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RESEARCH ARTICLE

High throughput nanoparticle tracking analysis for monitoring outer membrane
vesicle production
Matthias J. H. Gerritzen a,b, Dirk E. Martens b, René H. Wijffelsb,c and Michiel Stork a

aProcess Development Bacterial Vaccines, Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands; bBioprocess
Engineering, Wageningen University, Wageningen, The Netherlands; cFaculty of Biosciences and Aquaculture, Nord University, Bodø,
Norway

ABSTRACT
Outer membrane vesicles (OMVs) are spherical membrane nanoparticles released by Gram-
negative bacteria. OMVs can be quantified in complex matrices by nanoparticle tracking analysis
(NTA). NTA can be performed in static mode or with continuous sample flow that results in
analysis of more particles in a smaller time-frame. Flow measurements must be performed
manually despite the availability of a sample changer on the NanoSight system. Here we present
a method for automated measurements in flow mode. OMV quantification in flow mode results in
lower variance in particle quantification (coefficient of variation (CV) of 6%, CV static measure-
ments of 14%). Sizing of OMVs was expected to be less favorable in flow mode due to the
increased movement of the particles. However, we observed a CV of 3% in flow mode and a CV of
8% in static measurements. Flow rates of up to 5 µL/min displayed correct size and particle
measurements, however, particle concentration was slightly lower than in static measurements.
The automated method was used to assess OMV release of batch cultures of Neisseria meningi-
tidis. The bacteria released more OMVs in stationary growth phase, while the size of the vesicles
remained constant throughout the culture. Taken together, this study shows that automated
measurements in flow mode can be established with advanced scripting to reduce the workload
for the user.
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Introduction

Bacterial derived nanoparticles, known as outer mem-
brane vesicles (OMVs), have gained more and more
attention in the development of bacterial vaccines [1,2].
These OMVs are 20–200 nm spherical particles that
resemble the outside of the bacterium [3]. OMVs are
complex nanoparticles consisting of proteins, lipopoly-
saccharides, phospholipids, and DNA that are involved
in cellular communication, toxin delivery, surface
modifications, removal of undesired components, and
polysaccharide degradation [4–7].

The quantification of OMVs has been challenging
since indirect methods had to be used for detection of
the particles. Often, the total protein concentration of
the OMV sample was used as a measure of the number
of vesicles [8–12]. Another indirect method was based
on the integration of a hydrophobic dye in vesicle
membrane, resulting in a measurable change in absor-
bance [13]. These indirect methods can be largely
influenced by impurities and are thus not suited to
measure unpurified and intermediate samples.

Direct measurement of OMVs by nanoparticle
tracking analysis (NTA) can be used for the quanti-
fication and sizing of OMVs [14]. Besides measure-
ment of the number and size of the particles, the
refractive index of individual particles can be calcu-
lated [15]. NTA can be performed in static mode by
measuring the particles trapped in the measurement
chamber or in flow mode by slowly flowing the
nanoparticle sample through this measurement
chamber. Static measurements allow the analysis of
single nanoparticles in time, for example the study of
nanoparticle aggregation by elevated temperatures
[16]. Flow mode NTA measurements for nanoparti-
cle quantification are advantageous over static mea-
surements since more particles can be measured in a
smaller time-frame resulting in less variance in par-
ticle quantitation [17]. NTA can be used to measure
specifically fluorescent labelled particles [18]. In this
fluorescence measurement, continuous measurement
is advantageous since the sample flow prevents
photobleaching of the fluorescent label [19].
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Despite the availability of both a syringe pump and a
sample changer on the NanoSight NS500, there is no
option for automated measurements in flow mode
available. As a result, the analysis of samples under
flow mode require more time than automated static
measurements. In this work we describe a method that
combines the measurement of samples in flow mode
with the sample changer to allow high throughput
measurement under flow. For this, we have compared
the accuracy of NTA measurements of OMVs in static
measurements and in flow mode. The influence of the
flow rate on the NTA analysis has been assessed. Lastly,
we applied the automated measurement method to
quickly assess a large set of samples to research the
OMV formation in batch cultivations.

