 0 → X → 0 is a graded projective resolution with
syzygies ΩnΛ(X), then Φ(P•) is projective resolution of Φ(X),

Φ(F (ΩnΛ(X))) ∼= F (ΩnΛ(Φ(X))),

where ΩnΛ(Φ(X)) denotes the n-th syzygy of Φ(X) in the projective resolution
Φ(P•).

The next result is quite general and will allow us to apply the functor F and
keep control of the cohomology if pdΛ∗(fΛe) < ∞. One does not need that the
G-grading is proper.

Theorem 2.7. Let G be a group and Λ be a G-graded ring and let (e, f) be a
suitable idempotent pair in Λ. Set Λ∗ = fΛf . Suppose that pdΛ∗(fΛe) = c < ∞.
Let X be a graded left Λ-module and ΩiΛ(X) (respectively, ΩiΛ∗(F (X))) denote the
i-th syzygy of X (resp., F (X)) in a graded projective Λ-resolution of X (resp., a
graded projective Λ∗-resolution of F (X)). Then, for t > c+ 1 and n ≥ 0,

ExttΛ∗(Φ(F (ΩnΛ(X))),−) ∼= ExttΛ∗(Φ(ΩnΛ∗(F (X))),−).

Proof. For n = 0 the result is clear and hence we assume n ≥ 1. Without loss of
generality, we may start with a graded projective Λ-resolution of X in which each
graded projective module is a direct sum of copies of graded projective modules of
the form Λ[g], for g ∈ G. Since 1 = e+ f , this resolution has the form:

· · · → P 2 ⊕Q2 → P 1 ⊕Q1 → P 0 ⊕Q0 → X → 0,

where P i is a direct sum of copies of graded modules of the form Λf [g] and Qi

is a direct sum of copies of graded modules of the form Λe[g], for i ≥ 0. Setting
F (P i) = Li and F (Qi) = M i, we note that Li is a graded projective Λ∗-module
and M i is a direct sum of copies of graded modules of the form (fΛe)[g]. Applying
the exact functor F to the resolution above, we obtain an exact sequence of graded
Λ∗-modules

· · · → L2 ⊕M2 → L1 ⊕M1 → L0 ⊕M0 → F (X)→ 0.
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For i ≥ 1, note F (ΩiΛ(X)) = Im(Li ⊕M i → Li−1 ⊕M i−1) and Li is a graded left
projective Λ∗-module. For ease of notation, we let Zi = F (ΩiΛ(X)), for i ≥ 1 and
Z0 = F (X).

For n ≥ 1, we have a short exact sequence of graded Λ∗-modules

0→ Zn → Ln−1 ⊕Mn−1 → Zn−1 → 0.

Let P (Mn−1) → Mn−1 → 0 be exact sequence of graded Λ∗-modules with
P (Mn−1) a graded projective module. Then we obtain the following exact commu-
tative diagram:

0 0

0 // Zn

OO

// Ln−1 ⊕Mn−1

OO

//

OO

Zn−1
// 0

0 // Ω1
Λ∗(Zn−1)

OO

// Ln−1 ⊕ P (Mn−1)

OO

// Zn−1
//

=

OO

0

0 // Ω1
Λ∗(Mn−1)

OO

= // Ω1
Λ∗(Mn−1)

OO

0

OO

0

OO

The first column yields the short exact sequence

0→ Ω1
Λ∗(Mn−1)→ Ω1

Λ∗(Zn−1)→ Zn → 0.

Taking graded projective Λ∗-resolutions of the two end modules, applying the
Horseshoe lemma, and taking syzygies, we obtain short exact sequences

0→ Ωj+1
Λ∗ (Mn−1)→ Ωj+1

Λ∗ (Zn−1)→ ΩjΛ∗(Zn)→ 0,

for j ≥ 0. Hence we obtain short exact sequences of Λ∗-modules

0→ Φ(Ωj+1
Λ∗ (Mn−1))→ Φ(Ωj+1

Λ∗ (Zn−1))→ Φ(ΩjΛ∗(Zn))→ 0.

Note that Φ(Ωj+1
Λ∗ (Mn−1))) is a projective Λ∗-module if j ≥ c since

c ≥ pdΛ∗(Φ(Mn−1)). It follows that, for j ≥ c and t ≥ 2,

Extt+jΛ∗ (Φ(Zn),−) ∼= ExttΛ∗(Φ(ΩjΛ∗(Zn)),−) ∼= ExttΛ∗(Φ(Ωj+1
Λ∗ (Zn−1)),−) ∼=

∼= ExttΛ∗(Φ(Ωj+2
Λ∗ (Zn−2)),−) ∼= · · · ∼= ExttΛ∗(Φ(Ωj+nΛ∗ (Z0)),−) ∼=

∼= Extt+jΛ∗ (Φ(ΩnΛ∗(Z0)),−).

Finally, we note that Zn = F (ΩnΛ(X)) and Z0 = F (X) and the result follows. �

The next result is immediate and we only provide a sketch of the proof.

