
RESEARCH ARTICLE

Neochloris oleoabundans is worth its salt:

Transcriptomic analysis under salt and

nitrogen stress

Lenny de Jaeger1☯, Benoit M. Carreres2☯, Jan Springer3, Peter J. Schaap2,

Gerrit Eggink1,3, Vitor A. P. Martins Dos Santos2,4, Rene H. Wijffels1,5, Dirk E. Martens1*

1 Bioprocess Engineering and AlgaePARC, Wageningen University & Research, Wageningen, The

Netherlands, 2 Laboratory of Systems and Synthetic Biology, Wageningen University & Research,

Wageningen, The Netherlands, 3 Food and Biobased Research and AlgaePARC, Wageningen University &

Research, Wageningen, The Netherlands, 4 LifeGlimmer GmbH, Berlin, Germany, 5 Nord University, Bodø,

Norway

☯ These authors contributed equally to this work.

* dirk.martens@wur.nl

Abstract

Neochloris oleoabundans is an oleaginous microalgal species that can be cultivated in fresh

water as well as salt water. Using salt water gives the opportunity to reduce production costs

and the fresh water footprint for large scale cultivation. Production of triacylglycerols (TAG)

usually includes a biomass growth phase in nitrogen-replete conditions followed by a TAG

accumulation phase under nitrogen-deplete conditions. This is the first report that provides

insight in the saline resistance mechanism of a fresh water oleaginous microalgae. To better

understand the osmoregulatory mechanism of N. oleoabundans during growth and TAG

accumulating conditions, the transcriptome was sequenced under four different conditions:

fresh water nitrogen-replete and -deplete conditions, and salt water (525 mM dissolved

salts, 448mM extra NaCl) nitrogen-replete and -deplete conditions. In this study, several

pathways are identified to be responsible for salt water adaptation of N. oleoabundans

under both nitrogen-replete and -deplete conditions. Proline and the ascorbate-glutathione

cycle seem to be of importance for successful osmoregulation in N. oleoabundans. Genes

involved in Proline biosynthesis were found to be upregulated in salt water. This was sup-

ported by Nuclear magnetic resonance (NMR) spectroscopy, which indicated an increase in

proline content in the salt water nitrogen-replete condition. Additionally, the lipid accumula-

tion pathway was studied to gain insight in the gene regulation in the first 24 hours after nitro-

gen was depleted. Oil accumulation is increased under nitrogen-deplete conditions in a

comparable way in both fresh and salt water. The mechanism behind the biosynthesis of

compatible osmolytes can be used to improve N. oleoabundans and other industrially rele-

vant microalgal strains to create a more robust and sustainable production platform for

microalgae derived products in the future.
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1 Introduction

Sustainable and renewable production of energy and food for an increasing world population

is an enduring challenge in present-day research. This challenge must be addressed with

urgency, because of the world’s dependence on limited fossil fuels and the increase in living

standards of emerging economies. Renewable energy platforms based on oleaginous agricul-

tural crops such as rapeseed, palm oil, corn, and soybean are being studied. Although these

crops are considered renewable and bio-based, they increase the competition for food, fresh

water, the amount of available arable land and result in deforestation to create plantations [1–

4]. Ideally, we would use land that is not suitable for traditional agriculture such as salt con-

taminated land or very dry areas like deserts for this purpose. A promising alternative feed-

stock compared to traditional crops for the production of oil are microalgae [5,6]. Microalgae

can produce high amounts of neutral lipids, triacylglycerol (TAG), when exposed to unfavor-

able growth conditions such as nitrogen depletion. TAG can be easily converted in biodiesels

by methylation, which results in a pure and clean fuel that can replace petroleum-derived fuels

[5]. The TAG molecules can also be used directly in the food and feed industry as a sustainable

vegetable oil replacement. For an acceptable sustainable production process with a reduced

fresh water footprint the use of marine or salt tolerant microalgal species is essential.

Most organisms are not able to cope with a shift in osmotic pressure when the environment

is changed from fresh water to salt water and their growth will be compromised. Some organ-

isms are able to adapt to such changes. Plants have developed different strategies to deal with

osmotic stress. In addition to the strategies that involve structural traits such as waxes and

adaptation of flowering time to the right conditions and moment, plants can also regulate their

osmotic homeostasis by actively excluding salts from the cell to maintain water absorption [7–

10]. Another strategy involves the accumulation of certain compatible organic osmolytes. A

few examples of these compatible osmolytes are proline and glycine betaine [11], cyclic polyols

such as D-pinitol [12], and sugars such as sucrose hexoses and sugar alcohols [7,13].

Prokaryotic microalgae (cyanobacterias) are known to accumulate sucrose or α-glocosyl-

glycerol under salt stress conditions [14,15]. In eukaryotic microalgae, there are some strate-

gies that can be found to overcome salt stress[16–20]. Some species of microalgae are known

to be able to survive low levels of saline environments. Known mechanisms for salt tolerance

are glycerol production [21], sucrose production [22], and amino acid accumulation [7,23].

The oleaginous salt tolerant microalgae Neochloris oleoabundans is a very interesting candi-

date for lipid production [22,24,25]. In nitrogen-deplete conditions, N. oleoabundans can

accumulate TAG at up to 44% of its dry weight resulting in a maximal productivity of 164 mg

L-1 day-1 [26,27]. The harsh desert conditions from which this oleaginous microalgae was iso-

lated [28], forced N. oleoabundans to be a highly flexible species to deal with the daily salt,

drought and temperature stresses during the hot days and cold nights. These properties, com-

bined with the high growth rate of N. oleoabundans (μ 2.2 D-1) [25], and its resistance to highly

alkaline conditions (up to pH 10) [24], which enhances the CO2 transfer and reduces risk of

contamination, makes it a very interesting candidate for sustainable oil production. The aim of

this study is to identify the mechanisms used by the green microalgae N. oleoabundans to cope

with saline conditions under growth (nitrogen-replete) and TAG accumulating (nitrogen-

deplete) conditions based on a transcriptomic approach. To obtain insight in the pathways

and metabolic reactions involved in salt resistance and lipid accumulation differential gene

expression was studied between four conditions being: fresh water nitrogen-replete and

-deplete, and salt water nitrogen-replete and -deplete (Panel A in S1 Fig).

