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1. Introduction

In this paper we consider the following linear complementarity problem:

s = Mx+ q,

xs = 0, (1)

x, s ≥ 0,

where M ∈ Rn×n is a P∗(κ) matrix and q, x, s are vectors of Rn, and xs

denotes the componentwise product (Hadamard product) of vectors x and s.
Linear complementarity problems have many applications in mathematical pro-
gramming and equilibrium problems. Indeed, it is known that by exploiting the
first-order optimality conditions of the optimization problem, any differentiable
convex quadratic program can be formulated into a monotone linear comple-
mentarity problem, i.e. P∗(0) LCP , and vice versa [18]. Variational inequality
problems are widely used in the study of equilibrium in economics, transporta-
tion planning, and game theory, and have a close connection to the LCPs.
The reader can refer to Section 5.9 in [6] for the basic theory, algorithms, and
applications.

The primal-dual IPM for linear optimization (LO) problems was first in-
troduced in [11, 14] and extended to various class of problems, e.g. [4, 16].
Kojima et al. [11] and Monteiro et al. [14] first proved the polynomial com-
putational complexity of the algorithm for LO problem independently, and
since then many other algorithms have been developed based on the primal-
dual strategy. Kojima et al. [12] proved the existence of the central path for
any P∗(κ) LCP , generalized the primal-dual interior-point algorithm in [11] to
P∗(κ) LCP and proved the same complexity results. Miao [13] extended the
Mizuno-Todd-Ye predictor-corrector method to P∗(κ) LCPs. His algorithm
uses the l2-neighborhood of the central path and has O ((1 + κ)

√
nL) itera-

tion complexity. Illés and Nagy [10] give a version of the Mizuno-Todd-Ye
predictor-corrector interior point algorithm for the P∗(κ) LCP and show that

the complexity of the algorithm is O
(
(1 + κ)

3
2
√
nL
)
. They choose τ and τ ′

neighborhood parameters in such a way that at each iteration a predictor step
is followed by one corrector step. For larger value of κ the values of τ and τ ′

decrease fast, therefore the constant in the complexity results is increasing.
Most of the polynomial-time interior point algorithms for LO are based on

the use of the logarithmic barrier function [11, 17]. Peng et al. [16] introduced
self-regular barrier functions for primal-dual interior-point methods (IPMs) for
LO, semidefinite optimization (SDO), second order cone optimization (SOCO)
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and also extended to P∗(κ) LCPs. Recently in [2, 7] the authors proposed a
new primal-dual IPM for LO based on a new class of kernel functions which
are not logarithmic and not necessarily self-regular barrier functions.

In this paper we propose a new large-update primal-dual IPM which gener-
alizes the results obtained in [7] to P∗(κ) LCPs. We use a new search direction
based on kernel functions which are neither logarithmic nor self-regular barrier.
The new analysis which is derived in this paper is different from the one used
in early papers [10, 12, 13, 16]. Furthermore, our analysis provides a simpler
way to analyze primal dual IPMs.

We use the following notational conventions. Throughout the paper, ‖·‖
denotes the 2-norm of a vector. The nonnegative orthant and positive orthant
are denoted as Rn

+ and Rn
++, respectively. If z ∈ Rn

+ and f : R+ → R+, then
f (z) denotes the vector in Rn

+ whose i-th component is f (zi), with 1 ≤ i ≤ n.
Finally, for x ∈ Rn, X = diag (x) is the diagonal matrix from vector x, and
J = {1, 2, ..., n} is the index set.

This paper is organized as follows. In Section 2 we recall basic concepts and
the notion of the central path. In Section 3 we review known results relevant
for the development of the analysis. Section 4 contains new results to compute
the feasible step size and the study of the amount of decrease of the proximity
function during an inner iteration. Section 5 combiners the results from Section
3 and the derived results in Section 4 to show the bound for the total number
of iterations of the algorithm. Finally, concluding remarks are given in Section
6.

2. Preliminaries

In this section we introduce the definition of P∗(κ) matrix and its proprieties,
[12].

Definition 1. Let Y be an open convex subset of Rn and κ ≥ 0. A matrix
M ∈ Rn×n is called a P∗(κ)-matrix on Y if and only if

(1 + 4κ)
∑

i∈J+(x)

xi (Mx)i +
∑

i∈J−(x)

xi (Mx)i ≥ 0,

for all x ∈ Y , where

J+(x) = {i ∈ J : xi (Mx)i ≥ 0} and J−(x) = {i ∈ J : xi (Mx)i < 0} .