Proposition 2.8. Let G be a group and Λ a properly G-graded ring with graded
Jacobson radical r and suitable idempotent pair (e, f). If idΛ((Λ/r)e) ≤ a < ∞,
then for every graded Λ-module X,⊕

n>a

ExtnΛ(Φ(X), (Λ/r)f) ∼=
⊕
n>a

ExtnΛ(Φ(X),Λ/r)
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as Z×G-graded modules over the Z×G-graded ring ⊕ExtnΛ(Λ/r,Λ/r). Furthermore,
if pdΛ((Λ/r)e) ≤ a <∞ and idΛ((Λ/r)e) ≤ a <∞, then⊕

n>a

ExtnΛ((Λ/r)f, (Λ/r)f) ∼=
⊕
n>a

ExtnΛ(Λ/r,Λ/r)

as Z×G-graded rings without identity.

Proof. Since Λ/r = Λ0
∼= Λ0e⊕ Λ0f ,

ExtiΛ(X,Λ/r) = ExtiΛ(X, (Λ/r)e)⊕ ExtiΛ(X, (Λ/r)f)

and

ExtiΛ(Λ0,Λ0) = ExtiΛ(Λ0e,Λ0e)⊕ExtiΛ(Λ0e,Λ0f)⊕ExtiΛ(Λ0f,Λ0e)⊕ExtiΛ(Λ0f,Λ0f)

the result follows. �

If X is a graded Λ-module and P• : · · · → P 2 δ2−→ P 1 δ1−→ P 0 δ0−→ X → 0 is a
graded projective Λ-resolution of X, then we say that P• is finitely generated if Pn

is a finitely generated graded Λ-module for n ≥ 0. For c ≥ 0, we let P>c denote
the resolution of Ωc+1(X),

P>c : · · · → P c+2 δc+2

−−−→ P c+1 δc+1

−−−→ Ωc+1(X)→ 0,

obtained from P•.
Let ε be an idempotent element of Λe. We say a graded simple module S belongs

to ε if εS 6= 0. Equivalently, S belongs to ε if S is isomorphic to a summand of
(Λ/r)ε[g], for some g ∈ G. We say a graded projective Λ-module P belongs to ε, if
P/rP is a direct sum of graded simple Λ-modules with each summand belonging
to ε. We now state a useful result.

Lemma 2.9. Let X be a graded Λ-module and assume that P• : · · · → P 2 δ2−→
P 1 δ1−→ P 0 δ0−→ X → 0 is a graded projective Λ-resolution of X such that, for n > c,
Pn belongs to f . Then

(1) F (P>c) is a projective Λ∗-resolution of F (Ωc+1X), where (Ωc+1X) is the
(c+ 1)-st syzygy in P•.

(2) If P• is a finitely generated minimal graded projective Λ-resolution of X,
then F (P>c) is a finitely generated minimal graded projective Λ∗-resolution
of F (Ωc+1X).

Proof. The functor F is exact. We need to show that if P belongs to f , then F (P ) is
a projective Λ∗-module. Since P belongs to f , P is a direct sum of indecomposable
projective modules, each of which is a summand of (Λf)[g], for some g ∈ G. Thus,
it suffices to show that, for g ∈ G, F ((Λf)[g]) is a graded projective Λ∗-module.
But F ((Λf)[g]) = (fΛ⊗Λ Λf)[g] ∼= (fΛf)[g] = Λ∗[g] and part (1) follows.

By minimality and our assumptions, the maps F (δi), viewed as matrices (as in
Proposition 2.4), have entries in frf . But frf = r∗, the graded Jacobson radical
of Λ∗, and (2) follows. �

The following is an immediate consequence of the above lemma.

Corollary 2.10. Assume that idΛ((Λ/r)e) = b < ∞. Suppose that X is a graded
Λ-module and let

P• : · · · → P 2 δ2−→ P 1 δ1−→ P 0 δ0−→ X → 0
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be a finitely generated minimal graded projective Λ-resolution of X. Then, for n > b,
Pn belongs to f and F (P>b) is a finitely generated minimal graded projective Λ∗-

resolution of F (Ωb+1
Λ (X)).

Proof. Let n > b and consider Pn. If there is an indecomposable summand of Pn

belonging to e, then ExtnΛ(X, (Λ/r)e) 6= 0, contradicting idΛ((Λ/r)e) = b. Hence,
Pn belongs to f and the result follows. �

Using the above result we have one of the main results of this section.

Theorem 2.11. Let G be a group and Λ = ⊕g∈GΛg be a properly G-graded ring
in which graded idempotents lift. Let r denote the graded Jacobson radical of Λ
and (e, f) be a suitable idempotent pair. Set Λ∗ to be the ring fΛf and r∗ = frf .
Assume that pdΛ∗(fΛe) = c < ∞, and that idΛ((Λ/r)e) = b < ∞. Then, for a
graded Λ-module X having a finitely generated minimal graded projective resolution
and for n > b + c + 2, the functor F = fΛ ⊗Λ − : Gr(Λ) → Gr(Λ∗) induces
isomorphisms

ExtnΛ(Φ(X), (Λ/r)f) ∼= ExtnΛ∗(Φ(F (X)),Λ∗/r∗).

Moreover, assuming that every graded simple Λ-module belonging to f has a finitely
generated minimal graded projective resolution, then the induced isomorphism⊕

n>b+c+2

ExtnΛ((Λ/r)f, (Λ/r)f) ∼=
⊕

n>b+c+2

ExtnΛ∗(Λ∗/r∗,Λ∗/r∗)

is an isomorphism of Z × G-graded rings without identity. Furthermore, iden-
tifying ⊕n>b+c+2 ExtnΛ((Λ/r)f, (Λ/r)f) with ⊕n>b+c+2 ExtnΛ∗(Λ∗/r∗,Λ∗/r∗)
and denoting this ring by ∆, ⊕n>b+c+2 ExtnΛ(Φ(X), (Λ/r)f) and
⊕n>b+c+2 ExtnΛ∗(Φ(F (X)),Λ∗/r∗) are isomorphic as graded ∆-modules.