To our knowledge, N. oleoabundans is the first fresh water microalgae, studied on transcrip-

tomic and metabolite level, which is able to alleviate the osmotic stress under salt water
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conditions. We will discuss and compare the different pathways that are involved in the saline

and nitrogen stress response. These findings can be used to get a better understanding of these

processes and to define targets for new strategies to enhance microalgal strains to increase

lipid productivity in the future.

2 Material and methods

2.1 Strain, medium and pre-culture

Neochloris oleoabundans UTEX 1185 (University of Texas, Austin, USA) pre-cultures were

maintained in 100 mL filter sterilized fresh or salt water medium in 250 mL Erlenmeyer

shake flasks. The fresh water medium consisted of: KNO3 50.5 mM; Na2SO4 4.6 mM; HEPES

100 mM; MgSO4.7H2O 1 mM; CaCl2.2H2O 0.5 mM; K2HPO4 4.1 mM; NaHCO3 10 mM;

NaFeEDTA 0.14 mM; Na2.EDTA.2H2O 0.4 mM; MnCl2.4H2O 96 μM; ZnSO4.7H2O 21 μM;

CoCl2.6H2O 6 μM; CuSO4.5H2O 6.6 μM; Na2MoO4.2H2O 0.5 μM; biotin 0.2 μM; vitamin B1

7.4 μM; vitamin B12 0.2 μM. The same medium was used for salt water with the following

modifications: NaCl 448 mM; MgSO4.7H2O 5 mM; CaCl2.2H2O 2.4 mM. The pH for both

media was set to pH 7.5 using NaOH and the medium was filter sterilized (0.2 μm) prior to

use. In nitrogen-deplete conditions were applied the KNO3 was omitted and replaced by an

equimolar amount of KCl. In the shake flasks, pH was buffered using HEPES, while in the bio-

reactor HEPES was omitted and the pH was controlled by CO2 addition.

2.2 Reactor design

All experiments were performed in flat-panel, Algaemist airlift-loop photobioreactors [29].

The reactors, with a working volume of 0.38 L, were kept at 25˚C and pH controlled using on

demand CO2 (pH 7.5). Light was supplied continuously and the incident light intensity was

adjusted to maintain constant average light intensity (80 μmol m-2 s-1). The cultures were inoc-

ulated at a biomass concentration of 0.15 g L-1 in either fresh or salt water medium. When the

biomass concentration reached approximately 4.5 g L-1, the cultures were harvested and

washed with either salt or fresh water medium containing nitrogen or no nitrogen. The cells

were cultivated for 24 hours before sampling. Samples for dry weight, total fatty acid, TAG,

starch, Nuclear magnetic resonance (NMR) analysis, and RNA extraction were taken. All reac-

tors were run in duplicate, resulting in 8 individual samples for four different conditions.

2.3 Determination of dry weight concentration

Dry weight concentrations were determined on biological replicates. Around 1.5 mg of bio-

mass was filtered through pre-dried (100˚C overnight) and pre-weight Whatman glass fiber fil-

ter paper (GF/F; Whatman International Ltd, Maidstone, UK). The filter was washed with 50

mL of filtered demineralized water supplemented with an equimolar concentration of

NH4HCO2 to prevent osmotic shock and subsequently dried overnight at 100˚C before

weighing.

2.4 Starch analysis

The starch content was analyzed using the Total Starch assay (Megazyme International, Wick-

low, Ireland) following the protocol described previously [30]. The method is based on enzy-

matic degradation of starch to glucose monomers by α-amylase and amyloglucosidase

enzymes and measuring glucose monomers in a spectrophotometric-based assay for quantifi-

cation against a D-glucose calibration control series at a wavelength of 510 nm.
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2.5 Total fatty acid analysis

Total fatty acid (TFA) extraction and quantification were executed as described by Breuer

et al. [31] with the following adjustments. Around 5 mg of pellet was transferred to bead beat-

ing tubes (Lysing Matrix E; MP Biomedicals, Santa Ana, CA, USA) and lyophilized overnight.

Freeze-dried cells were disrupted by a 30-min bead beating step in the presence of a chloro-

form-methanol mixture (1:1.25) to extract the lipids from the biomass. Tripentadecanoin

(T4257; Sigma-Aldrich, St Louis, MO, USA) internal standard was added to the extraction

mixture to enable fatty acid quantification. For TFA analysis, samples were directly methylated

(see below). For TAG analysis, directly after the TFA extraction, the chloroform methanol

mixture was evaporated under N2 gas and the TFA fraction was dissolved in 1 mL hexane and

separated based on polarity using a Sep-Pak Vac silica cartridge (6 cc, 1,000 mg; Waters, Mil-

ford, MA, USA) prewashed with 6 mL of hexane. The neutral TAG fraction was eluted with 10

mL of hexane-diethyl ether (87:13% v/v). The polar lipid fraction containing the glycolipids

and phospholipids remained in the silica cartridge. Methylation of the fatty acids to fatty acid

methyl esters (FAMEs) and the quantification of the FAMEs were performed as described by

Breuer [31].

2.6 Bodipy staining

The presence of neutral lipid bodies in N. oleoabundans was measured by staining the cells

with the fluorescent dye BODIPY 505/515 (4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-dia-

zasindacene; Invitrogen Molecular Probes, Carlsbad, CA). An aliquot of 200 μL of cells was

incubated for 10 minutes with 4μL of a 40 μM BODIPY stock solution (in 0.2% (v/v) DMSO)

and subsequently studied using a confocal laser scanning microscope (LSM510; Carl Zeiss,

Jena, Germany), using a 488 nm Argon Laser [32]. To increase the visualization, a color filter

was applied to visualize the BODIPY fluorescence as yellow signal.

2.7 NMR analysis

NMR analysis was performed according to the protocol described by Kim et al. [33] with the

following modifications. Freeze dried microalgal biomass (20 mg) was dissolved in 0.5 ml of

50% deuterated methanol in buffer (90 mM KH2PO4 in D2O) containing 0.05% trimethyl silyl

propionic acid sodium salt (TMSP, w/v) as internal standard. To effectively extract the metab-

olites, the cell suspension was vortexed and ultrasonicated for 10 min and centrifuged at

17,000xg for 5 min. From the supernatant, 300 μl was used to perform NMR analysis. The

NMR analysis and data analysis was carried out as described by Kim et al. [34]. The NMR

plots can be found in S3 Fig.

