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Abstract
1.	 Sustainable	harvest	management	implies	an	ability	to	control	harvest	rates.	This	is	
challenging	in	systems	that	have	limited	control	of	resources	and	resource	users,	
which	is	often	the	case	in	small	game	harvest	management.	The	difference		between	
management	 strategies	 and	 actual	 harvest	 bag	 size	 (i.e.	 implementation	 uncer-
tainty)	may	be	substantial,	but	few	studies	have	explored	this.

2.	 We	investigated	how	different	management	strategies	and	ecosystem	variables	af-
fected	realised	harvest	of	willow	ptarmigan	(Lagopus lagopus	L.)	among	nine	inde-
pendently	 managed,	 state-	owned	 hunting	 areas	 in	 Central	 and	 South	 Norway	
during	2008–2015.	First,	we	focused	our	empirical	analysis	around	three	response	
variables	of	interest:	hunting	bag	(scaled	by	area),	hunting	effort	(number	of	hunting	
days	scaled	by	area)	and	hunter	efficiency	(shot	birds	per	hunting	day).	Akaike	infor-
mation	criteria	 (AIC)	guided	model	selection	among	candidate	GLMMs.	Then,	we	
used	model-	averaged	parameter	estimating	from	the	statistical	models	in	numerical	
simulations	to	explore	risk	of	overharvest	due	to	implementation	uncertainty.

3.	 The	most	parsimonious	model	explaining	hunting	bag	included	total	allowable	catch	
(TAC)	and	willow	ptarmigan	density.	Hunting	effort	was	explained	by	number	of	per-
mits	sold	and	type	of	quota	(daily	vs.	weekly	quota).	The	most	parsimonious	model	
describing	hunter	efficiency	only	included	the	effect	of	willow	ptarmigan	density.

4.	 Our	results	show	that	managers	have	only	partial	control	over	harvest	rates	in	this	
system,	and	that	hunters	were	relatively	more	efficient	and	harvest	rates	higher	at	
low	 densities.	 This	 effect	 was	 present	 for	 all	 management	 strategy	 scenarios,	
	including	when	managers	 adjusted	TAC	 according	 to	 population	 estimates	 from	
monitoring	programmes.

5. Synthesis and applications.	Quantifying	risk	of	unsustainable	harvest	rates	under	dif-
ferent	scenarios	enables	managers	to	make	informed	decisions,	when	dealing	with	
competing	objectives	of	harvest	opportunities	and	sustainability.	The	substantial	
risk	of	high	harvest	rates	at	low	densities	reported	here	should	encourage	frequent	
use	of	threshold	strategies.	This	study	is	one	of	the	first	approaches	for	quantifying	
implementation	uncertainty	in	small	game	harvest,	and	shows	how	estimates	from	
empirical	analyses	could	be	used	to	quantify	risk	of	overharvest.
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1  | INTRODUCTION

Research	 into	 the	 difference	 between	 management	 strategies	 and	
actual	 harvest	 bag,	 commonly	 termed	 “implementation	 uncertainty”	
(Christensen,	1997)	or	“partial	controllability”	(sensu	Williams,	2001),	is	
rare	 in	 terrestrial	 systems	 (Milner-	Gulland	et	al.,	2010).	To	date,	most	
studies	 investigating	 the	 link	 between	 management	 decisions	 and	
harvest	rates	do	not	address	the	issue	of	implementation	uncertainty,	
although	 imperfect	 information	often	 leads	 to	 a	 gap	between	 imple-
mented	 regulations	 and	 desired	 outcome	 (Deroba	 &	 Bence,	 2008).	
Furthermore,	studies	of	implementation	uncertainty	have	often	focused	
on	to	what	extent	resource	users	comply	with	control	rules	(Bunnefeld,	
Hoshino,	&	Milner-	Gulland,	2011),	but	other	forms	of	implementation	
uncertainty	may	be	of	greater	concern	in	many	systems.	For	example,	
in	management	of	large	carnivores,	an	important	aspect	of	implemen-
tation	uncertainty	is	when	hunters	fail	to	obtain	the	set	quota,	hence	
management	targets	of	removal	are	not	met	(Bischof	et	al.,	2012).	In	the	
case	of	recreational	small	game	harvest,	the	objective	is	often	to	avoid	
overexploitation	while	still	providing	hunting	opportunities	to	the	pub-
lic.	Implementation	of	harvest	regulations	is	often	unpredictable	in	small	
game	 harvest	 systems,	 such	 as	 for	 greater	 sage-	grouse	Centrocercus 
urophasianus	 (Connelly,	 Reese,	 Garton,	 &	 Commons-	Kemner,	 2003),	
greater	 prairie-	chicken	 Tympanuchus cupido	 (Powell,	 Taylor,	 Lusk,	 &	
Matthews,	2011)	or	waterfowl	(U.S.	Fish	and	Wildlife	Service,	2016).

A	 framework	 that	 has	 proven	 to	 be	 particularly	 useful	 (e.g.	
Edwards,	Bunnefeld,	Balme,	&	Milner-	Gulland,	2014)	when	there	are	
multiple	 uncertainties	 associated	with	 elements	 in	 the	management	
cycle	 is	management	 strategy	 evaluation	 (MSE).	Management	 strat-
egy	evaluation	enables	comparison	of	alternative	management	strate-
gies	using	numerical	simulations,	while	incorporating	lack	of	accurate	
knowledge	(Milner-	Gulland	&	Shea,	2017;	Milner-	Gulland	et	al.,	2010).	
Here	we	investigate	an	essential	part	of	the	MSE	framework—the	path	
between	management	decisions	and	actual	harvest,	and	explore	how	
implementation	 uncertainty	 affects	 the	managers’	 potential	 to	 con-
trol	offtake.	We	use	willow	ptarmigan	(Lagopus lagopus	L.)	as	a	model	
species	for	exploring	the	drivers	of	small	game	harvest	rates.	Willow	
ptarmigan	 is	 a	medium-	sized	 tetraonid	 (Pedersen	&	Karlsen,	 2007).	
Harvest	of	 the	species	 is	a	highly	 relevant	 topic	at	a	Fennoscandian	
scale,	 resulting	 from	 a	 >10-	year	 decrease	 in	 abundance	 throughout	
the	 area	 (Kålås,	 Husby,	 Nilsen,	 &	 Vang,	 2014;	 Lehikoinen,	 Green,	
Husby,	Kålås,	&	Lindström,	2014).	It	was	recently	listed	as	near	threat-
ened	(NT)	in	the	Norwegian	Red	List	of	Species	(Henriksen	&	Hilmo,	
2015).	Globally	willow	ptarmigan	 is	 listed	 as	 least	 concern	 (LC),	 but	
decreasing	population	trends	have	been	reported,	especially	in	Europe	
(BirdLife	International	2016).	As	high	harvest	mortality	is	mostly	addi-
tive	to	natural	mortality	(found	by	Pedersen	et	al.,	2004;	Sandercock,	
Nilsen,	Brøseth,	&	Pedersen,	 2011	 for	 a	 30%	harvest	mortality),	 an	

important	conservation	issue	is	to	understand	how	management	strat-
egies	affect	actual	harvest	offtake.	The	objectives	of	this	study	were	to	
explore	this	connection	by:

