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Let𝐴 be a (𝑚1 +𝑚2) × (𝑚1 +𝑚2) blockedWishart randommatrix with diagonal blocks of orders𝑚1 ×𝑚1 and𝑚2 ×𝑚2. The goal of
the paper is to find the exact marginal distribution of the two diagonal blocks of𝐴. We find an expression for this marginal density
involving the matrix-variate generalized hypergeometric function. We became interested in this problem because of an application
in spatial interpolation of random fields of positive definite matrices, where this result will be used for parameter estimation, using
composite likelihood methods.

1. Introduction

The goal of this paper is to find an exact and useful form for
the marginal distribution of the diagonal blocks of a 2 × 2
blocked Wishart random matrix. This problem arises in an
applied problem, to estimate the parameters of a Wishart
random field, which will be reported elsewhere.

Let𝐴 be a (𝑚1+𝑚2)× (𝑚1+𝑚2)Wishart randommatrix,
where the diagonal blocks are of orders 𝑚1 × 𝑚1 and 𝑚2 ×𝑚2, respectively. In our intended application 𝑚1, 𝑚2 will be
small integers (and𝑚1 = 𝑚2, but we choose to treat the more
general case). Write 𝐴 = ( 𝐴1 𝐴12𝐴⊤

12
𝐴2
).

Denote the number of freedom parameters by 𝑛 and the
scale parameter, which is a matrix blocked in the same way as𝐴, by Σ = ( Σ1 Σ12Σ⊤

12
Σ2
). We are mostly interested in the special

case Σ = ( Σ0 𝜌Σ0𝜌Σ0 Σ0
) where the absolute value of 𝜌 is less than

one, but the general case is not more difficult.
All matrices are real. Notation: we use Tr(𝐴) for the trace

of the square matrix 𝐴 and etr(𝐴) = exp(Tr(𝐴)). We write
P(𝑚) for the convex cone of real 𝑚 × 𝑚 positive definite
matrices, and we writeO(𝑚) for the orthogonal group, that is,
the set of𝑚×𝑚orthogonalmatrices.TheStiefelmanifold, that

is, the set of 𝑚1 × 𝑚2 column orthogonal matrices is written
as V𝑚2,𝑚1(𝑚2 ≤ 𝑚1). We indicate the transpose of a matrix
by superscript ⊤.

In the convex cone of positive definitematrices, we use the
cone order, defined by 𝐴 < 𝐵meaning that 𝐵 − 𝐴 is positive
definite, written as 𝐵−𝐴 > 0. Integrals over cones are written
as ∫𝐼
0
𝑔(𝐴)(𝑑𝐴) meaning the integral is taken over the cone0 < 𝐴 < 𝐼. The multivariate gamma function is denoted byΓ𝑚(𝑎) forR(𝑎) > (𝑚 − 1)/2; see Muirhead [1] for proofs and

properties.
In Section 2 we give some background information,

especially about the Jacobians which we need to evaluate the
integrals. In Section 3 we state our results and give proofs. In
Section 4 we give some comments on the result.

2. Background

The single most important reference for backgroundmaterial
for this paper isMuirhead [1]. Some results therefromwill not
be cited directly.

When doing change of variables in a multiple integral we
need to know the Jacobian. Here we will list the ones we need;
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most can be found in Muirhead [1] or in Mathai [2]. We are
following the notation of Muirhead [1]. First there is a very
brief summary.

For anymatrix𝑋, let 𝑑𝑋 denote thematrix of differentials𝑑𝑥𝑖𝑗. For an arbitrary 𝑚1 × 𝑚2 matrix 𝑋, the symbol (𝑑𝑋)
denotes the exterior product of the𝑚𝑛 elements of 𝑑𝑋:

(𝑑𝑋) ≡ 𝑚2⋀
𝑗=1

𝑚1⋀
𝑖=1

𝑑𝑥𝑖𝑗. (1)

If 𝑋 is a symmetric 𝑚2 × 𝑚2 matrix, the symbol (𝑑𝑋) will
denote the exterior product of the 𝑚2(𝑚2 + 1)/2 distinct
elements of 𝑑𝑋:

(𝑑𝑋) ≡ 𝑚1⋀
1≤𝑖≤𝑗≤𝑚2

𝑑𝑥𝑖𝑗, (2)

with similar definitions for other kinds of structured matri-
ces.

