

Declining population trends of European mountain birds

Journal:	Global Change Biology
Manuscript ID	GCB-18-1171.R1
Wilow Manuscript type	Drimany Desearch Articles
whey - Manuscript type:	
Date Submitted by the Author:	n/a
Complete List of Authors:	Lehikoinen, Aleksi; Finnish Museum of Natural History, Finnish Museum of Natural History Brotons, Lluís; CEMFOR-CTFC, InForest Joint Research Unit, Biodiversity and Landscape ecology Calladine, John Campedelli, Tommaso Escandell, Virginia Flousek, Jiri Grueneberg9, Christoph Haas, Fredrik Harris, Sarah Herrando, Sergi; European Bird Census Council-Catalan Ornithological Institute, Natural History Museum of Barcelona, Husby, Magne Jiguet, Frédéric; MNHN, EGB Kålås, John-Atle Lindström, Åke; Lund University, Biology Lorrilliere, Romain Pladevall, Clara Calvi, Gianpiero Sattler, Thomas Schmid, Hans; Swiss Ornithological Institute, Sirkiä, Päivi; Luonnontieteellinen keskusmuseo Teufelbauer, Norbert Trautmann, Sven
Keywords:	alpine habitat, agriculture, afforestation, common bird monitoring, global warming, land use changes, loss of biodiversity, mountain population
Abstract:	Mountain areas often hold special species communities, and they are high on the list of conservation concern. Global warming and changes in human land use, such as grazing pressure and afforestation, have been suggested to be major threats for biodiversity in the mountain areas, affecting species abundance and causing distribution shifts towards mountain tops. Population shifts towards poles and mountain tops have been documented in several areas indicating that climate change is one of the key drivers of species' distribution changes. Despite the high conservation concern, relatively little is known about the population trends of species in mountain areas due to low accessibility and difficult working conditions. Thanks to the recent improvement of bird monitoring schemes around Europe we can here report a first account of population

trends of 44 bird species from four major European mountain regions: Fennoscandia, UK upland, south-western (Iberia) and south-central mountains (Alps), covering 12 countries. Overall the mountain bird species declined significantly (-7%) during 2002–2014, which is similar to the declining rate in common birds in Europe during the same period. Mountain specialists showed a significant -10% decline in population numbers. The slope for mountain generalists was also negative, but not significantly so. The slopes of specialists and generalists did not differ from each other. Fennoscandian and Iberian populations were on average declining, while in UK and Alps trends were non-significant. Temperature change or migratory behaviour were not significantly associated with regional population trends of species. Alpine habitats are highly vulnerable to climate change and this is certainly one of the potential main drivers of mountain bird population trends. However, observed declines can also be partly linked with local land use practices. More efforts should be undertaken to identify the causes of decline and to increase conservation efforts for these populations.

SCHOLARONE[™] Manuscripts

1	Declining population trends of European mountain birds
2	
3	Running head: Decline of European mountain bird populations
4	
5	
6	Aleksi Lehikoinen ^{1*} , Lluís Brotons ^{2,3,4} , John Calladine ⁵ , Tommaso Campedelli ⁶ ,
7	Virginia Escandell ⁷ , Jiri Flousek ⁸ , Christoph Grueneberg ⁹ , Fredrik Haas ¹⁰ , Sarah
8	Harris ¹¹ , Sergi Herrando ¹² , Magne Husby ¹³ , Frederic Jiguet ¹⁴ , John-Atle Kålås ¹⁵ , Åke
9	Lindström ¹⁰ , Romain Lorrillière ^{14, 16} , Blas Molina ⁷ , Clara Pladevall ¹⁷ , Gianpiero Calvi ⁶ ,
10	Thomas Sattler ¹⁸ , Hans Schmid ¹⁸ , Päivi M. Sirkiä ¹ , Norbert Teufelbauer ¹⁹ & Sven
11	Trautmann ⁹
12	
13	¹ Finnish Museum of Natural History, University of Helsinki, Finland.
14	² InForest Jru (CTFC-CREAF), Solsona, 25280. Spain.
15	³ CREAF, Cerdanyola del Vallés, 08193, Spain.
16	⁴ CSIC, Cerdanyola del Vallés, 08193, Spain.
17	⁵ British Trust for Ornithology (Scotland), University of Stirling, FK9 2 LA, Scotland.
18	⁶ Italian Common Breeding Bird monitoring programme. c/o Lipu/BirdLife Italia, via
19	Udine 3/a, I-43122 Parma, PR, Italy.
20	⁷ Estudio y seguimiento de aves SEO/BirdLife, C/ Melquíades Biencinto, 34 - 28053
21	Madrid, Spain.

22 ⁸ Krkonose National Park, 543 01 Vrchlabi, Czech Republic.

23	⁹ Dachverband Deutscher	Avifaunisten	(DDA) e.V.,	Geschäftsstelle, A	An den Speichern	6,
----	------------------------------------	--------------	-------------	--------------------	------------------	----

- 24 48157 Münster, Germany.
- ¹⁰ Department of Biology, Biodiversity unit, Lund University, Ecology Building, S-223
- 26 62 Lund, Sweden.
- ¹¹ The British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU, UK.
- 28 ¹² Catalan Ornithological Institute. Natural History Museum of Barcelona, Spain
- 29 Pl. Leonardo da Vinci 4-5. 08019 Barcelona, Catalonia, Spain.
- ¹³ Section of Science, Nord University, N-7600 Levanger, Norway.
- ¹⁴ Centre d'Ecologie et des Sciences de la COnservation (CESCO UMR 7204), Museum
- 32 National d'Histoire Naturelle, Paris, France.
- ¹⁵ Norwegian Institute for Nature Research, Postboks 5685 Torgarden, 7485 Trondheim,
- 34 Norway.
- ¹⁶ Université Paris-Sud, UMR 8079 Ecologie Systématique Evolution, bât. 362, 91405
- 36 Orsay, France
- 37 ¹⁷ Snow and Mountain Research Center of Andorra (CENMA) Andorran Research
- 38 Institute (IEA) Avinguda Rocafort 21-23, Edifici Molí AD600 Sant Julià de
- 39 Lòria, Principality of Andorra.
- 40 ¹⁸ Swiss Ornithological Institute, Seerose 1, 6204 Sempach, Switzerland.
- ¹⁹ BirdLife Österreich, Museumsplatz 1/10/7-8, A-1070 Wien, Austria.
- 42
- 43 *corresponding author, aleksi.lehikoinen@helsinki.fi, +358451375732

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

45 Keywords: alpine habitat, agriculture, afforestation, common bird monitoring, global 46 warming, land use changes, loss of biodiversity, mountains, population trend, 47 upland 48 49 50 Summary 51 Mountain areas often hold special species communities, and they are high on the list 52 53 of conservation concern. Global warming and changes in human land use, such as 54 grazing pressure and afforestation, have been suggested to be major threats for 55 biodiversity in the mountain areas, affecting species abundance and causing 56 distribution shifts towards mountain tops. Population shifts towards poles and 57 mountain tops have been documented in several areas indicating that climate 58 change is one of the key drivers of species' distribution changes. Despite the high 59 conservation concern, relatively little is known about the population trends of 60 species in mountain areas due to low accessibility and difficult working conditions. 61 Thanks to the recent improvement of bird monitoring schemes around Europe we 62 can here report a first account of population trends of 44 bird species from four 63 major European mountain regions: Fennoscandia, UK upland, south-western 64 (Iberia) and south-central mountains (Alps), covering 12 countries. Overall the 65 mountain bird species declined significantly (-7%) during 2002–2014, which is 66 similar to the declining rate in common birds in Europe during the same period. 67 Mountain specialists showed a significant -10% decline in population numbers. The

68	slope for mountain generalists was also negative, but not significantly so. The slopes
69	of specialists and generalists did not differ from each other. Fennoscandian and
70	Iberian populations were on average declining, while in UK and Alps trends were
71	non-significant. Temperature change or migratory behaviour were not significantly
72	associated with regional population trends of species. Alpine habitats are highly
73	vulnerable to climate change and this is certainly one of the potential main drivers
74	of mountain bird population trends. However, observed declines can also be partly
75	linked with local land use practices. More efforts should be undertaken to identify
76	the causes of decline and to increase conservation efforts for these populations.
77	
78	
79	Introduction
80	
81	Human land use changes and a changing climate are the major threats to
82	biodiversity around the world (Root et al., 2003; Stephens et al., 2016; Travis, 2003).
83	Habitat loss, fragmentation and degradation have affected species distribution
84	ranges and abundances (Baillie, Hilton-Taylor, & Stuart, 2004; Fahrig, 2003). Global
85	warming has shifted species distribution areas towards the poles and mountain tops
86	(Chen, Hill, Ohlemüller, Roy, & Thomas, 2011; Maggini et al., 2011). From a
87	conservation point-of-view, it is, however, equally important to understand the
88	effects of climate change on population densities, that do not necessarily coincide
89	with distributional changes (Chamberlain & Fuller, 2001). In general, while
90	populations of lowland bird and butterfly species have been shown to change