1. Empirical	 evaluation	 of	 the	 role	 of	 management	 strategies	 and	
natural	 ecosystem	 parameters	 (not	 under	 management	 control)	
on	 observed	 harvest	 bag	 records,	 using	 data	 from	 state-owned	
land	 in	 Norway	 where	 several	 common	 harvest	 strategies	 for	
willow	 ptarmigan	 are	 applied.	 As	 management	 strategies	 and	
ecosystem	parameters	may	affect	harvest	bags	indirectly,	through	
either	 increased	 hunting	 effort	 or	 higher	 hunter	 efficiency,	 we	
used	 two	 complementary	 approaches	 for	 our	 analyses	 to	widen	
our	 understanding	 of	 the	 system.

2. Modelling	implementation	uncertainty	by	quantifying	risk	of	exploi-
tation	above	specific	harvesting	thresholds,	under	different	harvest	
decision	scenarios	and	population	states,	with	estimates	from	the	
empirical	 evaluations.	 The	 actual	 harvest	 decision	 scenarios	 are	
chosen	 from	 the	 empirical	 data,	 and	 we	 aim	 to	 identify	 applied	
	constant	and	proportional	management	strategies.

This	study	shows	a	method	for	including	implementation	uncertainty	
in	a	management	strategy	evaluation	(MSE),	by	quantifying	risks	of	high	
harvest	rates	under	different	management	strategies	and	game	densities.

2  | MATERIALS AND METHODS

2.1 | Study area and period

The	study	area	consists	of	management	units	(MUs)	that	independently	
manage	state-	owned	land	in	Central	and	South	Norway	(locally	termed	
“fjellstyrer”).	These	are	required	by	law	to	provide	hunting	opportunities	
to	the	public	(https://lovdata.no/lov/1975-06-06-31),	while	still	ensur-
ing	sustainable	harvest	management	(https://lovdata.no/lov/2009-06-
19-100).	In	the	context	of	this	study,	we	collected	data	from	MUs	that	
registered	population	 estimates	 of	willow	ptarmigan	 through	 a	 com-
mon	web	portal	 (Hønsefuglportalen,	http://honsefugl.nina.no;	Nilsen,	
Pedersen,	&	Vang,	2013).	From	a	 total	of	23	MUs	 that	are	currently	
using	this	common	e-	infrastructure,	16	provided	data	on	management	
decisions	and	harvest	bags	for	this	study.	From	these	16	MUs,	10	MUs	
provided	data	on	all	variables	central	for	our	analyses.	One	of	the	10	
MUs	was	excluded	from	analyses	because	there	were	only	data	from	
a	single	year.	In	total,	43	observations	across	nine	MUs	from	2008	to	
2015	were	 used	 as	 a	 basis	 for	 our	 analyses.	 Spatial	 distribution	 and	
number	of	observations	in	different	years	are	reported	in	Figure	S1.

Because	the	majority	of	the	birds	are	shot	early	in	the	hunting	sea-
son	(Kastdalen,	1992;	supported	by	raw	data	in	this	study),	we	based	our	
analyses	on	data	from	the	first	weeks	of	the	hunting	season.	MUs	usually	
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implement	stronger	restrictions	and	collect	more	precise	harvest	data	in	
the	first	period	of	the	harvest	season,	usually	lasting	ca.	3	weeks.	Harvest	
was	performed	as	walked-	up	hunting	with	shotguns,	with	or	without	use	
of	pointing	dogs.	Most	MUs	include	areas	that	are	not	suitable	for	wil-
low	ptarmigan	(e.g.	forested	lowlands	or	high	alpine	areas;	Pedersen	&	
Karlsen,	2007).	We	thus	adjusted	the	area	of	each	MU	to	reflect	habitat	
relevant	for	willow	ptarmigan	better	(see	Appendix	S1).

2.2 | Harvest and management strategy data

Harvest	 bag	 statistics	 and	 information	 about	 variables	 expected	 to	
have	an	 impact	on	harvest	bags	were	collected	from	all	MUs	having	
access	to	such	information	(cf.	Table	1	for	a	complete	overview	of	vari-
ables,	and	Appendix	S1	for	additional	information	about	the	method).	
Not	 all	 hunters	 reported	back	 to	 the	managers	 after	 their	 hunt,	 but	
managers	keep	control	of	hunting	reports	on	an	individual	(i.e.	hunting	
permit)	basis.	To	estimate	 total	number	of	hunting	days	and	harvest	
bags,	respectively,	we	divided	the	reported	numbers	for	each	year	and	
MU	by	the	reporting	rate	(i.e.	proportion	of	hunters	that	reported	their	
hunt:	mean	 across	 years	 and	MUs	 71%,	 range:	 37%–100%)	 for	 the	
given	MU	 in	a	given	year.	 In	addition	to	management	decisions	 that	
were	reported	directly	by	the	MUs,	i.e.	number	of	purchased	permits,	
season	start,	type	of	quota	(daily	bag	limit,	periodic	bag	limit,	combi-
nation	of	both)	and	season	 length,	we	also	estimated	the	composite	
variable	TAC	(defined	as	total	allowable	catch	per	km2).	Total	allowable	
catch	 (TAC)	 incorporates	 the	 two	main	strategies	managers	apply	 to	
restrict	harvest:	restricting	effort	and	restricting	bag	size.	For	periodic	
quotas,	TAC	=	number	of	permits	sold	×	quota	size,	while	for	daily	quo-
tas,	TAC	=	number	of	hunting	days	in	permits	sold	×	quota	size.	For	the	
combination	quotas,	TAC	was	calculated	similarly	to	period	quotas,	as	
this	represented	the	maximum	possible	catch	in	these	two	cases.

