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Abstract: 

The regioselective synthesis of estrogens and their derivatives continues to be of 

interest. Most reported syntheses require multistep protocols associated with 

poor overall yield and lack of regioselectivity. New preparative protocols are still 

desired. Herein, 11 2-alkylated 17β-estradiol analogs were synthesized in a highly 

regioselective manner. The products were obtained using a convenient, one pot and 

high-yielding protocol. The anti-proliferative activity of the compounds was tested in 

human T-cell leukemia (CEM), human cervix carcinoma (HeLa) and human dermal 

microvascular endothelial (HMEC-1) cells.  
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1. Introduction 

The estrogen 2-methoxyestradiol (2-ME, 1) was long believed to be an inactive 

endogenous metabolite of 17β-estradiol (2). However, in 1994, D´Amato, Folkman 

and co-workers showed that 2-ME (1) inhibits tubulin polymerization by interfering 

with the colchicine binding-site [1, 2]. Later studies revealed that the steroid 1 also 

blocks endothelial cell migration and proliferation in vitro [3]. Moreover, when 

administered to tumor-bearing mice, 2-ME (1) inhibited the vascularization and 

growth of solid tumors [2, 4].  In addition, it was reported that 2-ME (1) 

downregulates hypoxia-inducible factor-1α (HIF-1α) resulting in potent cytotoxic 

effects in prostate and breast cancer cells [5]. These observations were confirmed by 

in vivo studies that also showed that intrinsic and extrinsic apoptotic pathways were 

mediated by 2-ME (1) and its metabolites [6, 7]. 2-Methoxyestradiol (1) has entered 

several clinical trials that revealed no severe toxic effects, even when doses as high as 

3 grams per day were administrated [8-11].  

The aforementioned pharmacological activities have inspired several studies where 2-

ME (1) has been used as a lead compound for the development of new anti-cancer 

agents [12]. Some examples of such analogs are depicted in Figure 1.  

 

 

Fig. 1. Analogs of 2-ME (1) with anti-cancer  activities.  

 

We have previously used the steroid 1 as a lead compound for the synthesis of 

potential new anti-cancer agents [13-15]. The alkyl-substituent at C-2 seems 

interesting to alter in further efforts. The classic Friedel-Crafts reaction is the method 
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of choice for the introduction of secondary or tertiary alkyl groups in aromatic 

compounds, including phenols, such as 17β-estradiol [16, 17]. Although this method 

has been improved over the years the alkylation of primary alkyl groups is still a huge 

challenge  [17]. Most often this approach yields a mixture of rearrangement and 

polyalkylation products. Moreover, often harsh acidic or basic reaction conditions are 

required rendering the usefulness of the direct mono-alkylation of aromatics limited 

[18, 19]. The introduction of primary alkyl groups is therefore instead performed 

using multistep protocols [20-30]. These aforementioned drawbacks, as well as the 

challenge of achieving high regioselectivity, also apply to the synthesis of mono-

alkylated estrogenic steroids, such as 2-ethyl estradiol (4a). Towards tackling the 

challenge of developing a regioselective and easy synthesis of 2-ethyl estradiol, we 

reported the application of a highly regioselective ortho-formylation protocol [31-33] 

of estradiols and estrogens [34]. These studies also resulted in a multi-step synthesis 

of 2-ethyl estradiol (4a) [15] that required chromatographic separation of the 2-

substituted salicylaldehyde 8 from its 4-substituted regioisomer 9 (Scheme 1). 
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Scheme 1. Regioselective ortho-formylation of 17β-estradiol (2) yielding the two 

regioisomeric salicylaldehydes 8 and 9. Compound 8 was converted into 2-ethyl 

estradiol (4a). 
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Since 2-substituted alkylated analogs of 2-methoxyestradiol (1), such as 5 and 6 

(Figure 1) displayed interesting inhibition of polymerization of tubulin along with 

cytotoxic and anti-angiogenic effects [13-15], we became interested in conducting 

additional structural-activity relationship studies using 1 as the lead compound. 

Recently Parnes and Pappo reported a convenient and highly regioselective multi-

component reductive alkylation reaction of aromatic compounds [35]. The formation 

of the alkylation product was mediated by an in situ formed thionium ion from an 

aldehyde and ethanethiol under mild catalytic acidic conditions. The resulting 1-

(alkylthio)alkylarenes were reduced by triethyl silane to the mono-alkylated product 

in good to excellent yields. In their successful method development efforts, Parnes 

and Pappo reported two examples using 2 in the aforementioned protocol, affording 

the 2-iso-butyl and 2-benzyl substituted products in 67% and 85% isolated yield, 

respectively. These results spurred our interest in the synthesis and cytotoxic 

evaluations of analogs of 2-methoxyestradiol (1), applying this Pummerer-type 

reaction. These studies are communicated herein. 