Further, M is called a P∗-matrix if it is a P∗(κ)-matrix for some κ ≥ 0.
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Note that the class of P∗-matrices is the union of all P∗(κ)-matrices for
κ ≥ 0, and contains the class of positive semi-definite matrices, i.e. symmetric
matricesM satisfying

∑
i∈J xi(Mx)i ≥ 0 for all x ∈ Rn, by choosing κ = 0. The

class of P∗ matrices also contains matrices with all positive principal minors.
In the following we recall some results which are essential in our analysis.

Proposition 2. [Lemma 4.1 in [12]] If M ∈ Rn×n is a P∗ matrix, then

M ′ =

(
−M I

S X

)

is a nonsingular matrix for any positive diagonal matrices X, S ∈ Rn×n.

We use the following corollary of Proposition 2 to prove that the modified
Newton system has a unique solution.

Corollary 3. Let M ∈ Rn×n be a P∗ matrix and x, s ∈ Rn
++. Then for

all a ∈ Rn the system

−M△x+△s = 0,

S△x+X△s = a,

has a unique solution (△x,△s).

The basic idea of primal-dual interior-point methods is to replace the second
equation in (1) by the nonlinear equation xs = µe, where e is the all-one vector,
and µ > 0. Thus we have the following parameterized system:

s = Mx+ q,

xs = µe, (2)

x ≥ 0, s ≥ 0,

where µ > 0. We assume that there exists strictly positive x and s that satisfy
(1).

SinceM is a P∗(κ) matrix and (1) is strictly feasible, then the parameterized
system (2) has a unique solution (x(µ), s(µ)) for each µ > 0. (x(µ), s(µ)) is
called µ-center of (2), the set of µ-centers (µ > 0) defines a homotopy path,
which is called the central path of (2). If µ → 0 the limit of the central path
exists. This limit satisfies the complementarity condition, and belongs to the
solution set of (1), [12].



INTERIOR-POINT METHODS FOR P∗(κ)-LINEAR... 15

Let (x, s) be a strictly feasible point and µ > 0. We define the vector

v :=

√
xs

µ
. (3)

Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if
v = e.

Let Ψ(v) be a smooth, strictly convex function defined for all v > 0, which
is minimal at v = e, with Ψ(e) = 0. Following [1, 2, 5, 8, 16] we define search
directions ∆x, ∆s by

−M∆x+∆s = 0,

s∆x+ x∆s = −µv∇Ψ(v). (4)

Since M is a P∗ matrix, the system (4) uniquely defines (∆x,∆s) for any x > 0
and s > 0. Note that ∆x = 0, ∆s = 0, if and only if v = e, because the
right-hand sides in (4) vanish if and only if ∇Ψ(v) = 0, and this occurs if and
only if v = e.

Let (x, s) be a strictly feasible point. We define the vector p by

p :=

√
x

s
. (5)

Introducing the following notations

M̄ := PMP and P := diag (p), V := diag (v) where v =

√
xs

µ
,

and

dx :=
v∆x

x
, ds :=

v∆s

s
, (6)

the system (4) can be reformulated as

−M̄dx + ds = 0,
dx + ds = −∇Ψ(v).

(7)

From the solution dx and ds, the vectors ∆x and ∆s can be computed from
(6).

Note that the vectors dx and ds are not orthogonal. So our analysis in this
paper will deviate significantly from the analysis used for LO in [7].

The algorithm considered in this paper is described in Figure 1.
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Generic Primal-Dual Algorithm for LCP

Input:

A proximity function Ψ(v);
a threshold parameter τ > 0;
an accuracy parameter ǫ > 0;
a fixed barrier update parameter θ, 0 < θ < 1;

begin
x := x0; s := s0; µ := µ0;
while nµ ≥ ǫ do

begin

µ := (1− θ)µ;
while Ψ(v) > τ do

begin
Solve (∆x,∆s) from (4)
x := x+ α∆x;
s := s+ α∆s;

v :=
√

xs
µ
;

end
end

end

Figure 1: The generic primal-dual interior-point algorithm for LCP

The inner while loop in the algorithm is called inner iteration and the outer
while loop outer iteration. So each outer iteration consists of an update of the
barrier parameter and a sequence of one or more inner iterations. We assume
that (1) is strictly feasible, and the starting point

(
x0, s0

)
is strictly feasible for

(1). Choose τ and v0 =
√

x0s0

µ0 initial strictly feasible point such that Ψ
(
v0
)
≤ τ

where τ is threshold value in Figure 1. We then decrease µ to µ := (1−θ)µ, for
some θ ∈ (0, 1). In general this will increase the value of Ψ(v) above τ . To get
this value smaller again, and coming closer to the current µ-center, we solve the
scaled search directions from (7), and unscaled these directions by using (4).
By choosing an appropriate step size α, we move along the search direction,
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and construct a new pair (x+, s+) with

x+ = x+ α△x s+ = s+ α△s. (8)

