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31 Abstract 
 

32 Acid deposition has led to acidification and loss of fish populations in thousands of lakes and 
 

33 streams in Norway. Since the peak in the late 1970s acid deposition has been greatly reduced, and 
 

34 acidified surface waters have shown chemical recovery. Biological recovery, in particular fish 
 

35 populations, however, has lagged behind. Long-term monitoring of water chemistry and fish 
 

36 populations in Lake Langtjern, south-eastern Norway, show that around 2008 chemical recovery had 
 

37 progressed to the point at which natural reproduction of brown trout (Salmo trutta) reoccurred. The 
 

38 stocked brown trout reproduced in the period 2008–2014, probably for the first time since the 
 

39 1960s, but reproduction and/or early life stage survival was very low. The results indicate that 
 

40 chemical thresholds for reproduction in this lake are approximately pH = 5.1, Ali = 26 µg/l, ANC = 47 
 

41 µeq/l, and ANCoaa = 10 µeq/l as annual mean values. These thresholds agree largely with the few 
 

42 other cases of documented recovery of brown trout in sites in Norway, Sweden and the UK. 
 

43 Occurrence and duration of acidic episodes have decreased considerably since the 1980s, but still 
 

44 occur and probably limit reproduction success. 
 

45 
 

46 
 

47 
 

48 
 

49 
 

50 
 

51 
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54 Introduction 
 

55 During the 20th century acid deposition caused environmental damage in large regions of 
 

56 Europe and eastern North America. In Norway, thousands of lakes and streams were acidified, with 
 

57 the resultant loss and damage to freshwater fish populations (Hesthagen et al. 1999). Southern 
 

58 Norway is particularly vulnerable to acid deposition due to the highly siliceous and weathering- 
 

59 resistant bedrock and overburden, and thin and patchy organic-rich soils (Wright and Henriksen 
 

60 1978). Acid deposition in Europe peaked in the late 1970s and has declined sharply over the past 30 
 

61 years (Schöpp et al. 2003), largely as a result of implementation of international agreements to 
 

62 reduce the emissions of acidifying air pollutants (UNECE 2014). Acidified freshwaters in Norway have 
 

63 shown dramatic improvements in water chemistry as a response to declining acid deposition 
 

64 (Skjelkvåle et al. 1998; Garmo et al. 2014; Gray et al. 2016). In many cases, however, biological 
 

65 recovery has lagged behind chemical recovery (Hesthagen et al. 2011; Hesthagen et al. 2016). 
 

66 
 

67 Damage to salmonid fish populations, in particular the brown trout (Salmo trutta), in acidified lakes 
 

68 is usually due to recruitment failure. The eggs and young fry are the most sensitive life stages, and 
 

69 they are often exposed to the acidic water during snowmelt (Overrein et al. 1980; Serrano et al. 
 

70 2008). In marginally-acidified lakes stocking with young fish may be successful, but reproduction 
 

71 often fails. Toxicity is largely due to elevated concentrations of inorganic aluminium species (termed 
 

72 here Ali) (Baker and Schofield 1982; Rosseland et al. 1990). Toxicity of Ali is ameliorated by dissolved 
 

73 organic carbon (DOC) in the water through formation of Al-humus complexes (Cronan et al. 1986). 
 

74 
 

75 Ali is mobilized from soils by acidic water. The strong acid anions sulphate (SO4) and nitrate (NO3) in 
 

76 acid deposition acidify the soil and mobilize Ali (Reuss et al. 1990). Acid neutralising capacity (ANC), 
 

77 defined as the equivalent sum of the concentrations of base cations minus the equivalent sum of the 
 

78 concentrations of strong acid anions, is commonly used as a measure of the acidification of 
 

79 freshwaters (Reuss et al. 1987). There was a close relationship between ANC and the brown trout 
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80 population status in lakes in Norway during the 1980s when acidification was near its peak (Lien et 
 

81 al. 1996). Inclusion of organic strong acids (ANCoaa; “organic acid adjusted”) slightly improved the 
 

82 correlation (Lydersen et al. 2004). 
 