Global Change Biology

91	according to climate change scenarios in Europe and North America (Breed,
92	Stichter, & Crone, 2013; Devictor et al., 2012; Lindström, Green, Paulson, Smith, &
93	Devictor, 2013; Stephens et al., 2016), the population status of species in the
94	mountain areas are generally poorly known (Chamberlain et al., 2012; Scridel et al.,
95	2018; but see Flousek, Telenský, Hanzelka, & Reif, 2015; Lehikoinen, Green, Husby,
96	Kålås, & Lindström, 2014).
97	Mountain areas often hold special species communities and are thus in the
98	high priority list of conservation (Rodriguez-Rodriguez, Bomhard, Butchart, &
99	Forster, 2011). Furthermore, mountain species have been suggested to be
100	particularly vulnerable to climate change, since it is generally more difficult for them
101	to find new suitable habitats towards the mountain tops (low habitat availability
102	simply because of orography, Gonzalez, Neilson, Lenihan, & Drapek, 2010; Huntley,
103	Green, Collingham, & Willis, 2007; Sekercioglu, Schneider, Fay, & Loarie, 2008) or in
104	other mountain ranges (low connectivity between them, Sirami et al., 2016). The
105	rise in temperature associated with global warming has been predicted to be two to
106	three times higher in the 21st century than recorded during the 20th century
107	(Nogués-Bravo, Araújo, Errea, & Martinez-Rica, 2007). In addition to climate change,
108	mountain species, especially species breeding in uppermost open alpine areas, are
109	also threatened by human land use changes such as altered grazing pressure,
110	afforestation, increased disturbance of recreational activities, pollution (nitrogen
111	and acid deposition) and their interactions (Arlettaz et al., 2007; Brambilla et al.,
112	2010; Britton & Fisher, 2007; Herrando et al., 2016; Ims & Henden, 2012; van der
113	Wal et al., 2003).

Page 7 of 46

Global Change Biology

114	The use of biodiversity indicators has become an increasingly common way to
115	monitor changes in the environment (Butchart et al., 2010; Gregory et al., 2005; 2008).
116	Indicators, such as Biodiversity Change Index (Normander et al., 2012), Living Planet
117	Index (Collen et al., 2009) and Red List Index (Butchart et al., 2005) gather large
118	number of information into a single index value, which are easy to understand not
119	only by scientists, but also policy makers and the public (Gregory et al., 2005). Recent
120	advances in this research field have produced e.g. continental indicators of farmland
121	birds and climate change (Gregory et al., 2005; Stephens et al., 2016), but a
122	continental indicator for mountain areas has been lacking. To produce such
123	indicators, large and long-term datasets are required.
124	From the practical side, monitoring the fate of mountain species may be
125	particularly demanding as mountain areas are often difficult to access, the number
126	of species sharply decrease with altitude (Zbinden et al., 2010) and population
127	densities of species are low (Lehikoinen et al., 2014). Thanks to the recent
128	improvements of the national bird monitoring in Fennoscandia (Norway, Sweden
129	and Finland), with new schemes covering also the most remote mountain areas, a
130	first-ever regional bird indicator for the Fennoscandian mountain range was created
131	by Lehikoinen et al., (2014). In this study we have analysed mountain bird trends at
132	the continental scale, with data from 11 different mountain ranges in Europe.
133	The aim of this work is (i) to investigate population trends of the common bird
134	species in Europe breeding on high altitude mountain habitats, (ii) to evaluate
135	whether population trends differ between species with different ecological
136	characteristics, which may add information on underlying causes of population

Global Change Biology

Page 8 of 46

137	changes, and (iii) to produce the first continental-scale biodiversity indicator for
138	mountain bird communities. In addition, we establish four regional mountain bird
139	indicators. The continental indicator will show the overall situation, whereas the
140	regional indicators will tell more about the local conditions (Gregory et al., 2005).
141	Based on the assumption that climate and land use conditions have negatively
142	affected species inhabiting mountain habitats (Arlettaz et al., 2007; Brambilla et al.,
143	2010; Herrando et al., 2016; Ims & Hender, 2012; Lehikoinen et al., 2014), we
144	hypothesize that mountain bird species, in general, are declining in numbers.
145	Second, we hypothesize that this decline would be stronger in mountain specialists
146	that only occur in mountain areas in our study sites, whereas mountain generalists,
147	which also can be found at lower elevations are doing better because of generally
148	higher ecological flexibility (Davey, Chamberlein, Newson, Noble, & Johnston, 2012;
149	Davey, Devictor, Jonzén, Lindström, & Smith, H. G. 2013; Gough et al., 2015). Third,
150	we predict that population trends of mountain species can be influenced by the
151	migration status of species. We hypothesize that long-distance migrants will have
152	fared relatively poorly, as they displayed on average more negative population
153	trends in recent years across Europe – whatever the elevation – than residents and
154	short-distance migrants (Laaksonen & Lehikoinen, 2013; Sanderson, Donald, Pain,
155	Burfield, & van Bommel, 2006; Vickery et al., 2014). An alternative hypothesis is that
156	if a change in habitat quality in the mountain areas has a negative impact on species
157	which are spending the longest time in the mountain areas, short-distance migrants
158	and resident species should have faced stronger declines than long-distance
159	migratory species (Lehikoinen et al., 2014). Last, we hypothesize that the decline in

160	mountain birds is stronger at northern latitudes than at southern latitudes because
161	temperature is expected to increase more in the north (Jacob et al., 2014).
162	
163	
164	Material and methods
165	
166	Data collection
167	
168	Mountain bird populations have been monitored in 11 different mountain areas
169	distributed in 12 countries, mainly within national monitoring schemes on common
170	breeding birds using mainly systematic sampling (Table S1). In the present study we
171	analysed data from 2002 to 2014. The data collection covered this period unless
172	stated otherwise: Fennoscandia (Finland, Norway and Sweden), UK uplands (Britain
173	and Northern Ireland), the Giant Mountains (Czech Republic, 2002–2011), the Alps
174	(Austria 2008–2012, France, Germany 2005–2012, Italy, Switzerland), Massif
175	Central (France), the Pyrenees (Andorra 2011–2012, France, Spain), the Apennines
176	(Italy), Spanish central mountains (Spain), Spanish Iberian mountain system
177	(Spain), Baetica mountain range (Spain 2003–2012), and Cantabria mountain range
178	(Spain; Table 1). The local census methods are explained in Table S1. Census
179	methodology differed between countries, but this will unlikely introduce systematic
180	bias into the derived trends (see e.g. Gregory et al., 2005; Lehikoinen et al., 2014;
181	Stephens et al., 2016).

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

184	Table 1. The number of study si	ites (mean, n	nin and max during	2002-2014) in 11
-----	---------------------------------	---------------	--------------------	-----------	---------

185 mountain areas distributed over four major mountain regions. In the Giant

- 186 Mountains and the Apennines, the number of point count locations were
- 187 transformed into sites dividing number of point stations by 15 (a typical number in
- 188 point count routes in Italia and the Czech Republic, Giant Mountains).

Mountain area	Region	Mean sites
Fennoscandia	Fennoscandia	160 (60 – 256)
UK upland	UK upland	99 (72 – 140)
Alps	"Alps"	122 (88 – 155)
The Giant Mountains	"Alps"	1 (0 – 2)
Massif Central	"Alps"	1 (0 – 2)
Apennines	"Alps"	20 (9-37)
Baetica mountain range	"Iberia"	6 (0 – 10)
Cantabria mountain		
range	"Iberia"	12 (4 – 17)
Central mountain system	"Iberia"	24 (16 – 29)
Iberian mountain system	"Iberia"	6 (5 – 7)
Pyrenees	"Iberia"	23 (11 - 39)

189

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

192 Site and species selection

193

- 194 To get enough data to calculate trends for a larger set of species, we lumped the 11
- 195 areas into four larger mountain regions: Fennoscandia, UK uplands, south-western
- 196 mountains (including Pyrenees and four Spanish mountain areas, hereafter called as
- 197 "Iberia") and the south-central mountains (including the Alps and the surrounding
- .ns, Ma 198 smaller mountains: Giant Mountains, Massif Central and the Apennines, hereafter
- 199 called as "Alps", Fig. 1).