The following invariant form in the orthogonal group rep-
resents the Haar measure, (𝐻⊤𝑑𝐻) = ⋀𝑚𝑖=1⋀𝑚𝑗=𝑖+1ℎ⊤𝑗 𝑑ℎ𝑖. Here𝐻 represents an orthogonal matrix. This form normalized to
have total mass unity is represented by (𝑑𝐻). We also need to
integrate over a Stiefel manifold; then (𝐻⊤𝑑𝐻) represents a
similarly defined invariant form; see Muirhead [1].

Some needed Jacobians are not inMuirhead [1], so we cite
those Jacobians here, from Dı́az-Garćıa et al. [3, 4].

Lemma 1 (Jacobian of the symmetric square root of a positive
definite matrix). Let 𝑆 and 𝑅 be in P+(𝑚) such that 𝑆 = 𝑅2
and let Δ be a diagonal matrix with the eigenvalues of 𝑅 on the
diagonal. Then,

(𝑑𝑆) = 2𝑚 det (Δ) 𝑚∏
𝑖<𝑗

(Δ 𝑖 + Δ 𝑗) (𝑑𝑅)
= 𝑚∏
𝑖≤𝑗

(Δ 𝑖 + Δ 𝑗) (𝑑𝑅) .
(3)

This result can also be found in Mathai [2].
We need the generalized polar decomposition of a rect-

angular matrix. Let 𝐶 be 𝑚1 × 𝑚2 rectangular matrix with𝑚2 ≤ 𝑚1. Then we always have 𝐶 = 𝑈𝐻 where𝐻 is positive
semidefinite and positive definite if 𝐶 has full rank, and 𝑈
is 𝑚1 × 𝑚2 column orthogonal matrix. In that last case, 𝑈 is
unique; see Higham [5].

Lemma 2 (Generalized polar decomposition). Let𝑋 be𝑚1 ×𝑚2 matrix with 𝑚1 ≥ 𝑚2 and of rank 𝑚2, with 𝑚2 distinct
singular values. Write 𝑋 = 𝑈𝐻, with 𝑈 ∈ V𝑚2,𝑚1 and𝐻 ∈ P(𝑚2). Then𝐻 has𝑚2 distinct eigenvalues. Also let Δ be
the diagonal matrix with the eigenvalues of𝐻 on the diagonal.
Then

(𝑑𝑋) = det (Δ)𝑚1−𝑚2 𝑚2∏
𝑖<𝑗

(Δ 𝑖 + Δ 𝑗) (𝑑𝐻) (𝑈⊤𝑑𝑈) . (4)

Note that since those results are used for integration, the
assumption of distinct singular values is unimportant, since
the subset where the singular values are equal has measure
zero.

3. Results

Let us state our main result.

Theorem 3 (The marginal distribution of the diagonal blocks
of a blocked Wishart random matrix with blocks of unequal
sizes). Let 𝐴 = ( 𝐴1 𝐴12𝐴⊤

12
𝐴2
) be a (𝑚1 +𝑚2) × (𝑚1 +𝑚2) blocked

Wishart random matrix, where the diagonal blocks are of sizes𝑚1 × 𝑚1 and 𝑚2 × 𝑚2, respectively. The Wishart distribution
of 𝐴 has 𝑛 ≥ 𝑚1 + 𝑚2 degrees of freedom and positive definite
scale matrix Σ = ( Σ1 Σ12Σ⊤

12
Σ2
) blocked in the same way as 𝐴. The

marginal distributions of the two diagonal blocks 𝐴1 and 𝐴2
have density function given by