2.8 RNA extraction

Samples for RNA isolation were immediately processed after sampling and kept on ice. Cells

were collected by centrifugation at 4.000xg at 0˚C for three minutes and immediately frozen in

liquid nitrogen before storage at -80˚C until further extraction. Cells were disrupted by grind-

ing the pellet using mortar and pestle and liquid nitrogen. A 5-ml volume of heated (65˚C)

phenol-chloroform and 5 ml of extraction buffer (10 mM EDTA, 1% sodium dodecyl sulphate

(SDS), 2% 2-mercaptoethaol and 200 mM sodium acetate, pH 5) was added to the ground bio-

mass. The RNA was precipitated by addition of 1/3 volume 8M lithium chloride (LiCl)

enriched with 1% 2-mercaptoethanol. The RNA pellet was washed with 2M LiCl and twice

with 70% ethanol. After evaporation of the last residues of ethanol, the pellet was resuspended
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in RNase free H2O and sequencing and quality control was outsourced to BaseClear BV (Lei-

den, The Netherlands).

2.9 RNA sequencing and transcriptome assembly

RNA-seq library preparation and deep sequencing on Illumina HiSeq2500 instruments were

carried out at BaseClear, (Leiden, The Netherlands). The Illumina TruSeq RNA sample prepa-

ration protocol was used to prepare libraries with a median fragment insert size of 230 bp. For

all samples, 51 nt paired-end sequencing runs were carried out, data was delivered in Illumina

format 1.8 and filtered for reads that did not pass the Illumina chastity filter, reads that aligned

to the phiX control genome and reads that contained Illumina TruSeq adapters. The sequence

data can be found at EBI ArrayExpress with accession number E-MTAB-3746.

To maximize the diversity and completeness of the N. oleoabundans de novo assembled

transcripts, the data from 16 transcriptomes were combined yielding a total of 496,158,724

high quality reads and assembled with IDBA-UD v1.1.0 [35]. QUAST v2.3 [36] was used to

estimate the quality of the assembly. The average number of read pairs per experiments was

approximately 18 million, the GC content was 59%. Coding sequences (CDS) were extracted

using QUAST and translated into protein sequences for functional annotation.

2.10 Transcriptome annotation

The protein sequences were annotated by aligning them against different databases by using DEL-

TA-BLAST 2.2.29+ (default parameters, E-value< 0.001) [37] and by using InterproScan 5

(default parameters) for domain search analysis. Blast2GO V.2.7 [38] was used as the central tool

to combine both analysis methods to assign GO terms to the protein sequences and to retrieve EC

numbers. For DELTA-BLAST the following databases were sequentially used: SwissProt, Chloro-

phyceae branch from SwissProt, Viridiplantae and Cyanobacteria branch from NCBI, Uniprot

(SwissProt + Trembl) filtered for proteins with an annotated enzymatic reaction.

Three tools were used to predict the subcellular location of the predicted enzymes: TargetP

[39], PredAlgo [40] and WoLF PSORT [41]. Four common cellular locations were identified:

chloroplast, mitochondrion, secretory pathway, and cytoplasmic. In the case of WoLF-PSORT,

the localizations defined as extracellular or plasma membrane were considered as secretory

pathways.

2.11 Expression analysis

Read abundance estimations were done using the RSEM script from TrinityRNAseq [42] with

the default settings. Reads from each experimental condition were mapped onto the set of cod-

ing sequences generated with QUAST from the assembled transcriptome.

Data was normalized taking into account the library sizes using Trimmed Mean of M-values

[43]. They were further normalized by the CDS length to compute Fragments Per Kilo base of

exon per Million fragments mapped (FPKM) using TrinityRNAseq TMM normalization script.

CDS with FPKM values lower than 10 in all conditions were discarded and resulted in a reduc-

tion of ~13%. Finally, FPKM values corresponding to CDS annotated to the same enzyme or

transporter were added up to provide a single expression value for the reactions in the model.

3 Results and discussion

3.1 Biomass composition

N. oleoabundans was cultivated under four different conditions to assess the difference in gene

expression during growth (nitrogen-replete) and TAG accumulation (nitrogen-deplete) in
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fresh water (A and B) and salt water (C and D), and the difference in gene expression for fresh

and salt water at nitrogen-replete conditions (growth) (A and C) and nitrogen-deplete condi-

tions (TAG accumulation) (B and D) (Panel A in S1 Fig). Samples were taken at a time point

when Triacylglycerol (TAG) accumulation was induced but cells were not so stressed that apo-

ptotic gene expression dominated the transcriptional profile (Panel B in S1 Fig). In Fig (1A–

1D), oil body formation in the N. oleoabundans cells is shown in the four different growth

conditions. The size of the cells grown in fresh water is much smaller with a diameter of

approximately 4 μm, compared to the size of cells grown in salt water with a diameter of

approximately 8 μm. The red fluorescence represents the autofluorescence of the chlorophylls

and the neutral lipid bodies that are stained by BODIPY have a yellow fluorescence signal.

Under nitrogen-deplete conditions, there is significantly more BODIPY fluorescence indicat-

ing accumulation of neutral lipids that mainly consist of TAG molecules. Not all cells show the

same neutral lipid content under nitrogen-deplete conditions. This heterogeneity between

cells has been observed previously in N. oleoabundans [32,44]. This could be explained by the

fact that, under constant light conditions, not every cell is in the same stage of the cell cycle

when the TAG accumulation phase is induced. Individual differences in metabolic activity and

internal nitrogen pool might determine whether cells start to produce TAG or not. The total

Fig 1. Biomass composition of N. oleoabundans in the four tested conditions. Upper panel: Confocal laser scanning microscope images of N. oleoabundans under

four different cultivation conditions. (A) Nitrogen-replete fresh water (FN+). (B) Nitrogen-deplete fresh water conditions (FN-). (C) Nitrogen-replete salt water

conditions (SN+). (D) Nitrogen-deplete salt water conditions (SN-). Chlorophyll autofluorescence is shown in red and the BODIPY stain is shown in yellow. The bar

represents 20 μm. Lower panel: (E) Lipid and starch content. TFA (dark grey), TAG (light grey), and starch (white) 24 hours after medium replacement. The height of

the bars represents the average of the two independent measurements. Error bars represent distance of the sample values to the average value. TAG, TFA and starch are

given as a percentage of total dry weight. (F) Fatty acid profile under the different conditions expressed as percentage of TFA.