Fig. 1. A map showing the four European mountain regions, where the data was

203 collected. The dots show the census locations (survey route) except in Italy where

204 each dot represents one point of a point count route.

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Global Change Biology

206

207 Before we could define which species to use in the study, we needed to define 208 "mountain" monitoring sites and species in each region. Our aim was to target 209 species that prefer open or semi-open mountain habitats. These are mainly situated 210 on the highest altitudes of the mountains and are thus in the highest risk in terms of 211 climate change (Gonzalez et al., 2010). Since mountain top populations have limited 212 places to move upwards, the expected population declines should be strongest in 213 high altitude habitats. Thus we selected mountain tundra, meadows, grasslands. 214 bare rock, sparsely vegetated areas, peat bogs and scrubland above certain altitude. 215 We also included the, often spatially adjacent, zones of mountain birch forest and 216 dwarf mountain pine (for simplicity all the mentioned habitats are generally 217 referred to as 'mountain habitat'). For latitudinal reasons (and also exposure on the 218 western seaboard) also the altitudes where open mountain habitat occur varies and 219 this needs to be defined separately for each mountain range. Since some of the 220 species occur also outside the mountains - though we were only interested in the 221 populations living in the mountain areas - we needed to use habitat information to 222 define mountain sites from each area. For instance, due to the long northeast-223 southwest gradient (1600 km) of the Fennoscandian mountain area, mountain 224 habitats vary in altitude. E.g. tundra is first found above 1300 m altitude in the 225 south, but at sea level in the very north (Lehikoinen et al., 2014). It should be noted 226 though, that only 4 out of 289 Fennoscandian sites were situated below 100 metres 227 of altitude. In the rest of the mountain regions, "mountain sites" were set to include 228 at least one-third open mountain habitat and to be above a certain altitude,

229 depending on local conditions such as climate. latitude and historical land use. These 230 altitude thresholds for mountain sites were set to 400 m for UK upland (and where 231 the surveyed habitats were generally open), 1100 m for the Giant Mountains, and 232 1200 m for all the remaining southern mountains, respectively. The UK uplands 233 have a particularly long history of anthropogenic deforestation and in combination 234 with high levels of extensive grazing and climatic exposure. Therefore, open habitats 235 resembling those of montane and alpine areas exist at lower altitudes than would 236 naturally occur (Smout, 2005; Thompson, MacDonald, Marsden, & Galbraith, 1995). 237 Also in the southern and central European sites open areas above the altitude limit 238 are not necessarily caused by the natural tree line, but areas also include subalpine 239 meadows that remain open due to grazing. The number of study sites in each area is 240 given in Table 1.

241 To define species which have significant populations in high altitude mountain 242 habitats (so called mountain species), we used altitude information from each larger 243 mountain range area using data from the UK (line transects, UK uplands) and 244 Switzerland (territory mapping, the Alps) and Spain (line transects, Catalonian 245 Pyrenees). First, we calculated relative densities based on mountain site-specific 246 species abundances and sampling effort (birds/km line transect) in 100m altitude 247 zones starting from the above mentioned mountain thresholds of the regions. Second, based on altitude zone densities, we calculated the mean altitudes of species 248 249 for each mountain region. In the UK, species whose mean altitude were above 550 250 meters (a.s.l.; more than half of the population should be breeding above this 251 altitude in mountain routes) and preferred open mountain habitats were included

252	(Table S2). We calculated mean altitudes separately for the Swiss Alps and the
253	Catalonian Pyrenees and used the mean of these two values for both "Iberia" and
254	"Alps". The altitude threshold for the species in these areas was above 1800 meters
255	(Table S3). In Fennoscandia, a set of 14 common mountain species were already
256	defined by Lehikoinen et al. (2014). However, due to an increased monitoring effort
257	in recent years, we could include nine additional, less common, mountain species for
258	this region (Table 2).
259	
260	
201	

262	Table 2. The average annual population growth rates (trends) and traits of 44
263	mountain bird species in 11 European mountain areas, as well as separate species
264	trends for the "Alps", Fennoscandia, "Iberia" and UK upland during 2002–2014.
265	Traits include specialisation (Sp = mountain specialists, G = generalists;
266	classification based on distribution areas of Hagemeijer & Blair (1997)) and
267	migratory behaviour (Ld = long-distance migrant, Ot = other). Significant population
268	change rates are in bold. '-' means that the species is not a typical mountain bird in
269	the particular mountain region and NE means that species is a typical mountain
270	species in the area, but there were too little data available to calculate trends (see

also Table S4).

Species (specialisation)	Traits	All areas	"Alps"	Fennoscandia	"Iberia"	UK
		Slope \pm SE	Slope ± SE	Slope \pm SE	Slope ± SE	Slope \pm SE
Clangula hyemalis	Sp, Ot	-0.033 ± 0.023		-0.033 ± 0.023	-	-
Buteo buteo	G, Ot	-0.006 ± 0.014	2	-	-	-0.006 ± 0.014
Buteo lagopus	G, Ot	-0.041 ± 0.027	-	-0.041 ± 0.027	-	-
Falco tinnunculus	G, Ot	0.008 ± 0.007	0.011 ± 0.008	5,-	-0.011 ± 0.021	-
Lagopus lagopus	G, Ot	$\textbf{-0.026} \pm \textbf{0.006}$	-	-0.095 ± 0.010	-	0.003 ± 0.007
Lagopus muta	Sp, Ot	$\textbf{-0.018} \pm \textbf{0.008}$	0.013 ± 0.012	-0.047 ± 0.013	NE	NE
Tetrao tetrix	G, Ot	0.010 ± 0.027	0.035 ± 0.039	-	-	NE
Alectoris graeca	Sp, Ot	0.019 ± 0.021	0.019 ± 0.021	-	-	-
Charadrius hiaticula	G, Ot	0.050 ± 0.020	-	0.051 ± 0.021	-	-
Charadrius morinellus	Sp, Ot	0.012 ± 0.022	-	0.035 ± 0.024	-	NE
Pluvialis apricaria	G, Ot	0.013 ± 0.005	-	0.010 ± 0.005	-	0.022 ± 0.012
Calidris alpina	G, Ot	0.005 ± 0.018	-	0.009 ± 0.021	-	NE
Gallinago gallinago	G, Ot	-0.011 ± 0.012	-	-	-	-0.011 ± 0.012

