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Abstract

We provide a new framework for valuing multidimensional real options where

opportunities to exercise the option are generated by an exogenous Poisson process,

which can be viewed as a liquidity constraint on decision times. This approach, which

we call the Poisson optional stopping times (POST) method, finds the value function

as a monotone sequence of lower bounds. In a case study, we demonstrate that the

frequently used quasi-analytic method yields a suboptimal policy and an inaccurate

value function. The proposed method is demonstrably correct, straightforward to

implement, reliable in computation, and broadly applicable in analyzing

multidimensional option-valuation problems.
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I Introduction

There is a large and growing body of literature focused on the valuation of options

with multiple state variables (e.g., Trigeorgis (1991), (1993), Rogers (2002), Stentoft

(2004), Andersen and Broadie (2004), Bally and Printems (2005), and Cortazar, Gravet,

and Urzua (2008)). This article focuses on the valuation of real options of the American

type with no expiration date (i.e., perpetual options), but also encompasses options with

finite maturity. The resulting option-valuation problems are notoriously difficult to solve,

because the optimal policy and resulting value function are intricately linked and analytic

solutions can be found only in special cases. Researchers may resort to approximate

analytic solutions, such as for the American put option in Bunch and Johnson (2000) and

the European spread option in Bjerksund and Stensland (2014). Alternatively, they may

employ numerical methods, such as classic tree-/lattice approaches as in Cox, Ross, and

Rubinstein (1979), finite-difference schemes as in Schwartz (1977), or simulation

approaches as in Longstaff and Schwartz (2001).

There is a trade-off between these two approaches: While analytic approximations

are usually faster and easier to inspect, numerical solution methods tend to be more

flexible and possibly more accurate. This flexibility allows researchers to explore different

models, thereby reducing the incentive to (over)simplify or approximate the original model

for the sake of maintaining analytic tractability, which may come at the expense of model

error. This view is also taken in the recently developed work in Lange, Ralph, and van

Casteren (2018), which seeks to solve the classic real-options case, where decision makers

may exercise the option at any point in time. We contribute an algorithm for computing
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explicit solutions in a straightforward and reliable manner. In this way we respond to

Strulovici and Szydlowski’s (2015) call for “a better understanding of the properties of

optimal policies and value functions with a multidimensional state space” by “constructing

explicit solutions.”

Specifically, we explore the trade-off between accuracy and computational simplicity

and provide a new numerical method with a clear financial interpretation (and attractive

algorithmic properties) for valuing real options with multiple state variables. We permit

the decision maker to exercise an option at random moments in time that arrive at a fixed

Poisson arrival rate λ <∞. In between any two Poisson arrival times, the option cannot be

exercised. Points in time when the option can be exercised are known as “optional stopping

times” (see, e.g., Svenstrup (2005), Biagini and Björk (2007), Stroock and Varadhan

((2007), p. 24), and Cont and Fournié (2013)), and are, in our case, generated by a Poisson

process. Hence, we name this approach the Poisson optional stopping times (POST)

method. In financial terms, the imposed restriction can be viewed as a liquidity constraint,

which prevents the decision maker from exercising the option at (what would otherwise be)

the optimal time.

To our knowledge, the case λ <∞ has been used only rarely; by Rogers and Zane

(2002) to model liquidity constraints, by Dupuis and Wang (2002) and Lempa (2012) to

model discretely monitored American call options, and by Lange and Teulings (2018) to

compute the option value of vacant land when opportunities to build arrive at the Poisson

rate λ. Our approach differs from that of Carr (1998), who randomizes the option’s expiry

date using a Poisson process, but does not restrict exercise times prior to maturity. In our

setup, the classic real-options case is obtained in the limit λ→∞. Our generalization to
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λ <∞ has not only theoretical but also practical appeal, since the problem corresponding

to λ large but finite is more tractable both mathematically and numerically than the

problem corresponding to λ =∞.

Our method finds the solution as a monotone (nondecreasing) sequence of lower

bounds; moreover, this property persists through the discretization. These desirable

properties are related to those observed in the literature on the “penalty method,” which

has been used for some time in the financial engineering literature (e.g., Zvan, Forsyth, and

Vetzal (1998), Forsyth and Vetzal (2002), d’Halluin, Forsyth, and Labahn (2004), Zhang,

Yang, and Teo (2008), and Zhang, Wang, Yang, and Teo (2009)). It has apparently gone

unnoticed, however, that a penalty term emerges naturally when the decision maker is

permitted to stop only at a set of Poisson arrival times, as in this article.