2. Experimental 

2.1. General 

Under an inert atmosphere, 17β-estradiol (1) (0.27 g, 1.0 mmol), aldehyde (3.0 mmol), 

copper (II) trifluoromethanesulfonate (9.0 mg, 2.5 mol%), and 2,2,2-trifluoroethanol 

(3.0 mL) were combined in a round-bottom flask. Ethanethiol (0.44 mL, 6.0 mmol) 

was added and the reaction mixture was stirred 16 hours at 50 °C. Triethylsilane (0.48 

mL, 3.0 mmol) was then added and the mixture was allowed to stir for an additional 4 

hours at 50 °C. Analysis by TLC (ethyl acetate:heptane, 30:70) indicated a complete 

reaction. Removal of volatiles was performed in vacuo where the exhaust was passed 

through a solution over basic potassium permanganate solution to quench excess 

ethanethiol. The residue was purified by flash chromatography (ethyl acetate:heptane, 

30:70) to afford the products (4a-4k). 

 

2.2 (8R,9S,13S,14S,17S)-2-Ethyl-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthrene-3,17-diol (4a) [15] 

White solid, 80% yield (0.241 g). ����
�� = 82.8 (c = 0.29, MeOH). 1H NMR (400 MHz, 

CDCl3) δ 7.06 (s, 1H), 6.50 (s, 1H), 3.78 – 3.70 (t, J = 8.4 Hz, 1H), 2.87 – 2.72 (m, 
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2H), 2.60 (q, J = 7.6 Hz, 2H), 2.34 (m, 1H), 2.22 – 2.07 (m, 2H), 1.96 (m, 1H), 1.90 – 

1.82 (m, 1H), 1.75 – 1.65 (m, 1H), 1.57 – 1.12 (m, 11H), 0.79 (s, 3H). 13C NMR (101 

MHz, CDCl3) δ 151.0, 135.2, 132.3, 127.0, 126.2, 115.0, 81.8, 49.8, 43.8, 43.1, 38.7, 

36.6, 30.4, 29.0, 27.1, 26.2, 23.0, 22.9, 14.2, 10.9. HRMS (EI): Exact mass calculated 

for C20H28O2 [M] +: 300.2089, found 300.2083. 

2.3 (8R,9S,13S,14S,17S)-2-Butyl-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthrene-3,17-diol (4b)[36, 37] 

White solid, 73% yield (0.241 g).	����
�� = 81.8 (c = 0.63, MeOH). 1H NMR (400 MHz, 

CDCl3) δ 7.03 (s, 1H), 6.50 (s, 1H), 4.57 (bs, 1H, OH), 3.73 (t, J = 8.2Hz, 1H),  2.56 

(t, J = 8.0 Hz, 2H), 2.38-2.29 (m, 1H), 2.22-2.08 (m, 2H), 1.99-1.92 (m, 1H), 1.90-

1.81 (m, 1H), 1.75-1.65 (m, 1H), 1.63-1.14 (m, 13H), 0.94 (t, J = 7.3 Hz, 3H) ,0.79 (s, 

3H) .13C NMR (101 MHz, CDCl3) δ 151.4, 135.6, 132.6, 127.26, 126.0, 115.3, 82.1, 

50.2, 44.1, 43.4, 39.0, 36.9, 32.5, 30.7, 29.9, 29.4, 27.4, 26.6, 23.3, 22.9, 14.2, 11.2. 

HRMS (EI): Exact mass calculated for C22H32O2 [M] +: 328.2402, found 328.2404. 

2.4 (8R,9S,13S,14S,17S)-13-Methyl-2-pentyl-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthrene-3,17-diol (4c)[36] 

White solid, 69% yield (0.236 g). ����
�� = 79.0 (c = 0.62, MeOH). 1H NMR (400 MHz, 

CDCl3) δ 7.03 (s, 1H), 6.49 (s, 1H), 3.82 – 3.63 (m, 1H), 2.87 – 2.69 (m, 2H), 2.63 – 

2.47 (m, 2H), 2.41 – 2.29 (m, 1H), 2.23 – 2.04 (m, 2H), 1.99 – 1.91 (m, 1H), 1.91 – 

1.82 (m, 1H), 1.76 – 1.65 (m, 1H), 1.57 (s, 3H), 1.53 – 1.43 (m, 2H), 1.40 – 1.24 (m, 

8H), 1.22 – 1.13 (m, 1H), 0.89 (d, J = 7.3 Hz, 3H), 0.78 (s, 3H). 13C NMR (101 MHz, 

CDCl3) δ 151.4, 135.6, 132.6, 127.3, 126.0, 115.4, 82.1, 50.2, 44.2, 43.4, 39.1, 36.9, 

32.0, 30.8, 30.1, 30.1, 29.4, 27.4, 26.6, 23.3, 22.7, 14.2, 11.2. HRMS (EI): Exact mass 

calculated for C23H34O2 [M] +: 342.2559, found 342.2555. 