Material and methods

Preparation of OMV stock

A highly purified Neisseria meningitidis spontaneous
released OMV (sOMV) investigational vaccine was
prepared from a batch culture of Neisseria meningitidis.
From this culture broth, the vesicles were separated
from the bacteria by tangential flow filtration using a
0.2 µm cut-off mPES hollow fibre module (Spectrum
Labs, The Netherlands). Vesicles were concentrated by
tangential flow filtration using a 100 kDa cut-off mPES
hollow fibre module (Spectrum Labs, The
Netherlands), and the sOMVs were subsequently pur-
ified by preparative size exclusion chromatography
using SepharoseTM 6 Fast Flow resin (GE Healthcare
Life Sciences, USA). Lastly, a dead-end sterile filtration
step was performed to ensure sterility of the sOMV
product before it was stored at 4°C. To assess the total
protein content of the OMV stock, a Lowry protein
assay with Peterson’s modification was used according
to the manufacturer’s protocol (Sigma-Aldrich, The
Netherlands). The sOMVs were diluted in freshly
tapped MilliQ water up to a concentration of approxi-
mately 8.5 × 108 particles/mL. This concentration was
chosen so that the NTA measurements yield 40–50
particles per frame to ensure measurements are in the
linear range of NTA measurements [20].

Nanoparticle tracking analysis

A NanoSight NS500 with a 488 nm laser module and
sCMOS camera module was used for all NTA measure-
ments (Malvern Instruments, UK). Additionally, a Gilson
223 sample changer and a Harvard Apparatus syringe
pump (Catalogue No. 98–4730) were connected to the
NS500 by a four-way connector, as described in the results

section. The syringe pump was equipped with a 500 µL
glass syringe (Hamilton Model 1750 RN). Static measure-
ments were obtained by capturing 10measurements of 60 s
of a sample loaded in the measurement chamber.
Measurements in flow mode were performed with a flow
rate of 25 (~2.6 µL/min), yielding a y-drift of 4.0 pixels per
frame. Like the static measurements, these flow measure-
ments consisted of 10 measurements of 60 s, but with an
additional 30 s delay between measurements. The method
for automated measurements in flow mode is described in
the results section. The script file used for these automated
measurements can be found in the Supplemental File 1. All
measurements were performed with temperature con-
trolled at 25°C, and the captured data of both static and
flow measurements was analysed using NTA 3.2 software
build 3.2.16. The capture settings and the analysis settings
of the NTA software are shown in Table 1. The machine
was calibrated by the NanoSight NTA concentration mea-
surement upgrade. The NS500 is cleaned with Decon 90
monthly, according to the recommendations described in
the manual. Before all sample measurements, we con-
firmed that the MilliQ diluent contained less than 1.0
particle per frame by measuring the MilliQ diluent for 60
s in static mode.

Statistics

Statistics of the static and flow NTA measurements were
performed in RStudio [21], version 0.99.903. Significance
of the static and flowNTAmeasurementswas calculated by
an exact, unpaired Mann-Whitney U test by using the
exactRankTests package version 0.8–28 [22].

Dynamic light scattering

Dynamic light scattering (DLS) measurements were
performed by using a Zetasizer Nano-ZS (Malvern
Instruments, UK). Measurements were made in dispo-
sable polystyrene semi-micro cuvettes (Greiner bio-
one, 613101) using the Zetasizer 7.11 software. A stan-
dard operating procedure (SOP) was used for the

Table 1. NTA software settings.
Capture settings
CAMERASHUTTER 1206
CAMERAGAIN 366
CAMERALEVEL 15
CAMERAHILIM 3294
CAMERALOLIM 0
STAGE –20,376
FOCUS 27
Analysis settings
DETECTTHRESHOLD 3
AUTOBLUR ON
AUTOMINTRACKLENGHT ON
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measurements with sample set as protein with a refrac-
tive index of 1.450 and an absorption of 0.001. Water
was used as dispersant with a viscosity of 0.8872 cP and
refractive index of 1.330. Three measurements were
performed using a measurement angle of 173° (back-
scatter), auto measurement duration and “seek for
optimal position” as positioning setting. Data proces-
sing was performed with the general purpose (normal
resolution) analysis model.