To shed light on the aforementioned trade-off, we compare the proposed method

against the frequently used quasi-analytic (QA) method for valuing real options as

introduced by Adkins and Paxson (2011b) and used in various subsequent articles of theirs

(Adkins and Paxson (2011a), (2013a), (2013b), (2014), (2017a), (2017b), (2017c)) and

others (Rohlfs and Madlener (2011), Heydari, Ovenden, and Siddiqui (2012), Dockendorf

and Paxson (2013), Armada, Pereira, and Rodrigues (2013), Farzan, Mahani, Gharieh, and

Jafari (2015), Stutzman, Weiland, Preckel, and Wetzstein (2017), and Støre, Fleten,

Hagspiel and Nunes (2018), etc.). The QA method is light on computation but, as we will

see, may result in a large approximation error. As we show, the correct optimal policy and

value function differ substantially from those derived in Adkins and Paxson (2011b).

The remainder of this article is organized as follows: Section II introduces stopping

problems where the decision maker is permitted to stop only at a set of Poisson arrival
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times. Section III generalizes these ideas to compound options and, as a case study,

presents the renewal option of Adkins and Paxson (2011b). Section IV contains a critical

review of Adkins and Paxson’s (2011b) QA method. Section V compares the solutions

obtained by our method versus that obtained by the QA method, while Section VI

discusses the implications of our findings.

II Valuation Using Poisson Optional Stopping Times

We consider a project that produces a stochastic cash flow f(X, Y ) dt, which

represents an ongoing profit stream that may be either positive or negative. We assume the

cash flow depends on two stochastic state variables (X, Y ) taking values in the first

quadrant, denoted as R2
≥0, but our method allows straightforward generalizations to three

or more state variables. The owner of the project may exercise the option to “stop”

receiving the cash flow in exchange for receiving the stopping gain g(X, Y ), a one-off

payment that represents the value of the project after some irreversible decision. This setup

is the same as that in Lange et al. (2018), on whose framework we build. The question is

how to find the optimal exercise policy and the corresponding (optimal) value of the

project. Such “real” options have received much interest in the literature; classic references

include Brennan and Schwartz (1985), McDonald and Siegel (1986), Majd and Pindyck

(1987), Ekern (1988), Pindyck (1990), and Abel and Eberly (1996).

In our problem setup, state variables are considered to be stochastic in general,

although deterministic processes may be included as well. For example, the deterministic

variable “time” could be included as a “stochastic” process by setting its volatility equal to
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0, and its drift equal to 1. The inclusion of time as a state variable allows us to deal with

finite-horizon problems, in which case the functions f and g may be set to unattractive

values beyond the option’s expiration date. When implementing this in practice, it is

convenient to truncate the state space at the option’s maturity date and impose a

“terminal” boundary condition.

Our approach differs from the literature in assuming that opportunities to exercise

the option are generated by an exogenous Poisson process with arrival rate λ <∞. The

decision maker is forced to continue prior to the first arrival time and in between any two

arrival times. Because we consider optional stopping times generated by a Poisson process,

we call this the Poisson optional stopping times (POST) method. The (optimal) value of

the project is denoted by Vλ(X, Y ); this includes the value of the option to stop. The

dependence on the Poisson arrival rate λ is indicated by the subscript. The optimal policy

partitions the state space R2
≥0 into a region where the decision maker optimally continues,

called the “continuation” region, and a region where she stops, if and when given the

opportunity. Optimality demands that any point (X, Y ) is part of the continuation region

if and only if Vλ(X, Y ) > g(X, Y ); otherwise, the decision maker would be better off

stopping if possible. Similarly, any point (X, Y ) is part of the stopping region if and only if

Vλ(X, Y ) ≤ g(X, Y ), such that stopping is (weakly) preferable to continuing.
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Invoking the standard assumption1 of contingent-claims analysis, the following

equation must be satisfied on the entire state space:

(1) r Vλ(X, Y ) = LVλ(X, Y ) + f(X, Y ) + λ [g(X, Y )− Vλ(X, Y )]+ ,

for all (X, Y ) ∈ R2
≥0, where r > 0 is the risk-free rate, L is the infinitesimal generator of the

process {(Xt, Yt)} under the risk-neutral measure, and [ · ]+ = max(·, 0). Intuitively,

equation (1) says that the (risk-neutral) return on the project, r Vλ(X, Y ), equals the

expected change in Vλ(X, Y ) caused by the change in the state variables (X, Y ), as

measured by LVλ(X, Y ), plus the cash flow f(X, Y ) generated by the project, plus the

additional gain g(X, Y )− Vλ(X, Y ) if and only if i) this quantity is positive, which occurs if

and only if the process is in the stopping region, and ii) an opportunity to stop is

generated, which happens at the Poisson arrival rate λ. More formally, equation (1) can be

derived as in Appendix A using Bellman’s dynamic programming approach, in which case

L is understood as the infinitesimal generator under the physical measure, while r is the

risk-adjusted discount rate (see, e.g., Dixit and Pindyck (1994)).