𝑐 ⋅ etr {−12 (Σ−11 𝐴1 + 𝐹⊤𝐶2𝐹𝐴1)} ⋅ etr {−12𝐶−12 𝐴2}
⋅ det (𝐴1)(𝑛−𝑚2−1)/2 det (𝐴2)(𝑛−𝑚1−1)/2
⋅ 0𝐹1( 𝑛2

14𝐺 ) ,
(5)

where 𝐶2 = Σ2 − Σ⊤12Σ−11 Σ12, 𝐹 = 𝐶−12 Σ⊤12Σ−11 , and 𝐺 =𝐴1/22 𝐹𝐴1𝐹⊤𝐴1/22 . 𝑐−1 = 2(𝑚1+𝑚2)𝑛/2Γ𝑚1(𝑛/2)Γ𝑚2(𝑛/2)(detΣ)𝑛/2.
0𝐹1 is the generalized matrix-variate hypergeometric function,
as defined in Muirhead [1].

Note that the definition of the matrix-variate hypergeo-
metric function is by a series expansion, which is convergent
in all cases we need; see Muirhead [1]. The rest of this section
consists of a proof of this theorem.

Introduce the following notation: the Schur complements
of Σ = ( Σ1 Σ12Σ⊤

12
Σ2
) is 𝐶1 = Σ1 − Σ12Σ−12 Σ⊤12 and 𝐶2 = Σ2 −Σ⊤12Σ−11 Σ12. Then define 𝐹 = 𝐶−12 Σ⊤12Σ−11 .

In the following wewill be using some standard results on
blocked matrices without quoting them.

The Wishart density function of 𝐴 written as a function
of the blocks is

𝑐 ⋅ etr(−12 (Σ−11 𝐴1 + 𝐹⊤𝐶2𝐹𝐴1 − 2𝐹⊤𝐴⊤12 + 𝐶−12 𝐴2))
⋅ det (𝐴1)𝛾 det (𝐴2 − 𝐴⊤12𝐴−11 𝐴12)𝛾 ,

(6)

where 𝑐−1 = 2(𝑚1+𝑚2)𝑛/2Γ𝑚1+𝑚2((1/2)𝑛)(detΣ)𝑛/2 and 𝛾 = (𝑛 −𝑚1−𝑚2−1)/2. In the following we will work with the density
concentrating on the factors depending on 𝐴12. To prove the
theorem we need to integrate out the variable 𝐴12. The other
variables, which are constant under the integration, will be
concentrated in one constant factor. So we repeat formula (6)
written as a differential form with the constants left out

𝐾1 ⋅ etr (𝐹𝐴12) det (𝐴2 − 𝐴⊤12𝐴−11 𝐴12)𝛾 (𝑑𝐴12) , (7)

where 𝐾1 = 𝑐 ⋅ etr(−(1/2)(Σ−11 𝐴1 + 𝐹⊤𝐶2𝐹𝐴1)etr(−(1/2)𝐶−12 𝐴2)) det(𝐴1)𝛾. Now, to find the marginal distribution
of the diagonal blocks, we need to integrate over the off-
diagonal block 𝐴12. Under this integration the value of the
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diagonal blocks 𝐴1 and 𝐴2 will remain fixed, and the region
of integration will be a subset of R𝑚1×𝑚2 consisting of the
matrices 𝐴12 such that the block matrix 𝐴 = ( 𝐴1 𝐴12𝐴⊤

12
𝐴2
) is

positive definite.This seems like a complicated set, but we can
give a simple description of it using the polar decomposition
of a matrix. Note that this is one of the key observations
for the proof, and this author has not seen any use of this
observation earlier.