If necessary, we repeat the procedure until we find iterates such that Ψ(v) no
longer exceed the threshold value τ , which means that the iterates are in a
small enough neighborhood of (x(µ), s(µ)). Then µ is again reduced by the
factor 1 − θ and we apply the same procedure targeting at the new µ-centers.
This process is repeated until µ is small enough, i.e. until nµ ≤ ǫ. At this stage
we have found an ǫ-solution of (1). Just as in the LO case, the parameters
τ, θ, and the step size α should be chosen in such a way that the algorithm is
‘optimized’ in the sense that the number of iterations required by the algorithm
is as small as possible. Obviously, the resulting iteration bound will depend on
the kernel function underlying the algorithm, and our main task becomes to
find a kernel function that minimizes the iteration bound.

Figure 1 gives some examples of kernel functions that have been analyzed in
[8] with the complexity results for the corresponding algorithms for large-update
methods. For small-update interior-point methods the complexity results ob-
tained in [8] is as good as the currently best known iteration bounds for these
type methods methods namely: O

(
(1 + 2κ)

√
n log n

ǫ

)
.

The aim of this paper is to investigate a new kernel function studied first
in linear optimization case in [3], namely

ψ(t) =
t2 − 1

2
+

4

pπ
(tanp (h(t)) − 1) , (9)

with h(t) = π
2t+2 , and p ≥ 2 and to show that the interior-point methods

for linear complementarity based on these function have favorable complexity
results.

Note that the growth term of our kernel function is quadratic as all kernel
functions in Table 1. However, this function (9) deviates from all other ker-
nel functions [8] since its barrier term is trigonometric as 4

pπ
(tanp (h(t))− 1).

In order to study the new kernel function, several new arguments had to be
developed for the analysis.

3. Properties of the New Proximity Function

This section is started by technical lemma, and then some properties of the new
kernel function introduced in this paper are derived.
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i kernel functions ψi Large-update

1 t
2
−1
2 − log t O

(
(1 + 2κ)n log n

ǫ

)

2 t
2
−1
2 + t

1−q
−1

q(q−1) − q−1
q

(t− 1) O
(
(1 + 2κ) qn

q+1

2q log n
ǫ

)

3 1
2

(
t− 1

t

)2
O
(
(1 + 2κ)n

2
3 log n

ǫ

)

4 t
2
−1
2 + e

1
t
−1 − 1 O

(
(1 + 2κ)

√
n log2 n log n

ǫ

)

5 t
2
−1
2 −

∫ t

1
e

1
ξ
−1dξ O

(
(1 + 2κ)

√
n log2 n log n

ǫ

)

6 t
2
−1
2 + t

1−q
−1

q−1 , q > 1 O
(
(1 + 2κ) qn

q+1

2q log n
ǫ

)

7 t− 1 + t
1−q

−1
q−1 , q > 1 O

(
(1 + 2κ) qn log n

ǫ

)

8 t
2
−1
2 + 6

π
tan

(
π(1−t)
4t+2

)
O
(
(1 + 2κ)n

3
4 log n

ǫ

)

Table 1: Examples of kernel functions studied in early paper [8] with
complexity results for large-update.

3.1. Some Technical Results

The first three derivatives of ψ are given by

ψ′(t) = t+
4h′(t)

π
sec2 (h(t))

(
tanp−1 (h(t))

)
, (10)

ψ
′′

(t) = 1 +
4

π
sec2 (h(t)) g(t), (11)

ψ
′′′

(t) =
4

π
sec2 (h(t))

(
k(t)h′(t)3 + r(t)h′′(t)h′(t)

)
h′′′(t) (12)

+
(
tanp−1 (h(t)) h′′′(t)

)
, (13)

with

g(t) :=
(
(p− 1) tanp−2 (h(t)) + (p+ 1) tanp (h(t))

)
h′(t)2

+ h′′(t) tanp−1 (h(t)) ,

k(t) := (p− 1) (p− 2) tanp−3 (h(t)) + 2p2 tanp−1 (h(t))

+ (p+ 1) (p+ 2) tanp+1 (h(t)) ,
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and

r(t) := 3 (p− 1) tanp−2(h(t)) + 3 (p+ 1) tanp (h(t)) , (14)

and the first three derivatives of h are given by

h′(t) =
−π

2 (t+ 1)2
; h′′(t) =

π

(t+ 1)3
; h′′′(t) =

−3π

(t+ 1)4
.

The next lemma serves to prove that the new kernel function (9) is eligible.