https://doi.org/10.1371/journal.pone.0194834.g001
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fatty acid (TFA) content increased as a consequence of the increase in TAG when the cells are

exposed to nitrogen-deplete conditions (Fig 1E). In the first 24 hours of nitrogen depletion, N.

oleoabundans accumulates 12.1%±1.4 and 10.3%±0.8 of their dry weight as TAG molecules in

fresh water and salt water conditions, respectively. The TFA and TAG content is therefore

comparable for the salt water adapted cells compared to the fresh water culture, and the TAG

fraction of the TFA content is the same under both conditions. In Fig 1F (or S1 Table) the fatty

acid profiles are shown for both TFA and TAG relative to the total cell dry weight. No signifi-

cant changes in fatty acid composition are observed when comparing fresh water with salt

water conditions, indicating that the salt resistance of N. oleoabundans is unlikely to be a con-

sequence of modifications of the plasma membrane lipid composition. This is different for

Dunaliella salina, which induces fatty acid elongation and expression of their related genes

under saline stress [45].

3.2 De-novo transcriptome assembly and annotation

For the de novo assembly, RNAseq samples were pooled, amounting to 496,158,724 reads

yielding 30489 contigs with a N50 of 2372 bp. Using a lower bound in contig size of 500 bp,

18097 contigs remained with a total length of 30,540,822 bp. QUAST [36] predicted these con-

tigs to encode 32,136 protein coding sequences (CDS) with a total length of 20,517,587 bp.

InterProScan5 [46] subsequently identified the presence of conserved protein domains in 54%

(15,306) of these CDS. Additionally, 7021 putative proteins could be associated with Gene

Ontology (GO) terms, of which 83% (5861) were unique. Finally, 3249 putative proteins were

associated with EC numbers, 834 of which were unique. All sequences of genes, proteins, and

the mentioned annotation results can be found in S1 File. At this time, there are two published

studies of N. oleoabundans grown under nitrogen-deplete conditions, one with transcrip-

tomics data and the other with proteomics [47,48]. The experimental conditions are funda-

mentally different from our set-up, which makes it difficult to compare the results directly.

3.3 Compatible solutes

Compatible solutes are highly soluble low molecular weight molecules that can be accumulated

to high concentrations without being toxic to the cell. They can protect cells against drought or

saline stress by regenerating cellular osmotic homeostasis, relieving oxidative stress caused by

Reactive Oxygen Species (ROS), and protecting membrane integrity and stabilization of

enzymes or proteins [49]. Some examples of compatible solutes are, free amino acids, sugars,

polyols and quaternary ammonium compounds (QAC). We used the transcriptomic landscape

under stress (nitrogen-deplete) conditions in comparison to the unstressed conditions as proxy

to identify compounds that may act as a compatible solute or otherwise might be involved in

protecting the algae against salt stress. For some of these compounds identified with RNAseq

data we were able to confirm their role by measuring the intracellular concentrations.

3.3.1 Sugars. Several sugars are known to have a protective role in organisms experiencing

different stress conditions [7]. Examples of osmoprotectant sugars are trehalose and sucrose.

In most marine and freshwater cyanobacteria sucrose is synthesized from fructose-6-phos-

phate and UDP-glucose by the enzymes sucrose phosphate synthase (SucPS, EC:2.4.1.14) and

sucrose-phosphate phosphatase (SucPP, EC:3.1.3.24) [50]. Anabaena sp. synthesizes sucrose

in one step converting fructose and ADP or UDP glucose using sucrose synthase (SucST,

EC:2.4.1.13) [51]. In N. oleoabundans, transcription of several genes in the sucrose biosynthesis

pathway are up-regulated under saline growth conditions. Transcripts are considered differen-

tially expressed when the FPKM values are at least log2 fold change (LFC) 0.59 (FC 1.5) com-

pared to the reference condition. In this pathway, D-glucose-1P derived from glycolysis is
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converted into UDP glucose by the enzyme G1PUT which is marginally overexpressed under

saline growth conditions. The conversion from UDP-glucose to sucrose is catalyzed by the

enzyme sucrose synthase (SucST) and is strongly overexpressed under-nitrogen-deplete condi-

tions (Fig 2).

The first step in the pathway that goes from UDP-glucose to sucrose via sucrose-6P cata-

lyzed by SucPS is up-regulated under both salt water and nitrogen stressed cells. The second

step catalyzed by sucrose–phosphate phosphatase (SucPP) is absent from the annotation.

Sucrose can be degraded by sucrose glycohydrolase (SucGH) into D-fructose. Band et al.

found that the main soluble carbohydrate that is accumulated in N oleoabundans experiencing

a salt osmotic up-shock is sucrose [22]. Based on the sucrose levels measured and the expres-

sion levels of the genes involved, sucrose might be functioning as quick response to saline

stress [22], but does not seem to be responsible for salt resistance in long term salt adapted

cells. The NMR spectroscopy analysis revealed that sucrose concentrations may be increased

Fig 2. Biosynthesis pathway of sucrose and starch. The values that are shown in the following figures refer to the Fragments Per Kilobase of

transcript per Million mapped reads (FPKM) for each condition. The white left-most box represents the FPKM value of the respective gene in the

fresh water nitrogen-replete reference condition. This is followed by three colored boxes that represent the log2 fold change (LFC) of the other

conditions compared to the reference condition. The order of the remaining three boxes are from left to right, FN-, SN+, SN- respectively.

Abbreviations: G1PUT: glucose-1-phosphate uridylyltransferase; UTP: Uridine triphosphate. SucPS: sucrose-phosphate synthase. SucST: sucrose

synthase. G1PAT: glucose-1-phosphate adenylyltransferase. αTrPS: alpha,alpha-trehalose-phosphate synthase. αTrS: alpha,alpha-trehalose synthase.