Tringa totanus	G, Ot	0.033 ± 0.010	-	0.033 ± 0.010	-	-
Phalaropus lobatus	G, Ld	-0.003 ± 0.030	-	-0.003 ± 0.030	-	-
Stercorarius longicaudus	Sp, Ld	0.014 ± 0.017	-	0.014 ± 0.017	-	-
Cuculus canorus	G, Ld	$\textbf{-0.053} \pm \textbf{0.007}$	-	$\textbf{-0.053} \pm \textbf{0.007}$	-	-
Alauda arvensis	G, Ot	-0.001 ± 0.003	0.016 ± 0.006	-	$\textbf{-0.033} \pm \textbf{0.008}$	0.004 ± 0.006
Hirundo rupestris	Sp, Ot	0.001 ± 0.009	0.012 ± 0.011	-	-0.017 ± 0.015	-
Anthus pratensis	G, Ot	$\textbf{-0.008} \pm \textbf{0.003}$	NE	-0.012 ± 0.005	NE	-0.005 ± 0.004
Anthus spinoletta	Sp, Ot	-0.001 ± 0.003	0.000 ± 0.003	-	$\textbf{-0.037} \pm \textbf{0.013}$	-
Prunella collaris	Sp, Ot	0.002 ± 0.007	0.002 ± 0.007	-	NE	-
Luscinia svecica	G, Ld	-0.001 ± 0.007	-	-0.002 ± 0.008	-	-
Phoenicurus ochruros	G, Ot	0.008 ± 0.003	$\boldsymbol{0.014 \pm 0.003}$	-	$\textbf{-0.025} \pm \textbf{0.007}$	-
Phoenicurus phoenicurus	G, Ld	0.014 ± 0.007	-	0.014 ± 0.007	-	-
Saxicola rubetra	G, Ld	-0.030 ± 0.008	-0.029 ± 0.008	-	-0.023 ± 0.049	-
Oenanthe oenanthe	G, Ld	$\textbf{0.009} \pm \textbf{0.003}$	0.026 ± 0.004	$\textbf{-}0.005\pm0.008$	-0.013 ± 0.007	0.002 ± 0.008
Monticola saxatilis	Sp, Ld	-0.022 ± 0.013	-0.002 ± 0.017	-	$\textbf{-0.059} \pm \textbf{0.021}$	-
Turdus torquatus	Sp, Ot	0.005 ± 0.004	0.001 ± 0.004	$\textbf{0.060} \pm \textbf{0.025}$	0.000 ± 0.021	-0.006 ± 0.017
Turdus iliacus	G, Ot	$\textbf{-0.033} \pm \textbf{0.006}$	-	-0.033 ± 0.006	-	-
Sylvia curruca	G, Ld	0.011 ± 0.006	0.011 ± 0.006		-	-
Phylloscopus trochilus	G, Ld	$\textbf{-0.032} \pm \textbf{0.003}$	-	-0.032 ± 0.003	-	-
Pyrrhocorax graculus	Sp, Ot	-0.015 ± 0.011	-0.002 ± 0.012		-0.044 ± 0.025	-
Pyrrhocorax pyrrhocorax	G, Ot	$\boldsymbol{0.050 \pm 0.012}$	NE	-	$\textbf{0.053} \pm \textbf{0.014}$	-
Corvus corone	G, Ot	$\textbf{-0.047} \pm \textbf{0.014}$	-	-	-	$\textbf{-0.047} \pm \textbf{0.014}$
Corvus corax	G, Ot	0.016 ± 0.013	-	-	-	0.016 ± 0.013
Montifringilla nivalis	Sp, Ot	$\boldsymbol{0.021 \pm 0.010}$	$\boldsymbol{0.021 \pm 0.010}$	-	NE	-
Fringilla montifringilla	G, Ot	$\textbf{-0.025} \pm \textbf{0.005}$	-	$\textbf{-0.025} \pm \textbf{0.005}$	-	-
Serinus citrinella	Sp, Ot	$\textbf{-0.026} \pm \textbf{0.013}$	-0.051 ± 0.031	-	-0.023 ± 0.016	-
Carduelis cannabina	G, Ot	$\boldsymbol{0.015 \pm 0.007}$	0.007 ± 0.008	-	0.040 ± 0.022	-
Carduelis flammea	G, Ot	$\textbf{-0.048} \pm \textbf{0.005}$	$\textbf{-0.025} \pm \textbf{0.007}$	$\textbf{-0.052} \pm \textbf{0.007}$	-	-

Calcarius lapponica	Sp, Ot	$\textbf{-0.026} \pm \textbf{0.008}$	-	$\textbf{-0.026} \pm \textbf{0.008}$	-	-
Plectrophenax nivalis	Sp, Ot	$\textbf{-0.041} \pm \textbf{0.014}$	-	$\textbf{-0.042} \pm \textbf{0.014}$	-	NE
Emberiza cia	Sp, Ot	-0.031 ± 0.006	$\textbf{-0.024} \pm \textbf{0.012}$	-	$\textbf{-0.033} \pm \textbf{0.008}$	-
272						

Page 21 of 46

Global Change Biology

274	We calculated species-specific population trends for each of the four defined
275	mountain regions: Fennoscandia, UK upland, "Iberia" and "Alps". In addition, we
276	pooled the counts from all regions to calculate species trends for the whole area
277	(further details are given below). Trend analyses were conducted for species which
278	had at least five records per year in a given area (at the regional level, maximally
279	one year with a sample size below five individuals was accepted). When calculating
280	the population trends for Europe, we also included counts from mountain regions
281	which had lower than five records annually to maximize the total sample sizes.
282	Mean annual sample sizes are shown in Table S4.
283	Species were classified into mountain specialists or generalists, based on their
284	distribution areas in Europe. Species mainly restricted to mountain areas and
285	uncommon in the lowlands were classified as mountain specialists whereas species
286	which have substantial populations in the mountains but also commonly breed in
287	lowlands were classified as mountain generalists (Hagemeijer & Blair, 1997, see also
288	Schridel et al., 2018; Thompson, Kålås, & Byrkjedal, 2012; Table 2). Furthermore,
289	species were grouped into long-distance (wintering in tropical areas) and others
290	(including both species wintering in the Western Palearctic and residents) based on
291	their distribution ranges in winter (Cramp, Simmons, & Perrins, 1977–1994;
292	Lehikoinen et al., 2014).
293	
294	Weather data

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Page 22 of 46

296	We used European weather data (available at European Climate Assessment &
297	Dataset http://www.ecad.eu/download/ensembles/download.php in 0.25 degree
298	grids across the continent) to calculate changes in the temperature of the breeding
299	season April-August. We tested rate of change in the mean temperature in each
300	region in the long-term (1980–2014) and short-term (1995–2014) using linear
301	regression. We first calculated region-specific annual mean temperatures from
302	weather sites situated in the mountain region and then conducted the linear
303	regression. The locations from where the data was extracted are shown in Fig. S1.
304	
305	Statistical analyses
306	
307	Log-linear population trends and annual indices were calculated for each species
308	separately using the software TRIM (Pannekoek & Van Strien, 2005). TRIM is a
309	commonly used tool in bird monitoring in Europe that accounts for overdispersion
310	and serial correlation and interpolates missing observations using a Poisson general
311	log-linear model (European Bird Census Council, 2018). TRIM produces annual
312	growth rate as well as annual abundance indices, including their standard errors.
313	Long-term annual growth rates and annual abundance indices were calculated for
314	Europe using aggregated data from all regions and separately for each of the four
315	major mountain regions. We compared the change in the overall mountain bird
316	indicator to the corresponding magnitude of change in European i) common bird, ii)
317	farmland and iii) forest bird indicators during 2002–2014 provided by European
318	Bird Census Council (2018).

Page 23 of 46

Global Change Biology

319	The calculation of the indicators was done using a new statistical tool, which
320	has not been used earlier in continental analyses. We combined annual population
321	indices of species as multi-species indicators using the R-package tool (Soldaat,
322	Pannekoek, Verweij, van Turnhout, & van Strien, 2017). The package calculates
323	annual multi-species indicator values and their standard errors as well as a long-
324	term change of the indicator using Monte Carlo simulation method and the species-
325	specific indices and their standard errors provided by TRIM. We used TREND_DIFF-
326	function of the package to test if the indicators differed from each other (specialist
327	vs generalists, or regional indicators).
328	Spatial differences in sampling network could lead into a situation where
329	trends are more driven by areas where number of census sites is dense compared to
330	areas where the network is sparse. We therefore, per each contributing country,
331	weighted the trend analyses by the spatial coverage of the national network. As
332	weight we used the country-specific mountain region area divided by the number of
333	census sites (average area per census sites: larger value mean lower density of
334	census sites). Thus, census sites in countries with proportionally fewer routes in
335	mountain areas weighed more in the analyses. France contributed to data of two
336	regions ("Iberia" and "Alps") and thus the weights were calculated separately for
337	these regions. The mountain area was measured using Corine land cover data
338	(Copernicus Land Monitoring Service 2016), where mountain habitats were i)
339	natural grasslands, ii) moors and heathlands, iii) transitional woodland shrubs, iv)
340	bare rock, v) sparsely vegetated areas, vi) glaciers and perpetual snow and vii) peat
341	bogs, which were above certain region-specific altitude (see Table S5). Here we have

Page 24 of 46

342 used the data of the year 2012 only. We believe that this represents the general 343 situation in each country, because these habitat types unlikely show large scale 344 changes during the relatively short study period. 345 Last, we analysed a set of factors that potentially could explain the regional 346 population trends of species provided by TRIM analyses in the four major mountain 347 areas during 2002–2014, using GLMM (functions lmer and lmerTest in R). Regional 348 long-term population trends were tested against migratory behaviour (long-349 distance migrants or other, the latter including residents, which are rare among 350 mountain birds), specialisation (mountain specialists or generalists) and short-term 351 temperature change in each region ("Alps", Fennoscandia, "Iberia" and the UK; 352 Table 3). Species was a random factor in the model to account for some species 353 having data from several mountain regions whereas some only have data from one 354 of them. We took phylogeny into account in the analyses since species with the same 355 ancestors may have more similar responses. We did this by first using various 356 phylogenic structures (order, family and genus based on del Hoyo, Collar, Christie, Elliot. & Fishpool (2014) and del Hoyo et al. (2016), altogether eight combinations, 357 358 see Table S6) in the random part of the full model. We ranked these models based 359 on AICc (Burnham & Anderson, 2004). Second we used the best phylogenic 360 structure in the final analyses, where we constructed 12 model combinations, and 361 where the full model included the two-way interactions temperature*migration and 362 temperature*specialisation. The inclusion of an interaction between temperature 363 and migration was based on the hypothesis that species that spend most of the time 364 in the mountain areas (short-distance migrants and residents) may face the largest