2.5 (8R,9S,13S,14S,17S)-2-Hexyl-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthrene-3,17-diol (4d)[37] 

White solid in 64% yield (0.228 g). ����
�� = 69.8 (c = 0.86, MeOH). 1H NMR (400 

MHz, CDCl3) δ 7.03 (s, 1H), 6.49 (s, 1H), 3.91 – 3.59 (m, 1H), 2.88 – 2.69 (m, 2H), 

2.64 – 2.50 (m, 2H), 2.36 – 2.25 (m, 1H), 2.24 – 2.06 (m, 2H), 2.01 – 1.92 (m, 1H), 

1.90 – 1.81 (m, 1H), 1.76 – 1.65 (m, 1H), 1.63 – 1.25 (m, 15H), 1.24 – 1.13 (m, 1H), 
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0.89 (m, 3H), 0.78 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 151.4, 135.6, 132.6, 127.2, 

126.0, 115.4, 82.1, 50.2, 44.1, 43.4, 39.1, 36.9, 31.9, 30.8, 30.3, 30.2, 29.5, 29.4, 27.4, 

26.6, 23.3, 22.8, 14.3, 11.2. HRMS (EI): Exact mass calculated for C24H36O2 [M] +: 

356.2715, found 356.2714. 

2.6 (8R,9S,13S,14S,17S)-2-Isobutyl-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthrene-3,17-diol (4e)[35] 

White solid, 69% yield (0.229 g). ����
�� = 75.2 (c = 0.32, CHCl3), (lit. [24] ����

��.	 = 

70.8 (CHCl3). 
1H NMR (400 MHz, CDCl3) δ 6.98 (s, 1H), 6.50 (s, 1H), 3.74 (m, 1H), 

2.90 – 2.70 (m, 2H), 2.48 – 2.38 (d, 2H), 2.32 (m, 1H), 2.14 (m, 2H), 1.99 – 1.82 (m, 

3H), 1.75 – 1.65 (m, 1H), 1.55 – 1.13 (m, 8H), 0.94 (d, 6H), 0.78 (s, 3H). 13C NMR 

(101 MHz, CDCl3) δ 151.6, 135.6, 132.4, 128.3, 124.8, 115.3, 82.1, 50.2, 44.1, 43.41, 

39.4, 39.1, 36.9, 30.8, 29.4, 29.26, 27.4, 26.6, 23.3, 22.8, 22.7, 11.2. HRMS (EI): 

Exact mass calculated for C22H32O2 [M] +: 328.2402, found 328.2408. 

2.7 (8R,9S,13S,14S,17S)-13-Methyl-2-neopentyl-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (4f) 

White solid, 34% yield (0.120 g). ����
�� = 85.9 (c = 0.40, CHCl3). 

1H NMR (400 MHz, 

CDCl3) δ 6.96 (s, 1H), 6.51 (s, 1H), 3.74 (t, J = 8.4 Hz, 1H), 2.86 – 2.76 (m, 2H), 2.47 

(s, 2H), 2.30 (m, 1H), 2.14 (m, 2H), 1.95 (m, 1H), 1.86 (m, 1H), 1.70 (m, 1H), 1.54 – 

1.15 (m, 8H), 0.95 (s, 9H), 0.79 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 152.0, 135.9, 

132.0, 129.9, 122.9, 115.5, 82.1, 50.2, 44.1, 43.4, 43.2, 39.1, 36.9, 32.8, 30.8, 29.7, 

29.3, 27.4, 26.6, 23.3, 11.3. HRMS (EI): Exact mass calculated for C23H34O2 [M] +: 

342.2559, found 342.2553. 

2.8 (8R,9S,13S,14S,17S)-2-Benzyl-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-

6H-cyclopenta[a]phenanthrene-3,17-diol (4g)[35] 

White solid, 89% yield (0.330 g). ����
�� = 60.5 (c = 0.94, CHCl3), (lit. [24] ����

�� = 

54.5 (CHCl3). 
1H NMR (400 MHz, CDCl3) δ 7.33 – 7.16 (m, 5H), 7.05 (s, 1H), 6.52 

(s, 1H), 4.02 – 3.90 (m, 2H), 3.73 (t, J = 8.7 Hz, 1H), 2.88 – 2.71 (m, 2H), 2.30 – 2.04 

(m, 3H), 1.96 – 1.82 (m, 2H), 1.70 (m, 1H), 1.53 – 1.14 (m, 8H), 0.78 (s, 3H). 13C 

NMR (101 MHz, CDCl3) δ 151.7, 140.4, 136.5, 132.8, 128.7, 128.7, 128.1, 126.4, 
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124.3, 115.9, 82.1, 50.2, 44.1, 43.4, 39.0, 36.8, 36.6, 30.7, 29.4, 27.4, 26.5, 23.3, 11.2. 

HRMS (EI): Exact mass calculated for C25H30O2 [M] +: 362.2246, found 362.2260. 