Proof. Let X be a graded Λ-module and let

P• : · · · → P 2 δ2−→ P 1 δ1−→ P 0 δ0−→ X → 0

be a minimal graded projective Λ-resolution of the graded module X. By our
assumption that idΛ((Λ/r)e) = b, for n > b, Pn belongs to f . Hence, applying the
functor F and Corollary 2.10, we see that

F (P>b) : · · · → F (P b+2)
F (δb+2)−−−−−→ F (P b+1)

F (δb+1)−−−−−→ F (Ωb+1(X))→ 0

is a minimal graded projective Λ∗-resolution of F (Ωb+1(X)).
Let S be a simple graded Λ-module belonging to f and let S∗ = F (S). First

we show that, using the above isomorphisms, if n > b + c + 2, then F induces a
monomorphism

ExtnΛ(Φ(X),Φ(S))→ ExtnΛ∗(Φ(F (X)),Φ(S∗)).

We view this morphism as the composition

ExtnΛ(Φ(X),Φ(S))→ Extn−b−1
Λ∗ (Φ(F (Ωb+1(X))),Φ(S∗))

∼=−→ Extn−b−1
Λ∗ (Φ(Ωb+1(F (X))),Φ(S∗))

∼=−→ ExtnΛ∗(Φ(F (X)),Φ(S∗)).
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The last map is an isomorphism by dimension shift and the commutativity of Φ
and Ω. Since n > b + c + 2, we have n − b − 1 > c + 1, and the second map is an
isomorphism by Theorem 2.7. We now describe the first map. We recall that

ExtnΛ(Φ(X),Φ(S)) ∼= ExtnGr(Λ)(X,⊕g∈GS[g])

and that

Extn−b−1
Λ∗ (Φ(F (Ωb+1(X))),Φ(S∗)) ∼= Extn−b−1

Gr(Λ∗)(F (Ωb+1(X)),⊕g∈GS∗[g]).

Suppose α : Pn → S[g] represents an element in ExtnGr(Λ)(X,S[g]). Since F (P>b)
is a projective resolution of F (Ωb+1(X)), the map F (α) : F (Pn) → S∗[g] rep-

resents an element in Extn−b−1
Gr(Λ∗)(F (Ωb+1(X)), S∗[g]). Since both Pn and S be-

long to f and F (P>b) is minimal, if α is non-zero, then F (α) is non-zero in

Extn−b−1
Gr(Λ∗)(F (Ωb+1(X)), S∗[g]). In this way F induces a monomorphism

ExtnΛ(Φ(X),Φ(S))→ Extn−b−1
Λ∗ (Φ(F (Ωb+1(X))),Φ(S∗))

and hence a monomorphism

ExtnΛ(Φ(X),Φ(S))→ ExtnΛ∗(Φ(F (X)),Φ(S∗)).

Having shown that if n > b+ c+ 2, then F induces a monomorphism

ExtnΛ(Φ(X),Φ(S))→ ExtnΛ∗(Φ(F (X)),Φ(S∗)),

we now show that F induces an epimorphism. Since

ExtnΛ(Φ(X),Φ(S)) ∼= HomΛ(Φ(Pn),Φ(S)) ∼= HomΛ0(Φ(Pn/rPn),Φ(S))

and

ExtnΛ∗(Φ(F (X)),Φ(S∗)) ∼= HomΛ∗(Φ(F (Pn)),Φ(S∗))

∼= HomΛ∗
0
(Φ(F (Pn)/r∗F (Pn)),Φ(S∗)),

we conclude that the lengths of ExtnΛ(Φ(X),Φ(S)) and ExtnΛ∗(Φ(F (X)),Φ(S∗)) are
equal as modules over the commutative Artin ring C, over which both Λ/r and
Λ∗/r∗ are finite length modules. Since F induces a monomorphism, we conclude
that F is an isomorphism.

By taking direct sums over simple modules belonging to f , the isomorphisms
ExtnΛ(Φ(X),Φ(S)) → ExtnΛ∗(Φ(F (X)),Φ(S∗)) induced by F extend to an isomor-
phism

ExtnΛ(Φ(X), (Λ/r)f) ∼= ExtnΛ∗(Φ(F (X)),Λ∗/r∗),

Taking X = (Λ/r)f we obtain the isomorphism

ExtnΛ((Λ/r)f, (Λ/r)f) ∼= ExtnΛ∗(Λ∗/r∗,Λ∗/r∗),

Since F is an exact functor, the induced isomorphism⊕
n>b+c+2

ExtnΛ((Λ/r)f, (Λ/r)f) ∼=
⊕

n>b+c+2

ExtnΛ∗(Λ∗/r∗,Λ∗/r∗),

is an isomorphism of Z × G-graded rings (without identity). The assertion about
⊕n>b+c+2 ExtnΛ(Φ(X), (Λ/r)f) ∼= ⊕n>b+c+2 ExtnΛ∗(Φ(F (X)),Λ∗/r∗) being a graded
module isomorphism follows. �

We have the following consequence of the above proof.
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Proposition 2.12. Keeping the notation and hypothesis of Theorem 2.11, let X be
a graded Λ-module having a finitely generated minimal graded projective resolution.
Let n > b+ c+ 2. Then pdΛ(Φ(X)) ≤ n− 1 if and only if pdΛ∗(Φ(F (X))) ≤ n− 1.
In particular, if every graded simple Λ-module belonging to e has a finitely generated
minimal graded projective resolution, then pdΛ((Λ/r)e) ≤ b+ c+ 2.