Lemma 4 (Lemma 3.2 in [3]). Let ψ be as defined in (9) and t > 0. Then,

ψ′′(t) > 1, (15-a)

tψ′′(t) + ψ′(t) > 0, (15-b)

tψ′′(t)− ψ′(t) > 0, (15-c)

and ψ′′′(t) < 0. (15-d)

It follows that ψ(1) = ψ′(1) = 0 and ψ′′(t) ≥ 0, proving that ψ is defined
by ψ′′(t),

ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ) dζdξ. (16)

The second property (15-b) in Lemma 4 is related to Definition 2.1.1 and Lemma
2.1.2 in [16]. This property is equivalent to convexity of the composed function
z 7→ ψ(ez) and this holds if and only if ψ(

√
t1t2) ≤ 1

2 (ψ(t1) + ψ(t2)) for any
t1, t2 ≥ 0. Following [1], we therefore say that ψ is exponentially convex, or
shortly, e-convex, whenever t > 0.

Lemma 5. Let ψ be as defined in (9), one has

ψ(t) <
1

2
ψ′′(1) (t− 1)2 , if t > 1.

Proof. By Taylor’s theorem and ψ(1) = ψ′(1) = 0, we obtain

ψ(t) =
1

2
ψ′′(1) (t− 1)2 +

1

6
ψ′′′(ξ) (ξ − 1)3 ,

where 1 < ξ < t if t > 1. Since ψ′′′(ξ) < 0, the lemma follows.

Lemma 6. Let ψ be as defined in (9), one has

tψ′(t) ≥ ψ(t), if t ≥ 1.
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Proof. Defining g(t) := tψ′(t)− ψ(t) one has g(1) = 0 and g′(t) = tψ′′(t) ≥
0. Hence g(t) ≥ 0 and the lemma follows.

Following [2], we now introduce a norm-based proximity measure δ(v), ac-
cording to

δ(v) := 1
2‖ψ

′(v)‖ =
1

2

√√√√
n∑

i=1

ψ′(vi)2 =
1

2
‖dx + ds‖ , (17)

in terms of Ψ(v). Since Ψ(v) is strictly convex and attains its minimal value
zero at v = e, we have

Ψ (v) = 0 ⇔ δ (v) = 0 ⇔ v = e.

3.2. Relations between Proximity Measure and

Norm-Based Proximity Measure

For the analysis of the algorithm in Section 4 we need to establish relations
between Ψ(v) and δ(v). A curial observation is that the inverse function of
ψ(t), for t ≥ 1, plays an important role in this relation.

The next theorem, which is one of main results in [2], gives a lower bound
on δ(v) in term of Ψ(v). This is due to the fact that ψ(t) satisfies (15-d). The
theorem is a special case of Theorem 4.9 in [2], and is therefore stated without
proof.

We denote by ̺ : [0,∞) → [1,∞) and ρ : [0,∞) → (0, 1] the inverse
functions of ψ(t) for t ≥ 1, and −1

2ψ
′(t) for t ≤ 1, respectively. In other words,

s = ψ(t) ⇔ t = ̺(s), t ≥ 1, (18)

s = −1
2ψ

′(t) ⇔ t = ρ(s), t ≤ 1. (19)

Theorem 7 (Theorem 4.9 in [2]). Let ̺ be as defined in (18). One has

δ(v) ≥ 1
2ψ

′ (̺ (Ψ(v))) .

Corollary 8. Let ̺ be as defined in (18). Thus we have

δ(v) ≥ Ψ(v)

2̺ (Ψ(v))
.

Proof. Using Theorem 7, i.e., δ(v) ≥ 1
2ψ

′(̺(Ψ(v))), we obtain from Lemma
6,
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δ(v) ≥ ψ (̺(Ψ(v)))

2̺ (Ψ(v))
=

Ψ(v)

2̺ (Ψ(v))
.

This proves the corollary.

Theorem 9. If Ψ(v) ≥ 1, then

δ(v) ≥ 1

6
Ψ

1
2 . (20)

Proof. The inverse function of ψ(t) for t ∈ [1,∞) is obtained by solving t
from

ψ(t) =
t2 − 1

2
+

4

pπ

(
tanp

(
π

2t+ 2

)
− 1

)
= s, t ≥ 1.

We derive an upper bound for t, as this suffices for our goal. One has from (16)
and ψ′′(t) ≥ 1,

s = ψ(t) =

∫ t

1

∫ ξ

1
ψ′′(ζ) dζdξ ≥

∫ t

1

∫ ξ

1
dζdξ =

1

2
(t− 1)2,

which implies
t = ̺ (s) ≤ 1 +

√
2s. (21)

Assuming s ≥ 1, we get t = ̺ (s) ≤ √
s +

√
2s ≤ 3s

1
2 . Omitting the argument

v, and assuming Ψ(v) ≥ 1, we have ̺(Ψ(v)) ≤ 3Ψ(v)
1
2 . Now, using Corollary 8,

we have

δ(v) ≥ Ψ(v)

2̺ (Ψ(v))
≥ 1

6
Ψ(v)

1
2 .