2.9 (8R,9S,13S,14S,17S)-2-(4-fluorobenzyl)-13-Methyl-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (4h) 

Pale yellow solid, 70% yield (0.266 g). ����
�� = 342.7 (c = 0.33, MeOH). 1H NMR 

(400 MHz, CDCl3) δ 7.22 – 7.16 (m, 2H), 7.02 (s, 1H), 6.99 – 6.92 (m, 2H), 6.51 (s, 

1H), 3.97 – 3.85 (m, 2H), 3.76 – 3.69 (m, 1H), 2.87 – 2.73 (m, 2H), 2.29 – 2.04 (m, 

3H), 1.96 – 1.82 (m, 2H), 1.76-1.66 (m, 1H), 1.74 – 1.13 (m, 8H), 0.78 (s, 3H). 13C 

NMR (101 MHz, CDCl3) δ 161.6 (d, JCF = 245 Hz), 151.5, 136.6, 136.3 (d, JCF = 

3Hz), 132.9, 130.1 (d, JCF = 8Hz), 128.0, 124.3, 115.8, 115.4 (d, JCF = 21 Hz), 81.1, 

50.2, 44.1, 43.4, 39.0 36.8, 35.6, 30.7, 29.4, 27.4, 26.5, 23.3, 11.2. HRMS (EI): Exact 

mass calculated for C25H29FO2 [M] +: 380.2152, found 380.2157. 

 

2.10 (8R,9S,13S,14S,17S)-2-(4-chlorobenzyl)-13-Methyl-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (4i) 

Pale yellow solid, 89% yield (0.353 g). ����
�� = 82.6 (c = 0.84, MeOH). 1H NMR (400 

MHz, CDCl3) δ 7.24 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.5 Hz, 2H), 7.02 (s, 1H), 6.50 

(s, 1H), 3.99 – 3.83 (m, 2H), 3.78 – 3.65 (m, 1H), 2.91 – 2.65 (m, 2H), 2.33 – 2.21 (m, 

1H), 2.21 – 2.06 (m, 2H), 1.99 – 1.81 (m, 2H), 1.75 – 1.08 (m, 9H), 0.93 – 0.85 (m, 

1H), 0.78 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 151.3, 139.1, 136.5, 132.9, 131.8, 

130.0, 128.6, 127.9, 123.9, 115.7, 81.9, 50.0, 43.9, 43.3, 38.9, 36.7, 35.6, 30.6, 29.2, 

27.2, 26.4, 23.1, 11.1. HRMS (EI): Exact mass calculated for C25H29ClO2 [M] +: 

398.1856, found 398.1861. 

2.11 (8R,9S,13S,14S,17S)-2-(4-bromobenzyl)-13-Methyl-7,8,9,11,12,13,14,15,16,17-

decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (4j) 

Pale yellow solid, 84% yield (0.371 g). ����
�� = 74.3 (c = 1.2, MeOH). 1H NMR (400 

MHz, CDCl3) δ 7.38 (d, J = 8.4 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 7.01 (s, 1H), 6.49 

(s, 1H), 3.96 – 3.82 (m, 2H), 3.80 – 3.68 (m, 1H), 2.90 – 2.70 (m, 2H), 2.31 – 2.20 (m, 

1H), 2.21 – 2.05 (m, 2H), 1.97 – 1.81 (m, 2H), 1.76 – 1.62 (m, 1H), 1.54 – 1.11 (m, 

8H), 0.89 (t, J = 6.6 Hz, 1H), 0.78 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 151.3, 

139.7, 136.5, 132.9, 131.5, 130.4, 127.9, 123.8, 119.8, 115.7, 81.9, 50.0, 43.9, 43.3, 
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38.9, 36.7, 35.7, 30.6, 29.3, 27.2, 26.4, 23.1, 11.1. HRMS (EI): Exact mass calculated 

for C25H29BrO2 [M] +: 440.1351, found 440.1348. 

2.12 (8R,9S,13S,14S,17S)-2-(4-methoxybenzyl)-13-Methyl-

7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol (4k)  

White solid, 60% yield (0.237 g). ����
�� = 76.8 (c = 0.573, MeOH). 1H NMR (400 

MHz, CDCl3) δ 7.18 – 7.12 (d, J = 8.70 Hz, 2H), 7.04 (s, 1H), 6.86 – 6.80 (d, J = 8.70 

Hz, 2H), 6.52 (s, 1H), 3.95 – 3.83 (m, 2H), 3.78 (s, 3H), 3.73 (t, J = 8.6 Hz, 1H), 2.83 

– 2.75 (m, 2H), 2.27 (m, 1H), 2.21 – 2.04 (m, 2H), 1.90 (m, 2H), 1.77-1.67 (m, 1H), 

1.75 – 1.13 (m, 8H), 0.78 (s, 3H). 13C NMR (101 MHz, CDCl3) δ 158.2, 151.7, 136.5, 

132.8, 132.3, 129.7, 128.0, 124.6, 115.9, 114.2, 82.1, 55.4, 50.2, 44.1, 43.4, 39.0, 36.9, 

35.8, 30.8, 29.4, 27.4, 26.5, 23.3, 11.2. HRMS (EI): Exact mass calculated for 

C26H32O3 [M] +: 392.2351, found 392.2328. 