As an aside, we note that the term λ[g(X, Y )− Vλ(X, Y )]+ in equation (1) can also

be viewed as a “penalty term,” because it penalizes the value function Vλ(X, Y ) for being

exceeded by the stopping gain g(X, Y ). This penalty term is “active” only in the stopping

region, where the decision maker wants to stop and the constraint of being permitted to

stop only at Poisson arrival times is binding. In fact, such penalty terms have been used for

1That is, markets are complete, so that we can construct a portfolio which perfectly replicates

the project to be valued.
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some time in the financial engineering literature as an ad hoc method for ensuring

numerical stability (e.g., Bensoussan and Lions (1982), Forsyth and Vetzal (2002),

d’Halluin et al. (2004), Wang, Yang, and Teo (2006), Birge and Linetsky (2007), Glowinski

(2008), and Zhang et al. (2008)). By pointing out that penalty methods solve

“liquidity-constrained” stopping problems, we hope to enhance their appeal in the finance

community.

For diffusion processes, the infinitesimal generator L is a partial differential

operator, such that equation (1) is a partial differential equation (PDE). If {(Xt, Yt)} is a

2-dimensional geometric Brownian motion, as in our case study in Section III, then L is

given by

(2) L = θXX
d

dX
+ θY Y

d

dY
+
σ2
X X

2

2

d2

dX2
+
σ2
Y Y

2

2

d2

dY 2
+ ρ σX σYXY

d2

dXdY
,

where θX and θY are risk-neutral drifts, σ2
X and σ2

Y represent the variances of the

innovations in each direction, and |ρ| < 1 captures the correlation between the innovations.

Using the terminology of PDEs, generator (2) is classified as “elliptical” if σX , σY > 0.

While elliptic PDEs form a particularly well-studied class of problems, our theory

development below applies equally to “parabolic” PDEs. For example, a parabolic

generator L is obtained if Xt represents time, such that Xt = t, while Yt represents a

geometric Brownian motion with drift, in which case equation (2) is changed to

(3) L =
d

dX
+ θY Y

d

dY
+
σ2
Y Y

2

2

d2

dY 2
.
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Here, the process {Xt} drifts deterministically to the right at unit speed. Solving elliptic or

parabolic PDEs with boundary conditions can be challenging, particularly when the

location of the boundary is, a priori, unknown (see, e.g., Peskir (2006)). Such

“free-boundary” problems arise in option-valuation problems, because the boundary

separating the continuation and stopping regions must be found as part of the solution.

Regardless of the type of PDE, equation (1) can be rewritten as

(4) (r + λ− L) Vλ(X, Y ) = f(X, Y ) + λ max{g(X, Y ), Vλ(X, Y )},

for all (X, Y ) ∈ R2
≥0, which motivates the following POST algorithm for computing

Vλ(X, Y ) as the limit of a sequence of functions {V (j)
λ (X, Y )} indexed by the superscript j

and defined recursively:

(r + λ− L)V
(1)
λ (X, Y ) = f(X, Y ) + λ g(X, Y ),(5)

(r + λ− L)V
(j)
λ (X, Y ) = f(X, Y ) + λ max{g(X, Y ), V

(j−1)
λ (X, Y )}, j ≥ 2.

Mathematically, equation (4) defines the function Vλ(X, Y ) as a “fixed point” that can be

found by the POST algorithm (5). However, algorithm (5) can also be understood

intuitively as follows. The (suboptimal) value V
(1)
λ (X, Y ) corresponds to a situation in

which the decision maker is forced to stop at the first Poisson arrival time. The

(suboptimal) value V
(2)
λ (X, Y ) corresponds to the situation in which she may (or may not)

stop at the first Poisson arrival time and, if she has not stopped already, will be forced to

stop at the second Poisson arrival time. The (suboptimal) value V
(j)
λ (X, Y ) takes into
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account that the decision maker may postpone the moment of exercise j − 1 times. Since

each iteration of the POST algorithm (5) adds a single (Poisson) optional stopping time,

the value function V
(j)
λ (X, Y ) is nondecreasing in the superscript j. If the value function

Vλ(X, Y ) is bounded above, then the monotonicity of algorithm (5) also delivers

convergence. This result is formalized in the following theorem:

Theorem 1 (Monotone Convergence of POST Algorithm.) The sequence {V (j)
λ (X, Y )}

defined by algorithm (5) converges in a monotone (nondecreasing) fashion to Vλ(X, Y ) as

j →∞ if one technical condition, which ensures Vλ(X, Y ) <∞, is satisfied.