This proves the lemma.
Note that if Ψ(v) ≥ 1, substitution in (20) gives

δ(v) ≥ 1

6
. (22)

3.3. Growth Behavior of the Barrier Function

Note that at the start of each outer iteration of the algorithm, just before the
update of µ with the factor 1 − θ, we have Ψ(v) ≤ τ. Due to the update of
µ the vector v is divided by the factor

√
1− θ, with 0 < θ < 1, which in

general leads to an increase in the value of Ψ(v). Then, during the subsequent
inner iterations, Ψ(v) decreases until it passes the threshold τ again. Hence,
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during the course of the algorithm the largest values of Ψ(v) occur just after the
updates of µ. In this section we derive an estimate for the effect of a µ-update
on the value of Ψ(v). We start with an important theorem which is valid for
all kernel functions ψ(t) that are strictly convex (15-a), and satisfies (15-c).

Theorem 10 (Theorem 3.2 in [2]). Let ̺ : [0,∞) → [1,∞) be the inverse
function of ψ on [0,∞). Then for any positive vector v and any β > 1 we have:

Ψ(βv) ≤ nψ

(
β̺

(
Ψ(v)

n

))
. (23)

Corollary 11. Let 0 < θ < 1 and v+ = v√
1−θ

. Then

Ψ(v+) ≤ nψ



̺
(
Ψ(v)
n

)

√
1− θ


 . (24)

Proof. Substitution of β = 1√
1−θ

into (23), the corollary is proved.

Suppose that the barrier update parameter θ and threshold value τ are
given. According to the algorithm, at the start of each outer iteration we have
Ψ(v) ≤ τ. By Theorem 10, after each µ-update the growth of Ψ(v) is limited
by (24). Therefore we define

L = L(n, θ, τ) := nψ

(
̺
(
τ
n

)
√
1− θ

)
. (25)

Obviously, L is an upper bound of Ψ(v+), the value of Ψ(v) after the µ-update.

4. Analysis of the Algorithm

In this section, we show how to compute a feasible step size α of a Newton step
with the decrease of the barrier function. Since dx and ds, are not orthogonal
the analysis in this paper is different from that of LO case. After a damped
step, with step size α, using (3) and (6) we have

x+ = x+ α∆x =
x

v
(v + αdx) , s+ = s+ α∆s =

s

v
(v + αds) .

Thus we obtain
v2+ =

x+s+

µ
= (v + αdx) (v + αds) . (26)
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In the sequel we use the following notation:

ν := min
i∈J

vi, δ := δ(v), σ+ :=
∑

i∈J+

dxi
dsi , σ− := −

∑

i∈J−

dxi
dsi . (27)

Since M is a P∗(κ) matrix, we have

(1 + 4κ)
∑

i∈J+

∆xi(M∆x)i +
∑

i∈J−

∆xi(M∆s)i ≥ 0,

where J+ = {i ∈ J : ∆xi(M∆x)i ≥ 0} , J− = J − J+. Using the first equation
in (4) we have for ∆x ∈ Rn, M∆x = ∆s, and

(1 + 4κ)
∑

i∈J+

∆xi∆si +
∑

i∈J−

∆xi∆si ≥ 0.

From (6) it follows that dxds =
v2∆x∆s

xs
= ∆x∆s

µ
with µ > 0, and

(1 + 4κ)
∑

i∈J+

dxi
dsi +

∑

i∈J−

dxi
dsi = (1 + 4κ) σ+ − σ− ≥ 0. (28)

The next lemma gives an upper bound of σ+ and σ−.

Lemma 12. One has

σ+ ≤ δ2, and σ− ≤ (1 + 4κ) δ2.

Proof. By the definition of σ+, σ− and δ, we have

σ+ =
∑

i∈J+

dxi
dsi ≤

1

4

∑

i∈J+

(dxi
+ dsi)

2 ≤ 1

4

∑

i∈J
(dxi

+ dsi)
2

=
1

4
‖dxi

+ dsi‖2 = δ2.

Since M is a P∗(κ) matrix, using (28), we get

(1 + 4κ) σ+ − σ− ≥ 0.

Thus
σ− ≤ (1 + 4κ) σ+ ≤ (1 + 4κ) δ2.

