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Planktonic copepods of the genus Calanus play a central role in North

Atlantic/Arctic marine food webs. Here, using molecular markers,

we redrew the distributional ranges of Calanus species inhabiting the

North Atlantic and Arctic Oceans and revealed much wider and more

broadly overlapping distributions than previously described. The Arctic

shelf species, C. glacialis, dominated the zooplankton assemblage of many

Norwegian fjords, where only C. finmarchicus has been reported previously.

In these fjords, high occurrences of the Arctic species C. hyperboreus were

also found. Molecular markers revealed that the most common method of

species identification, prosome length, cannot reliably discriminate the

species in Norwegian fjords. Differences in degree of genetic differentiation

among fjord populations of the two species suggested that C. glacialis is a

more permanent resident of the fjords than C. finmarchicus. We found no

evidence of hybridization between the species. Our results indicate a critical

need for the wider use of molecular markers to reliably identify and dis-

criminate these morphologically similar copepod species, which serve as

important indicators of climate responses.
1. Introduction
Copepods of the genus Calanus are central in North Atlantic and Arctic pelagic

food webs. Rich in lipids, they form a key link between primary producers and

secondary consumers and predators. Four species of the genus Calanus occur

throughout the North Atlantic and Arctic Oceans (figure 1): C. helgolandicus
(Chel), C. hyperboreus (Chyp), C. finmarchicus (Cfin) and C. glacialis (Cgla); and

there has been considerable effort to document and model their distributional

changes [1,2]. Importantly, abundances and dynamics of fish stocks are

strongly associated with Calanus species composition and abundances [3],

and climate-driven changes in their biogeographical distributions (i.e. range

shifts) can lead to ecosystem regime shifts and potential collapse of fish

stocks such as cod [4]. However, distinguishing Calanus species is challenging

due to their morphological similarity and lack of diagnostic characters. The
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Figure 1. Calanus species distributional ranges in the North Atlantic and Arctic Oceans based on morphological identification from previous studies (sources in
electronic supplementary material, S8). For each panel, dark-shaded colour represents core area for each species, where reproduction is known to occur; light-shaded
colour represents the total described distributional area.
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usual method of species identification is body (prosome)

length, although this approach has been questioned [5,6].

Misidentification may thus occur, impacting the reliability

of our current knowledge of species distributions and pre-

venting accurate assessment of species geographical range

shifts in response to climate change.

Here we re-examine the distributional ranges of four co-

occurring Calanus species in the North Atlantic and Arctic

Oceans, using six molecular markers designed to ensure

reliable species identification.
2. Material and methods
(a) Sample collection
Zooplankton samples were collected from 83 locations in

the North Atlantic and Arctic Oceans (electronic supplemen-

tary material, S1) by vertical nets tows with 150–200 mm

mesh sizes and preserved in 70–80% ethanol. A Folsom

plankton splitter was used to make subsamples containing

up to 150 Calanus individuals from developmental stage

CIV–CVI (electronic supplementary material, S1). No species

level morphological identification was performed for any

individuals.
(b) Molecular species identification
DNA was extracted from the excised antennae of each specimen

using the HotSHOT protocol [7], and molecular species identifi-

cation of 4434 individuals was achieved using six nuclear

markers type InDels (Insertion or Deletion motifs) [8] scored

on a 3500xL genetic analyzer (Applied Biosystems). These bi-

parentally inherited markers are easy to use and can potentially

detect hybridization [9]. Their reliability was confirmed by the

traditional, but more cost- and labour-intensive mitochondrial

16S rDNA sequencing (mtDNA) [10,11] of 159 individuals from

53 locations (electronic supplementary material, S2 and S3),

following Smolina et al. [8]. In addition, 129 individuals from

Saltfjord/Skjerstadfjord were measured (prosome length) and

sequenced for the 16S (table 1; electronic supplementary material,

S4 and S5). Identification of specimens from InDels and 16S rDNA

sequences was congruent for all 677 individuals investigated (288

in present study (electronic supplementary material, S2–S4) and

389 in Nielsen et al. [9]). InDel markers were also used to test for

the presence of hybrids between Cfin and Cgla [9] (electronic

supplementary material, S6).

(c) Population differentiation
Population genetic analysis was carried out to distinguish

between fjord resident and drifting (seasonally transient) species

[12] (electronic supplementary material, S7). Focusing on Cfin

http://rsbl.royalsocietypublishing.org/


Table 1. Comparison of Calanus finmarchicus (Cfin) and C. glacialis (Cgla) identification methods in Saltenfjord/Skjerstadfjord.