Now we need to assume that 𝑚1 ≥ 𝑚2. For the opposite
inequality a parallel development can be given, using the
other factorization det𝐴 = det(𝐴2) det(𝐴1 − 𝐴12𝐴−12 𝐴⊤12).
From, for instance, Theorem 1.12 in Zhang [6] it follows that
the region of integration is the set

{𝐴12 ∈ R𝑚1×𝑚2 : 0 < 𝐴⊤12𝐴−11 𝐴12 < 𝐴2} . (8)

Introduce 𝐸 = 𝐴−1/22 𝐴⊤12𝐴−1/21 where we use the usual
symmetric square root. Then in terms of the new variable 𝐸
the region of integration becomes

{𝐸⊤ ∈ R𝑚1×𝑚2 : 0 < 𝐸𝐸⊤ < 𝐼} (9)

and with the generalized polar decomposition in the form𝐸⊤ = 𝑈𝑃 with 𝑃 ∈ P+(𝑚2), 𝑈 ∈ V𝑚2 ,𝑚1 , 𝐸𝐸⊤ = 𝑃2 so
the region of integration can be written as

{𝑃 ∈ P+ (𝑚2) , 𝑈 ∈V𝑚2,𝑚1 : 0 < 𝑃2 < 𝐼} (10)

which is a Cartesian product of a cone interval with a Stiefel
manifold.

The Jacobian of the transformation from 𝐴12 to 𝐸 is(𝑑𝐸) = (𝑑𝐸⊤) = det(𝐴2)−𝑚1/2 det(𝐴1)−𝑚2/2(𝑑𝐴12). The
Jacobian of the polar decomposition 𝐸⊤ = 𝑈𝑃 is (𝑑𝐸) =(𝑑𝐸⊤) = (detΔ)𝑚1−𝑚2∏𝑚2𝑖<𝑗(Δ 𝑖 + Δ 𝑗)(𝑑𝑃)(𝑈⊤𝑑𝑈), where Δ is
a diagonal matrix with the eigenvalues of 𝑃 on the diagonal;
see Lemma 2. A last transformation will be useful. Define𝑃2 = 𝑋. The Jacobian of this transformation is (𝑑𝑋) =2𝑚2 detΔ∏𝑚2𝑖<𝑗(Δ 𝑖 + Δ 𝑗)(𝑑𝑃); Δ is as above. See Lemma 1.

Applying this transformation the integral of (7) can be
written as

𝐾2 ⋅ ∫𝐼
0
∫
V𝑚2,𝑚1

etr (𝑋1/2𝐴1/22 𝐹𝐴1/21 𝑈) det (𝐼 − 𝑋)𝛾
⋅ det (𝑋)(𝑚1−𝑚2−1)/2 (𝑑𝑋) (𝑈⊤𝑑𝑈) ,

(11)

where the constant

𝐾2 = 2−𝑚2𝑐 etr(−12 ((Σ−11 + 𝐹⊤𝐶2𝐹)𝐴1 + 𝐶−12 𝐴2))
⋅ (det𝐴1)𝛾+𝑚2/2 (det𝐴2)𝛾+𝑚1/2 .

(12)

We are ready to perform the integration over the Stiefel
manifold. For this purpose we need a generalization of
Theorem 7.4.1 fromMuirhead [1], which we cite here.

Let 𝑋 be 𝑚 × 𝑛 real matrix with 𝑚 ≤ 𝑛 and 𝐻 = [𝐻1 :𝐻2]𝑛 × 𝑛 orthogonal matrix, where𝐻1 is 𝑛 × 𝑚. Then

∫
O(𝑛)

etr (𝑋𝐻1) (𝑑𝐻) = 0𝐹1( 𝑛2
14𝑋𝑋⊤ ) . (13)