This proves the lemma.
The following lemma gives an upper bound for ‖dx‖ and ‖ds‖.
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Lemma 13. One has

n∑

i=1

(
d2xi

+ d2si

)
≤ 4 (1 + 2κ) δ2, ‖dx‖ ≤ 2

√
1 + 2κ δ,

and ‖ds‖ ≤ 2
√
1 + 2κ δ.

Proof. From the definitions (17) and (27), we have

δ =
1

2
‖dx + ds‖ , and

∑

j∈J
dxi
dsi = σ+ − σ−,

then

2δ = ‖dx + ds‖ =

√√√√
n∑

i=1

(dxi
+ dsi)

2 =

√√√√
n∑

i=1

(
d2xi

+ d2si

)
+ 2 (σ+ − σ−).

Using (28), and Lemma 12, we get

2δ ≥

√√√√
n∑

i=1

(
d2xi

+ d2si

)
+ 2

(
1

1 + 4κ
σ− − σ−

)

=

√√√√
n∑

i=1

(
d2xi

+ d2si

)
− 8κ

1 + 4κ
σ−.

Then, we get

4δ2 +
8κ

1 + 4κ
σ− ≥

n∑

i=1

(
d2xi

+ d2si

)
.

Using again Lemma 12, we have

4 (1 + 2κ) δ2 ≥ 4δ2 +
8κ

1 + 4κ
σ− ≥

n∑

i=1

(
d2xi

+ d2si

)
.

Thus

‖dx‖ ≤

√√√√
n∑

i=1

(
d2xi

+ d2si

)
≤ 2

√
1 + 2κ δ.

Using the same argument we can prove that

‖ds‖ ≤ 2
√
1 + 2κ δ.
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Thus the lemma follows.
Our aim is to find an upper bound for

f(α) := Ψ (v+)−Ψ(v) := Ψ
(√

(v + αdx) (v + αds)
)
−Ψ(v) ,

where Ψ : Rn → R is given by

Ψ(v) =

n∑

i=1

ψ(vi). (29)

To do this, the next four technical lemmas are needed. It is clear that f(α) is
not necessarily convex in α. To simplify the analysis we use a convex upper
bound for f(α). Such a bound is obtained by using that ψ(t) satisfies the
condition (15-b). Hence, ψ(t) is e-convex. This implies

Ψ (v+) = Ψ
(√

(v + αdx) (v + αds)
)
≤ 1

2 [Ψ (v + αdx) + Ψ (v + αds)] .

Thus we have f(α) ≤ f1(α), where

f1(α) :=
1
2 [Ψ (v + αdx) + Ψ (v + αds)]−Ψ(v)

is a convex function of α, since Ψ(v) is convex. Obviously, f(0) = f1(0) = 0.
Taking the derivative of f1(α) to α, we get

f ′1(α) =
1
2

n∑

i=1

(
ψ′ (vi + αdxi) dxi + ψ′ (vi + αdsi) dsi

)
.

This gives, using last equation in (7) and (17),

f ′1(0) =
1
2∇Ψ(v)T (dx + ds) = −1

2∇Ψ(v)T∇Ψ(v) = −2δ(v)2. (30)

Differentiating once more, we obtain

f ′′1 (α) =
1
2

n∑

i=1

(
ψ′′ (vi + αdxi) dx

2
i + ψ′′ (vi + αdsi) ds

2
i

)
. (31)

From this stage on we can apply word-by-word the same arguments as in
[8] to obtain the following results that are therefore stated without proof.

The following lemma gives an upper bound of f1(α) in terms of δ and ψ′′ (t).

Lemma 14 (Lemma 4.3 in [8]). One has

f ′′1 (α) ≤ 2 (1 + 2κ) δ2 ψ′′ (ν − 2α
√
1 + 2κ δ

)
.
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Putting
δκ :=

√
1 + 2κ δ, (32)

we have

f ′′1 (α) ≤ 2δ2κ ψ
′′ (ν − 2αδκ) , (33)

Since f1(α) is convex, we will have f ′1(α) ≤ 0 for all α less than or equal to the
value where f1(α) is minimal, and vice versa. In this respect the next result is
important.

Lemma 15 (Lemma 4.4 in [8]). One has f ′1(α) ≤ 0 if α satisfies the
inequality

−ψ′ (ν − 2αδκ) + ψ′ (ν) ≤ 2δκ
(1 + 2κ)

. (34)

The next lemma uses the inverse function ρ : [0,∞) → (0, 1] of −1
2ψ

′(t) for
t ∈ (0, 1], as defined in (19).