Saltenfjord/
Skjerstadfjord

InDel
species ID

16S rDNA
species ID

markers’
congruence

prosome length range (mm)

N stage CV N stage CVI female

Cfin 89 89 100% 26 1976.64 – 2717.76 14 2406.89 – 2747.02

Cgla 40 40 100% 20 2119.40 – 2623.33 69 2150.68 – 3030.50
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and Cgla populations, genetic differentiation was measured

using the global index of population differentiation, FST [13],

based on 10 microsatellite DNA markers [14,15] assayed for 24

individuals per species from three locations: Isfjord, Saltfjord

and Lurefjord.
20170588
3. Results and discussion
Identification of Calanus species using molecular markers

revealed that all four species have much wider distributional

ranges than previously reported (figures 1 and 2; electronic

supplementary material, S1), as suggested by an earlier mol-

ecular study [6]. The distribution of Chel was known to

extend from the Mediterranean Sea to the North Sea (588 N,

figure 1) [16]. Here, we identified Chel in several Norwegian

fjords and in the Norwegian Sea as far north as 7088888 N

(figure 2). Specimens found in Myken stations (668 N) and

near Tromsø (708 N) could result from transport in ocean

frontal jet currents running from the North Sea along the

Norwegian coast. However, the high prevalence (85%) of

the species recorded in the relatively isolated Sognefjord

(618 N) may represent a locally established population. It

remains to be tested whether Chel has always been present

in these fjords but misidentified, or whether our findings

represent evidence of a recent biogeographical range shift.

Previous reports of the Arctic Chyp [17] occurring in the

northern Norwegian Sea (figure 1) have been attributed to

transport of individuals by Arctic intermediate waters [18].

Here, we detected the species in large proportions along

the Norwegian coast, everywhere north of 588 N (figure 2;

electronic supplementary material, S1). Whether the southern

presence of Chyp results from advection from Arctic stocks or

from self-reproducing populations remains to be investigated.

Calanus finmarchicus is currently considered to be an indi-

cator species of North Atlantic water masses [17], and our

results largely support this view (figure 2). The genetically

confirmed species range extends as far north as 878 N and

as far east in the Arctic as the eastern boarder of the Laptev

Sea (788 N, 1138 E, figure 2), regions of the Arctic Ocean

affected by Atlantic inflow. It was proposed that Cfin may

thrive in these Northern regions and replace Cgla in response

to Arctic warming [19], however, at present the indivi-

duals recorded at these most northerly locations were likely

transported from southern populations [19].

Calanus glacialis is regarded as a true Arctic shelf species,

which serves as a circumpolar indicator of these waters [17]

(figure 1). We rarely observed it offshore in Atlantic waters,

but documented the species’ occurrence in many Norwegian

fjords, as far south as 608 N (figure 2), where it usually co-

occurred with Cfin in fjords with deep basins separated

from shelf waters by shallower sills (electronic supplemen-

tary material, S1). In several fjords, Cgla dominated over
other Calanus species; we recorded a positive gradient of rela-

tive abundance of Cgla from the mouth to the innermost areas

of some fjords (e.g. Ranfjord, electronic supplementary

material, S1).

In the fjords, prosome length of Cgla and Cfin overlapped

completely (table 1; electronic supplementary material, S5),

which explains why Cgla’s large occurrence has not been

reported previously. Furthermore, recent work by our

group shows that morphological characters cannot reliably

distinguish between Cfin and Cgla throughout their range

[20].

Some zooplankton species are long-term residents of

Norwegian fjords, while others are replaced periodically with

basin water exchanges [21]. Resident species are expected to

show greater genetic differentiation among fjord populations

than drifting species [12]. Our analysis found no significant

genetic differentiation among fjord populations of Cfin
(FST ¼ 0.004n.s.), but Cgla populations did differ significantly

(FST ¼ 0.03*), suggesting lower rates of exchange (i.e. gene

flow) for Cgla than for Cfin. These results support previous

descriptions of Cfin as a drifting species [12] that is advected

into and out of fjords seasonally [22]. Less gene flow—

together with the absence of offshore populations—suggests

that Cgla populations are resident [12]. In both the White

Sea [23] and Lurefjord [24], Cgla is known to migrate in

early summer from warm surface layers to colder deep

water. This may explain the species’ ability to maintain

local populations and avoid transport out of fjords.

Hybridization between Cfin and Cgla has been suggested

in the Northwest Atlantic [14] based on microsatellite

markers developed for C. finmarchicus. Notably, no first-

generation hybrids were found in our survey of 4434

individuals from samples collected throughout the Northeast

Atlantic and Arctic Oceans (electronic supplementary

material, S6). Based on the nature of the molecular characters

(nuclear, co-dominant InDels) used for species identification

and careful ground-truthing of our molecular results, we con-

clude that hybridization between the species, if it occurs at

all, is rare or episodic.
4. Conclusion
Marine zooplankton have been regarded as sentinels of cli-

mate change [25] due to their short life histories and rapid

responses to environmental variation. Development and use

of molecular characters that can ensure accurate and reliable

identification and discrimination of key indicator species,

such as those within the Calanus genus, are critically needed.

Only then can these species be used to document past, present

and future patterns of biogeographical distributions, and

detect and track responses of pelagic communities to climate

change.
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Figure 2. Calanus species distributional ranges in the North Atlantic and Arctic Oceans based on molecular species identifications. Pie charts represent relative
frequencies of C. glacialis (blue), C. finmarchicus (red), C. hyperboreus (green) and C. helgolandicus (yellow) in each sample. Stars indicate non-quantitative species
records.
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Data accessibility. Protocols are attached as the electronic supplementary
material; genotypes and sequences have been deposited to public data-
base, respectively Dryad (http://dx.doi.org/10.5061/dryad.tq71j) [26]
and GenBankw (MF959702–MF959730 and MF972920–MF972922).
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