83 
 

84 Documentation of chemical and biological recovery in acidified lakes requires systematic long-term 
 

85 monitoring. In southern Norway, Lake Langtjern is one such monitoring site where water chemistry 
 

86 and fish populations have been monitored since the 1970s (Henriksen and Wright 1977; Henriksen 
 

87 and Grande 2002; De Wit et al. 2014). The native brown trout population disappeared around 1960, 
 

88 probably because of acidification (Henriksen and Grande 2002). pH in the lake was generally below 
 

89 5.0 in the 1970s. Since then, the lake has been stocked several times for research purposes with 
 

90 brown trout, brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss) to study 
 

91 the relative tolerance of various fish species to acid water (Grande et al. 1978). The stocking did not 
 

92 result in natural reproduction in the lake, until recent findings of small, non-stocked brown trout. 
 

93 Here we investigate the recent fish recovery in relation to changes in the water chemistry of Lake 
 

94 Langtjern over the 42-year period 1973–2014. 
 

95 
 
 

96 Materials and methods 
 

97 The catchment and the lake 
 

98 Lake Langtjern (https://www.niva.no/en/services/environmental-monitoring/langtjern) is a 
 

99 small, headwater lake located in Flå township, Buskerud county, about 75 km north of Oslo, south- 
 

100 eastern Norway (Fig. 1). Lake Langtjern has been a site for monitoring and research on acidification 
 

101 since 1972. It is undisturbed from direct human influence and has never been limed. The lake and its 
 

102 catchment are included in several national and international monitoring programs. The lake is 0.23 
 

103 km2 with catchment including the lake 4.7 km2. The lake is relatively shallow, with maximum depth 
 

104 12 m and mean depth 2 m. The catchment is mixed sparse forest of pine, spruce and birch. Soils are 

http://www.niva.no/en/services/environmental-monitoring/langtjern)
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105 thin and organic-rich podsols developed on weathering-resistant glacial moraine and bedrock of 
 

106 gneisses and granites. The catchment is 63 % forest, 16 % peatland and 16 % exposed bedrock. Apart 
 

107 from a minor amount of forest harvesting, there is no other human disturbance or sources of 
 

108 pollution to the lake or the catchment. The lake and its catchment including exclusive fishing rights 
 

109 have been leased to the Norwegian Institute for Water Research for research and monitoring 
 

110 purposes since 1973. 
 

111 The lake has three inflowing streams; only the largest of these (LAE02) and the outlet 
 

112 (LAE01) provide suitable habitat as spawning beds for trout. The width of the outlet stream is 1–2 m. 
 

113 The outlet has two dam constructions: an old large stone dam previously used to float timber and a 
 

114 newer concrete dam downstream with v-notch weir installed in 1973 for measuring discharge. The 
 

115 older stone dam restricts free water flow when discharge is large and has an opening at the bottom 
 

116 which allows fish passage both ways at all levels of water discharge. The v-notch weir has a waterfall 
 

117 that effectively prevents any upstream migration of fish. From the lake outlet, it is about 30 m to the 
 

118 stone dam and 100 m to the concrete dam. The main inlet (LAE02) has a width of about 0.5–1 m. 
 

119 Both streams have sections of shallow water, but also some deeper pools. The substrate varies from 
 

120 fine to coarse. Suitable brown trout spawning substrates are more common in the inlet (LAE02) than 
 

121 in the outlet. 
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122 Deposition data 
 

123 The nearby stations Brekkebygda (1998–2015) and Gulsvik (1974–1997) are part of the 
 

124 national atmospheric monitoring programme run by the Norwegian Institute for Air Research (NILU). 
 

125 Bulk deposition is collected in weekly samples, and volume and concentrations of major ions 
 

126 measured at NILU and reported annually (Aas et al. 2016). 
 
 

127 Discharge data 
 

128 Langtjern is a station in the national hydrology monitoring programme run by The 
 

129 Norwegian Water Resources and Energy Directorate (NVE). Discharge is measured continuously by 
 

130 water-level recorder at the v-notch weir. The data are reported as mean daily discharge. 
 