Lemma 16 (Lemma 4.5 in [8]). The largest value of the step size α
satisfying (33) is given by

ᾱ :=
1

2δκ

[
ρ (δ)− ρ

(
1 +

√
1 + 2κ

1 + 2κ
δκ

)]
. (35)

Moreover

ᾱ ≥ 1

(1 + 2κ)ψ′′
(
ρ
(
1+

√
1+2κ

1+2κ δκ

)) . (36)

For future use we define

α̃ :=
1

(1 + 2κ)ψ′′
(
ρ
(
1+

√
1+2κ

1+2κ δκ

)) , (37)

as the default step size. By Lemma 16 this step α̃ satisfies (34). By (36) we
have ᾱ ≥ α̃. We recall without proof the following lemma from [15].

Lemma 17 (Lemma 3.12 in [15]). Let h(t) be a twice differentiable convex
function with h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at
t∗ > 0. If h′′(t) is increasing for t ∈ [0, t∗] then

h(t) ≤ th′(0)

2
, 0 ≤ t ≤ t∗.
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Lemma 18 (Lemma 10 in [9]). If the step size α satisfies (34) then

f(α) ≤ −α δ2. (38)

Theorem 19. Let ρ be defined in (19) and α̃ in (37). Then

f(α̃) ≤ − δ2

(1 + 2κ)ψ′′
(
ρ
(
1+

√
1+2κ√

1+2κ
δ
)) ≤ − δ

p

1+p

1320p (1 + 2κ)
. (39)

Proof. By combining (36) in Lemma 16 and results in Lemma 18, using
also (32).Thus the first inequality in (39) follows.

To obtain the inverse function t = ρ(s) of −1
2ψ

′(t) for t ∈ (0, 1], we need to
solve t from the equation

−
(
t+

4h′(t)

π
sec2 (h(t))

(
tanp−1 (h(t))

))

=

(
−t+ 4h′(t)

π
csc2 (h(t))

(
tanp+1 (h(t))

))
= 2s.

This implies,

csc2 (h(t))
(
tanp+1 (h(t))

)
=

−π
4h′(t)

(2s+ t) .

For t ≤ 1, we get 2π(t+1)2

4π (2s + t) ≤ 2 (2s+ 1) . Hence, putting

t = ρ

(
1 +

√
1 + 2κ√

1 + 2κ
δ

)
,

which is equivalent to
2(1+

√
1+2κ)√

1+2κ
δ = −ψ′(t). Using that 1+

√
1+2κ√

1+2κ
≤ 2 for all

κ ≥ 0, and sin2 (h(t)) ≤ 1 we get

tan(h(t)) ≤ (8δ + 2)
1

1+p . (40)

Since sec2 (h(t)) = 1 + tan2 (h(t)), By (40), thus we have

tan2 (h(t)) ≤ (8δ + 2)
2

1+p , tanp−2 (h(t)) ≤ (8δ + 2)
p−2
1+p ,

tanp−1 (h(t)) ≤ (8δ + 2)
p−1
1+p and tanp (h(t)) ≤ (8δ + 2)

p

1+p .
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Since h′′(t) = 8π
8(t+1)3

≤ 3π
4 , and h′(t)2 = 4π2

16(2t+1)4
≤ π2

4 for all 0 ≤ t ≤ 1, and

using also (8δ + 2) ≥ 1 this implies

ψ′′ (t) ≤
(
1 +

4

π
2

(
2p
π2

4
+ π

))
(8δ + 2)

p+2
1+p = (9 + 4pπ) (8δ + 2)

p+2
1+p .

By (37), thus we have

α̃ =
1

(1 + 2κ)ψ′′
(
ρ
(
1+

√
1+2κ√

1+2κ
δ
))

≥ 1

(1 + 2κ) (9 + 4pπ) (8δ + 2)
p+2
1+p

.

Also using (22) (i.e., 6δ ≥ 1) and p ≥ 2 we get,

α̃ ≥ 1

(1 + 2κ) (9 + 4pπ) (8δ + 12δ)
p+2
1+p

=
1

(1 + 2κ) (9 + 4pπ) (20δ)
p+2
1+p

≥ 1

1320p (1 + 2κ) δ
p+2
1+p

.

Hence

f(α̃) ≤ − δ2

1320p (1 + 2κ) δ
p+2
1+p

= − δ
p

1+p

1320p (1 + 2κ)
.

Thus the theorem follows.
Substitution in (20) gives

f(α̃) ≤ − δ
p

1+p

1320p (1 + 2κ)
≤ − Ψ

p

2(1+p)

1320p (6)
p

1+p (1 + 2κ)

≤ − Ψ
p

2(1+p)

7920p (1 + 2κ)
.