TrP: trehalose-phosphatase. StS:starch synthase. GlBE: glycogen branching enzyme. SucPP: sucrose-phosphate phosphatase. SucGH: sucrose

glucohydrolase. β-am: β-amylase. D-enzyme: 4-alpha-glucanotransferase. StarchP: Starch phosphorylase.

https://doi.org/10.1371/journal.pone.0194834.g002
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under saline and nitrogen stress conditions (S2 Fig). Sucrose accumulation seems to be more

of an overflow mechanism that results from nitrogen depletion.

Another sugar that is often found to be involved in salt resistance is trehalose. In high-tem-

perature stressed yeast cells, trehalose concentrations are increased to protect enzymes from the

elevated temperatures [52]. Trehalose is found in different microalgal species under saline stress

conditions [53,54], but does not seem to be an osmoprotectant in N. oleoabundans, since key

enzymes in this pathway are not transcriptionally up-regulated under saline conditions (Fig 2).

This observation does however not completely exclude trehalose as a candidate for osmoprotec-

tion, because trehalose concentration was not analyzed directly and it could be that the flux

toward this compound is not controlled at transcript level but on a metabolic level.

3.3.2 Proline. Proline was already found to have many positive effects to cope for osmotic

stress in bacteria, plants and algae [7,55–59]. We summarize the effects and pathway regula-

tions for proline as found in diverse studies in S1 Text.

In N. oleoabundans, many genes upstream of proline starting from the tricarboxylic acid

(TCA) cycle are up-regulated under saline growth conditions. Based on the transcript levels it

appears that the major route from the TCA cycle intermediate 2-oxo-glutarate towards L-glu-

tamate is catalyzed via the enzyme glutamate dehydrogenase (GDH). There are two enzymes

known that can catalyze this reaction: EC:1.4.1.3 and EC:1.4.1.4 using different co-factors.

Both enzymes are up-regulated under saline growth conditions, the first by LFC 0.7 in SN+

and by LFC 0.8 in SN- and the second by much stronger LFC 7.6 (FC ~200) in SN+ and LFC

8.5 (FC ~350) in SN-(Fig 3). The enzyme complex P5CS1 and P5CS2 converts L-glutamate

into L-glutamyl-P and GSA respectively. Both enzymes are strongly up-regulated under saline

growth conditions. For the P5CS1 gene this is LFC 0.9 times and LFC 0.6 times for nitrogen-

replete and -deplete saline growth conditions respectively. For the P5CS2 enzyme, the up-reg-

ulation under these conditions are LFC 1.5 and LFC 1.4 respectively. The alternative way to

produce GSA by OAT from ornithine seems to be less important and only active under nitro-

gen-replete conditions and with slightly higher expression under salt water conditions (Fig 3).

In contrast, the diatom Fragilariopsis cylindrus is primarily using the ornithine pathway to gen-

erate proline as a response to salt stress [60]. The final conversion from P5C to proline through

the P5CR reaction, is markedly up-regulated under saline conditions. However, this overex-

pression is stronger in SN+ than SN- (LFC 2.3 and LFC 0.7, respectively) Furthermore, catabo-

lism of proline is done by proline dehydrogenase (PRODH, EC:1.5.99.8) and is upregulated in

all conditions in comparison to FN+. Most importantly, PRODH overexpression was stronger

in SN- than SN+ (LFC 2.0 and LFC 1.4 respectively). Thus, based on this proline synthesis

would be more upregulated and breakdown less upregulated under the SN+ as compared to

the SN- condition.

Proline content was then studied for all four conditions by NMR spectroscopy, results are

shown in S2 Fig. Although the differences between the duplicate measurements are large, still

an increase in proline content can be observed for the SN+ condition, which is in agreement

with the transcriptome results. The cause for the large difference between the duplicate mea-

surements is likely due to the difficulty to disrupt the cell wall of N. oleoabundans. Further-

more, no increase in proline content is measured for the SN- condition. This could be due to

the upregulated breakdown pathways under the SN- condition and the fact that in the SN-

condition nitrogen, which is needed for proline synthesis, is absent.

To conclude, since proline levels are increased in salt water adapted cells and all genes

involved in the proline biosynthesis are up-regulated, proline is most likely to be the primary

mechanism in the saline resistance of N. oleoabundans. Furthermore, under nitrogen-deplete

conditions, PRODH is up-regulated possibly to enable the recycling of nitrogen to use the

nitrogen molecules from proline in other nitrogen requiring processes in the cell.
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More detailed descriptions and analysis of Proline and other potential osmoregulatory

mechanisms can be found in S1 Text.

3.4 Oxidative stress

Under stress conditions ROS can be formed which need to be removed to prevent damage to

the photosystems and other cellular equipment [61]. Glutathione (GSH) is a pivotal compound

for many plant species and microalgae to scavenge ROS, such as superoxide hydrogen perox-

ide and lipid hydroperoxides, which can be accumulated under environmental and oxidative

stress [62]. In addition to direct scavenging of ROS, GSH can also function as the reductant in

the glutathione-ascorbate cycle which can alleviate ROS build up and provide protein protec-

tion. The tripeptide glutathione (GSH) is synthesized from glutamate and cysteine into γ-glu-

tamylcysteine by γ-glutamylcysteine synthetase (γ-GCSTT EC:6.3.2.2) at the expense of one

ATP. In the next step, another ATP molecule is needed to convert γ-glutamylcysteine and gly-

cine into glutathione, by glutathione synthetase (GSHSTT EC:6.3.2.3) (Fig 4).

Fig 3. Proline and GABA biosynthesis pathway. For the figure legend refers to Fig 2. Abbreviations: GSA: glutamate-

semialdehyde. P5C: L-1-Pyrroline-5-carboxylate. GABA: 4-aminobutanoate. P5CR: P5C reductase. P5CS1: glutamate-

5-kinase. P5CS2: GSA dehydrogenase. GDH: glutamate dehydrogenase (EC:1.4.1.3/4). GST: glutamate synthase

(EC:1.4.1.13/14). GSTT: glutamine synthetase. GDC: glutamate decarboxylase. OAT: ornithine aminotransferase.