 

131 Water chemistry data 
 

132 Samples for water chemistry have been collected weekly from the outlet since 1973, except 
 

133 during an 18-month period with no funding in 1984–1985. Water chemistry parameters relevant to 
 

134 acidification have been analysed; these include major cations and anions, aluminium species (from 
 

135 1986), and dissolved organic carbon (from 1986). The inlets and the lake itself have also been 
 

136 sampled, but not as frequently or as systematically as the outlet. The monitoring data and analytical 
 

137 methods used are reported annually (Garmo et al. 2016). 
 

138 Fish data 
 

139 Fish catch and stocking information for the period 1906–1971 was derived from log books 
 

140 kept by the local fishermen and other anecdotal information from local people. Beginning in 1972 
 

141 experimental fish stockings and gill net catches were systematically recorded (Henriksen and Grande 
 

142 2002). During the period 2000–2003, investigations were conducted to assess the potential for 
 

143 natural recruitment of brown trout in the lake. In autumn 2000, 216 fertilized brown trout eggs of 
 

144 the Nordmarka (Oslo) strain were placed at potential spawning sites in the outlet (72 eggs in 3 
 

145 boxes) and main inlet (144 eggs in 6 boxes) and then inspected periodically for survival rates to 
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146 hatching in May 2001. In September 2002, the streams were sampled by electrofishing with a 
 

147 backpack apparatus (Bohlin et al. 1989). In August 2003, the lake was sampled by 9 multi mesh 
 

148 survey nets of 32 m and 4 single mesh nets of 25 m with mesh widths 10 mm, 12.5 mm, 16 mm and 
 

149 22 mm. 
 

150 In August 2010, October 2011, October 2012, August 2013 and August 2014, the outlet and 
 

151 main inlet were sampled by one or two passes of electrofishing, except 2014 when only outlet was 
 

152 sampled. The outlet stream was sampled in an area of ca. 150 m2, covering the full width of the 
 

153 stream from the outlet down to the V-notch weir about 100 m downstream. The inlet was sampled 
 

154 in an area of ca. 130 m2, covering the full width of the stream from the lake to about 130 m 
 

155 upstream. Length and weight of the captured fish were measured, and the fish then released into 
 

156 the same stream. Young-of-the-year (age 0+) were counted to assess the year specific reproduction. 
 

157 This age class was separated from older classes (>0+) mainly by fish lengths, but also by reading 
 

158 scales samples of some individuals. Gender and sexual maturation were determined only when 
 

159 possible. 
 

160 Statistical methods 
 

161 We analysed for break points in the various data series by means of the software package 
 

162 Change-Point Analyzer ver. 2.3 (Taylor Enterprises, Inc.), where annual means were analysed for 
 

163 significant changes with 95 % confidence level using 1000 bootstraps without replacements. In some 
 

164 series, data were grouped to avoid violation of the assumptions of independent errors. 
 

165 Duration of extremes was estimated by counting days between consecutive measurements 
 

166 of extreme values, assuming the values to be extreme in the period between the actual 
 

167 measurements. We used the thresholds of ANC 10 µeq l-1, ANCoaa -5 µeq l-1, pH 4.8 and Ali 50 µg l-1. 
 

168 Days between two consecutive measurements were counted if both measured values were below 
 

169 the thresholds for ANC, ANCoaa  or pH and above the threshold for Ali. Measurements were weekly 
 

170 and the expected count between two such values was therefore seven. 
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171 Results 

 
172 

 

Water chemistry 

173 The concentrations of SO4 in the outlet have decreased sharply since the peak years in the 
 

174 1970s (Fig. 2). This has been in response to the large decrease in SO4 deposition – from about 40 
 

175 meq m-2 yr-1 in the late 1970s to about 10 meq m-2 yr-1in the 2010s (Fig. 2). The large decrease in SO4 

 

176 deposition from 1991 to 1997 corresponds to the decrease in SO4 concentrations in the outlet from 
 

177 1993 to 2000, with a delayed response of less than two years (Table 1) (Fig. 2). The decreasing 
 

178 concentrations of SO4 in the outlet have been accompanied in part by lower concentrations of base 
 

179 cations such as Ca, and in part by higher pH and lower concentration of Ali. The ANC and ANCoaa have 
 

180 increased, and the water has become less toxic to fish (Table 1). At Langtjern concentrations of 
 

181 nitrate (NO3) are in the range 1–2 µeq l-1, showing lower values in recent decades. Thus nitrogen 
 

182 deposition plays a minor role relative to sulphur in surface water acidification at this site. TOC has 
 

183 increased since the mid 1980s, which is the reason for the slight decline in ANCooa in the period 
 

184 2008–2014. 
 