365	declines in areas where the temperature increase has been highest. The interaction
366	between temperature and specialisation relates to the hypothesis that specialists
367	would be declining fastest in the area with high temperature increase. The model
368	combinations are shown in Table 3. These 12 models were ranked based on AIC
369	corrected for small sample sizes (Burnham & Anderson, 2004). Finally, we took the
370	uncertainty of the population trends into account in the analyses using the
371	reciprocal of the standard errors of the trends as weights. We used R (version 3.4.1)
372	in all the analyses (R Development Core Team, 2017).
373	
374	Results
375	
376	Because the results of the weighted analyses according to the national area per
377	census sites ratio were almost identical to the non-weighted analyses (Table S6), we
378	decided to show only the un-weighted results in the main results section (Table 2).
379	The European mountain bird indicator showed a significant negative decline
380	during 2002–2014 (44 species; -0.61% / year, 95% CI -1.14 to -0.08, overall decline
381	c7%; Fig. 2a). The European mountain specialist indicator also declined
382	significantly (n = 16 species, -0.88 $\%$ / year, 95% CI -1.66 to -0.10, overall decline c
383	10%). The mountain generalist slope was also negative (n = 28 species, -0.46% /
384	year), but not significantly so (95% CI -1.06 to 0.17; Fig. 2b). The slopes of
385	specialists and the generalists did not differ from each other (trend difference =
386	0.0040, se = 0.0051, P > 0.05, see also Table 3). Among the specialists, five out of 16
387	species showed negative and one showed positive trends. Among the generalists,

nine out of 28 species declined and seven increased (Table 2). Despite the fact that many mountain bird species have a wide distribution in Europe, it is important to note that only for two out of 44 species (northern wheatear and ring ouzel) were there enough data to calculate trends in all four mountain areas. In addition, for about half of the species, population trends were only calculated for one of the four regions, because the species were too rare in other regions (Table 2).

398

400 specialists and generalists, during 2002–2014. Calculated mean of the indices and

401 their 95% CIs are given.

Global Change Biology

402 403 404	The indicator of "Alps" showed no significant trends during 2002–2014 (n = 20
405	species, +0.29% / year, 95% CI -0.59 to 1.17, Fig. 3a). Four species showed positive
406	and three species showed negative trends during 2002–2014 (Table 2). The
407	Fennoscandian and "Iberian" indicators showed significant negative trends during
408	2002–2014 (Fennoscandia, n = 23 species, -1.20 % / year, 95% CI -2.04 to -0.36,
409	overall decline -13%; "Iberia", n = 14 species, -1.94 %, 95% CI -3.61 to -0.27, overall
410	decline -21%; Fig. 3b–c). In Fennoscandia and "Iberia", respectively, ten and five
411	species showed negative, and three and one showed positive trends (Table 3). The
412	indicator of UK Upland showed no significant trend during $2002-2014$ (n = 10
413	species, -0.29% / year, 95% CI -1.13 to 0.55, Fig. 3d). In UK uplands one species
414	declined (carrion crow) and none increased in 2002–2014 (Table 2). According to
415	bootstrapping simulations the slopes of Fennoscandian and "Iberian" indicators
416	differed significantly from slopes in the "Alps" (trend difference between "Alps" and
417	Fennoscandia 0.015 \pm 0.006 se, P < 0.05, trend difference between "Alps" and Iberia
418	0.022 ± 0.010 se, P < 0.05). Slopes of the other regions did not differ from each other
419	(all P > 0.05).
420	

423 Fennoscandia, (c) "Iberia" and (d) UK. Calculated mean of the indices and their 95%

425

421

426

The species only was the best random structure compared to more
complicated phylogenic structures (Table S7) and thus species only was used in the
latter analyses. The best model explaining the regional population trends of species
during 2002–2014 was the null model. Although two other more complex models
were within 2 AIC units, additional variables of those models can be considered as
uninformative parameters (*sensu* Arnold, 2010). Thus this modelling approach was
not able to find that region, specialisation or migratory behaviour were linked with

⁴²⁴ CIs are given.

- the regional population trends (Table 3). The intercept of the null model was
- 435 significantly below zero (-0.0072 ± 0.0035 , t = 2.0, P < 0.05), suggesting in general
- 436 negative regional population trends during this particular period.
- 437
- 438 Table 3. AICc differences, AIC weights (w) and evidence ratios (ER) of models
- 439 explaining regional population trends of mountain birds during 2002–2014. Spe is
- 440 specialisation (mountain specialist or generalist), Mig is migratory behaviour
- 441 (short- or long-distance migrant) and Mt is mountain region.
- 442

Model	ΔAICc	W	ER
Intercept only	0.00	0.276	1.0
Temp	0.96	0.171	1.6
Spe	1.53	0.128	2.2
Mig	2.05	0.099	2.8
Spe + Temp	2.35	0.085	3.2
Spe + Temp + Spe*Temp	3.13	0.057	4.8
Mig + Temp	3.22	0.055	5.0
Mig + Spe	3.43	0.050	5.5
Mig + Spe + Temp	4.53	0.029	9.5
Mig + Spe + Temp + Spe*Temp	5.45	0.018	15.3
Mig + Temp + Mig*Temp	5.46	0.018	15.3
Mig + Spe + Temp + Mig*Temp	6.87	0.009	30.7

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

445 Annual temperatures during the breeding season (April–August)	increased
---	-----------

446 significantly in all four regions in the long-term (rate of increase 0.81–1.55°C during

447 1980–2014; Table 4). During the last 20 years (1995–2014) the temperature

448 increase was only significant in Fennoscandia (Table 4).

449

450 Table 4. Annual changes in temperature (in ^oC from April to August) in four

451 mountain regions in Europe during 1980–2014 and 1995–2014. Significant

452 temperature changes are marked in bold.

	Mountain area	1980–2014	1995–2014
	"Alps"	0.045 ± 0.012	0.016 ± 0.026
	Fennoscandia	0.035 ± 0.012	0.067 ± 0.031
	"Iberia"	0.037 ± 0.010	0.013 ± 0.026
	UK upland	0.024 ± 0.008	0.007 ± 0.019
453			
454			
455			
456	Discussion		
457			
458	We set out to test three hype	otheses regarding the 1	ecent population trends in
459	European mountain birds. W	Ve got unequivocal sup	port for the first hypothesis
460	regarding a negative trend o	f European mountain	bird populations since we found
461	that the indicator has an ove	erall decline of -7% du	ring 2002 – 2014 (-0.61 %/year).

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Global Change Biology

462	Fennoscandian and "Iberian" mountain bird indicators declined significantly and
463	differed from the slope of the corresponding indicator in the "Alps". Based on
464	European common bird monitoring the magnitude of the decline is the same as all
465	common birds in Europe during the same study period. More specifically the trends
466	of bird indicators in two important habitats, farmland and forests, were -13% and -
467	1%, respectively (European Bird Census Council, 2018). Thus, in general mountain
468	birds are doing less bad than for farmland birds, but clearly worse than for forest
469	birds in Europe. The severe declines of farmland birds are mainly driven by
470	intensification of agriculture rather than climate change (Butler, Boccacio, Gregory,
471	Voříšek, & Norris 2010; Eglington & Pearce-Higgins, 2012; Jørgensen et al., 2016).
472	However, in case of mountain birds, climate change can have a larger impact as the
473	climatic niche of especially mountain specialists is shrinking, highlighted by the
474	relatively fast declines of mountain species.
475	As far as our second hypothesis is concerned, that the decline would be
476	stronger in mountain specialists than in mountain generalists, the outcomes of our
477	tests are less straightforward to interpret. Numerically, the decline was indeed
478	larger among the specialists (-0.88 %/year vs0.46 %/year). However, the two
479	slopes were not statistically different from each other, nor is the generalist slope
480	statistically significant in itself. We believe that the non-significant difference
481	between these two groups is at least partly caused by small sample sizes, which
482	increase uncertainty in the trend estimates and reduce statistical power. The topic
483	should be re-evaluated in the future with longer time series. In general we should be

484 more worried about mountain specialists, since this group of species showed485 already significant population declines.