Proof. From the proof of Theorem 2.11, we see that for every graded simple Λ-
module S belonging to f ,

ExtnΛ(Φ(X),Φ(S)) ∼= ExtnΛ∗(Φ(F (X)),Φ(F (S))),

for n > b+ c+2. We have ExtnΛ∗(Φ(F (X)),−) = 0 if and only if pdΛ∗(Φ(F (X))) ≤
n − 1. Since any simple Λ∗-module is isomorphic to a module of the form F (S)
with S a simple Λ-module belonging to f , and F (Ωb+1(X)) has a finitely generated
minimal graded projective resolution, it follows that

ExtnΛ∗(Φ(F (X)),−) ∼= Extn−b−1
Λ∗ (Φ(F (Ωb+1(X))),−) = 0

if and only if

ExtnΛ∗(Φ(F (X)),Φ(F (S))) ∼= Extn−b−1
Λ∗ (Φ(F (Ωb+1(X))),Φ(F (S))) = 0

for every graded simple Λ-module S belonging to f . By our assumption on finitely
generated resolutions, and that idΛ((Λ/r)e) = b, we see that ExtnΛ(Φ(X),−) = 0 if
and only if ExtnΛ(Φ(X),Φ(S)) = 0 for all graded simple modules S belonging to f .
Finally, ExtnΛ(Φ(X),−) = 0 if and only if pdΛ(Φ(X)) ≤ n− 1.

If every graded simple Λ-module belonging to e has a finitely generated min-
imal graded projective resolution, then so has (Λ/r)e. Since fΛe ⊆ r, we get
F ((Λ/r)e) = fΛ⊗Λ (Λ/r)e = 0. The last statement follows. �

By combining Proposition 2.8 and Theorem 2.11, we obtain the desired result.

Theorem 2.13. Let G be a group and Λ = ⊕g∈GΛg be a properly G-graded ring
in which graded idempotents lift. Assume that every graded simple Λ-module has a
finitely generated minimal graded projective Λ-resolution. Let r denote the graded
Jacobson radical of Λ. Suppose that (e, f) is a suitable idempotent pair in Λe and
set Λ∗ to be the ring fΛf and r∗ = frf . Assume that pdΛ∗(fΛe) = c < ∞,
and that idΛ((Λ/r)e) = b < ∞. Then, for n > b + c + 2, there are isomorphisms
ExtnΛ(Λ/r,Λ/r) ∼= ExtnΛ∗(Λ∗/r∗,Λ∗/r∗) such that the induced isomorphism⊕

n>b+c+2

ExtnΛ(Λ/r,Λ/r) ∼=
⊕

n>b+c+2

ExtnΛ∗(Λ∗/r∗,Λ∗/r∗)

is an isomorphism of Z×G-graded rings without identity.
Letting ∆ = ⊕n>b+c+2 ExtnΛ(Λ/r,Λ/r), if X is a graded Λ-module having a

finitely generated projective resolution, then⊕
n>b+c+2

ExtnΛ(Φ(X),Λ/r) and
⊕

n>b+c+2

ExtnΛ∗(Φ(F (X)),Λ∗/r∗)

are isomorphic as graded ∆-modules.

Proof. Since every graded simple Λ-module has a finitely generated minimal graded
projective Λ-resolution, Proposition 2.12 applies, and pdΛ((Λ/r)e) ≤ b+ c+2. The
rest follows from Proposition 2.8 and Theorem 2.11. �
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3. Applications

We begin this section with a well-known result whose proof we include for com-
pleteness.

Proposition 3.1. Let R = R0⊕R1⊕R2⊕ · · · be a finitely generated positively Z-
graded C-algebra where C is a commutative ring. Let N be a fixed positive integer.
Then there is a positive integer D with N < D such that the following holds.

If j ≥ D and r ∈ Rj, then r =
∑
i ciui,1ui,2 · · ·ui,mi

, where ci ∈ C and
each ui,k is homogeneous with N ≤ deg(ui,k) < D.

Proof. Assume that R can be generated over C by homogeneous elements z1, . . . , zm
of degree 0 and x1, . . . , xn with each xi having degree at least 1 and set L =
max{deg xi | 1 ≤ i ≤ n}. Set D = 2LN and suppose r ∈ Rj with j ≥ D. Then,
by finite generation, r =

∑
i ciyi,1 · · · yi,ti where, for all i and k, ci ∈ C, yi,k is of

the form wi,kxlw
′
i,k or xlw

′
i,k or wi,kxl or xl, where wi,k and w′i,k are products of

zs’s and
∑ti
k=1 deg(yi,k) = j, for each i. Fix i and write yk instead of yi,k and set

t = ti. We see that

D = 2NL ≤ j =

t∑
k=1

deg(yk) ≤ Lt.

Hence 2N ≤ t. Write t = AN + S, where 0 ≤ S < N . For i = 1, . . . , A − 1, set
ui = y(i−1)N+1y(i−1)N+2 · · · yiN and uA = y(A−1)N+1 · · · yAN · yAN+1 · · · yt. It is
immediate that for 1 ≤ i ≤ A, N ≤ deg(ui) < 2NL = D. This completes the
proof. �

We have some immediate consequences.