185 The 42-year record of annual SO4 deposition and mean concentrations of SO4, Ca, ANC, 
 

186 ANCoaa and pH in the outlet had change-points during 1997–2001, with decreased SO4 deposition, 
 

187 SO4 and Ca and increased ANC, ANCoaa and pH (Fig. 2). A second change point was found in 1991– 
 

188 1992. The change-points for ANC and ANCoaa in 2000 had confidence intervals which included 2002 
 

189 and 2001, respectively. The decrease in SO4 of 41 µeq l-1 was associated with in a decrease of Ca of 
 

190 11 µeq l-1 and an increase of ANC of 28 µeq l-1. 
 

191 The occurrence and duration of acidic episodes have decreased considerably since the 1980s 
 

192 (Fig. 3). During 1973–1992 in the Langtjern outlet, there were many periods of more than 90 
 

193 consecutive days of pH < 4.8. Before 1995 it was usual to have more than 14 days of pH < 4.8 every 
 

194 year. Then, in the period 1996–2014, there were 11 years without consecutive weekly 
 

195 measurements of pH < 4.8. Periods of Ali > 50 µg l-1 were more frequent and much longer before 
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196 1995 than after. Since 1995, only two years had high Ali periods of 14 days or more. Periods of ANC < 
 

197 10 µeq l-1 were more frequent and of much longer duration before 1990 than after. After 1990, only 
 

198 three years had such periods: 1991, 1994 and 2000. For ANCoaa < -5 µeq l-1, there were fewer and 
 

199  
 

200  

shorter periods after year 2001. 

 

201 Fish 
 

202 According to anecdotal information from the local fishermen and log books on fish catches in 
 

203 Lake Langtjern, the lake lost its population of brown trout during the 1960s, probably due to 
 

204 acidification. This “original” population was a result of several stockings of brown trout since ca. 
 

205 1906 and the natural offspring of these. Gill net catches were relatively good for the first decades of 
 

206 the 1900s, but then very poor in 1967–1969. From 1972, the lake was managed for research 
 

207 purposes and repeatedly stocked with brown trout and also brook trout usually aged 1+ (Fig. 4) 
 

208 (Henriksen and Grande 2002). The last stocking was of 400 brown trout in June 2006. There was no 
 

209 systematic tagging of the stocked fish, but most were fin clipped. The stocked fish were also 
 

210 captured (and killed), usually by use of gill nets each summer, with the last gill net catch conducted 
 

211 in 2011. The gill net catches usually corresponded to the previous stocking of fish, i.e. the stocked 
 

212 fish were recognized (by size and fin clippings) in the catches some 2–4 years after release (Fig. 4). 
 

213 Captured fish were mainly marked (fin clipping) confirming recaptures of stocked fish. Unmarked 
 

214 captures, which could be wild or stocked, were very rare and did not point to an ongoing natural 
 

215 reproduction. During the period 1992–2000, recapture of stocked fish was estimated to 20% 
 

216 (Henriksen and Grande 2002). The remaining 80% of the stocked fish usually disappeared after 6–8 
 

217 years, presumably owing to natural causes, but possibly as a result of the acidification. There usually 
 

218 were mature individuals among the captured fish. Probably, there have been mature fish in the lake 
 

219 in varying numbers since the 1970s, but the gill net captures have not indicated any successful 
 

220 reproduction of trout. 
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221 The studies of possible trout recruitment starting in the winter 2000-01 gave negative 
 

222 results. In May 2001, all eggs in the experimental boxes in the substrate were dead when inspected. 
 