2.13 Cancer Cell Growth Inhibition  

Human cervical carcinoma (HeLa) cells were seeded in 96-well plates at 15,000 

cells/well in the presence of 5-fold dilutions of the compounds. After 3 days of 

incubation, the cells were trypsinized and counted by means of a Coulter counter 

(Analis, Belgium). Human dermal microvascular endothelial (HMEC-1) cells were 

seeded on gelatin-coated 48-well plates at 20,000 cells/well. After overnight 

incubation, 5-fold dilutions of the compounds were added. Three days later, the cells 

were trypsinized and counted. Human T-cell leukemia (CEM) cells were seeded in 

96-well plates at 60,000 cells/well in the presence of the compounds, allowed to 

proliferate for 4 days and then counted. The 50% inhibitory concentration (IC50) was 

defined as the compound concentration required to reduce cell proliferation by 50% 

[38].  

 

3. Results 

3.1 Chemistry 

The synthesis of the analogs started with the preparation of the steroid 4a as outlined 

in Scheme 2. Commercially available 17β-estradiol (2) was added together with 

acetaldehyde, copper(II) trifluoromethanesulfonate and ethanethiol and stirred in 

2,2,2-trifluoroethanol at 50 °C overnight. Then triethylsilane was added, and the 

mixture was stirred at 50 °C for additional four hours. The desired 2-ethyl substituted 
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estrogen 4a was obtained in excellent 80% isolated yield after chromatographic 

purification. Gratifyingly, only one regioisomer of 4a was detected by HPLC analysis 

of the crude reaction mixture and by comparison with NMR data from literature [34, 

35]. In the 1H NMR spectrum of 4a two singlet signals were observed at 7.06 ppm 

and 6.50 ppm as expected for a 2-substituted estradiol [34, 35]. The singlet at 7.06 

ppm in the 1H NMR spectrum is observed for H1 (Fig, 1), as determined by 

interpretation of the cross peaks detected for this singlet in the HSQC and HMBC 

NMR spectra (see Supporting information). For a 4-substituted estradiol one would 

expect the presence of two doublets with equal ortho-coupling constant integrating for 

one hydrogen each in the aromatic region, as reported earlier [34, 39]. The 13C NMR- 

and the 2D NMR-spectra (COSY45, HSQC and HMBC) also supported the formation 

of 2-ethyl estradiol (see Supporting information). In particular the HMBC-spectrum 

provided additional support for the formation of 2-ethyl estradiol (4a) as the singlet at 

7.06 ppm in the 1H NMR spectrum showed correlation with signals at 22.9 ppm and 

14.2 ppm in the 13C NMR spectrum arising from the CH2- and the CH3-group in the 

ethyl-substituent, respectively. For the other n-alkylated aldehydes subjected to the 

same conditions, good to high yields in the range of 64-73% were observed for the 

products 4b-4d, Scheme 2. Sterically more demanding aldehydes were also tested, 

that returned the desired 2-alkylated estrogen in 69% and 34% isolated yields of 4e 

and 4f, respectively. For 2-neopentyl estradiol (4f) the yield was poor, most likely due 

to the steric hindrance of pivaldehyde. Disappointingly, 3-methylbut-2-enal did not 

return any of the 2-substituted product as only the starting material 2 was recovered. 

The introduction of a prenyl-group in either the 2- or the 4-position of 2 would be of 

interest towards a biomimetic synthesis of naturally occurring terpenoid-derived 

estradiols [40]. When benzaldehydes were used, high (70%) to excellent yields (89%) 

were observed, as observed for products 4g-4j. The electron-releasing para-methoxy 

benzaldehyde resulted in a 60% isolated yield of 4k. Of note, neither 2-thiophene 

carboxaldehyde nor 2-furane carboxaldehyde reacted in this reaction. In both cases 

17β-estradiol (2) was recovered unreacted. The spectral data of all known as well as 

new products were in accord with their assigned structures. Our attempts when using 

estrone or its 17-ethylene acetal with acetaldehyde gave complex reaction mixtures in 

both cases.  
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Scheme 2. Regioselective alkylation of 17β-estradiol (2). 