Corollary 3.2. Let R = R0⊕R1⊕R2⊕· · · be a positively Z-graded ring such that,
R0 is an Artin algebra over a commutative Artin ring C, and, for i ≥ 0, Ri has
finite length over R0. Let N be a fixed positive integer. Then R is finitely generated
as a ring over C if and only if T = ⊕i≥NRi is finitely generated as a ring (without
identity) over C.

Proof. Note that R0 ⊕ R1 ⊕ · · · ⊕ RN−1 is of finite length over C. If T is finitely
generated over C, adding a finite numbers generators of R0⊕R1⊕· · ·⊕RN−1 over
C to a set of generators T yields a finite generating set for R.

If R is finitely generated as a ring over C, the proof of Proposition 3.1 implies
that T is generated as a ring over C by RN ⊕RN+1⊕RN+2⊕ · · · ⊕R2NL−1. Since
RN ⊕RN+1 ⊕RN+2 ⊕ · · · ⊕R2NL−1 is of finite length over C, there exists a finite
set of generators for T as a ring over C. �

Before stating the main theorem of the section, we consider low terms in resolu-
tions of simple Λ- and Λ∗-modules. More precisely, suppose that G is a group and
that Λ is a properly G-graded ring in which graded idempotents lift. Let (e, f) be
a suitable idempotent pair in Λ and let Λ∗ = fΛf , r and r∗ the graded Jacobson
radicals of Λ and Λ∗ respectively. Assume all the conditions of Theorem 2.13. Let
S be a graded simple Λ-module and S∗ = fΛ⊗Λ S, viewed as a graded Λ∗-module.
Example 4.1 shows that even if S has a finitely generated graded projective Λ-
resolution, S∗ need not have a finitely generated graded projective Λ∗-resolution.
To remedy this situation, we have the following result and its corollary.
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Proposition 3.3. Let G be a group and R = ⊕g∈GRg be a G-graded ring. Let

· · · → X2 d2−→ X1 d1−→ X0 d0−→M → 0 be an exact sequence of graded R-modules. If,
for all n ≥ 0, Xn has a finitely generated graded projective R-resolution, then M
has a finitely generated graded projective R-resolution.

Proof. For j ≥ 0, let X0,j = Xj and Y 0,j = Im(dj). Note that Y 0,0 = M . For each
j ≥ 0, let

· · · → P 2,j δ2,j−−→ P 1,j δ1,j−−→ P 0,j δ0,j−−→ X0,j → 0

be a finitely generated graded projective R-resolution of X0,j . For i ≥ 0, define
Xi,j = Im(δi,j). Thus, for each i ≥ 0, we have short exact sequences

0→ Xi+1,j → P i,j → Xi,j → 0.

We inductively construct graded R-modules Y i,j and finitely generated graded
projective R-modules Qi,j such that

(1) for each i, j ≥ 0, there is a short exact sequence 0 → Y i+1,j → Qi,j →
Y i,j → 0,

(2) for i ≥ 0 and j ≥ 1, there is a short exact sequence 0 → Xi+1,j−1 →
Y i+1,j−1 → Y i,j → 0 and,

(3) for i ≥ 1 and j ≥ 0, Qi,j = Qi−1,j+1 ⊕ P i,j .
Once this is accomplished, splicing together the short exact sequences 0 →

Y i+1,0 → Qi,0 → Y i,0 → 0 we obtain a long exact sequence

· · · → Q2,0 → Q1,0 → Q0,0 → Y 0,0 → 0.

But Y 0,0 = M and the result follows.
We have defined Y 0,s and P 0,s for all s ≥ 0. Set Q0,i = P 0,i, for all i ≥ 0. We

have exact sequences

0→ Y 0,s+1 → X0,s → Y 0,s → 0,

for all s ≥. We also have exact sequences 0 → X1,s → P 0,s → X0,s → 0 for all
s ≥ 0. From these exact sequences we obtain the following commutative diagram.

0 0

0 // Y 0,s+1 // X0,s

OO

// Y 0,s //

OO

0

0 // P 0,s

OO

P 0,s //

OO

0

0 // X1,s //

OO

Y 1,s //

OO

Y 0,s+1 // 0

0

OO

0

OO

where Y 1,s is defined to be the kernel of the surjection P 0,s to Y 0,s. Thus, we have
defined Y 1,j such that (1) holds for all i = 0 and j ≥ 0 and (2) holds for all j ≥ 1
and i = 0. For i = 0, (3) vacuously holds.
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Now consider 0 → X1,s → Y 1,s → Y 0,s+1 → 0 Using the exact sequences
0→ Y 2,s → Q1,s → Y 1,s → 0 and 0→ X1,s+1 → P 0,s+1 → X0,s+1 → 0 and using
the Horseshoe Lemma, we obtain the following commutative diagram

0 0 0

0 // X1,s

OO

// Y 1,s //

OO

Y 0,s+1

OO

// 0

0 // P 1,s //

OO

P 1,s ⊕Q0,s+1 //

OO

Q0,s+1 //

OO

0

0 // X2,s //

OO

Y 2,s //

OO

Y 1,s+1

OO

// 0

0

OO

0

OO

0

OO

where Y 2,s is the kernel of P 1,s ⊕ Q0,s+1 → Y 1,s. Let Q1,s = P 1,s ⊕ Q0,s+1. It is
immediate that (1) holds for all j ≥ 0, (2) holds for all j ≥ 1 and i = 1, and (3)
holds for i = 1 and all j ≥ 0.