223 At the same time, dead eggs from natural spawning were also observed. The September 2002 
 

224 electrofishing resulted in no catches in the streams. The August 2003 lake sampling by gill nets gave 
 

225 no catch of non-stocked fish. Studies were resumed in 2010, and for the first time recruitment of 
 

226 young brown trout was observed. The electrofishing in the outlet (LAE01) and the major inlet 
 

227 (LAE02) in 2010–2014 resulted in captures of non-stocked brown trout each year (Table 2). These 
 

228 fish were not fin clipped, and they were much smaller than the expected size of the stocked fish 
 

229 from 2006. In 2011, 2012 and 2014 there were electrofishing catches of young-of-the-year brown 
 

230 trout, with fish lengths < 8 cm in August catches and < 9 cm in October. Mature individuals of both 
 

231 sexes, and of both wild (< 27 cm, n=3) and stocked origin (> 38 cm, n=2), were captured in the outlet 
 

232  
 

233  

in 2011 and 2012. 

 
 

234 Discussion 
235 The chemical recovery at Langtjern follows the well-documented pattern seen in acidified 

 

236 lakes and streams in many parts of Europe and eastern North America (Stoddard et al. 1999; Jeffries 
 

237 et al. 2003; Skjelkvåle et al. 2007; Futter et al. 2014; Monteith et al. 2014; Rask et al. 2014; Driscoll et 
 

238 al. 2016). The reduced deposition of SO4 has led to lower concentrations of SO4 in surface waters. pH 
 

239 and ANC have increased while Ali has decreased. In addition, TOC has increased, which is a result of 
 

240 increasing organic matter solubility related to lower electrolyte concentrations and reduced acidity 
 

241 (De Wit et al. 2007). Also, concentrations of NO3 decreased, probably as a combined result of climate 
 

242 warming (less snow cover) and lower N deposition (de Wit et al. 2008). 
 

243 The lag time of <2 years between reductions in SO4 deposition and decrease in 
 

244 concentrations of SO4 in the lake observed at Langtjern is also not unexpected, as soil processes such 
 

245 as adsorption and desorption of SO4 are minor in young, organic-rich soils such as those at Langtjern 
 

246 (Reuss and Johnson 1986). The in-lake processes that also act to dampen changes in SO4 
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247 concentrations are also apparently of minor importance relative to the through-flux of SO4 in the 
 

248 lake (Couture et al. 2016). 
 

249 The fish catches indicate an important qualitative change in the brown trout ecology in Lake 
 

250 Langtjern: the stocked fish now reproduce, albeit to a very low extent and maybe not every year. 
 

251 Thus, water quality in the outlet and inlet streams is apparently close to a critical limit for successful 
 

252 brown trout reproduction. 
 

253 The exact year of the first successful reproduction in recent times cannot be ascertained, but 
 

254 we know from the electrofishing that young-of-the-year brown trout were produced in 2011, 2012 
 

255 and 2014 (Table 2). The estimated age of older captured fish suggests that brown trout reproduced 
 

256 also in 2008 and 2009. Gill net sampling, electrofishing and egg exposure experiments indicate that 
 

257 reproduction probably did not occur in in 2001 and 2002. The August 2003 gill net sampling in the 
 

258 lake would not have been able to capture potential young-of-year, as they would have been residing 
 

259 in the stream; thus there are no data on the trout reproduction in 2003. Hence, the first successful 
 

260 reproduction was probably in the period 2003–2008. 
 

261 Langtjern is one of a few acid water monitoring sites in Norway at which long-term data 
 

262 record the recovery of the brown trout following reductions in acid deposition. Hesthagen et al. 
 

263 (2011) have documented the revitalisation of the brown trout population in Lake Saudlandsvatn, 
 

264 southernmost Norway. Here the native population was severely depleted, but never completely lost, 
 

265 and was able to naturally reproduce when water quality improved in the 1990s. Similarly, brown 
 

266 trout recruitment became increasingly successful in streams in the River Vikedal catchment 
 

267 (Hesthagen et al. 2001) during the 1990s, albeit with occasional setbacks due to acidic episodes 
 

268 (Hesthagen et al. 2016). 
 