PRODH: Proline dehydrogenase. �This reaction occurs non-enzymatically.

https://doi.org/10.1371/journal.pone.0194834.g003
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The oxidative stress can be relieved by antioxidant enzymes. First, superoxide can be con-

verted into hydrogen peroxide by the superoxide dismutase (SOD; EC:1.15.1.1). SOD is highly

overexpressed under saline conditions LFC 1.1 and LFC 1.5 in nitrogen-replete and depleted

conditions respectively (Fig 4). Second, the toxic hydrogen peroxide can be converted to H2O

by catalase (CAT, EC 1.11.1.6) or by ascorbate peroxidase (APX EC:1.11.1.11). CAT expression

is stable under nitrogen-deplete conditions and strongly down regulated under nitrogen-

replete saline conditions. Such a regulation of CAT suggests that APX is the preferred way to

relieve the harmful radicals.

Unfortunately, APX could not be annotated in N. oleoabundans from the mRNA sequences.

MDHA, which is produced by APX, needs to be converted back to ascorbate via two different

Fig 4. Glutathione biosynthesis pathway and glutathione-ascorbate cycle. For the figure legend refers to Fig 2. Abbreviations:

SOD Superoxide dismutase; CAT Catalase; APX Ascorbate peroxidase (not annotated); MDHA monodehydroascorbate;

MDHAR monodehydroascorbate reductase; DHA dehydroascorbate; DHAR dehydroascorbate reductase; GSH (reduced)

Glutathione; GSSG oxidised glutathione; GSHR Glutathione reductase; Glu Glutamate; Cys Cysteine; Gly Glyceine; γ-GCSTT γ-

glutamylcystein Synthetase; γ-Glu-Cys γ-glutamylcystein; GSHSTT Glutathione Synthetase; GSH-S-T glutathione S-transferase;

PCST Phytochelatin synthase. � This reaction can occur enzymatically or non-enzymatically.

https://doi.org/10.1371/journal.pone.0194834.g004
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ways. Enzymatically, by monodehydroascorbate reductase (MDHAR EC:1.6.5.4), or non-enzy-

matically by spontaneous disproportionation of two MDHA molecules resulting in ascorbate

and dehydroascorbate (DHA) [63]. DHA will subsequently be converted back to ascorbate by

dehydroascorbate reductase (DHAR EC:1.8.5.1) coupling two GSH molecules into glutathione

disulfide (GSSG). Glutathione reductase (GSHR EC:1.8.1.7) can catalyze the reduction of

GSSG back to two GSH molecules. The MDHA reductase gene is LFC 1.4 increased under

saline replete conditions and LFC 0.9 increased under nitrogen-deplete conditions. DHA

reductase was strongly up-regulated under salt water conditions to regenerate the ascorbate

from DHA. DHAR was LFC 5.2 (FC 37) and LFC 5.8 (FC 56) up-regulated under nitrogen-

replete and -deplete salt water growth conditions respectively. To recycle the GSH molecules,

GSHR is up-regulated under salt water nitrogen-replete and -deplete conditions as well,

namely LFC 1.1 and LFC 1.1 times respectively.

The efficiency of GSH is dependent on its concentration in the cell, which in turn depends

on the activity of the GSH reductase enzyme, which determines the ratio between GSH and its

oxidized form GSSG. As shown, all genes involved in the ascorbate-GSH cycle were up-regu-

lated under salt water growth conditions, including the biosynthesis of GSH (Fig 4).

Another function of GSH is the detoxification of xenobiotics, compounds that have no sig-

nificant nutritional function in cell metabolism, but do affect cellular homeostasis in too high

concentrations, this in contrast to compatible osmolytes that do not interfere with metabolism

when present in high concentrations. The xenobiotic molecules can be conjugated to GSH, by

GSH-S-transferase (GSHT, EC:2.5.1.18), and transported to vacuoles to be detoxified. Under

saline conditions this enzyme is strongly up-regulated, LFC 5.2 and LFC 5.8 under nitrogen-

replete and -deplete saline conditions respectively. This indicates the likeliness of GSH conju-

gate formation and exclusion to relieve xenobiotic pressure under saline conditions (Fig 4). It

is known in plants that GSHT is induced under salt and drought stress to reduce the ROS in

plants and GSHT could also be involved in reducing the harmful byproducts of oxidative stress

such as lipid peroxidation [64,65].

A third protecting feature of GSH is the formation of phytochelatins (PC) by the enzyme

phytochelatin synthase (PCST EC:2.3.2.15). PCs are oligomers of GSH and are able to detoxify

heavy metals by chelation of toxic ions [66,67]. The PC-ion complexes can be compartmental-

ized in the vacuole of plants where they can do no further harm. PC has also been found to be

involved in stress responses other than to heavy metals. In the cyanobacterium Anabaena
doliolum PCs are produced in response to UV-B radiation [68]. The cloning of the PC synthase

gene of Anabaena sp. into E. coli increased the resistance of this bacterium to heat, metals,

UV-B, salt, and herbicides [69]. Some plants have been shown to produce PCs in response

to heat or salt stress [70,71]. The N. oleoabundans PCST gene is up-regulated in salt water

medium under both nitrogen conditions (LFC 0.7), indicating that PCs are likely to be formed

to protect N. oleoabundans against osmotic stress.

Based on the general increase in expression of the genes involved in the ascorbate glutathi-

one cycle, it is very likely that N. oleoabundans is using this cycle to alleviate the pressure of

ROS that arise under saline growth conditions and that the GSH derived conjugates and phy-

tochelatins GSH oligomers are likely to be involved as well. This mechanism is not used to alle-

viate the ROS pressure under nitrogen stress, at least not under the tested conditions.

3.4 Starch and triacylglycerol accumulation

3.4.1 Starch pathway. Starch is known to be transiently accumulated under nitrogen-

deplete conditions in the beginning of the stress phase [30,44,72]. In this study, the sample

time was 24 hours after nitrogen stress induction and it is expected that the genes involved in
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starch biosynthesis would be up-regulated in this early phase of nitrogen stress. The starch lev-

els under the four different conditions are shown to be strongly increased in the first 24 hours

after nitrogen depletion. Under fresh water conditions, the starch content increased from

10.5%±0.1 to 33.5%±0.4 when switched to nitrogen depletion and from 12.9%±01.1 to 39.5%

±0.0 under nitrogen depletion in salt water conditions (Fig 1E). Interestingly, salt water

adapted cells had a 1.2 times higher starch content compared to the fresh water adapted cells

under both nitrogen-replete and -deplete conditions.