2.3 | Ecosystem data

Estimates	of	population	density	for	each	MU	each	year	for	willow	ptar-
migan	were	based	on	line	transect	data,	with	field	procedures	following	
distance	sampling	methods	(Thomas	et	al.,	2010).	In	August	each	year,	
volunteer	personnel	used	trained	pointing	dogs	to	search	both	sides	of	
the	transect	line,	and	recorded	cluster	size	(i.e.	ptarmigan	covey	size)	
and	 perpendicular	 distances	 to	 observed	 birds.	 This	 procedure	 has	
been	shown	to	be	a	suitable	technique,	respecting	the	assumptions	of	
the	distance	sampling	method	(Pedersen,	Steen,	Kastdalen,	Svendsen,	
&	Brøseth,	1999;	see	also	Appendix	S1).	The	total	dataset	(n	=	3,020	
observations)	was	 analysed	 in	R	 version	3.2.3	 (R	Core	Team,	 2015)	
using	function	“ds”	 in	package	“Distance”	 (Miller,	2015).	To	estimate	
number	of	chicks	per	female	willow	ptarmigan,	we	made	the	assump-
tion	that	the	sex	ratio	in	the	populations	is	equal	and	that	all	broods	are	
accompanied	by	two	adults.	This	last	assumption	was	made	to	reduce	
potential	biases	caused	by	wrongly	classifying	juveniles	as	adults	(E.B.	
Nilsen,	pers.	com).	Based	on	these	data,	number	of	chicks	per	female	
(hereafter	“production”)	was	estimated	using	generalised	linear	models	
(GLMs)	assuming	a	binomial	error	structure,	following	the	procedure	
outlined	in	Kvasnes,	Pedersen,	Storaas,	and	Nilsen	(2014).

It	 has	 previously	 been	 reported	 that	 hunting	 efficiency	 is	 lower	
in	dense	(i.e.	forested)	habitats	compared	to	open	habitats	(Pedersen	
et	al.,	1999).	To	address	this	finding,	we	calculated	the	proportion	of	
birch	 forest	 within	 suitable	 willow	 ptarmigan	 habitat	 for	 each	 MU	
(Appendix	S1)	and	included	this	as	an	index	for	hunting	efficiency	in	
the	models.

Weather	conditions	may	also	affect	hunting	effort,	performance	of	
hunters	or	dogs,	or	behaviour	and/or	habitat	use	by	the	game	species.	
Based	 on	 data	 from	The	Norwegian	Meteorological	 Institute	 (publicly	

TABLE  1 Parameters	used	to	explore	the	relationship	between	
harvest,	management	strategies	and	ecosystem	characteristics

Parameter
Excl. from 
modela Description (unit)

Responses

Harvest	bag 2a,	2b Number	of	bagged	birds	per	km2 
suitable	habitat,	scaled	by	hunter	
response	rate

Hunting	effort	(also	
predictor)

2b Number	of	hunting	days	per	km2 
suitable	habitat,	scaled	by	hunter	
response	rate

Hunter	efficiency 1,	2a Number	of	bagged	birds	per	
hunting	day,	scaled	by	hunter	
response	rate

Predictors: management decisions

Permits	sold 2b Number	of	permits	sold	per	km2 
suitable	habitat

Length	of	prime	
season

2b Number	of	days	hunters	are	
distributed	on

Season	start Categorical:	(1)	Season	opening	10	
September	,	or	(2)	postponed	(i.e.	
5–10	days	later)

Quota	type Categorical:	(1)	Day	quota,	(2)	
period	quota	or	(3)	a	combination	
of	the	two

TAC	(total	allowable	
catch	per	km2)

Function	of	(1)	number	of	hunting	
days	in	permits	sold	×	daily	quota,	
or	(2)	number	of	permits	
sold	×		period	quota,	both	per	km2 
suitable	habitat

Predictors: ecosystem characteristics

Willow	ptarmigan	
density

Number	of	birds	per	km2

Willow	ptarmigan	
production

Number	of	chicks	per	female,	
assuming	equal	sex	ratio	and	
brood	sizes	>2

Habitat	structure 2a Proportion	of	highland	birch	forest	
in	suitable	terrain

Precipitation Daily	average	precipitation	(mm)	for	
available	hunting	days	in	each	area

Temperature Daily	average	temperature	(○C)	for	
available	hunting	days	in	each	area

a“Exclusion	from	model”	indicates	parameters	not	included	in	analyses	for	
a	given	model.
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available	from	http://eklima.met.no),	we	used	weather	variables	measured	
locally,	as	recommended	by	Frederiksen,	Lebreton,	Pradel,	Choquet,	and	
Gimenez	(2014).	We	chose	the	closest	weather	stations	providing	daily	
registrations	of	precipitation	(mean	2.2	stations,	range	1–3)	and	tempera-
ture	(mean	1.2	stations,	range	1–2),	using	the	arithmetic	average	of	the	
stations	for	each	MU	and	year.	A	total	of	21	stations	with	a	mean	distance	
of	8.2	km	(range	3.2–21.7)	from	the	MU	borders	were	used.

2.4 | Empirical evaluation

We	used	two	separate	paths	for	analysing	observed	harvest	related	
to	management	strategies	and	ecosystem	parameters	(Figure	1);	one	
where	 we	 analysed	 harvest	 bag	 (defined	 as	 bagged	 birds	 per	 km2)	
as	response	(model	1),	and	another	where	we	analysed	harvest	as	a	
function	 of	 hunting	 effort	 (model	 2a)	 and	 hunter	 efficiency	 (model	
2b).	Defining	hunting	effort	as	hunting	days	per	km2	and	hunter	ef-
ficiency	as	bagged	birds	per	hunting	day	(commonly	known	as	catch-	
per-	unit-	effort,	 CPUE),	 we	 used	 the	 relationship	 hunting	 days	 per	
km2	×	bagged	birds	per	hunting	day	=	bagged	birds	per	km2	to	explore	
alternative	paths	to	actual	harvest	rates.

Initial	inspection	of	residuals	indicated	temporal	(year)	and	spatial	
(MU)	 dependencies	when	 fitting	 the	 full	model	 (Zuur,	 leno,	Walker,	
Saveliev,	&	Smith,	2009).	Thus,	to	account	for	pseudoreplication,	we	
opted	 to	use	mixed	models	 (Zuur	et	al.,	2009),	 fitting	 random	 inter-
cepts	 for	MUs	 and	 year	 (package	 “lme4”,	 Bates,	Mächler,	 Bolker,	 &	
Walker,	 2015).	When	 using	models	 that	 accounted	 for	 this	 depen-
dency,	no	further	temporal	(ACF;	autocorrelation	function)	or	spatial	
(Moran’s	 I;	 package	 “lctools”,	 Kalogirou,	 2016)	 autocorrelation	 was	

evident.	Response	variables	were	based	on	count	data	and	 thus	as-
sumed	to	follow	Poisson	or	negative	binomial	distributions.	After	con-
structing	generalised	linear	mixed	effects	models	(GLMMs)	assuming	
the	 data	 followed	 a	 Poisson	 distribution,	 assessment	 of	 model	 re-
siduals	from	the	full	models	revealed	overdispersion	for	all	response	
variables.	Thus,	we	used	negative	binomial	mixed	models	(Zuur	et	al.,	
2009)	to	model	effects	of	predictors	conditional	on	group	character-
istics.	Because	 the	 size	of	areas	 (models	1	and	2a)	 and	 time	 (model	
2b)	differed,	we	used	the	scale	parameter	(area	or	time)	as	an	offset,	
following	the	recommendation	by	e.g.	Zuur	et	al.	(2009).