But we have an integral over the Stiefel manifold, not the
orthogonal group, sowe need now to generalize the result (13)
to an integral over the Stiefel manifold. What we need is the
following. Let V𝑚2,𝑚1 be the manifold of 𝑚1 × 𝑚2 column
orthogonal matrices with 𝑚2 ≤ 𝑚1, and let 𝑓 be a function
defined on the Stiefel manifold. We can extend this function
to a function defined onO(𝑚1) in the following way. Let𝑈 be𝑚1×𝑚1 orthogonal matrix, and write it in block form as [𝑈1 :𝑈2] such that𝑈1 ∈V𝑚2,𝑚1 . How canwe characterize the set of𝑈2 which is complementing𝑈1 to formanorthogonalmatrix?
First, let𝑈2 be a fixed but arbitrarymatrix complementing𝑈1.
Then clearly any other 𝑚1 × (𝑚1 − 𝑚2) column orthogonal
matrix with the same column space also works.The common
column space is the orthogonal complement of the column
space of 𝑈1. The set of such matrices can be described as{𝑉 ∈ V𝑚1−𝑚2 ,𝑚1 : 𝑉 = 𝑈2𝑄 for 𝑄 ∈ O(𝑚1 − 𝑚2)}. For
this set we write V

𝐻1
m1−m2 ,m1

. As a set we can identify this
with O(𝑚1 − 𝑚2). Specifically, we can identify 𝑈2 with the
very special column orthogonal matrix ( 0𝑚2×𝑚1−𝑚2

𝑄
), where𝑄 ∈ O(𝑚1 −𝑚2)which clearly forms a proper submanifold of

the Stiefel manifold Vm1−m2 ,m1
. The function 𝑓 can now be

extended to the orthogonal group by defining𝑓(𝑈) = 𝑓([𝑈1 :𝑈2]) = 𝑓(𝑈1) and for the integral we find that

∫
O(𝑚1)

𝑓 (𝑈1) (𝑈⊤𝑑𝑈)
= ∫

V𝑚2,𝑚1

∫
V
𝐻1
m1−m2,m1

𝑓 ([𝑈1 : 𝑈2]) (𝑈⊤𝑑𝑈)
= ∫

V𝑚2,𝑚1

𝑓 (𝑈1) (𝑈⊤1 𝑑𝑈1) ∫
V
𝐻1
m1−m2,m1

(𝑄⊤𝑑𝑄)
= VolO (𝑚1 − 𝑚2) ∫

V𝑚2,𝑚1

𝑓 (𝐻1) (𝐻⊤1 𝑑𝐻1) .

(14)

Returning to our integral, the integral over the Stiefel mani-
fold occurring in (11) can now be written as

∫
V𝑚2,𝑚1

etr (𝑋1/2𝐴1/22 𝐹𝐴1/21 𝑈) (𝑈⊤𝑑𝑈)
= 1
Vol (O (𝑚1 − 𝑚2))

⋅ ∫
O(𝑚1)

etr (𝑋1/2𝐴1/22 𝐹𝐴1/21 𝑈1) (𝑈⊤𝑑𝑈) ,
(15)

where 𝑈1 consists of the𝑚2 first columns of 𝑈
= Vol (O (𝑚1))
Vol (O (𝑚1 − 𝑚2))
⋅ ∫

O(𝑚1)
etr (𝑋1/2𝐴1/22 𝐹𝐴1/21 𝑈1) (d𝑈)
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= Vol (O (𝑚1))
Vol (O (𝑚1 − 𝑚2))

⋅ 0𝐹1( 𝑚12
14𝐴1/21 𝐹⊤𝐴1/22 𝑋𝐴1/22 𝐹𝐴1/21 ) ,

(16)

where we did use (13). Here Vol(O(𝑚)) = 2𝑚𝜋𝑚2/2/Γ𝑚(𝑚/2)
is the volume of the orthogonal group; see Muirhead [1]. The
differential form (𝑑𝑈) denotes Haar measure normalized to
total mass unity.

Now write 𝐺 = 𝐴1/22 𝐹𝐴1𝐹⊤𝐴1/22 ; then we can write (11) as

𝐾2 Vol (O (𝑚1))
Vol (O (𝑚1 − 𝑚2)) ∫

𝐼

0
(det𝑋)(𝑚1−𝑚2−1)/2

⋅ det (𝐼 − 𝑋)𝛾 0𝐹1( 𝑚12
14𝐺𝑋 ) (𝑑𝑋)

(17)

and to evaluate this integral we need Theorem 7.2.10 from
Muirhead [1]; we do not state it here.