The genes encoding glucose-1-phosphate adenylyltransferase (G1PAT, EC:2.7.7.27) and

starch synthase (StS, EC:2.4.1.21) are strongly up-regulated under nitrogen-deplete conditions

and seems to be up-regulated by salt water as well (Fig 2). The G1PAT gene is LFC 0.6 times up-

regulated in FN-, while this gene is up-regulated by LFC 1.3 in SN+ and by LFC 1.6 times SN-.

Starch accumulation upon nitrogen depletion seems to be facilitated by transcriptional up-regu-

lation of starch biosynthesis genes with the exception of the final step catalyzed by glycogen

branching enzyme (GlBE, EC:2.4.1.18). Starch catabolism can be facilitated by different

enzymes. β-amylase (β-am, EC:3.2.1.2) degrades starch by removing maltose units from the

non-reducing ends of the chains. β-am was shown to be down-regulated under salt water and

nitrogen-deplete conditions (Fig 2). Those results correlate with another nitrogen deplete tran-

scriptomics study of N. oleoabundans [47] in which starch is also accumulated, the glucose

branching enzyme (GlBE) is slightly down-regulated, and β-amylase is down-regulated. How-

ever, that study observed down-regulation of starch building enzymes G1PAT and StS, while in

this study, we observed up-regulation of those genes. Unexpectedly, starch phosphorylase

(StarchP, EC:2.4.1.1) and α-amylase (α-am, EC:3.2.1.1), two other starch degrading enzymes,

are up-regulated under nitrogen-deplete conditions when there is accumulation of starch (S1

Table). While the change of expression is rather strong for StarchP, the change of expression of

α-am is very small and cannot be considered significant. A possible explanation could be that

during nitrogen depletion, starch turnover is accelerated with a faster anabolism than catabo-

lism, while the starch degradation products are being redirected towards other sugars and TAG.

Salt stress does seem to increase the starch content, which is possibly a result of reduced growth

creating a surplus of energy that needs to be channeled from the photosystems [73].

3.4.2 Triacylglycerol pathway. When oleaginous microalgae are exposed to unfavorable

growth conditions such as nitrogen-deplete conditions, cells start to accumulate triacylglycerol

(TAG). These neutral glycerolipids are composed of a glycerol backbone with three fatty acid

molecules attached. The fatty acid biosynthesis takes place in the chloroplasts and starts down-

stream of the glycolysis with the conversion of acetyl-CoA to malonyl-CoA by the heteromeric

enzyme complex acetyl-CoA carboxylase (ACCase). The acetyl-CoA pool can be supplied in

two different ways. The first way is via pyruvate and the pyruvate dehydrogenase complex, in

which the first two steps are up-regulated under nitrogen-deplete conditions in N. oleoabun-
dans (EC:1.2.4.1 and EC:1.8.1.4, see Fig 5). Another way is via the TCA cycle in which citrate

can be converted into acetyl-CoA and oxaloacetate by ATP citrate lyase (EC:2.3.3.8) [74]. The

N. oleoabundans ATP citrate lyase is up-regulated under nitrogen-deplete conditions and it is

likely that this pathway is involved in supplying part of the acetyl-CoA.

ACCase catalyzes an important step in fatty acid biosynthesis and overexpression of this

enzyme resulted in increased lipid contents in Arabidopsis [75], but not necessarily in microal-

gae [76]. Over expression of the ACCase complex is challenging because of the multigene-

encoded enzyme complex and post-translational modifications [77,78]. Next, an acyl-carrier

protein (ACP) is exchanged for the CoA moiety by malonyl-CoA:ACP transacylase giving rise

to a malonyl-CoA molecule. Malonyl-CoA enters the heteromultimeric fatty acid synthesis

(FAS) cycle where it is extended with two carbon atoms per repetitive cycle to usually 16 or 18

carbon long acyl-ACP groups.
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In this study, two subunits of the enzyme complex ACCase could be identified, biotin car-

boxylase (EC: 6.3.4.14) and biotin carboxyl carrier (EC:6.4.1.2). The biotin carboxylase subunit

is up-regulated under nitrogen-deplete conditions, and the biotin carboxyl carrier has little

Fig 5. Carbon metabolism in N. oleoabundans. For the figure legend refers to Fig 2. Codes in the white boxes represent the corresponding EC numbers. Abbreviations:

PEP phosphoenol pyruvate; LysoPA Lysophosphatidic acid; PA Phosphatidic acid; DAG 1,2-Diacylglycerol; TAG Triacylglycerol. EC:2.3.1.12 could not be annotated

from the transcriptome of N. oleoabundans.

https://doi.org/10.1371/journal.pone.0194834.g005
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(fresh water) to no (salt water) down-regulation under nitrogen-deplete conditions (Fig 5).

These results thus show that the biotin carboxylase is the main regulator for ACCase complex

which is in agreement with the results from both aforementioned N. oleabundans studies

[47,48].

Our results show that the third reaction of the FAS cycle did not display any changes in

expression (Fig 5), while the first (EC:2.3.1.179) and last (EC:1.3.1.9) step of the FAS cycle dis-

played up-regulation: the first step seems to be up-regulated due to nitrogen depletion,

whereas the last step is strongly up-regulation due to salt water conditions. In contrast, the sec-

ond reaction of the FAS cycle displayed light down-regulation due to nitrogen depletion and

displayed very strong down-regulation due to salt water. In agreement with the other tran-

scriptome study of N. oleoabundans [47], Acyl-ACP desaturase (AAD) was found to be signifi-

cantly up-regulated, which also correlates with the very similar change in fatty acid profile in

that study being mainly an increase in C18:1. Since the TAG content is strongly increased in

the first 24 hours of nitrogen starvation (Fig 1), it was expected that transcription of the genes

encoding the enzymes involved in the TAG synthesis pathway would be up-regulated under

nitrogen-deplete conditions. This was not the case with the exception of the glycerol 3-phos-

phate acyltransferase (EC:2.3.1.15) gene, which showed a LFC 0.5 and LFC 1.1-under fresh

water and salt water nitrogen-deplete conditions respectively (Fig 5). This enzyme links glycol-

ysis and the TAG synthesis pathway by attaching the first acyl-ACP molecule to sn-Glycerol