 

 

3.2 Biological evaluations 

The 2-alkylated analogs were submitted to human T-cell leukemia (CEM), human 

cervix carcinoma (HeLa) and human dermal microvascular endothelial cells (HMEC-

1) for the evaluation of their anti-proliferative effects. The data are expressed as IC50 

(50% inhibitory concentration), which is defined as the compound concentration that 

reduces cell proliferation by 50%, and are shown in Table 1. The reference compound 

2-ME (1) inhibited the growth of all cell lines tested in the low micromolar range 

(IC50 between 0.4 and 1.6 µM). The most potent compound was the 2-ethyl analog 4a 

with IC50 values of 5.6 ± 0.8 and 9.5 ± 0.9 µM towards the CEM and HeLa cell lines, 

respectively. None of the compounds inhibited the growth of the endothelial cell line, 

which may point to a tumor-selective mechanism of action. However, since they were 

less potent than 2-ME (1), no further biological studies were conducted.  
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Table 1. Anti-proliferative activity of 2-alkyl analogs 4a-4k and 2-ME (1) 

  

Compound 

 

CEM 

IC50 (µM )a 

HeLa 

IC50 (µM )a 

HMEC-1 

IC50 (µM )a 

2-ME (1) 1.6 ± 0.9 0.41 ± 0.06 1.3 ± 0.5 

4a 5.6 ± 0.8 9.5 ± 0.9 > 50 

4b 24 ± 10 29 ± 0 > 50 

4c 25 ± 8 27 ± 5 > 50 

4d 18 ± 7 21 ± 4 > 50 

4e 25 ± 8 24 ± 5 > 50 

4f 36 ± 2 43 ± 7 > 50 

4g 15 ± 0 27 ± 6 > 50 

4h 35 ± 1 33 ± 11 > 50 

4i 31 ± 1 33 ± 11 > 50 

4j 19 ± 12 31 ± 14 > 50 

4k 15 ± 3 25 ± 2 > 50 
a Results of three experiments performed as duplicates 

 

4. Conclusions 

Structure-activity relationship (SAR) studies have shown that the endogenously 

formed metabolite of 17β-estradiol (2), namely 2-methoxyestradiol (1), is amendable 

for changes in the 2-position of the A-ring [41]. Several alkyl substituents in this 

position were easily introduced in 2 using a recently reported one-pot protocol [35]. 

The yields of the alkylated products were high to excellent, except for one example. 

This one-pot protocol is easy to conduct compared to the multi-step protocols 

previously reported [15, 36, 37, 42]. One-pot protocols offer many advantages, such 

as avoiding isolation, handling and chromatography of intermediates leading to time-

cost benefits. The 17-acetate of 17β-estradiol (2), estrone and its ethylene-acetal did 

not react in this protocol. The 2-ethyl analog of 17β-estradiol (2), which displayed 

selective and decent cytotoxic effects, should be useful as a lead compound for further 

structural-activity studies where alterations are to be performed at the C17-position. 

Such analogs are of interest towards the development of novel analogs of 2-ME (1) 

[43]. 



12 
 

Acknowledgements 

The School of Pharmacy, University of Oslo, and Faculty of Health Sciences, Nord 

University, are gratefully acknowledged for financial support. K. V. G. is thankful for 

an ERASMUS grant. The authors also express their sincere gratitude towards the 

European network “Challenging organic syntheses inspired by nature - from natural 

products chemistry to drug discovery” (COST Action CM 1407) for collaborations 

and fruitful scientific interactions. Lizette van Berckelaer is acknowledged for 

excellent technical assistance. 

Appendix A. Supplementary Data 

Supplementary data associated with this article can be found, in the online version, at 

[to be inserted by Editorial office] 

 

REFERENCES 

 

[1] D'Amato RJ, Lin CM, Flynn E, Folkman J, Hamel E. 2-Methoxyestradiol, an 
endogenous mammalian metabolite, inhibits tubulin polymerization by 
interacting at the colchicine site. Proc Natl Acad Sci U S A, 1994; 91: 3964-
8. 

[2] Perez-Perez M-J, Priego E-M, Bueno O, Martins MS, Canela M-D, Liekens S. 
Blocking Blood Flow to Solid Tumors by Destabilizing Tubulin: An 
Approach to Targeting Tumor Growth. J Med Chem, 2016; 59: 8685-8711. 

[3] Fotsis T, Zhang Y, Pepper MS, Adlercreutz H, Montesano R, Nawroth PP, 
Schweigerer L. The endogenous oestrogen metabolite 2-
methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. 
Nature, 1994; 368: 237-9. 

[4] Peyrat J-F, Brion J-D, Alami M. Synthetic 2-methoxyestradiol derivatives: 
structure-activity relationships. Curr Med Chem, 2012; 19: 4142-4156. 

[5] Sattler M, Quinnan LR, Pride YB, Gramlich JL, Chu SC, Even GC, Kraeft S-K, 
Chen LB, Salgia R. 2-Methoxyestradiol alters cell motility, migration, and 
adhesion. Blood, 2003; 102: 289-296. 

[6] Bu S, Blaukat A, Fu X, Heldin N-E, Landstrom M. Mechanisms for 2-
methoxyestradiol-induced apoptosis of prostate cancer cells. FEBS Lett, 
2002; 531: 141-151. 

[7] Wassberg E, Christofferson R. Angiostatic treatment of neuroblastoma. 
Eur J Cancer, 1997; 33: 2020-3. 