Continuing in this fashion, we define the Xi,j and P i,j for all i, j ≥ 0 satisfying
(1), (2), and (3). �

Corollary 3.4. Let G be a group and Λ = ⊕g∈GΛg be a properly G-graded ring in
which graded idempotents lift. Suppose that (e, f) is suitable idempotent pair and
set Λ∗ to be the ring fΛf . Assume that, as a left Λ∗-module, fΛe has a finitely
generated graded projective resolution. Let M be a graded Λ-module having a finitely
generated graded projective Λ-resolution. Then F (M) has a finitely generated graded
projective Λ∗-resolution.

Proof. Let M be a graded Λ-module and let P : · · · → P 1 → P 0 → M → 0 be a
finitely generated graded projective Λ-resolution of M . Applying the exact functor
F , we get an exact sequence graded Λ∗-modules F (P) : · · · → F (P 1) → F (P 0) →
F (M) → 0. The result will follow if we show that each F (Pn) has a finitely
generated graded projective Λ∗-resolution. For each n ≥ 0, set Pn = Pne ⊕ Pnf ,

where Pne belongs to e and Pnf belongs to f . By our hypothesis, F (Pne ) has a finitely

generated graded projective Λ∗-resolution. Since F (Pnf ) is a graded projective Λ∗-

module and since F (Pn) = F (Pne )⊕ F (Pnf ) we are done. �

We can state the main theorem of this section. If Λ is a ring, then let GKdim(Λ)
denote the Gelfand-Kirillov dimension of Λ (see [4] for an introduction to the sub-
ject) and gl.dim(Λ) denote the (left) global dimension of Λ. To simplify notation,
we write E(Λ) for the cohomology ring ⊕n≥0 ExtnΛ(Λ/r,Λ/r).

Theorem 3.5. Let G be a group and Λ = ⊕g∈GΛg be a properly G-graded ring
in which graded idempotents lift. Assume that every graded simple Λ-module has a
finitely generated minimal graded projective Λ-resolution. Let r denote the graded
Jacobson radical of Λ. Suppose that (e, f) is a suitable idempotent pair and set
Λ∗ to be the ring fΛf and r∗ = frf . Suppose that pdΛ∗(fΛe) < ∞, and that
idΛ((Λ/r)e) <∞. Then the following hold.
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(1) Assume that fΛe has a finitely generated minimal graded projective
Λ∗-resolution. The cohomology ring E(Λ) is finitely generated over
Ext0

Λ(Λ/r,Λ/r) ∼= HomΛ(Λ/r,Λ/r) ∼= (Λ/r)op if and only if the cohomology
ring E(Λ∗) is finitely generated as a (Λ∗/r∗)op-algebra.

(2) Assume that Λ is K-algebra, where K is a field and that Λ/r is a finite
dimensional K-algebra. Assume further that both E(Λ) and E(Λ∗) are
finitely generated K-algebras. Then GKdim(E(Λ)) = GKdim(E(Λ∗)).

(3) We have that pdΛ(Φ(S)) < ∞, for all graded simple Λ-modules S if and
only if pdΛ∗(Φ(S∗)) <∞, for all graded simple Λ∗-modules S∗.

Proof. Suppose C is a commutative Artin algebra over which Λ/r has finite length.
Note that if S∗ is a graded simple Λ∗-module, then there exists a graded simple
Λ-module S such that S∗ ∼= F (S). By Corollary 3.4 and our assumptions, it follows
that every graded simple Λ∗-module has a finitely generated graded projective Λ∗-
resolution. In particular, for n ≥ 0, ExtnΛ∗(Λ∗/r∗,Λ∗/r∗) has finite length over C.
Part (1) follows from Theorems 2.11 and 2.13, Proposition 3.1, and Corollary 3.2.
Part (2) follows from the definition of Gelfand-Kirillov dimension and Theorem
2.13. Part (3) follows from Proposition 2.12. �

Applying these results to the Artin algebra case we get the following corollary.

Corollary 3.6. Let Λ be an Artin algebra. Let r denote the graded Jacobson radical
of Λ. Suppose that (e, f) is a suitable idempotent pair in Λ and set Λ∗ to be the
ring fΛf and r∗ = frf . Suppose that pdΛ∗(fΛe) <∞, and that idΛ((Λ/r)e) <∞.
Then the following hold.

(1) The cohomology ring E(Λ) is finitely generated over Ext0
Λ(Λ/r,Λ/r) ∼=

HomΛ(Λ/r,Λ/r) ∼= (Λ/r)op if and only if the cohomology ring E(Λ∗) is
finitely generated as a (Λ∗/r∗)op-algebra.

(2) Assume that Λ is a finite dimensional K-algebra, where K is a field. As-
sume further that both E(Λ) and E(Λ∗) are finitely generated K-algebras.
Then GKdim(E(Λ)) = GKdim(E(Λ∗)).

(3) We have that gl.dim(Λ) is finite if and only if gl.dim(Λ∗) is finite.