486 We got no support for our third main hypothesis, that long-distance migrant 487 mountain birds have fared worse than resident and short-distance migrant 488 mountain birds, finding no significant differences between migratory groups on the 489 regional level. Therefore the diminishing mountain bird populations are not only 490 driven by general declines of long-distance migrants (e.g. Sanderson et al., 2006; 491 Vickery et al., 2014), but also species wintering in Europe are contributing to the 492 decline in mountain birds. This could indicate that mountain species have also 493 problems in their breeding areas (Lehikoinen et al., 2014). More work need to be 494 done to understand, what are the valid traits to evaluate the vulnerability of 495 mountain species in the face of climate change (see also MacLean & Beissinger, 496 2017). 497 The reason why there seem to be no universal patterns explaining species-498 specific variation in responses to climate change could be that regional 499 circumstances, such as land use practices, differ between areas. In one area, impacts 500 of climate change may be more important than changes in land use and *vice versa*. 501 Agro-pastoral land use practices have become less intense or have been abandoned 502 completely allowing forest cover to increase again, especially in the low altitude

503 mountains of the southern mountain regions ("Alps" and "Iberia"; Brambilla et al.,

- 504 2010; Herrando et al., 2016; Maggini et al., 2014). Interactions with agricultural
- abandonment and forest expansion can be complex and offer both threats and
- 506 opportunities depending on the ecological requirements of species and assemblages

Global Change Biology

507 involved (Calladine, Bielinski, & Shaw, 2013; Gillings, Fuller, & Henderson, 1998;
508 Herrando et al., 2016).

509 The April–August temperatures have increased substantially in recent decades 510 in all four mountain areas. Although the temperature increase has been significant 511 only in Fennoscandia over the last two decades, the temperatures are nowadays 512 above the long-term mean in all regions (Lehikoinen et al., 2014). Climate change 513 may affect bird populations in a different manner depending on the region (Sæther 514 & Engen, 2010), Furthermore, temperatures are expected to rise faster in higher 515 northern latitude mountains than in mountains located in temperate and tropical 516 zones, and the rate of warming in mountain systems can be two to three times 517 higher than that recorded during the 20th century (Nogués-Bravo, Araújo, Errea, & 518 Martinez-Rica, 2007). These can cause considerable effects on biodiversity even 519 though the direct impacts can be difficult to measure (Araújo, Errea, & Martinez-520 Rica, 2007). Although we could not link the population dynamics with the observed 521 climate change, the observed declines are in line with the population predictions in 522 relation to climate change (Huntley et al., 2007). Human induced land use changes 523 are not as extensive in Fennoscandian mountains (Lehikoinen et al., 2014) 524 compared to "Iberia" (Herrando et al., 2016), and several Fennoscandian studies 525 have revealed changes in plant community due to climate change (Kullman & Öberg, 526 2009; Michelsen, Syverhuset, Pedersen, & Holten, 2011; Vuorinen et al., 2017). One 527 should also keep in mind that especially in Fennoscandia some mountain species are 528 nomadic to some extent (Lindström, 1987) and both plant and animal communities 529 are strongly influenced by multi-annual cyclic fluctuation of small rodents (Hanski,

Hansson, & Henttonen, 1991; Turchin, Oksanen, Ekerholm, Oksanen & Henttonen. 530 531 2000). Even animal species, which are not using rodents in their diet, are influenced 532 by the cycles due to predator-prey interactions (Lehikoinen et al., 2016). Despite 533 these kinds of fluctuations, we were able to detect a negative long-term trend in 534 Fennoscandia. 535 We must stress that the methods of the monitoring schemes and their 536 intensity showed spatial variation within the overall study area. However, we do not 537 believe that this has biased the analysis. First, the magnitude of the trend should be 538 comparable independently of whether it is based on point count, line transect or 539 territory mapping (Gregory et al., 2005). Second, we tried to compensate for the 540 potential biases in the sampling by using country-specific weights. The use of 541 weights did not influence the main results. We believe that there are two reasons 542 why our weighting did not influence the population trends: (1) Many of the species 543 data is only available from one of the study regions and thus weighting between 544 regions have no importance; and (2) population trends of nearby countries are similar. As the monitoring schemes have improved in many countries in recent 545 546 vears including systematic sampling, future analyses of monitoring data will be even 547 more reliable due to increased sample sizes. 548 Modelling work on the future effects of climate and land use change have

suggested that species-specific conservation measures aiming at improving habitat
to counteract the negative influence of climate change can only deliver minor
improvements of the future fate of mountain birds (Braunisch et al., 2014). Even if

high mountains may provide refuges for threatened mountain species currently

Global Change Biology

553	populating lower altitudes, in the long term, climate change can be expected to have
554	a strong impact on alpine species. Alpine habitats are expected to be reduced and
555	become more fragmented and isolated due to rise of the tree line where species
556	have increasing limited dispersal possibilities. Our findings also emphasize that
557	local studies are needed to understand the mechanisms and drivers of the
558	population changes of individual species and species communities in mountains
559	including information about species habitat selection and changes in the amount of
560	preferred habitat. Despite international actions to halt climate change, climate will
561	change in the near future (EEA, 2012). To mitigate the potential impacts of climate
562	change, it is important to take measures that can improve connectivity between
563	suitable mountain habitats and to minimize the effects of other threats such as non-
564	sustainable tourism and afforestation of grasslands (Lloret, 2017).
565	Last, to understand the big picture on the continental and global scale we also
566	need to continue existing monitoring work in the mountain areas and expand both
567	the taxonomic and spatial coverage of monitoring schemes. Monitoring should
568	preferably be based on systematic sampling design with a reasonable number of
569	study sites covered on annual basis. One reason why we did not observe significant
570	differences in trends between specialization groups could be the still relatively small
571	sample sizes and thus larger uncertainties in our trend estimates. Nevertheless, our
572	European mountain bird indicator and regional indicators provide an important tool
573	to measure and monitor the changes in mountain biodiversity with regular updates
574	in the future and the spatial coverage of the indicator can easily be expanded when
575	suitable monitoring data become available. Given that climate and land use changes

in the uplands are likely to manifest themselves into the loss of open mountain

576

577 habitats and expansion of shrubland/forest, we suggest that future work should also 578 look at mechanistic reasons behind the declines. More and important information 579 may come from comparing potential differences in trends between mountain and 580 lowland population of the mountain generalists, where the land use pressures can 581 differ between the areas. 582 Acknowledgements 583 584 585 The Finnish common bird monitoring has been supported by the Finnish Ministry of 586 the Environment. The surveys of the fixed routes in Sweden were supported by 587 grants from the Swedish Environmental Protection Agency, and carried out in 588 collaboration with all 21 County Administrative Boards of Sweden. The bird surveys 589 are carried out within the framework of the Centre for Animal Movement Research 590 and the strategic research environment Biodiversity and Ecosystem Services in a 591 Changing Climate (BECC). The Norwegian Terrestrial Bird Monitoring program is 592 financed by the Climate and Environment Ministry and the Norwegian Environment 593 Agency. The Catalan Common Bird Survey is supported by the Catalan Government. The 594 Italian Common Breeding Birds Monitoring Program has been partly funded by local 595 governments or private organizations, with a great effort in fieldwork produced by 596 volunteers till 2008; since 2009 the Program has been almost completely funded by the

- 597 Ministry of Agricultural, Food and Forestry Policies and by the Rural Network, with the
- 598 exception of few Regions where local governments went on funding monitoring

599	activities. AL received financial support from the Academy of Finland (275606). In
600	the UK, the BTO/JNCC/RSPB Breeding Bird Survey is a partnership jointly funded by
601	the BTO, RSPB and JNCC, with fieldwork undertaken by volunteers and the additional
602	mountain transect surveys were undertaken by BTO supported by the Scottish
603	Government, Scottish Natural Heritage, the National Trust for Scotland, the Scottish
604	Ornithologists' Club, the Scottish Mountaineering Trust and the AEB Trust.
605	
606	
607	References
608	
609	Araújo, D., Errea, M. B., Martinez-Rica, M. P. (2007). Exposure of global mountain
610	systems to climate warming during the 21st Century. Global Environmental
611	Change, 17, 420–428.
612	Arlettaz, R., Patthey, P., Baltic, M., Leu, T., Schaub, M., Palme, R., & Jenni-Eiermann,
613	S. (2007). Spreading free-riding snow sports represent a novel serious threat for
614	wildlife. Proceedings of the Royal Society B-Biological Sciences, 274, 1219–1224.
615	Arnold, T. W. (2010). Uninformative Parameters and Model Selection Using Akaike's
616	Information Criterion. Journal of Wildlife Management, 74, 1175–1178.
617	Baillie, J. E. M., Hilton-Taylor, C., & Stuart, S. N. (eds.) (2004) IUCN Red List of
618	Threatened Species. A Global Species Assessment.
619	Brambilla, M., Casale, F., Bergero, V., Bogliani, G., Crovetto, G. M., Falco, R., Roati, M.
620	& Negri, I. (2010). Glorious past, uncertain present, bad future? Assessing effects