To	avoid	overparameterisation	 (given	a	 total	sample	size	n	=	43),	
we	restricted	the	set	of	candidate	models	to	include	models	with	≤3	
fixed	 effects,	 in	 addition	 to	 the	 random	 intercepts	 (see	 above).	The	
variables	TAC	and	hunting	effort	(when	used	as	a	predictor)	are	directly	
affected	 by	 the	 other	management	 decisions,	 thus	 they	 are	 not	 in-
cluded	simultaneously	with	other	management	variables	in	any	model.	
Some	predictors	were	correlated	and	thus	are	not	 included	simulta-
neously	in	models	to	avoid	affecting	parameter	estimates	(Zuur,	Ieno,	
&	Elphick,	2010),	 including	density	with	production,	 season	 starting	
time	with	temperature	and	season	length,	and	number	of	permits	sold	
with	habitat	 structure.	A	Pearson	 correlation	of	0.6	 (Graham,	2003)	
between	continuous	predictors	was	used	as	a	collinearity	 threshold.	
For	categorical	variables,	correlated	predictors	were	identified	through	
boxplots.	All	models	not	 including	correlated	variable	pairs	were	 in-
cluded	in	the	model	set.	The	most	parsimonious	models	were	selected	
using	Akaike	information	criterion	(Akaike,	1973)	corrected	for	small	
sample	sizes	(AICc;	package	“AICcmodavg”,	Mazerolle,	2016).	Model	fit	
was	examined	by	inspecting	residuals	vs.	fitted	values	and	confirming	

F IGURE  1 Schematic	structure	of	predictors	(top	line)	used	for	empirical	analyses,	and	the	two	alternative	paths	for	applying	the	estimates	
with	standard	errors	from	the	results	in	implementation	model	simulations
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normal	 distribution	 of	 random	 effects.	 Furthermore,	 we	 performed	
model-	averaging	(Grueber,	Nakagawa,	Laws,	&	Jamieson,	2011)	to	give	
weighted	estimates	and	relative	importance	of	all	predictor	variables.	
Models	were	averaged	over	the	set	of	models	within	95%	confidence	
of	cumulative	AICc	weight,	using	the	“zero	method”	where	parameter	
estimates	and	standard	errors	are	set	to	zero	when	absent	in	a	model	
(Burnham	&	Anderson,	2002).	To	obtain	model-	averaged	estimates	for	
the	levels	of	categorical	variables	(that	might	not	be	present	in	all	mod-
els	in	the	candidate	set),	we	first	used	the	sum-	contrast	in	the	original	
model-	averaging	procedure.	Then,	we	used	the	delta	method	(package	
“car”,	Fox	&	Weisberg,	2011)	to	obtain	proper	estimates	of	level-	based	
intercepts.	Continuous	variables	were	centred	on	their	means	to	facil-
itate	interpretation.

To	identify	whether	different	willow	ptarmigan	densities	lead	to	
a	response	in	management	decisions,	we	performed	a	Spearman	cor-
relation	test	on	density	vs.	the	management	decisions	with	highest	

relative	 importance,	 on	 subsets	 of	 all	MUs.	A	 positive	 correlation	
value	 above	 0.5	was	 used	 as	 a	 criterion	 for	 a	more	 than	 random	
positive	relationship	between	the	parameters.	The	two	groups	(pro-
portional	and	constant	strategy)	were	analysed	separately	to	reveal	
strength	of	the	relationship	with	density	(as	input	for	the	simulated	
strategies),	using	linear	models	with	Gaussian	error	distribution.

2.5 | Simulating harvest rates

Partly	based	on	the	statistical	analyses	described	above,	we	performed	

numerical	simulations	to	assess	effects	of	implementation	uncertainty	

on	realised	harvest	rates	and	risk	of	overharvest.	Following	the	logic	

governing	 the	 statistical	 models,	 we	 used	 two	 structurally	 differ-

ent	 pathways	 between	 collected	 data	 and	 implementation	 models	

(Figure	1)	 and	modelled	 a	 range	 of	 scenarios.	The	 endpoints	 of	 our	

Model Par AICc ΔAICc AICc weight

(1)

Density	+	TAC 6 541.92 0.00 0.29

Density	+	TAC	+	temperature 7 542.08 0.15 0.27

Density	+	TAC	+	precipitation 7 542.12 0.20 0.26

Density	+	TAC	+	habitat 7 544.73 2.81 0.07

Density	+	quota	type	+	temperature 8 545.65 3.73 0.04

Null 4 594.91 52.99 0.00

(2a)

Permits	sold	+	quota	type	+	temperature 8 548.29 0.00 0.49

Permits	sold	+	quota	type	+	density 8 550.05 1.76 0.20

Permits	sold	+	quota	type	+	production 8 550.89 2.60 0.13

Permits	sold	+	quota	type	+	precipitation 8 552.30 4.01 0.07

Permits	sold	+	quota	type	+	season	start 8 552.85 4.56 0.05

Null 4 615.73 67.44 0.00

(2b)

Density 5 556.41 0.00 0.27

Density	+	habitat 6 558.33 1.92 0.10

Density	+	TAC 6 558.39 1.98 0.10

Density	+	precipitation 6 558.79 2.38 0.08

Density	+	season	start 6 558.91 2.50 0.08

Density	+	temperature 6 559.01 2.60 0.07

Density	+	TAC	+	habitat 7 560.17 3.75 0.04

Density	+	habitat	+	precipitation 7 560.75 4.34 0.03

Density	+	TAC	+	precipitation 7 560.77 4.36 0.03

Density	+	quota	type 7 560.96 4.55 0.03

Density	+	TAC	+	temperature 7 561.06 4.65 0.03

Density	+	habitat	+	temperature 7 561.17 4.76 0.03

Season	start	+	density	+	habitat 7 561.18 4.77 0.03

Season	start	+	density	+	precipitation 7 561.23 4.82 0.02

Null 4 582.80 26.39 0.00

TAC,	total	allowable	catch	per	km2.