3-phosphate resulting in lysophosphatidic acid. Glycerol-3-phosphate can be formed from

glycerol via glycerol kinase (EC:2.7.1.30) or from dihydroxyacetone phosphate via glycerol-

3-phosphate dehydrogenase (EC:1.1.5.3). The latter seems to be the case in N. oleoabundans
since transcription of the gene for this enzyme is strongly up-regulated under nitrogen-deplete

conditions. The overexpression of a yeast glycerol-3-phosphate dehydrogenase in rape seed,

resulted in a 40% increase of the seed oil content, indicating that the available glycerol back-

bones are a limitation in TAG accumulation in rape seed [79]. To ensure sufficient supply of

G3P, transcription of triose-phosphate isomerase (EC:5.3.1.1), the enzyme that converts gly-

cerone-P (Dihydroxyacetone phosphate, DHAP) to glyceraldehyde-3-P, is reduced under

nitrogen-deplete conditions (Fig 5). Chen et al. described the increase of DHAP, G3P and glyc-

erol in Arabidopsis when triose-phosphate isomerase was knocked out [80]. A similar regula-

tory mechanism was found in microalgae [81].

The last step from diacylglycerol (DAG) to triacylglycerol (TAG) is catalyzed by diacylgly-

cerol O-acyltransferase (DGAT, EC:2.3.1.20). This enzyme is down regulated in N. oleoabun-
dans under all tested conditions compared to the fresh water replete conditions. DGAT has

been extensively studied since it is regarded as one of the most important rate limiting steps in

TAG biosynthesis. Over expression of this gene or several subunits have resulted in very differ-

ent outputs. In Phaeodactylum tricornutum there have been very promising results, resulting

in higher levels of TAG synthesis, but in the green alga C. reinhardtii there have not been con-

sistent increases in TAG content in combination with DGAT over expression [82–85]. The

fact that DGAT does not seem to be over expressed under nitrogen-deplete conditions is sur-

prising, since TAG accumulation is occurring in N. oleoabundans under these circumstances.

In this study only one DGAT gene could be identified and it is known from other species that

there are several genes that encode for DGAT enzymes and that they have very different

expression profiles as a response to nitrogen deprivation [73,86,87]. More research needs to be

done to understand and identify the different DGAT enzymes in N. oleoabundans.
As can be seen in Fig 5, most of the genes involved in energy and carbon metabolism are

up-regulated under nitrogen-deplete conditions. Under salt conditions, transcription of genes

involved in glycolysis, TCA cycle, and pentose phosphate pathway (PPP) were increased. This

can be explained by the need for sufficient carbon precursors such as acetyl-CoA and ATP.
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Furthermore, it was already hypothesized [72] that PPP might be used to redirect the starch

degradation products towards TAG biosynthesis. In the PPP, the transcripts for the NADPH

generating enzymes are strongly up-regulated to generate the required NADPH that is needed

for TAG biosynthesis and to scavenge ROS.

To maintain high levels of TAG molecules, the rate of TAG catabolism should be low [88].

The gene triacylglycerol lipase (EC:3.1.1.3) is highly expressed under nitrogen-replete fresh

water conditions (FPKM: 1734). The expression is down regulated under nitrogen-deplete and

salt water conditions, LFC -0.3, LFC -0.9, and LFC -0.6 for fresh water nitrogen-depleted, salt

water nitrogen-replete and depleted conditions respectively (S1 Table).

4 Conclusion

To assess the metabolic and transcriptomic response to nitrogen and salt stress, N. oleoabun-
dans was cultured under four different conditions being fresh water and saline water both

under nitrogen-replete and nitrogen-deplete conditions. The most likely compatible solute in

N. oleoabundans is proline because under saline conditions, transcripts involved in proline

biosynthesis are up-regulated and NMR indicated that proline is accumulated in the cells.

Next to this transcriptome analysis shows that anti-oxidant pathways, like the ascorbate GSH

cycle, GSH-conjugation, PC formation and GSH itself, are upregulated under saline condi-

tions, probably protecting the cells from oxidative stress occurring under this condition.

Unlike other microalgae, the plasma membrane lipid composition of N. oleoabundans was not

adjusted in salt water adapted cells. Under Nitrogen-deplete conditions both starch and TAG

were accumulated at both fresh water and salt water conditions. With the overall gene expres-

sion, we could explain how starch is accumulated. However, no strong correlation was found

between accumulation and gene expression in the TAG pathway. Nevertheless, we identified

two genes as promising targets to enhance TAG production: glycerol-3-phosphate acyltrans-

ferase and glycerol-3-phosphate dehydrogenase. Not only because they link the glycolysis to

the TAG biosynthesis pathway, but also because of their expression profile. Overall, the results

of this study can be used to develop strategies to enhance salt resistance of N. oleoabundans
and other industrially relevant microalgal strains and ultimately help to develop a competitive

feasible large-scale production of TAG for feed and bio-fuels, while reducing the dependence

on precious fresh water resources and arable land.
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S1 Fig. Set up of the cultivation experiment. Panel A: Representation of the four different

environmental conditions that were examined in this study. Panel B: Cultivation set up. Two

cultures were grown in fresh water in nitrogen replete conditions. The dotted line indicates

the moment of medium replacement. One culture remained nitrogen replete, the other culture

was exposed to nitrogen depleted medium. The same regime was applied to salt water adapted

cultures. The whole experiment was conducted in duplicate. This method results in compara-

ble growth conditions (similar lighting and time of nitrogen depleted conditions.

(TIF)

S2 Fig. NMR spectroscopy showing metabolite concentrations under different conditions.

Samples were measured in duplicate. The height of the bars represents the average of the two

independent measurements. Error bars represent distance of the sample values to the average

value.

(TIF)
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S3 Fig. NMR Quantitative variation in the 1H NMR spectra from all four conditions in

duplicate. Spectra are derived from ethanol–water extracts of individual samples of FN+ fresh

water replete, FN- Fresh water nitrogen depleted, SN+ Salt water replete, SN- salt water nitro-

gen depleted conditions. The numbers I and II indicate duplicates.

(TIF)

S1 Text. Complementary information.
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S1 Table. Fatty acid composition of total fatty acid and triacylglycerol lipids expressed as

fraction of dry cell weight. Values are the average of the biological duplicates.
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S2 Table. FPKM values and fold change for all transcripts discussed in this manuscript.
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