[8] Sweeney C, Liu G, Yiannoutsos C, Kolesar J, Horvath D, Staab MJ, Fife K, 
Armstrong V, Treston A, Sidor C, Wilding G. A Phase II Multicenter, 
Randomized, Double-Blind, Safety Trial Assessing the Pharmacokinetics, 
Pharmacodynamics, and Efficacy of Oral 2-Methoxyestradiol Capsules in 
Hormone-Refractory Prostate Cancer. Clin Cancer Res, 2005; 11: 6625-
6633. 



13 
 

[9] Dahut WL, Lakhani NJ, Gulley JL, Arlen PM, Kohn EC, Kotz H, McNally D, 
Parr A, Nguyen D, Yang SX, Steinberg SM, Venitz J, Sparreboom A, Figg WD. 
Phase I clinical trial of oral 2-methoxyestradiol, an antiangiogenic and 
apoptotic agent, in patients with solid tumors. Cancer Biol Ther, 2006; 5: 
22-27. 

[10] James J, Murry DJ, Treston AM, Storniolo AM, Sledge GW, Sidor C, Miller 
KD. Phase I safety, pharmacokinetic and pharmacodynamic studies of 2-
methoxyestradiol alone or in combination with docetaxel in patients with 
locally recurrent or metastatic breast cancer. Invest New Drugs, 2006; 25: 
41-48. 

[11] Rajkumar SV, Richardson PG, Lacy MQ, Dispenzieri A, Greipp PR, Witzig 
TE, Schlossman R, Sidor CF, Anderson KC, Gertz MA. Novel therapy with 
2-methoxyestradiol for the treatment of relapsed and plateau phase 
multiple myeloma. Clin Cancer Res, 2007; 13: 6162-6167. 

[12] Solum EJ, Akselsen OW, Vik A, Hansen TV. Synthesis and Pharmacological 
Effects of the Anti-Cancer Agent 2-Methoxyestradiol. Curr Pharm Des, 
2015; 21: 5453-5466. 

[13] Solum EJ, Cheng J-J, Soervik IB, Paulsen RE, Vik A, Hansen TV. Synthesis 
and biological evaluations of new analogs of 2-methoxyestradiol: 
Inhibitors of tubulin and angiogenesis. Eur J Med Chem, 2014; 85: 391-
398. 

[14] Solum EJ, Vik A, Hansen TV. Synthesis, cytotoxic effects and tubulin 
polymerization inhibition of 1,4-disubstituted 1,2,3-triazole analogs of 2-
methoxyestradiol. Steroids, 2014; 87: 46-53. 

[15] Solum EJ, Cheng J-J, Sylte I, Vik A, Hansen TV. Synthesis, biological 
evaluation and molecular modeling of new analogs of the anti-cancer 
agent 2-methoxyestradiol: potent inhibitors of angiogenesis. RSC Adv, 
2015; 5: 32497-32504. 

[16] Olah GA. Friedel-Crafts Chemistry. Wiley: New York 1973. 
[17] Sawama Y, Shishido Y, Kawajiri T, Goto R, Monguchi Y, Sajiki H. Iron-

Catalyzed Friedel-Crafts Benzylation with Benzyl TMS Ethers at Room 
Temperature. Chem - Eur J, 2014; 20: 510-516. 

[18] Smith MB, March J. March's Advanced Organich Chemistry: Reactions, 
Mechanisms, and Structure. Wiley: New York 2007. 

[19] Carey FA, Sundberg RJ. Adcanced Organic Chemistry: Part A Structure and 
Mechanisms. Springer: New York 2007. 

[20] Tsuchimoto T, Hiyama T, Fukuzawa S-i. Scandium(III) 
trifluoromethanesulfonate-catalyzed reductive Friedel-Crafts benzylation 
of aromatic compounds using arenecarbaldehydes and propane-1,3-diol. 
Chem Commun (Cambridge), 1996: 2345-2346. 

[21] Miyai T, Onishi Y, Baba A. Indium trichloride catalyzed reductive Friedel-
Crafts alkylation of aromatics using carbonyl compounds. Tetrahedron 
Lett, 1998; 39: 6291-6294. 

[22] Miyai T, Onishi Y, Baba A. Novel reductive Friedel-Crafts alkylation of 
aromatics catalyzed by indium compounds: chemoselective utilization of 
carbonyl moieties as alkylating reagents. Tetrahedron, 1999; 55: 1017-
1026. 



14 
 

[23] Tsuchimoto T, Tobita K, Hiyama T, Fukuzawa S-I. Scandium(III) Triflate-
Catalyzed Friedel-Crafts Alkylation Reactions. J Org Chem, 1997; 62: 
6997-7005. 

[24] Hatakeyama T, Hashimoto T, Kondo Y, Fujiwara Y, Seike H, Takaya H, 
Tamada Y, Ono T, Nakamura M. Iron-Catalyzed Suzuki-Miyaura Coupling 
of Alkyl Halides. J Am Chem Soc, 2010; 132: 10674-10676. 