TABLE  2 AICc	model	selection	tables.	
Top	models	within	cumulative	
weight	=	0.95	and	null	models	from	
empirical	analyses,	where	(1)	models	
harvest	bag,	(2a)	hunting	effort	and	(2b)	
hunter	efficiency.	Full	AICc	model	selection	
tables	are	available	in	Table	S2
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simulations	were	harvest	rates	emerging	from	different	harvest	deci-

sions	and	state	variables.	Importantly,	we	were	here	not	modelling	the	

impact	of	different	harvest	rates	on	the	population	state	dynamics.	In	

general,	our	simulation	model	consisted	of	four	submodels	that	were	

linked	in	the	following	way:

1. Population	 state	model:	 First,	we	 generated	 a	 true	 value	 for	 the	
population	density	(willow	ptarmigan	per	km2)	 in	time	t,	by	taking	
random	 draws	 from	 a	 uniform	 distribution	 between	 2	 and	 25	
(covering	the	range	of	densities	in	our	dataset).	This	state	variable	

(Xt)	 was	 the	 input	 variable	 for	 the	 observation	 model,	 but	 its	
value	 will	 not	 be	 known	 to	 the	 managers	 (see	 below).

2. Observation	model:	Based	on	 the	 true	population	density	 (Xt),	we	
simulated	a	system	where	managers	are	monitoring	the	population	
state.	In	our	simulations,	we	assumed	that	the	managers	had	access	
to	unbiased	density	estimates	and	that	the	precision	resembled	the	
precision	in	the	distance	sampling	density	estimates	reported	here.	
Across	all	years	and	areas,	the	median	coefficient	of	variation	(CV)	
was	estimated	at	0.23.	The	observation	model	thus	generated	ran-
dom	draws	(Dt)	based	on	a	Gaussian	distribution	with	mean	=	Xt and 
standard	deviation	=	CV	×	Xt.	The	estimated	density	emerging	from	
the	observation	model	(Dt)	is	the	input	for	the	harvest	decision	model,	
and	will	be	available	to	managers	in	contrast	to	the	true	state	(Xt).

3. Management	decision	model:	Based	on	the	information	available	to	
them,	 the	 managers	 make	 decisions	 about	 harvest	 regulations.	
Following	 our	 statistical	 analysis	 and	 the	 range	 of	 the	 empirical	
data,	we	identified	five	relevant	scenarios	corresponding	to	model	
3a	(Figure	1)	and	six	to	model	3b.

4. Implementation	 model:	 The	 management	 decisions	 affect	 realised	
harvest	 rate	 following	 the	 relationships	 revealed	 by	 the	 statistical	
models.	For	each	scenario,	we	simulated	harvest	rates	under	the	range	
of	true	population	states,	where	model-averaged	estimates	and	stand-
ard	errors	from	the	empirical	analyses	were	used	to	replicate	model	
uncertainty.	Only	 estimates	 of	 parameters	with	 substantial	 relative	
importance	were	 included,	using	a	threshold	of	0.8	as	guidance	for	
suggesting	 high	 importance,	 while	 the	 remaining	 parameters	 were	
kept	at	their	means.	All	simulations	were	replicated	10,000	times.

We	were	not	interested	in	exploring	the	effects	of	harvest	rates	on	
willow	 ptarmigan	 demography	 and	 population	 dynamics.	 To	 illustrate	
how	our	approach	could	be	extended	to	assess	this	feedback,	being	part	
of	a	full	MSE	model	(Figure	S2),	we	replaced	the	random	number	gen-
erator	(see	point	1	above)	with	a	population	model	including	feedback	
from	the	system	(see	Figure	S3	for	a	simple	example),	and	simulated	the	
process	across	100	time	steps.

Sandercock	et	al.	(2011)	found	that	harvest	of	15%	of	the	popula-
tion	was	at	least	partially	compensated	by	a	decrease	in	natural	mortal-
ity,	while	30%	harvest	lead	to	super-	additive	mortality	in	study	areas	in	
Norway.	We	apply	these	two	harvest	rate	levels	in	the	context	of	our	
study	and	here	define	“overharvest”	as	the	excess	of	these	levels.	The	
quantitative	output	from	our	simulations	was	thus	used	to	estimate	the	
risk	of	exploitation	above	harvest	rates	of	15%	and	30%	for	the	man-
agement	strategies	tested,	given	the	uncertainties.	As	a	validation	for	
the	simulation	exercise,	different	values	for	uncertainties	in	the	obser-
vation	model	and	 implementation	model	were	applied	to	 investigate	
robustness	to	changes	in	population	estimate	precision,	and	to	vulner-
ability	to	underestimation	of	errors	in	the	implementation	models.

3  | RESULTS

Initial	habitat	analyses	revealed	that	on	average	70.3%	(range	28.3%–
92.3%)	 of	 the	MU	 areas	 are	 suitable	 habitat	 for	 willow	 ptarmigan,	

TABLE  3 Model-	averaged	parameter	estimates	and	relative	
importance	of	parameters	based	on	AICc	weights	of	all	models	within	
cumulative	weight	=	0.95,	where	non-	present	parameters	are	given	
the	value	zero.	Categorical	parameters	are	compared	to	overall	mean	
instead	of	to	one	factor	level	and	continuous	parameters	are	centred	
on	their	means

Parameter
Relative  
importance

Model- averaged 
estimate ± SE (log)

(1)

	(Intercept) 0.180	±	0.159

Density 1.00 0.031	±	0.007

TAC 0.95 0.058	±	0.014

Temperature 0.33 0.017	±	0.032

Precipitation 0.28 0.009	±	0.017

Habitat 0.08 -0.069	±	1.040

Quota	type	(1) 0.05a 0.018	±	0.083

Quota	type	(2) 0.05a 0.006	±	0.036

(2a)

(Intercept) 0.594	±	0.067

Quota	type	(1) 1.00a 0.205	±	0.049

Quota	type	(2) 1.00a 0.030	±	0.085

Permits	sold 1.00 1.140	±	0.144

Temperature 0.52 0.022	±	0.024

Density 0.22 0.003	±	0.005

Production 0.14 0.008	±	0.021

Precipitation 0.07 0.002	±	0.009

Season	start	(1) 0.05 0.005	±	0.023

(2b)