269 There are only a few documented cases of recovery of fish populations from acidified waters 
 

270 elsewhere in Europe and eastern North America. This appears to be because of the paucity of long- 
 

271 term data monitoring fish populations, but perhaps also because of factors acting to delay biological 
 

272 recovery in response to chemical recovery. In Sweden, the thousands of acidified lakes have shown 



12  

273 chemical recovery since the 1980s (Futter et al. 2014), but there are apparently few lakes in which 
 

274 the long-term data are sufficient to document recovery of fish populations (Holmgren 2014). Valinia 
 

275 et al. (2014) found that in a dataset of 28 Swedish lakes, the roach (Rutilus rutilus) population had 
 

276 been lost in 14 lakes due to acidification in the 1980s, but in 2010 it had reappeared in 5 of these in 
 

277 response to chemical recovery. In Finland there has been widespread recovery of perch (Perca 
 

278 fluviatilis) populations, but the more acid-sensitive roach shows much less recovery (Rask et al. 
 

279 2014). In the United Kingdom two of the 22 sites in the acid waters monitoring network (AWMN) 
 

280 now show recovery of brown trout populations (Malcolm et al. 2014) in response to the general 
 

281 improvement in water quality due to reduced sulphur deposition (Monteith et al. 2014). In the 
 

282 eastern United States long-term monitoring data from 43 lakes in the Adirondack Mountains, New 
 

283 York, show reduced acidity in response to decreased sulphur deposition, but so far there have been 
 

284 no major improvements in populations of brook trout (Baldigo et al. 2016). Likewise in eastern 
 

285 Canada there have been several reports of improved fish populations in acidified lakes and streams 
 

286 of Atlantic Canada (Lacoul et al. 2011) and in acidified lakes near Sudbury, Ontario (Gunn and Keller 
 

287 1990, Snucins et al. 2001). 
 

288 Chemical recovery proceeds along a continuum, whereas biological recovery is often marked 
 

289 by thresholds. There have been many studies of the tolerance of fish species to acidified waters, in 
 

290 particular the brown trout. Empirical data for water chemistry and brown trout populations from 
 

291 synoptic surveys of 1000 lakes in Norway show that there were rather sharp thresholds of ANC for 
 

292 the transition between “not affected” and “reduced” populations, and between “reduced” and 
 

293 “extinct” populations in the 1980s (Bulger et al. 1993, Lien et al. 1996). Fitting a logistic expression to 
 

294 the data explained 54% of the variance. Including organic acids in the expression for ANCoaa 

 

295 increased the strength of these relationships to 56% (Lydersen et al. 2004). ANCoaa is particularly 
 

296 appropriate in humic lakes, such as Langtjern. A threshold for ANCoaa of 8 µeq/l gave a 95% 
 

297 probability for no population damage to brown trout in Norwegian lakes based on the survey data 
 

298 from 1986. 
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299 Hesthagen et al. (2008)) revisited these thresholds based on a new survey of the Norwegian 
 

300 lakes conducted in 1995. Their analysis indicates that in 1995 the threshold for 95% probability for 
 

301 no population damage to brown trout was ANCoaa 48 µeq/l, substantially higher than the value for 
 

302 the 1986 data. They suggest that the higher ANCoaa threshold found for the 1995 data might be 
 

303 caused by a lower pH and a higher Ali concentration at a given ANC value in 1995 than in the 1980s. 
 

304 But this difference could also be caused by the lag times between changes in water chemistry and 
 

305 population status in lakes. 
 

306 Based on the long-term field data from the streams in the River Vikedal catchment 
 

307 Hesthagen et al. (2016) suggest that recruitment of brown trout can give low density of fry at ANCoaa 

 

308 levels of -18 to -5 µeq l-1, increased but unstable densities at ANCoaa -5 to +10 µeq l-1, and steady 
 

309 increase in density at ANCoaa above 10 µeq l-1. They indicate that ANCoaa of 20–25 µeq l-1 is necessary 
 

310 for significant recovery of young brown trout in streams. This value is consistent with the observed 
 

311 fish recovery at Lake Saudlandsvatn (Hesthagen et al. 2011). The UK data of Malcolm et al. (2014) 
 

312 indicate threshold value of ANCoaa in the range 7 to 38 µeq l-1, for 80% probability of brown trout fry 
 

313 present in two of three sampled stream reaches. 
 