Bioreactor cultivations

Batch cultivation for OMV stock production was per-
formed in a 3 L working volume dished bottom bior-
eactors with a H/D ratio of 1.0 based on working
volume (Applikon Biotechnology, The Netherlands).
Cultures were controlled at 35 ± 0.5°C, pH 7.2 ± 0.05
with 1M HCl and 1M NaOH, and a dissolved oxygen
tension of 30% using a Trytoni controller (Pierre
Guerin, France). Dissolved oxygen tension was con-
trolled by the agitation rate (300–1000 RPM) and the
concentration of oxygen in the headspace gas flow of 1
NL/min. Culture samples were sterile filtered with a
disposable syringe filter with 0.22 µm cut-off and
stored at 4°C.

Results

Static vs. flow measurements

NTA can be performed by static measurements or by
measurements in flow mode. Sample flow allows more
particles to be analysed in a single capture, but the
software has to correct for the particle drift in the
measurement. To assess the most accurate method for
OMV enumeration and OMV sizing, we compared
static and continuous flow NTA measurements. From
a N. meningitidis OMV stock, 100 measurements were
obtained in both static and in flow-mode, by manually
capturing 10 videos of 60 s of 10 replicate samples.

OMV quantification of the 100 static measurements
showed a mean particle concentration of 9.07 × 108

particles/mL with a coefficient of variation (CV) of
14% (Figure 1). Flow measurements showed a mean
concentration of 8.63 × 108 particles/mL with a CV of
6%. Sizing of the particles showed a mean size of 77.6
nm (CV = 8%) and 78.2 nm (CV = 3%) for respective
static and continuous flow measurements. The lower
measurement variation in for both particle size and
particle number in the flow measurements can be
explained by the increased number of particles ana-
lysed due to the increased observation volume. The
reduced variance in the size measurement under flow

shows that the software is capable of correcting for the
particle drift. Based on the lower variation in the con-
tinuous flow measurement, the number of captures per
sample measurement could be reduced and we used
this method of NTA for the automated quantification
of OMVs.

Automated flow measurements

To automate the sample measurement in flow mode,
we connected both the sample changer and the syr-
inge pump to a NanoSight NS500 (Figure 2). The
connection was made with a four-way valve allowing
the sample to be loaded in to the syringe pump
before the sample was measured. The flow path
through the four-way valve was controlled by the
two pumps on the NanoSight and the syringe-
pump. All pumps block their flow path when
switched off so that the flow path can be directed
by rational programming of the pumps. To realise
the flow from the autosampler to the syringe pump,
which crosses two pumps, the syringe pump was
calibrated with the integrated pump of the
NanoSight. The approach of this programming is
described in this section and the developed script
for automated continuous flow measurements can
be found in Supplemental File 1.

Automated continuous flow measurements start
with an initialisation phase, followed by the measure-
ment phase and end by a finalisation phase (Table 2).
In the initialisation phase (INIT) the syringe pump,
sample changer and the measurement cell are flushed
with MilliQ. The MilliQ is measured to confirm the
absence of particles in the MilliQ supply. During the
measurement phase (MEAS) the number of measure-
ments can be set by a loop from MEAS1 to MEAS7.
Within this loop the sample is transferred from the
sample changer to the syringe pump, before the sample
is loaded in to the measurement chamber. A second
loop is programmed in MEAS3 which determines the
number of captures per sample. After each measure-
ment, sample changer, the syringe, and the measure-
ment chamber are washed with MilliQ water before a
new sample is measured. In the finalisation phase
(FINA) the captures are processed and the result can
be exported.

For a measurement in flow mode, the sample was
loaded from the sample changer to the syringe in
the syringe pump. We ensured the purity of the
sample by setting the sample pump at a slightly
higher rate than the syringe pump. As a result, a
small fraction of the sample was directly flushed
through the measurement chamber to the waste.
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Similarly, this methodology was used to flush the
syringe pump and the measurement chamber with
MilliQ.