- 621 of land-use changes on habitat suitability for a threatened farmland bird species.
- 622 Biological Conservation, 143, 2770-2778.
- 623 Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Zellweger, F., & Bollmann, K.
- 624 (2014). Temperate mountain forest biodiversity under climate change:
- 625 compensating negative effects by increasing structural complexity. *PLoS ONE*,
- 626 9(5), e97718.
- Breed G. A., Stichter S., & Crone E. (2013). Climate-driven changes in northeastern US
 butterfly communities. *Nature Climate Change*, 3, 142–145.
- 629 Britton, A. J., & Fisher, J. M. (2007). Interactive effects of nitrogen deposition, fire and
- 630 grazing on diversity and composition of low-alpine prostrate *Calluna vulgaris*
- 631 heathland. *Journal of Applied Ecology*, 44, 125–135.
- 632 Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference understanding AIC
- and BIC in model selection. *Sociological Methods & Research*, 33, 261–304.
- Butchart, S. H. M., Stattersfield, A. J., Baillie, J., Bennun, L. A., Stuart., S. N., Akcakaya,
- H. R., Hilton-Taylor, C., & Mace, G. M. (2005). Using Red List Indices to measure
- 636 progress towards the 2010 target and beyond. *Philosophical Transactions of the*
- 637 Royal Society B: Biological Sciences, 360, 255–268.
- 638 Butchart, S. H. M., Walpole, M., Collen, B., van Strien, A., Scharlemann, J. P. W.,
- 639 Almond, R. E. A., ... Watson, R. (2010). Global biodiversity: Indicators of recent
- 640 declines. *Science*, 328, 1164–1168.
- 641 Butler, S. J., Boccaccio, L., Gregory, R. D., Voříšek, P., & Norris, K. (2010). Quantifying
- 642 the impact of land-use change to European farmland bird populations. *Agriculture*,
- 643 *Ecosystems & Environment*, 137, 348–357.

644	Calladine, J., Bielinski, A., Shaw, G. (2013). Effect on bird abundance and species
645	richness of edge restructuring to include shrubs at the interface between conifer
646	plantations and open moorland. Bird Study, 60, 345-356.
647	Chamberlain D., Arlettaz R. L., Caprio E., Maggini R., Pedrini P., Rolando A., Zbinden
648	N. (2012). The altitudinal frontier in avian climate impact research. Ibis, 154, 205-
649	209.
650	Chamberlain, D. E., & Fuller, R. J. (2001). Contrasting patterns of change in the
651	distribution and abundance of farmland birds in relation to farming system of
652	lowland Britain. Global Ecology and Biogeography, 10, 399–409.
653	Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range
654	shifts of species associated with high levels of climate warming. Science, 333,
655	1024–1026.
656	Collen, B., Loh, J., Whitemee, S., McRae, L., Amin, R., & Baillie, J. E. M. (2009).
657	Monitoring change in vertebrate abundance: the Living Planet Index. Conservation
658	<i>Biology</i> , 23, 317–327.
659	Copernicus Land Monitoring Service (2016). Corine Land Cover (CLC) 2012, Version
660	18.5.1, available at http://land.copernicus.eu/pan-european/corine-land-
661	cover/clc-2012
662	Cramp, S., Simmons, K. E. L., & Perrins, C. M. (1977–1994). Handbook of the birds of
663	Europe, Middle East and North America: Birds of the Western Palaearctic. Oxford
664	University Press.
665	Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G., & Johnston, A. (2012).

666 Rise of the Generalists: evidence for climate driven homogenization in avian

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

667	communities. Global Ecology and Biogeography, 5, 568–578.
668	Davey, C. M., Devictor, V., Jonzén, N., Lindström, Å., & Smith, H. G. (2013). Impact of
669	climate change on communities: revealing species' contributions. Journal of
670	Animal Ecology, 82, 551–561.
671	del Hoyo, J., Collar, N. J., Christie, D. A., Elliott, A., & Fishpool, L. D. C. (2014). HBW
672	and BirdLife International Illustrated Checklist of the Birds of the World. Volume
673	1: Non-passerines. Lynx Edicions and BirdLife International, Barcelona, Spain and
674	Cambridge, UK.
675	del Hoyo, J., Collar, N. J., Christie, D. A., Elliott, A., & Fishpool, L. D. C., Boesman, P.,
676	& Kirwan, G. M. (2016). HBW and BirdLife International Illustrated Checklist of
677	the Birds of the World. Volume 2: Passerines. Lynx Edicions and BirdLife
678	International, Barcelona, Spain and Cambridge, UK.
679	Devictor V., van Swaay C., Brereton T., Brotons L., Chamberlain D., Heliölä J., Jiguet
680	F. (2012). Differences in the climatic debts of birds and butterflies at a continental
681	scale. <i>Nature Climate Change</i> 2 , 121–124.
682	Eglington, S. M., & Pearce-Higgins, J. W. (2012). Disentangling the relative importance
683	of changes in climate and land-use intensity in driving recent bird population
684	trends. PLoS ONE, 7, e30407
685	European Bird Census Council (2018). www.ebcc.info.
686	European Environment Agency (EEA) (2012). Climate Change, Impacts and
687	Vulnerability in Europe 2012, an Indicator Based Report. EEA Report No.
688	12/2012, European Environment Agency (EEA), Copenhagen, Denmark, 304 pp.
689	Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review in

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

690	Ecology, Evolution and Systematics, 34, 487–515.
691	Flousek, J., Telenský, T., Hanzelka, J., & Reif, J. (2015). Population Trends of Central
692	European Montane Birds Provide Evidence for Adverse Impacts of Climate Change
693	on High-Altitude Species. PLoS ONE, 10(10), e0139465.
694	Gillings, S., Fuller, R. J., & Henderson, C. B. (1998). Avian community composition and
695	patterns of bird distribution within birch-heath mosaics in north-east Scotland.
696	Ornis Fennica, 75, 27–37.
697	Gonzalez, P., Neilson, R. P., Lenihan, J. M., Drapek, R. J. (2010). Global patterns in the
698	vulnerability of ecosystems to vegetation shifts due to climate change. Global
699	Ecology and Biogeography, 19, 755–768.
700	Gough, L. A., Sverdrup-Thygeson, A., Milberg, P., Pilskog, H. E., Jansson, N., Jonsell,
701	M., & Birkemoe, T. (2015). Specialists in ancients trees are more affected by
702	climate than generalists. <i>Ecology and Evolution</i> , 5, 5632–5641.
703	Gregory, R. D., van Strien, A., Voříšek, P., Meyling A. W. G., Noble, D. G., Foppen, &
704	R. P. B., Gibbons, D. W. (2005). Developing indicators for European birds.
705	Philosophical Transactions of the Royal Society B: Biological Sciences, 360,
706	269–288.
707	Gregory, R. D., Voříšek, P., Noble, D. G., Van Strien A., Klvanová, A., Eaton, M.,
708	Burfield, I. J. (2008). The generation and use of bird population indicators in
709	Europe. Bird Conservation International, 18, S223-S244.
710	Hanski, I., Hansson, L., & Henttonen, H. (1991). Specialist predators, generalist predators
711	and the microtine rodent cycle. Journal of Animal Ecology, 60, 353-367.

712	lagemeijer, W. J. M., & Blair, M. J. (1997). The EBCC atlas of European breeding	,

- *birds: their distribution and abundance*. London, UK: T. & A. D. Poyser.
- 714 Herrando, S., Brotons, L., Anton, M., Páramo, F., Villero, D., Titeux, N., Quesada, J., &
- 715 Stefanescu, C. (2016). Assessing impacts of land abandonment on Mediterranean
- biodiversity using indicators based on bird and butterfly monitoring data.
- 717 *Environmental Conservation*, 43, 69–78.
- Huntley, B., Green, R. E., Collingham, Y. C., & Willis, S. G. (2007). A climatic atlas of

719 *European breeding birds*. Durham Univ., The RSPB and Lynx Edicions,

- 720 Barcelona.
- Ims, R. A., & Henden, J.-A. (2012). Collapse of an arctic bird community resulting from
 ungulate-induced loss of erect shrubs. *Biological Conservation*, 149, 2–5.
- Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B. Bouwer, L. M., ..., Yiou,
- P. (2014). EURO-CORDEX: new high-resolution climate change projections for
- European impact research. *Regional Environmental Change*, 14, 563–578.
- Jørgensen, P. S., Böhning-Gaese, K., Thorup, K., Tøttrup, A. P., Chylarecki, P., Jiguet, F.,
- 727 ... Rahbek, C. (2016). Continent-scale global change attribution in European
- birds combining annual and decadal time scales. *Global Change Biology*, 22,
 530–543.
- 730 Kullman, L., & Öberg, L. (2009). Post-Little Ice Age tree line rise and climate warming
- in the Swedish Scandes: a landscape ecological perspective. *Journal of Ecology*,
 97, 415–429.
- T33 Laaksonen, T. K., & Lehikoinen, A. (2013). Population trends in boreal birds: continuing
- declines in long-distance migrants, agricultural and northern species. *Biological*