314 The data from Langtjern fit this picture. For the period 2008–2014 during which 
 

315 reproduction occurred, the outlet water chemistry mean values of ANCoaa  was 10 µeq l-1 (Table 1), 
 

316 the threshold indicated by Hesthagen et al. (2016)) for unstable densities of young brown trout in 
 

317 running water. Further, the mean values for 2008–2014 were similar to the mean values for 2000– 
 

318 2007, suggesting that the conditions were close to the critical limits also prior to 2008. 
 

319 The ANC in Lake Langtjern is not likely to further increase appreciably soon. There is little 
 

320 room for further reductions in SO4 deposition as levels in 2015 were only 7% of those in the peak 
 

321 year 1980 (Aas et al. 2016). Nitrate makes only a minor contribution to ANC and appears to be 
 

322 declining (De Wit et al. 2008). Thus any major increase in ANC will have to come from increasing 
 

323 concentrations of base cations caused by replenishment of soil base cation pools due to natural 
 

324 weathering, a process that typically takes decades (Hodson and Langan 1999). ANCoaa, on the other 
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325 hand, could increase with a decline in TOC. ANCoaa is the organic acid adjusted ANC, where organic 
 

326 acids (TOC) are subtracted from the base cation concentration to give an adjusted, and reduced, 
 

327 ANCoaa. However, TOC concentrations do not show any sign of levelling off and may increase further 
 

328 under a wetter climate (de Wit et al. 2016). 
 

329 The change-points for ANC and ANCoaa in 2000 may explain why the successful reproduction 
 

330 of brown trout started at some point after 2002. Although the estimated change-point in 2000 does 
 

331 not fit with the different investigations indicating no reproduction during 2001–2002, the confidence 
 

332 interval for the ANC change-point was 2000–2002, and the upper limit makes it possible that the 
 

333 positive change in ANC level occurred shortly after the known period of non-successful 
 

334 reproduction. The 1997 change-point in SO4 indicates that the reduced SO4 concentration was the 
 

335 main cause for the ANC upward change, although the two changes were not estimated to occur at 
 

336 the same time. 
 

337 ANC is a convenient measure of lake acidification. Toxicity to fish, however, is caused by Ali 
 

338 and/or H+. The recent reproductive success might better be explained by lower frequency, severity 
 

339 and duration of toxic episodes rather than increased mean ANC levels (Baker et al. 1982). In the 
 

340 1980s, Lake Langtjern experienced long periods of low pH, low ANC and high Ali (Fig. 3). Episodes of 
 

341 pH < 4.8 decreased considerably both in duration and frequency since the peak in 1989, but periods 
 

342 of pH < 4.8 still occur, e.g. a possible 15-day period in 2012. If these periods cause mortality in the 
 

343 youngest individuals or the fertilized eggs in the stream substrate, the population would still have 
 

344 irregular setbacks in producing offspring. Serrano et al. (2008) proposed that pH, not Al, is most 
 

345 important for trout survival in organic-rich boreal streams. Juvenile brown trout mortality in such 
 

346 streams was modelled with 80 % mortality during 14 days of pH 4.8. The Lake Langtjern outlet had 
 

347 episodes in 2007 and 2009 where pH possibly was below 4.8 for 63 and 35 days, respectively. These 
 

348 episodes may have inflicted high mortality in several year-classes of brown trout, even though the 
 

349 yearly means for pH were 5.0 and 5.1, respectively. Longer episodes of Ali > 50 µg l-1 have been few 
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350 since 1997, but week-long episodes probably occurred in both 2006 and 2007. Such episodes may 
 

351 have caused high mortality in young-of-the-year brown trout. 
 