(Intercept) −	0.507	±	0.133

Density 1.00 0.055	±	0.008

Habitat 0.24 −	0.683	±	1.924

TAC 0.21 0.002	±	0.005

Precipitation 0.18 −	0.003	±	0.012

Season	start	(1) 0.13 0.006	±	0.042

Temperature 0.13 0.001	±	0.011

Quota	type	(1) 0.03a 0.002	±	0.019

Quota	type	(2) 0.03a −	0.003	±	0.028

TAC,	total	allowable	catch	per	km2.
aCategorical	parameters	get	one	value	for	all	levels.
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resulting	 in	 an	 effective	 size	 range	 of	 the	 study	 areas	 of	 113.7	 to	
1,058.0	km2	 (mean	473.4	km2).	Mean	proportion	of	forested	habitat	
within	MU	 areas	was	 10.4%	 (range	 2.9–17.2),	 the	 rest	 being	 bogs,	
heathland	or	other	open	areas.	Estimated	population	densities	for	wil-
low	ptarmigan	ranged	from	4.1	to	29.0	willow	ptarmigan	per	km2,	with	
mean	density	12.1.	Numbers	of	chicks	per	female	were	between	2.0	
and	6.1,	averaging	at	3.5	(mean	CV	=	14.1%).

3.1 | Empirical analyses

Model	selection	guided	by	AICc	(Table	2	and	Table	S2)	and	the	model-	
averaging	 procedure	 indicated	 that	 the	 most	 parsimonious	 model	
describing	harvest	bag	(model	1)	included	TAC	and	willow	ptarmigan	
density	(Table	3).	These	variables	had	substantially	higher	relative	im-
portance	than	other	variables.	Both	TAC	and	density	were	positively	
related	to	harvest	bags,	and	the	combined	effects	indicate	that	a	low	
TAC	at	higher	densities	gives	harvest	bags	comparable	to	a	high	TAC	
at	lower	densities	(Figure	2a).	If	TAC	is	set	at	a	high	level	(third	quartile	
in	this	study;	TAC	=	11.5),	harvest	bags	at	five	birds	per	km2	 is	57%	
higher	than	if	TAC	was	set	at	a	low	level	(first	quartile;	TAC	=	3.7).

Both	number	of	permits	 sold	 (scaled	by	km2)	 and	 type	of	quota	
were	important	predictors	of	hunting	effort	(Tables	2	and	3;	model	2a).	
In	general,	daily	quotas	resulted	in	higher	hunting	effort	than	period	
quotas,	when	the	number	of	permits	sold	was	the	same	(Figure	2b).

Ptarmigan	density	was	the	main	predictor	of	hunter	efficiency	and,	
based	 on	 the	most	 parsimonious	model,	 hunters	 clearly	 responded	
with	higher	efficiency	with	increasing	density	(Table	3).	However,	the	
slope	of	 the	 relationship	 indicates	 that	hunters	were	 relatively more 
efficient	at	lower	densities,	as	an	increase	in	density	was	not	met	with	
a	proportional	 increase	in	catch	per	hunting	day	across	the	range	of	
densities	observed	here	(Figure	2c).	Unaveraged	parameter	estimates	

from	the	most	parsimonious	models	are	made	available	for	the	readers	
in	Table	S3,	in	case	they	are	needed	in	e.g.	meta-	analyses.

The	Spearman	correlation	test	relating	willow	ptarmigan	density	to	
management	decisions	from	the	most	parsimonious	models	identified	
for	model	1	(harvest	bag),	three	MUs	in	a	group	that	adapted	their	TAC	
in	relation	to	density	estimates.	The	selection	was	confirmed	by	visual	
inspection	of	paired	line	plots	of	TAC	and	density	through	the	years.	
TAC	was	modelled	as	a	function	of	density	to	reveal	how	the	manag-
ers	responded	to	different	population	states.	For	the	proportional	TAC	
strategy	group,	the	model	with	density	was	better	than	the	alternative	
intercept-	only	 model	 (ΔAICc	=	4.62,	 AICc	 weight	=	0.91,	 slope	±	SE: 
0.624	±	0.216,	 r2	=	0.34).	 For	 the	 other	 group,	 the	 intercept-	only	
model	 (i.e.	 a	 constant	TAC	 disregarding	 density)	 best	 described	 the	
management	 strategy	 (ΔAICc	=	2.59,	 AICc	 weight	=	0.79,	 inter-
cept	±	SE:	 8.917	±	1.296).	There	were	no	 indications	of	groups	with	
proportional	 versus	 constant	 management	 strategies	 for	 the	 other	
models	 (i.e.	 model	 2a	 describing	 hunting	 effort	 and	 2b	 describing	
hunter	efficiency).

3.2 | Simulations

Implementation	 uncertainty	 under	 the	 first	 pathway	 (model	 3a;	
Figure	1)	was	explored	through	simulating	harvest	rates	under	five	dif-
ferent	scenarios:	the	proportional	TAC	strategy	(with	estimates	from	
the	model	TAC	~	density	above)	and	four	representative	constant	TAC	
scenarios	(TAC	equal	to	5,	10,	15	and	20,	and	SE	standardised	to	1.5	
for	all	 runs).	The	proportional	strategy	had	a	 fairly	constant	harvest	
rate	along	medium	and	high	density	values,	but	this	increased	notably	
as	densities	decreased	(Figure	3).	At	five	birds	per	km2,	 	although	no	
risk	of	exceeding	the	30%	threshold,	there	was	a	49.7%	risk	of	harvest	
rates	above	the	15%	level	(cf.	Table	4).	A	constant	TAC	of	10,	slightly	

F IGURE  2 Results	of	empirical	analyses,	where	(a)	shows	harvest	bag	(model	1)	in	relation	to	willow	ptarmigan	density	and	TAC	(total	
allowable	catch	per	km2).	The	relationship	is	plotted	with	three	selected	values	(first,	second	and	third	quartile	in	the	data)	of	TAC	as	examples,	
to	visualise	harvest	bag	at	various	densities,	conditional	on	a	level	of	TAC.	Insert	in	upper	left	corner	shows	raw	data	observations.	(b)	Displays	
hunting	effort	(model	2a)	as	a	function	of	sold	hunting	permits	per	km2	and	quota	type.	The	upper	line	predicts	the	hunting	effort	with	daily	bag	
limits,	lower	line	with	period	quotas.	The	two	observations	with	quotas	that	are	combinations	of	the	others	are	not	included	in	the	predictions.	
Hunter	efficiency	(model	2b)	in	relation	to	willow	ptarmigan	density	is	shown	in	(c).	For	standard	errors,	cf.	Table	3
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above	average	in	the	data,	showed	an	5.1%	risk	of	harvest	above	at	
the	highest	level	and	93.9%	at	the	15%	level	when	density	dropped	
to	five	birds	per	km2.