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

735	Conservation, 168, 99–107.
736	Lehikoinen, A., Fraixedas, S., Burgas, D., Eriksson, H., Henttonen, H., Laakkonen, H.,,
737	& Välimäki, K. (2016). The impact of weather and the phase of the rodent cycle
738	on breeding population of waterbirds in Finnish Lapland. Ornis Fennica, 93, 31-
739	46.
740	Lehikoinen, A., Green, M., Husby, M., Kålås, J. A., & Lindström, Å. (2014). Common
741	montane birds are declining in northern Europe. Journal of Avian Biology, 45, 3-
742	14.
743	Lindström, Å. (1987). Breeding nomadism and site tenacity in the Brambling Fringilla
744	montifringilla. Ornis Fennica, 64, 50–56.
745	Lindström, Å., Green, M., Paulson, G., Smith, H. G., & Devictor, V. (2013). Rapid
746	changes in bird community composition at multiple spatial scales in response to
747	recent climate change. <i>Ecography</i> , 36, 313–322.
748	Lloret, F. (2017). Trade-offs in High Mountain Conservation. In: Catalan J, Ninot JM,
749	Aniz MM: High Mountain Conservation in a Changing World. Cham: Springer
750	(SpringerLink Bücher, 62), pp. 37–59.
751	MacLean, S., & Beissinger, S. R. (2017). Species' traits as predictors of range shifts
752	under contemporary climate change: A review and meta-analysis. Global Change
753	<i>Biology</i> , 23, 4094–4105.
754	Maggini, R., Lehmann, A., Kéry, M., Schmid, H., Beniston, M., Jenni, L., & Zbinden, N.
755	(2011). Are Swiss birds tracking climate change? Detecting elevational shifts using
756	response curve shapes. <i>Ecological Modelling</i> , 222, 21–32.
757	Maggini R., Lehmann A., Zbinden N., Zimmerman N. E., Bolliger J., Schröder B.,

Global Change Biology

Jenni L. (2014). Assessing species vulnerability to climate and land use change.

758

759	The case of the Swiss breeding birds. <i>Diversity Distribution</i> , 20, 708–719.
760	Michelsen, O., Syverhuset, A. O., Pedersen, B., & Holten, J. I. (2011). The impact of
761	climate change on recent vegetation changes on Dovrefjell, Norway. Diversity, 3,
762	91–111.
763	Nogués-Bravo, D., Araújo, M., Errea, M. P., & Martinez-Rica, J. P. (2007). Exposure of
764	global mountain systems to climate warming during the 21st Century. Global
765	Environmental Change, 17, 420–428.
766	Normander, B., Levin, G., Auvinen, A. P., Bratli, H., Stabbetorp, O., Hedblom, M.,
767	Glimskär, A., & Gundmundsson, G. A. (2012). Indicator framework for measuring
768	quantity and quality of biodiversity – Exemplified in the Nordic countries.
769	Ecological Indicators, 13, 104–116.
770	Pannekoek, J., & van Strien, A. (2005). TRIM 3 Manual (TRends and Indices for
771	Monitoring data). Statistics Netherlands, Voorburg.
772	Rodriguez-Rodriguez, D., Bomhard, B., Butchart, S. H. M., & Foster, M. N. (2011).
773	Progress towards international targets for protected areas coverage in mountains: A
774	multi-scale assessment. Biological Conservation, 144, 2978–2983.
775	Root T. L., Price J. T., Hall K. R., Schneider S. H., Rosenzweig C., & Pounds J. A.
776	(2003). Fingerprints of global warming on wild animals and plants. Nature 421,
777	57–60.
778	Sæther, BE., & Engen, S. (2010). Population consequences of climate change. In
779	Møller, A.P., Fiedler, W, Berthold, P. (eds). Effects of Climate Change on Birds.
780	Oxford University Press. Oxford.

781	Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J., & van Bommel, F. P. J. (2006).
782	Long-term population declines in Afro-Palearctic migrant birds. Biological
783	<i>Conservation</i> , 131, 93–105.
784	Scridel, D., Brambilla, M., Martin, K., Lehikoinen, A., Iemma, A., Matteo, A.,
785	Chamberlain, D. (2018). A review and meta-analysis of the effects of climate
786	change on Holarctic mountain and upland bird populations. Ibis, 160, 489-515.
787	Sekercioglu, C. H., Schneider, S. H., Fay, J. P., & Loarie, S. R. (2008). Climate change,
788	elevational range shifts and bird extinctions. Conservation Biology, 22, 140–150.
789	Sirami, C., Caplat, P., Popy, S., Clamens, A., Arlettaz, R., Jiguet, F., Brotons, L. &
790	Martin, JL. (2016). Impacts of global change on species distributions: obstacles
791	and solutions to integrate climate and land use. Global Ecology and Biogeography,
792	26, 385–394.
793	Soldaat, L. L., Pannekoek, J., Verweij, R. J. T., van Turnhout, C. A. M., & van Strien, A.
794	J. (2017). A Monte Carlo method to account for sampling error in multi-species
795	indicators. <i>Ecological Indicators</i> , 81, 340–347. R-package available at available at
796	www.cbs.nl/en-gb/society/nature-and-environment/indices-and-trends
797	trim/msi-tool
798	Smout, T. C. (2005). Nature Contested. Environmental History in Scotland and Northern
799	England since 1600. Edinburgh University Press, Edinburgh.
800	Stephens, P. A., Mason, L. R., Green, R. E., Gregory, R. D., Sauer, J. R., Alison, J., Willis,
801	S. G. (2016). Consistent response of bird populations to climate change on two
802	continents. Science, 352(6281), 84-87.
803	Thompson, D. B. A., Kålås J. A. K., & Byrkjedal, I. (2012). Arctic-alpine mountain birds

804	in northern Europe: constrasts between specialists and generalists. In: Fuller RJ:
805	Birds and Habitats: Relationships in Changing Landscapes. Cambridge University
806	Press, pp. 237–252.
807	Thompson, D. B. A., MacDonald, A. J., Marsden, J. H., Galbraith, C. A. (1995). Upland
808	heather moorland in Great Britain: a review of international importance, vegetation
809	change and some objectives for nature conservation. Biological Conservation, 71,
810	163–178.
811	Travis, J. M. J. (2003). Climate change and habitat destruction: a deadly anthropogenic
812	cocktail. Proceedings of the Royal Society B-Biological Sciences, 270, 467–473.
813	Turchin, P., Oksanen, L., Ekerholm, P., Oksanen, T., & Henttonen, H. (2000). Are
814	lemmings prey or predators? <i>Nature</i> , 405, 562–565.
815	Vickery, J. A., Ewing, S. R., Smith, K. W., Pain, D. J., Bairlein, F., Škorpilová, J., &
816	Gregory, R. D. (2014). The decline of Afro-Palaearctic migrants and an assessment
817	of potential causes. <i>Ibis</i> , 156, 1–22.
818	van der Wal, R., Pearce, I., Brooker, R., Scott, D., Welch, D., & Woodin, S. (2003).
819	Interplay between nitrogen deposition and grazing causes habitat degredation.
820	Ecology Letters, 6, 141–146.
821	Vuorinen, K. E. M., Oksanen, L., Oksanen, T., Pyykönen, A., Olofsson, J. & Virtanen, R.
822	(2017). Open tundra persists, but arctic features decline – Vegetation changes in the
823	warming Fennoscandian tundra. Global Change Biology, 23, 3794–3807.
824	Zbinden, N., Kery, M., Keller, V., Brotons, L., Herrando, S., & Schmid, H. (2010).
825	Species richness of breeding birds along the altitudinal gradient: An analysis of
826	atlas databases from Switzerland and Catalonia (NE Spain). In: Spehn EM, Körner

This is the peer reviewed version of the following article: Lehikoinen, A. et al 2018 Declining...Global Change Biology 25(2): 577-588, which has been published in final form at DOI 10.1111/gcb.14522. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

- 827 C (eds) Data mining for Global Trends in Mountain biodiversity. Boca Raton, FL:
- Taylor & Francis, pp. 65–73.

to Review Only