Proof. We take G to be the trivial group and view Λ as a graded algebra. Then the
grading is proper and graded idempotents lift. Every (graded) simple Λ-module
and (graded) simple Λ∗-module has a finitely generated projective resolution, as
does fΛe. The result is now a direct consequence of Theorem 3.5. �

4. Concluding remarks and examples

We begin this section with a discussion of the construction of Λ∗ = fΛf in case
Λ is a quotient of a path algebra. We keep the notation of Example 2.1; namely, let
K be a field, Q be a finite quiver, G a group, W : Q1 → G\{e} be a weight function,
and I a graded ideal in the path algebra KQ generated by weight homogeneous
elements. We also assume that I is contained in the ideal of KQ generated by
the arrows of Q. Again we assume there is an integer t such that all paths of
weight e and length greater than t starting and ending at the same vertex belong
to I. Setting Λ = KQ/I, the G-grading on KQ obtained from W induces a proper
G-grading on Λ such that graded idempotents lift.

To simplify notation, if x ∈ KQ, then we denote the element x + I of Λ by
x̄. We wish to describe Λ∗ = fΛf , where f =

∑
v∈X v̄ and X is a subset of the
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vertex set Q0. Set e =
∑
v∈Q0\X v̄. We keep the notation that r is the graded

Jacobson radical of Λ and r∗ = frf . Note that r is generated by all elements of
the form ā, for a ∈ Q1, Λ∗ has a G-grading induced from the G-grading on Λ,
and r∗ is the graded Jacobson radical of Λ∗. Furthermore, Λ/r ∼=

∏
v∈Q0

K and

Λ∗/r∗ ∼=
∏
v∈X K.

We define the quiver Q∗ as follows. Let Q∗0 = X. To define the set of arrows
Q∗1, consider the set of paths M in Q such that p ∈ M if p is a path of length

n ≥ 1 in Q such that p = u1
a1−→ u2

a2−→ u3 → · · · → un
an−−→ un+1, with ui

belonging to e for 2 ≤ i ≤ n and u1 and un+1 belonging to f . Note that a vertex
u belongs to f (respectively, to e) just means u ∈ X (respectively, u 6∈ X). Then
Q∗1 = {ap | p ∈M, p is a path from u1 to un+1}. A path p ∈M is called a minimal
f -path and the arrow ap in Q∗ is called the arrow in Q∗ associated to minimal f -
path p. We note that if a : u → v is an arrow with u and v belonging to f , then a
is a minimal f -path. It is also easy to see that if p is a path in Q from vertex u to
vertex v with u and v belonging to f , then p can be uniquely written as a product
of paths p1 · · · pm, where each pi is a minimal f -path.

We now turn our attention to relations. Let I∗ be the ideal in KQ∗ generated as
follows. If r ∈ I is an element with r = vru, where u and v are vertices belonging
to f and r =

∑
i cipi, where ci ∈ K and pi is a path from u to v, then we set r∗ to

be
∑
i cip

∗
i where p∗i is the path in Q∗ obtained from pi by replacing each minimal

f -subpath p in pi by ap. Note that if a minimal f -path is in I, then the associated
arrow is in I∗. We also note that although Q is a finite quiver and Q∗0 is a finite set,
Q∗ may have an infinite number of arrows. The next example demonstrates this
and that even if I is an ideal in KQ, finitely generated by homogeneous elements,
I∗ need not be finitely generated.

Example 4.1. Let Q be the quiver

u◦
a
// v◦

b

��
c
// w◦

Take e = v and f = u + w. It is not hard to see that each path of the form cbna,
n ≥ 0 is a minimal f -path and that these are the only minimal f -paths. Hence,
Q∗ is the quiver with two vertices u and w, and a countable number of arrows
aca, acba, acb2a, . . . , each starting at u and ending at w.

Let W : Q1 → Z>0 by W (a) = W (b) = W (c) = 1 and I be the ideal in KQ
generated by b2. Set Λ = KQ/I and Λ∗ = KQ∗/I∗. Then Λ∗ = fΛf and I∗ =
fIf . We have I∗ is generated by {acbna | n ≥ 2}. Note that both Λ and Λ∗ are
Artin algebras. Note that pdΛ((Λ/r)e) = idΛ((Λ/r)e) =∞, where r is the graded
Jacobson radical of Λ. Moreover, gl.dim(Λ∗) = 1. This example shows that the
finiteness of the injective dimension of (Λ/r)e cannot be removed as a condition
from Corollary 3.6.

If we take I = (0) = I∗ above, then both Λ = KQ and Λ∗ = KQ∗ are hereditary
algebras. Hence Theorem 2.13 holds; in fact, the Extn’s are 0 for n ≥ 2. But
Ext1

Λ∗(Λ∗/r∗,Λ∗/r∗) is infinite dimensional and hence Theorem 3.5 fails. Note
that fΛe does not have a finitely generated graded projective Λ∗-resolution.

We leave the proof of the following result to the reader.

Proposition 4.2. Keeping the notation above, Λ∗ ∼= KQ∗/I∗. �
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In the quiver case where e is a idempotent associated to a vertex, the next result
gives a sufficient condition for exactness of the functor H where H : Gr(Λ∗) →
Gr(Λ) given by H(X) = HomΛ∗(fΛ, X) (see Section 2).

Proposition 4.3. Let Λ = KQ/I be a finite dimensional K-algebra where K is
field and I is an admissible ideal in the path algebra KQ; that is, for some n ≥ 2,
Jn ⊆ I ⊆ J2 where J is the ideal generated by the arrows of Q. Assume that KQ
is G-graded with the grading coming from a weight function W : Q1 → G and that
I can be generated by homogeneous elements. Let e be an idempotent element of
KQ associated to a vertex v. If pdΛ((Λ/r)e) ≤ 1, then pdΛ∗(fΛe) = 0 and H is
exact.