5. Iteration Complexity

In this section we derive the complexity bounds for large-update methods and
small-update methods.
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5.1. Upper Bound for the Total Number of Iterations

Let K denote the number of inner iterations. An upper bound for the total
number of iterations is obtained by multiplying (the upper bound for) the num-
ber K by the number of barrier parameter updates, which is bounded above by
1
θ
log n

ǫ
(cf. [17] Lemma II.17, page 116).

Lemma 20 (Proposition 2.2 in [15]). Let t0, t1, · · · , tK be a sequence of
positive numbers such that

tk+1 ≤ tk − κt
1−γ
k , k = 0, 1, · · · ,K − 1,

where κ > 0 and 0 < γ ≤ 1. Then K ≤
⌊
t
γ
0
κγ

⌋
.

Lemma 21. If K denotes the number of inner iterations, we have

K ≤ 7920p (1 + 2κ)Ψ
2+p

2(1+p)

0 .

Proof. The definition of K implies ΨK−1 > τ and ΨK ≤ τ and

Ψk+1 ≤ Ψk − κ (Ψk)
1−γ , k = 0, 1, · · · ,K − 1,

with κ = 1
7920p(1+2κ) and γ = 2+p

2(1+p) . Application of Lemma 20, with tk = Ψk

yields the desired inequality.

Using ψ0 ≤ L, where the number L is as given in (25), and Lemma 21 we
obtain the following upper bound on the total number of iterations:

7920p (1 + 2κ)L
2+p

2(1+p)

θ
log

n

ǫ
. (41)

5.2. Large-Update

We just established that (41) is an upper bound for the total number of itera-
tions, using

ψ(t) =
t2 − 1

2
+

4

pπ

(
tanp

(
π

2t+ 2

)
− 1

)
, for t ≥ 1, p ≥ 2
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and (21), by substitution in (25) we obtain

L ≤ n

(
̺( τ

n )√
1−θ

)2

− 1

2
≤ n

2 (1− θ)

(
θ + 2

√
2
τ

n
+

2τ

n

)

=

(
θn+ 2

√
2τn+ 2τ

)

2 (1− θ)
.

Using (41), thus the total number of iterations is bounded above by

K

θ
log

n

ǫ
≤ 7920p (1 + 2κ)

θ
(
2 (1− θ)

2+p

2(1+p)

)
(
θn+ 2

√
2τn+ 2τ

) 2+p

2(1+p)
log

n

ǫ
.

A large-update methods uses τ = O(n) and θ = Θ(1). The right-hand side

expression is then O
(
p (1 + 2κ)n

2+p

2(1+p) log n
ǫ

)
, as easily may be verified.

5.3. Small-Update Methods

For small-update methods one has τ = O(1) and θ = Θ
(

1√
n

)
. Using Lemma

5, with ψ′′(1) = pπ+8
4 , we then obtain

L ≤ n (pπ + 8)

8

(
ρ
(
τ
n

)
√
1− θ

− 1

)2

.

Using (21), then

L ≤ n (pπ + 8)

8



1 +

√
2τ
n√

1− θ
− 1




2

.

Using 1−
√
1− θ = θ

1+
√
1−θ

≤ θ, this leads to

L ≤ (pπ + 8)

8 (1− θ)

(
θ
√
n+

√
2τ
)2
.

We conclude that the total number of iterations is bounded above by

K

θ
log

n

ǫ
≤ 7920 (1 + 2κ) (pπ + 8)

2+p

2(1+p)

θ (8 (1− θ))
2+p

2(1+p)

(
θ
√
n+

√
2τ
) 2+p

1+p
log

n

ǫ
.

Thus the right-hand side expression is then O
(
(1 + 2κ)

√
n log n

ǫ

)
.
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6. Concluding Remarks

In this paper we extended the results obtained for kernel-function-based IPMs
in [3] for LO to P∗(κ) linear complementarity problems. The observation that
the vectors dx and ds are not in general orthogonal implies that the analysis in
[3, 7] does not hold. The analysis in this paper is new and different from the
one using for LO. Several new tools and techniques are derived in this paper.
The proposed function has a trigonometric barrier term but the function is
not logarithmic and not self-regular. For this parametric kernel function, we
have shown that the best result of iteration bounds for large-update methods
and small-update can be achieved, namely O

(
(1 + 2κ) log n

√
n log n

ǫ

)
, for large-

update and O
(
(1 + 2κ)

√
n log n

ǫ

)
for small-update methods.

The resulting iteration bounds for P∗(κ) linear complementarity problems
depend on the parameter κ. For κ = 0, the iteration bounds are the same as the
bounds that were obtained in [3] for linear optimization. In our future study,
we intend to generalize the primal-dual IPMs to general nonlinear symmetric
cone optimization based on this parametric kernel function.
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