Under	 implementation	model	3b	 (Figure	1),	we	explored	harvest	
rates	at	different	constant	effort	strategies	only,	combining	the	mod-
els	 for	hunting	effort	 and	hunter	efficiency.	We	 selected	 three	 rep-
resentative	scenarios	of	permits	sold	per	km2	 (i.e.	0.5,	0.75	and	1.0)	
within	each	of	 the	 two	main	quota	 types.	Daily	quotas	overall	 gave	
higher	harvest	rates	(Figure	4),	with	a	36.5%	risk	of	harvest	above	the	
15%	level	at	five	birds	per	km2	and	0.5	permits	sold	per	km2	(Table	5).	
Risk	rapidly	increased	with	increasing	number	of	permits	sold.	For	pe-
riod	quotas,	there	was	still	substantial	risk	(68.6%)	of	overshooting	the	
15%	level	at	lower	densities	with	1.0	permits	sold.

Comparing	the	performance	of	the	proportional	TAC	model	under	
assumptions	of	different	uncertainties	in	the	observation	model	(using	
the	upper	and	lower	90%	interval	values,	CV	=	0.43	and	0.15),	demon-
strated	 fairly	 high	 robustness	 to	 observation	 uncertainty	 (Table	 S4).	
Assuming	 increased	 parameter	 uncertainties	 in	 the	 implementation	
models	did,	as	expected,	affect	 the	risk	of	harvest	above	the	tested	
thresholds,	but	had	little	effect	on	predicted	harvest	rate	means.

4  | DISCUSSION

Resource	managers	use	a	number	of	strategies	to	avoid	excessive	har-
vest	of	small	game	populations,	such	as	limiting	the	number	of	hunting	
permits	available,	setting	daily	bag	limits	or	shortening	the	hunting	sea-
son	(Kurki	&	Putaala,	2010).	However,	without	knowledge	about	the	
effect	of	such	control	efforts,	managers	have	no	real	control	of	harvest	
offtake	even	if	they	implement	limitations.	The	results	from	our	study	
clearly	 indicate	 that	 both	 ecosystem	 parameters,	 especially	 willow	
ptarmigan	density,	and	management	procedures	are	affecting	actual	
harvest.	The	most	parsimonious	model	for	harvest	bag	(model	1)	 in-
cluded	both	TAC	and	willow	ptarmigan	density.	As	TAC	is	a	function	of	
permits	sold	and	quota	size,	managers	may	adjust	one	or	both	of	these	
parameters	 to	approach	the	desired	harvest	 level.	However,	often	a	
large	proportion	of	permits	for	small	game	hunting	 in	this	study	and	
elsewhere	(e.g.	Kurki	&	Putaala,	2010)	is	sold	before	population	sur-
veys	are	obtained.	This	leaves	less	flexibility	to	react	to	current	popula-
tion	states	with	a	change	in	TAC.	Furthermore,	even	if	managers	use	a	
proportional	TAC	strategy,	the	general	trend	in	the	simulations	implies	
that	due	to	implementation	uncertainty	the	risk	of	overharvest	is	still	
present	when	densities	are	low.	An	additional	matter	to	consider	is	that	
we	used	data	from	the	first	weeks	of	the	hunting	season.	Although	the	

F IGURE  3 Simulations	of	five	TAC	strategy	scenarios.	The	plots	
show	harvest	rate	in	relation	to	willow	ptarmigan	density	under	a	
proportional	TAC	strategy,	where	the	management	adjusts	TAC	(total	
allowable	catch	per	km2)	in	relation	to	the	observed	density,	and	
four	constant	TAC	strategy	scenarios.	Simulated	values	(n	=	10,000)	
are	shown	as	grey	dots.	Black	line	is	the	line	for	the	same	simulation	
without	uncertainty	in	any	parameters,	representing	mean	values	
along	the	x-	axis	over	an	infinite	number	of	simulations
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TABLE  4 TAC	strategy	harvest.	Harvest	rate	means	and	risks	of	harvest	rates	above	two	specified	levels	(15%	and	30%)	for	simulated	
scenarios	within	the	TAC	strategies	(model	1).	Means	and	risks	are	presented	for	three	levels	of	willow	ptarmigan	density,	where	the	values	are	
calculated	over	the	range	±	1	of	the	density	level	(e.g.	4–6	for	density	5)

TAC strategy

Density 5 ± 1 Density 10 ± 1 Density 15 ± 1

HR mean (SD) RHR >0.15 RHR >0.30 HR mean (SD) RHR >0.15 RHR >0.30 HR mean (SD)
RHR 
>0.15

RHR 
>0.30

Proportional	
TAC

0.153	(0.034) 49.7% 0.0% 0.106	(0.020) 2.6% 0.0% 0.100	(0.028) 2.7% 0.0%

Constant	
TAC	=	5

0.163	(0.035) 61.8% 0.1% 0.093	(0.018) 0.7% 0.0% 0.072	(0.014) 0.0% 0.0%

Constant	
TAC	=	10

0.214	(0.047) 93.9% 5.1% 0.125	(0.025) 14.3% 0.0% 0.097	(0.019) 1.5% 0.0%

Constant	
TAC	=	15

0.291	(0.071) 100.0% 38.4% 0.168	(0.036) 68.8% 0.1% 0.131	(0.027) 19.8% 0.0%

Constant	
TAC	=	20

0.393	(0.111) 100.0% 79.2% 0.227	(0.062) 94.5% 11.5% 0.177	(0.047) 69.3% 1.3%

HR,	harvest	rate;	SD,	standard	deviation;	RHR,	simulated	risk	of	harvest	rates	above	specified	levels;	TAC,	total	allowable	catch	per	km2.

F IGURE  4 Simulations	of	six	effort	strategy	scenarios.	The	plots	show	harvest	rate	in	relation	to	willow	ptarmigan	density,	given	the	quota	
sizes	in	the	study,	for	day	and	period	quota	scenarios	with	0.5,	0.75	and	1.0	permits	sold	per	km2.	Simulated	values	(n	=	10,000)	are	shown	as	
grey	dots.	Black	line	is	the	line	for	the	same	simulation	without	uncertainty	in	any	parameters,	representing	mean	values	along	the	x-	axis	over	an	
infinite	number	of	simulations
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majority	of	hunting	occurs	in	this	period,	additional	harvest	throughout	
the	season	will	increase	the	harvest	rates	presented	here.