352 In addition to the water chemistry, habitat characteristics probably limit the brown trout 
 

353 population in Lake Langtjern. Suitable spawning areas are few and the number of spawning fish is 
 

354 low, as the remaining individuals from the stocking in 2006 and 2003 probably only exist in small 
 

355 numbers. The inlet stream (LAE02) has more suitable substrate, but it is also a smaller stream than 
 

356 the outlet. Both streams are subject to winter and summer droughts. Our catches document that 
 

357 successful spawning is occurring. The number of spawners has been higher before, without resulting 
 

358 in successful reproductions. The present reproduction therefore indicates that the change in water 
 

359 chemistry is the crucial factor. 

 
360  
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503  

 

504 
 

Table 1 Lake Langtjern outlet water chemistry mean values ± SD in five periods from 1973 to 2014. No data for 

505 1984–1985. Data for Ali, TOC and ANCoaa from 1986 

 
 

506  
 

Period 

 
 

SO4 

 
µeq l-1 

 
 

NO3 

 
µeq l-1 

 
 

pH 

 
 

Ali 
 

µg l-1 

 
 

ANC 
 

µeq l-1 

 
 

ANCoaa 

 
µeq l-1 

 
 

TOC 
 

mg C l-1 

 
 

Ca 
 

µeq l-1 

 1973–1979 72 ± 14 1.9 ± 1.3 4.9 ± 0.2  27 ± 11   69 ± 12 

 
1980–1989 66 ± 14 1.7 ± 1.3 4.8 ± 0.2 74 ± 19 13 ± 8 -15.3 ± 8.8 8.8 ± 1.6 57 ± 11 

 
1990–1999 51 ± 14 1.5 ± 1.2 5.0 ± 0.2 46 ± 20 32 ± 12 -2.3 ± 9.1 10.1 ± 2.0 55 ± 10 

 
2000–2007 25 ± 6 0.9 ± 0.7 5.1 ± 0.2 27 ± 9 47 ± 12 10.6 ± 8.7 10.8 ± 1.9 47 ± 10 

 

 
507 

2008–2014 17 ± 4 0.8 ± 0.7 5.1 ± 0.2 26 ± 7 47 ± 9 9.7 ± 6.9 11.0 ± 2.0 42 ± 8 

 

508 
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509 
 
 

510 Table 2 Number of non-stocked fish caught by electrofishing in the outlet and major inlet to Lake Langtjern in 
 

511 the period 2010–2014. No data for inlet 1014 
 
 

 Age class  

 
2010 

 

 
2011 

Year 

 

2012 

 

 
2013 

 

 
2014 

Outlet 0+ 0 2 13 0 4 

  

>0+ 
 

6 
 

5 
 

1 
 

2 
 

0 

Inlet 0+ 0 0 1 0 n.a. 

  

>0+ 
 

1 
 

1 
 

2 
 

2 
 

n.a. 

 
 
 

 

512 
 
 

513 
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514 
 

515 
 

516 
 

517 Fig. 1 Map showing the position and the catchment (dotted line) of Lake Langtjern (60.37 N, 9.73 E), a research 
 

518 station for studying acidification of surface waters in Norway. Outlet (LAE01) and inlets (LAE03, LAE02 and 
 

519 LAE08) are indicated 

 

520 
 
 

521 
 
 

522 Fig. 2 Annual deposition of SO4, and yearly mean concentrations of SO4, Ca, ANC, ANCoaa, pH and Ali in the 
 

523 outlet at Langtjern over the period 1973–2014. Deposition data from Aas et al. (2016)). No outlet data for 
 

524 1984–1985. TOC and Ali analysed from 1986. Dotted lines indicate levels of significant changes in the data 
 

525 series 

 

526 
 

527 
 

528 Fig. 3 Count of consecutive days of pH < 4.8, ANC < 10 µeq l-1, ANCoaa < -5 µeq l-1 and Ali > 50 µg l-1 at the 
 

529 outlet of Lake Langtjern 1973–2014. No data for 1984–1985, and data for ANCoaa and Ali from 1986 

 

530 
 

531 
 

532 Fig. 4 Number of stocked (top) and captured (bottom) brown trout (n/100 m2) in Lake Langtjern in the period 
 

533 1972–2011. 

 

534 
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