Using this we find a result we need for the integral of
a hypergeometric function, by using the series expansion
definition of the hypergeometric function and integrating
term by term.

Theorem 4. If 𝑌 is a symmetric𝑚 × 𝑚matrix one has that

∫𝐼
0
det (𝑋)𝑎−(𝑚+1)/2 det (𝐼 − 𝑋)𝑏−(𝑚+1)/2
⋅ 𝑝𝐹𝑞( 𝑎1, . . . , 𝑎𝑝𝑏1, . . . , 𝑏𝑞 𝑋𝑌 ) (𝑑𝑋)
= Γ𝑚 (𝑎) Γ𝑚 (𝑏)Γ𝑚 (𝑎 + 𝑏)
⋅ 𝑝+1𝐹𝑞+1( 𝑎1, . . . , 𝑎𝑝, 𝑎𝑏1, . . . , 𝑏𝑞, 𝑎 + 𝑏 𝑌 )

(18)

so both degrees of the hypergeometric function are raised by
one.

The proof is a simple calculation that we leave out.
Now using (18) to calculate (17) we get, finally, the result

𝐾2 ⋅ Vol (O (𝑚1))
Vol (O (𝑚1 − 𝑚2))

Γ𝑚2 (𝑚/2) Γ𝑚2 ((𝑛 − 𝑚1) /2)Γ𝑚2 (𝑛/2)
⋅ 1𝐹2(

𝑚12𝑚12 , 𝑛2
14𝐺 )

(19)

but note that one pair of upper and lower arguments to
the hypergeometric function are equal with those arguments
canceled.

With a little algebra we complete the proof of our main
theorem.

4. Some Final Comments

To help interpret our main result, we calculated the condi-
tional distribution of the matrix 𝐴1 given the matrix 𝐴2. We
will not give the full details of the calculation here but only
give the result. The density of 𝐴1 given that 𝐴2 = 𝑎2 has the
density given by

12𝑚𝑛/2Γ𝑚 (𝑛/2) det (𝐶1)𝑛/2 etr(−
12𝐶−11 𝐴1)

⋅ det (𝐴1)(𝑛−𝑚−1)/2 ⋅ etr(−12Ω)
⋅ 0𝐹1( 𝑛2

14Ω𝐶−11 𝐴1 ) ,
(20)

where we have given the conditional density only for the
special case Σ = ( Σ0 𝜌Σ0𝜌Σ0 Σ0

). For this case we have, with the
notation from the main theorem, 𝐶1 = 𝐶2 = (1 − 𝜌2)Σ0,𝐹 = (𝜌/(1 − 𝜌2))Σ−10 , and 𝐹⊤𝐶2𝐹 = (𝜌2/(1 − 𝜌2))Σ−10 .
We have defined Ω = 𝜌2𝐶−11 𝑎2, which can be seen as
a noncentrality parameter. The density above is equal to
the noncentral Wishart distribution given in Theorem 10.3.2
in Muirhead [1]. We see that the conditional distribution
is a kind of noncentral Wishart distribution, where the
noncentrality parameter Ω depends on the conditioning
matrix 𝐴2. In this way, the effect of the conditioning is
to change the distribution of 𝐴1, which in the marginal
case is central Wishart, to a noncentral Wishart distribution,
with noncentrality parameter depending on the conditioning
matrix.

As said in Introduction, this result will be used for
modelling of a spatial random field of tensors, where we
will estimate the parameters using composite likelihood.
This application will be reported elsewhere. For that appli-
cation we will need to calculate values of matrix-variate
hypergeometric functions numerically. A paper giving an
efficient method for summing the defining series is Koev and
Edelman [7], with associated Matlab implementation. Butler
and Wood [8] give a Laplace approximation for the case we
need, the 0𝐹1 function.
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