Hunting	 effort	 affects	 total	 bag	 size	 (Caro,	 Delibes-	Mateos,	
Viñuela,	López-	Lucero,	&	Arroyo,	2015;	this	study),	and	has	thus	been	
used	as	a	control-	tool	in	harvest	management.	We	found	that	number	
of	permits	sold	together	with	quota	type	best	explained	hunting	effort.	
While	the	effect	of	number	of	permits	sold	is	intuitive,	the	additional	
effect	 of	 quota	 type	was	 not	 expected.	Through	 the	 simulation	 ex-
ercise,	it	is	clear	that	the	use	of	day	quotas	have	a	notable	effect	on	
harvest	 rates	and	the	risk	of	exceeding	the	defined	 levels.	Although	
hunting	effort	could	be	limited	if	a	hunter	filled	the	period	quota	be-
fore	the	hunting	permit	expired,	it	is	a	likely	assumption	that	the	ma-
jority	of	hunters	were	unable	to	fill	their	quotas	(Bischof	et	al.,	2012),	
regardless	 of	 quota	 type.	We	 suggest	 that	 the	 lower	 hunting	 effort	
associated	with	period	quotas	mostly	had	a	behavioural	basis,	where	
hunters	with	 period	 quotas	might	 have	 expected	 to	 fill	 their	 quota	
within	the	period,	thus	holding	back	on	the	effort	to	avoid	filling	it	too	
early.	If	this	suggestion	is	correct,	we	believe	this	behavioural	aspect	
could	be	useful	in	harvest	management	in	general,	as	it	would	provide	
a	simple	but	effective	tool	for	managers	to	lower	harvest	rates	while	
still	providing	hunting	opportunities.

The	 modest	 positive	 relationship	 between	 ptarmigan	 density	
and	 harvest	 bag	 (model	 1),	 as	well	 as	 between	 density	 and	 hunter	
efficiency	(model	2b),	is	in	line	with	previous	studies	of	both	willow	
ptarmigan	 and	 other	 species	 (Harley,	 Myers,	 &	 Dunn,	 2001;	 Post	
et	al.,	 2002;	Willebrand,	Hörnell-	Willebrand,	&	Asmyhr,	 2011).	The	
increased	 relative	efficiency	may	be	explained	by	hunters	 compen-
sating	 for	 having	 few	 encounters	 by	 hunting	 over	 longer	 days	 at	
low	 densities	 (Willebrand	 et	al.,	 2011),	 or	 by	 the	 limitation	 of	 only	
being	able	to	fire	double-	barrelled	shotguns	twice	 in	each	shooting	
situation	regardless	of	encountered	number	of	animals	(Andersen	&	
Kaltenborn,	2013).	In	addition,	if	willow	ptarmigan	select	for	certain	
types	of	microhabitat,	hunter	efficiency	would	be	expected	to	remain	
fairly	 stable	 for	 experienced	 hunters	 when	 densities	 are	 reduced.	
Such	density-	dependent	relative	catchability	is	expected	to	have	det-
rimental	effects	on	animal	populations	(Pitcher,	1995).	In	this	context,	
a	fixed-	effort	strategy,	commonly	 implemented	to	 limit	overharvest	
(Hörnell-	Willebrand,	2010),	should	be	used	with	caution	when	den-
sities	decrease.

Overexploitation	of	harvested	species	may	lead	to	continued	low	
abundance	 (Courchamp,	 Clutton-	Brock,	 &	Grenfell,	 1999)	 and	 even	
population	 extinctions	 (Sutherland,	 2001).	 Population	 declines	 have	
been	linked	to	lack	of	controllability	in	the	implementation,	and	espe-
cially	in	fisheries,	the	examples	are	numerous	(see	e.g.	Deroba	&	Bence,	
2008).	Constant	management	strategies	are	particularly	problematic	
with	 regard	 to	overexploitation	 (Fryxell,	Packer,	McCann,	Solberg,	&	
Sæther,	2010).	We	assume	that	managers	chose	a	constant	TAC	model	
from	one	out	of	two	reasons.	They	may	expect	hunting	mortality	to	
be	compensatory,	thus	not	considering	population	state	to	be	import-
ant.	There	is	an	ongoing	debate	concerning	whether	tetraonid	hunt-
ing	mortality	is	compensatory	or	additive	to	natural	mortality	(see	e.g.	
Sandercock	et	al.,	2011;	Sedinger,	White,	Espinosa,	Partee,	&	Braun,	
2010),	although	there	 is	at	any	rate	 likely	to	be	more	compensation	T
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at	 high	 population	 densities	 (Péron,	 2013).	 Alternatively,	 managers	
trust	hunters	to	reduce	harvest	bags	sufficiently	with	decreasing	game	
abundances.	This	 study	 strongly	 contradicts	 the	 latter	 aspect,	 as	 all	
competing	scenarios	gave	increased	harvest	rates	at	lower	densities.	
An	 implication	of	 this	 is	 that	even	managers	with	conservative	con-
stant	 strategies	 face	high	 risk	of	overharvest	when	population	den-
sities	 are	 low,	 unless	 they	 apply	 extremely	 precautionary	 strategies	
compromising	 satisfaction	 for	 hunters	 and	 objectives	 for	 managers	
(Andersen	et	al.,	2008).

4.1 | Management implications

The	model	developed	and	presented	here,	 quantifying	 the	ecologi-
cal	risks	of	harvest	levels	above	the	selected	thresholds,	is	applicable	
for	informed	trade-	off	decisions	between	ecological	and	societal	sus-
tainability.	When	 risk	of	high	harvest	 rates	 is	 substantial,	managers	
defying	 this	 risk	 increase	 the	probability	 that	harvest	affects	popu-
lation	development	negatively	 (Sandercock	et	al.,	 2011).	 This	 study	
shows	 that	 in	 systems	where	managers	 do	 not	 have	 direct	 control	
over	 harvest	 bags,	 harvest	 rates	 typically	 increase	with	 decreasing	
density.	 This	 can	 be	 a	 common	 feature	 of	 systems	where	 detailed	
management	 of	 both	 resources	 and	 resource	 users	 is	 challenging,	
such	as	in	small	game	harvest	systems	like	for	red-	legged	partridge	in	
Spain	(Díaz-	Fernández,	Viñuela,	&	Arroyo,	2012),	for	European	ducks	
(Elmberg	et	al.,	2006)	or	as	in	recreational	fresh	water	fishing	(Allen,	
Miranda,	&	Brock,	1998).	A	consequence	is	that	harvest	management	
should	implement	proportional	threshold	strategies	(Lande,	Sæther,	&	
Engen,	1997)	to	avoid	unsustainable	high	harvest	rates	when	popula-
tions	decline.
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