Washing of the syringe pump was required to pre-
vent cross contamination between samples. A single
flush cycle consists of emptying the syringe and loading
the syringe with MilliQ. To complete the wash cycle,
the syringe was emptied. Because of the inevitable
holdup volume of the tubing and in the connection
with the syringe, sample cross contamination could be
detected. After one flush cycle, sample carryover of
approximately 5% was observed. The cross contamina-
tion for up to five wash cycles was tested (Figure 3). In
the first two flushes particles derived from the mea-
sured OMV stock could be detected. The particle con-
centration after three flushes showed a similar
background particle concentration as the MilliQ
water. An excess of five flush cycles of the syringe
was programmed in the script for automated contin-
uous flow measurements to minimise the possibility of
cross contamination between samples.
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Figure 1. Static (blue) and flow (green) measurements of outer membrane vesicles. Boxplot A shows the result of NTA particle
concentration measurement and plot B of NTA particle sizing. Boxes represent 10 measurements of 60 s. Outliers represent
measurements 1.5 times the interquartile range below the lower quartile or above the upper quartile.

MilliQSample

Waste

NanoSight NS500

Flow cell

Sample changer

Syringe pump

Figure 2. The schematic setup of the NanoSight setup for automated flow measurements. Both the sample changer and the syringe
pump are connected to the NanoSight by a four-way valve.

Table 2. Schematic overview of the script for automated mea-
surement in flow mode.
Step Action

INIT1 Flush syringe with MilliQ
INIT2 Flush sample changer with MilliQ
INIT3 Measure particle background of MilliQ stock
INIT4 Set the number and positions of the samples

in the sample changer
MEAS1 Load the syringe with sample

Repeat every
sample

MEAS2 Load measurement chamber with sample
MEAS3 Measurement of the sample
MEAS4 Emptying the syringe
MEAS5 Washing the syringe
MEAS6 Wash sample changer
MEAS7 Processing of measurement

FINA2 Exporting results
FINA3 Shutdown
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Influence of the sample flow rate on NTA

NTA measurements in flow mode showed a significant
lower (p = 0.0003) particle concentration of 5% com-
pared to static measurements (Figure 1). It is unknown
which value resembles the exact value of the OMV
stock solution the closest. To assess the possible influ-
ence of the flow rate on the particle quantification, we
have measured the OMV stock at different flow rates.

The OMV stock was measured in static mode and at
flow rates up to 200 units of the NTA software. This
maximum flow rate corresponds, in combination with
the 500 µL syringe, to a liquid flow of 21 µL/min
(Figure 4(a)). NTA analysis showed that the detected
particle drift linearly correlates to the flow rate up to a
flow of 15 µL/min (Figure 4(b)). The tracking of parti-
cles and the calculated particle concentration shows to
be constant at flow rates up to 5 µL/min (Figure 4(c, d)).
Flow rates of 10 µL/min and higher showed to result in
unrealistic low particle concentrations. The mean size of
the OMVs analysed in flow measurements up to 5 µL/
min was comparable to measurements by DLS. Similar
to concentration measurements, size measurements
were not accurate at flow measurements of 10 µL/min
and higher (Figure 4(e, f)). The flow rate of 2.6 µL/min
showed to be in the proper range for both size and
concentration measurements and is therefore used in
the script for automated measurements in flow mode.

OMV release by Neisseria meningitidis

The script for automated measurements in flowmode was
used to assess the OMV release during bacterial growth.
Three N. meningitidis cultures were grown in benchtop

bioreactors and supernatant samples were analysed by
NTA (Figure 5). Between 2 and 8 h the growth is expo-
nential and the observed release of vesicles is low. The
OMV release shows an increase in the stationary phase,
10–18 h. Interestingly the size of the vesicles remains
similar during the whole duration of the cultivation
(Figure 5).