Proof. Assume pdΛ((Λ/r)e) ≤ 1. By the Strong No Loop Theorem [3], there is no
loop at v. (Alternatively, a loop at v would imply that Λe is a direct summand
of re, a contradiction.) Let e be the idempotent in KQ associated to the vertex v
and let f = 1− e. Consider the short exact sequence 0→ re→ Λe→ (Λ/r)e→ 0.
Applying the functor F , we obtain

0 // fΛ⊗Λ re //

∼=
��

fΛ⊗Λ Λe //

∼=
��

fΛ⊗Λ (Λ/r)e //

∼=
��

0

fre fΛe 0

It follows that fΛe ∼= fre. Since pdΛ(Λ/r)e ≤ 1, re ∼= ⊕Λw where the direct sum
runs over the arrows v → w in Q and w belongs to f , and where Λw is the projective
Λ-module associated to the vertex w. Since each w belongs to f , it follows that
fΛw = fΛfw = Λ∗w, which is a projective Λ∗-module. Thus fΛe is a projective
Λ∗-module and by the remark after Proposition 2.5, H is exact. �

Let Λ = KQ/I be a finite dimensional K-algebra where K is field and I is an
admissible ideal in the path algebra KQ. Assume that KQ is G-graded with the
grading coming from a weight function W : Q1 → G and that I can be generated
by homogeneous elements. Let e be an idempotent element of KQ associated to
a vertex v. As usual let f = 1 − e. It is well known that pdΛ((Λ/r)e) ≤ 1 if and
only if there exists a uniform set ρ of generators of I such that gv = 0 for all g ∈ ρ,
where an element r ∈ KQ is uniform if there exist vertices u and w in Q such that
r = wru. Thus, if there exists a uniform set ρ of generators of I such that gv = 0
for all g ∈ ρ and if idΛ((Λ/r)e) <∞, then Theorems 2.13 and 3.5 apply, as in the
following example.

Example 4.4. Let Q be the quiver

u◦ a // v◦ b // w◦

c
��

z◦
h

]]

x◦
d

oo

Let I be the admissible ideal in KQ with a uniform set of generators ρ =
{dcb, bahd}, and let W : Q1 → G be some weight function. Consider the G-graded
finite dimensional K-algebra Λ = KQ/I. Let e be the idempotent element asso-
ciated to the vertex u. Then gu = 0 for all g ∈ ρ and idΛ((Λ/r)e) = 1 < ∞, so
Theorems 2.13 and 3.5 apply.
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In this example Λ∗ ∼= KQ∗/I∗, where Q∗ is the quiver

v◦ b // w◦

c
��

z◦

aah

OO

x◦
d

oo

,

and I∗ is generated by {dcb, baahd}.

The next result gives sufficient conditions so that pdΛ∗(fΛe) <∞.

Proposition 4.5. Let G be a group and Λ = ⊕g∈GΛg be a properly G-graded ring in
which graded idempotents lift. Suppose that (e, f) is a suitable idempotent pair and
set Λ∗ to be the ring fΛf . Suppose that 0→ Pn → · · · → P 1 → P 0 → (Λ/r)e→ 0
is a minimal graded projective Λ-resolution of (Λ/r)e and that each P i, for i ≥ 1,
is a direct sum of indecomposable projective Λ-modules of the form Λw with w a
vertex belonging to f . Then pdΛ∗(fΛe) <∞.

Proof. Note that fΛ ⊗Λ (Λ/r)e = 0 and that P 0 ∼= Λe; so that fΛ ⊗Λ Λe ∼= fΛe.
We see that the result follows by tensoring the projective resolution of (Λ/r)e with
fΛ⊗Λ −. �

Example 4.6. We end with a nontrivial class of examples where the hypotheses
of main theorems of the paper hold. Let K be a field and ∆ and Σ be finite
dimensional K-algebras. Suppose that A is finite dimensional K-Σ-bimodule, B is
a finite dimensional ∆-K-bimodule, C is a finite dimensional ∆-Σ-bimodule, and
µ : B ⊗K A→ C is a ∆-Σ-bimodule homomorphism. Let

Λ =

 K A 0
0 Σ 0
B C ∆

 ,

where the ring operations are given by matrix addition and multiplication. Part of
the multiplication involves µ, if a ∈ A and b ∈ B, then 0 0 0

0 0 0
b 0 0

 ·
 0 a 0

0 0 0
0 0 0

 =

 0 0 0
0 0 0
0 µ(b⊗ a) 0

 .

Set e =

 1 0 0
0 0 0
0 0 0

 and f =

 0 0 0
0 1 0
0 0 1

. Note that fΛf =

(
Σ 0
C ∆

)
.

The reader may verify that if idΣop(A) < ∞ and pd∆(B) < ∞, then
idΛ((Λ/r)e) <∞ and pdfΛf (fΛe) <∞. Note that C is an arbitrary finite dimen-
sional bimodule. The bimodule homomorphism µ can also be chosen arbitrarily, it
can for instance be chosen to be zero. Thus if idΣop(A) < ∞ and pd∆(B) < ∞,
then, taking G = {e} to be the trivial group, Theorem 2.13 and Corollary 3.6 can
be applied.
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