[25] Gonzalez-Bobes F, Fu GC. Amino Alcohols as Ligands for Nickel-Catalyzed 
Suzuki Reactions of Unactivated Alkyl Halides, Including Secondary Alkyl 
Chlorides, with Arylboronic Acids. J Am Chem Soc, 2006; 128: 5360-5361. 

[26] Molander GA, Argintaru OA, Aron I, Dreher SD. Nickel-Catalyzed Cross-
Coupling of Potassium Aryl- and Heteroaryltrifluoroborates with 
Unactivated Alkyl Halides. Org Lett, 2010; 12: 5783-5785. 

[27] Yang C-T, Zhang Z-Q, Liu Y-C, Liu L. Copper-Catalyzed Cross-Coupling 
Reaction of Organoboron Compounds with Primary Alkyl Halides and 
Pseudohalides. Angew Chem, Int Ed, 2011; 50: 3904-3907, S3904/1-
S3904/108. 

[28] Li C, Chen T, Li B, Xiao G, Tang W. Efficient Synthesis of Sterically 
Hindered Arenes Bearing Acyclic Secondary Alkyl Groups by Suzuki-
Miyaura Cross-Couplings. Angew Chem, Int Ed, 2015; 54: 3792-3796. 

[29] Bair JS, Schramm Y, Sergeev AG, Clot E, Eisenstein O, Hartwig JF. Linear-
Selective Hydroarylation of Unactivated Terminal and Internal Olefins 
with Trifluoromethyl-Substituted Arenes. J Am Chem Soc, 2014; 136: 
13098-13101. 

[30] Robbins DW, Hartwig JF. Sterically Controlled Alkylation of Arenes 
through Iridium-Catalyzed C-H Borylation. Angew Chem, Int Ed, 2013; 52: 
933-937. 

[31] Hofsløkken NU, Skattebøl L. Convenient method for the ortho-formylation 
of phenols. Acta Chem Scand, 1999; 53: 258-262. 

[32] Hansen TV, Skattebøl L. Ortho-formylation of phenols; Preparation of 3-
bromosalicylaldehyde. Org Synth, 2005; 82: 64-68. 

[33] Hansen TV, Skattebøl L. Discussion Addendum For:Ortho-Formylations Of 
Phenols;Preparation Of 3-Bromosalicylaldehyde. Org Synth, 2003. 

[34] Akselsen ØW, Hansen TV. ortho-Formylation of estrogens. Synthesis of 
the anti-cancer agent 2-methoxyestradiol. Tetrahedron, 2011; 67: 7738-
7742. 

[35] Parnes R, Pappo D. Reductive Alkylation of Arenes by a Thiol-Based 
Multicomponent Reaction. Org Lett, 2015; 17: 2924-2927. 

[36] Cushman M, He H-M, Katzenellenbogen JA, Lin CM, Hamel E. Synthesis, 
Antitubulin and Antimitotic Activity, and Cytotoxicity of Analogs of 2-
Methoxyestradiol, an Endogenous Mammalian Metabolite of Estradiol 
That Inhibits Tubulin Polymerization by Binding to the Colchicine Binding 
Site. J Med Chem, 1995; 38: 2041-9. 

[37] Bubert C, Leese MP, Mahon MF, Ferrandis E, Regis-Lydi S, Kasprzyk PG, 
Newman SP, Ho YT, Purohit A, Reed MJ, Potter BVL. 3,17-Disubstituted 2-
alkylestra-1,3,5(10)-trien-3-ol derivatives: Synthesis, in vitro and in vivo 
anticancer activity. J Med Chem, 2007; 50: 4431-4443. 

[38] Canela M-D, Perez-Perez M-J, Noppen S, Saez-Calvo G, Diaz JF, Camarasa 
M-J, Liekens S, Priego E-M. Novel Colchicine-Site Binders with a 



15 
 

Cyclohexanedione Scaffold Identified through a Ligand-Based Virtual 
Screening Approach. J Med Chem, 2014; 57: 3924-3938. 

[39] Liu Y, Kim B, Taylor SD. Synthesis of 4-Formyl Estrone Using a Positional 
Protecting Group and Its Conversion to Other C-4-Substituted Estrogens. J 
Org Chem, 2007; 72: 8824-8830. 

[40] Dewick PM. Medicinal Natural Products : A Biosynthetic Approach. John 
Wiley & Sons, Ltd.: Chichester 2009, p. 187-310. 

[41] Verenich S, Gerk PM. Therapeutic promises of 2-Methoxyestradiol and its 
drug disposition challenges. Mol Pharmaceutics, 2010; 7: 2030-2039. 

[42] Pert DJ, Ridley DD. Preparation of 2-isopropyloestradiol. Aust J Chem, 
1988; 41: 1145-8. 

[43] Tinley TL, Leal RM, Randall-Hlubek DA, Cessac JW, Wilkens LR, Rao PN, 
Mooberry SL. Novel 2-methoxyestradiol analogues with antitumor 
activity. Cancer Res, 2003; 63: 1538-1549. 

 