Discussion

Continuous flow NTA measurements were automated
using the sample changer in combination with the
scripting possibilities of the NTA software. NTA mea-
surements of an OMV stock showed that continuous
flow measurements are advantageous over static mea-
surements in quantifying and sizing of OMVs. The
automated method severely reduced the workload per
measurement. Steppert et al. report that static NTA
measurements on a NanoSight LM10 requires 30–45
min per sample [23], which corresponds to our experi-
ence with static NTA on the NS500. A small fraction of
this time is required for sample preparation, which
makes it advantageous to automate the measurement.
Automated NTA can also be used for samples of
unknown concentration whereas serial dilutions can
be processed by the automated method described
here. Cross-contamination of too-concentrated sam-
ples is prevented by the number of syringe wash steps
in the automated measurement. Overall the workload
for analysing 24 samples by the automated method is
roughly 2 h. Depending on the chosen capture settings,
the required measurement time of the equipment is
around 30 min per sample. The automated method is
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recording a single 60 s capture. Next the syringe was emptied and filled with MilliQ and measured again (Flush 1). Flushes were
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not limited to OMV samples and theoretically the
method can be applied to all samples analysed by
flow-mode NTA.

NTA at different flow rates showed that flow mea-
surements applying flows of 10 µL/min or higher
altered the measured particle concentration and the
measured size for the N. meningitidis OMV stock.
This effect has also been shown by NanoSight for the

analysis of 100 nm polystyrene latex beads [24]. In
their measurement a higher flow rate of 20–50 AU
(in combination with a 1 mL syringe, corresponding
to approximately 4–11 µL/min) showed to be ideal
[17,24]. The differences between these two measure-
ments are the particles used and their refractive index,
although the refractive index is not expected to influ-
ence the concentration measurement. Recent studies
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suggest that flow measurements alter the observed con-
centration of various extracellular vesicles already at
low flow rates [25–27]. Here we also observed a
minor difference between static and flow measure-
ments. This study showed that flow rates below 10
µL/min are suited for OMV quantification and sizing.

The batch-wise cultivation of N. meningitidis
showed an increased OMV release in the stationary
growth phase. This pattern of release was similar to
the previously described OMV release that was ana-
lysed by the hydrophobic dye Synaptored C2 [28]. By
using NTA, we showed that the size of OMVs remains
constant during the cultivation, although in the first
hours of the cultivation the size shows to be increased.
This is probably caused by particle concentration near
the limit of detection although it could be possible that
the observed switch in the culture could affect the size
of the produced OMVs. Gene regulation may be of
possible influence to OMV size since it has been pre-
viously shown that OMV size differs between mutants
with deletion of genes possibly involved in the OMV
biogenesis [29].

Alternative methods for combined OMV quantifica-
tion and sizing are high-resolution flow cytometry
(hFC) [30] and tuneable resistive pulse sensing
(TRPS) [31,32]. These two techniques have recently
been compared to static NTA for the analysis of extra-
cellular vesicles by two groups [33,34]. Both groups
conclude that hFC, TRPS and NTA are suited to

quantifying and sizing extracellular vesicles. The reduc-
tion in workload required for NTA measurements can
be an important consideration in the choice of analysis
techniques, whereas automated sample measurement is
not available for TRPS.

The automated method of NTA reduced the work-
load, but several practical implications should be noted.
The automated method can be used for large numbers
of samples, but when samples were applied in open
(Eppendorf) tubes, we observed increased concentra-
tions of particles. It appeared that the increased con-
centration was caused by evaporation before the
sample was loaded in the measurement chamber. The
use of sample vials with a septum solved this issue.
With this approach, diluted samples can be in the
sample changer for extended periods of time prior to
measurement. OMVs are highly stable, however less
stable samples could benefit by automated sample dilu-
tion directly prior to the measurement. The current
hardware could be compatible with automated sample
dilutions and adding this feature will be an improve-
ment to the NanoSight system. Furthermore, the
extended time-span of using the equipment may
cause gas bubbles in the measurement chamber.
These bubbles can interfere with the measurement by
expelling sample from the observation volume or by
disturbing the liquid flow in the measurement cham-
ber. Gas bubble formation was avoided by degassing
the MilliQ water bottle by vacuum degasification. A
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last practical adjustment to the equipment was made by
replacing the plastic syringe for a glass version to pre-
vent particles from sticking to the syringe and to
reduce the number of flushes required between the
measurements of samples.

In conclusion, the automation of continuous flow
measurements can be applied with the described script
on all NanoSight equipment when connected to both a
sample changer and a syringe pump. This method can
improve both the quality of the measurement while the
workload is reduced simultaneously. Furthermore, the
script secures the measurement settings, which further
standardises the use of NTA.
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