In fact, the monotonicity of algorithm (5) also gives the following result:

Theorem 2 (Geometric Convergence of POST Algorithm.) Under one technical condition

ensuring Vλ(X, Y ) <∞, the distance from the known quantity V
(j)
λ (X, Y ) to the unknown

quantity Vλ(X, Y ) satisfies a computable bound as follows:

(6) 0 ≤ Vλ(X, Y )− V (j)
λ (X, Y ) ≤

(
λ

r + λ

)j−1
c(X, Y )

r
< ∞,

where the constant c(X, Y ) depends only on the problem data and the location (X, Y ).

Theorems 1 and 2 together demonstrate the reliability of the POST algorithm. The

proof of Theorems 1 and 2 can be found in Appendix B. Theorem 2 implies that

V
(j)
λ (X, Y ) converges to Vλ(X, Y ) at the geometric rate λ/(r + λ), such that any desired

precision level can be guaranteed by choosing some sufficiently large number of iterations j.
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The convergence of algorithm (5) may be accelerated if f(X, Y ) = 0, in which case g(X, Y )

can be replaced by max{g(X, Y ), 0}, because the decision maker can ensure a minimum

payoff equal to 0 by continuing indefinitely.

While the POST algorithm operates in function space, for practical purposes we

must work in some finite-dimensional (vector) space. Hence we take a bounded subset of

R
2
≥0 as our computational domain, which we discretize using M grid points. This

discretization turns the functions f(X, Y ), g(X, Y ) and V
(j)
λ (X, Y ) into M × 1 vectors f , g

and V
(j)
λ , respectively, while the generator L becomes the M ×M matrix L (vectors and

matrices are bold). The discretized version of POST then reads

[
(r + λ) I − L

]
V

(1)
λ = f + λg,(7) [

(r + λ) I − L
]
V

(j)
λ = f + λmax

{
g,V

(j−1)
λ

}
, j ≥ 2,

where I denotes an identity matrix of appropriate size, and the max operator is applied

elementwise. This algorithm is, to the best of our knowledge, new in both the penalty

literature and the optimal stopping literature. As demonstrated in Appendix C, the

monotone (nondecreasing) and geometric convergence properties of algorithm (7) are

guaranteed if two technical conditions regarding the matrix L are satisfied, irrespective of

the resolution of the grid used for the discretization. This makes algorithm (7) essentially

foolproof; we need only choose a grid with a sufficiently high resolution to ensure the

discretized solution closely approximates the true solution. Further, each iteration of

algorithm (7) can be performed efficiently using standard linear solvers if the matrix
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(r+λ)I−L is sparse, which is typically the case for diffusion processes. The finite-difference

stencil used to discretize the infinitesimal generator in equation (2) is given in Appendix D.

For jump-diffusion processes, the infinitesimal generator L is a partial

integro-differential operator (due the integral nature of the jump process), such that

equation (1) is a partial integro-differential equation (PIDE). In this case, the integral part

of L may be discretized using a straightforward Riemann approximation. The resulting

matrix L automatically satisfies the requirements that guarantee the convergence of

algorithm (7). However, the matrix L will be dense rather than sparse, making the inversion

(or factorization) of the matrix [(r + λ)I− L] in algorithm (7) more time-consuming. Part

of this additional computational burden may be avoided by an “operator-splitting” method

(see, e.g., Feng and Linetsky (2008)) that suggests decomposing L in a sparse and dense

part as L = Lsparse + Ldense, in which case algorithm (7) may be amended to read

(8)
[
(r + λ)I− Lsparse

]
V

(j)
λ = Ldense V

(j−1)
λ + f + λmax

{
g,V

(j−1)
λ

}
, j ≥ 2.

In equation (8) we have placed the computable quantity Ldense V
(j−1)
λ on the right-hand side

to compensate for omitting the unknown quantity −Ldense V
(j)
λ that would otherwise have

appeared on the left-hand side. The operator-splitting method gives rise to what is known

as an implicit–explicit (IMEX) scheme, because algorithm (8) treats the matrices Lsparse

and Ldense implicitly and explicitly, respectively, for the purpose of computing V
(j)
λ .
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III Case Study: The AP Renewal Option

In some applications, the decision maker is faced not with a single but rather

multiple sequential stopping problems (e.g., Carmona and Dayanik (2008), Carmona and

Touzi (2008)), known as compound options. Here we consider the “renewal” option

introduced by Adkins and Paxson (AP) (2011b). AP assume the owner of the project

receives the cash flow f(X, Y ) = Y −X, where {Yt} and {Xt} are (potentially correlated)

geometric Brownian motions that represent revenues and costs generated by the project,

respectively.2 The infinitesimal generator corresponding to this process is given in our

equation (2). Revenues are expected to fall (θY < 0), while costs are expected to increase

(θX > 0), such that the cash flow generated by the project, that is Y −X, declines on

average. The owner of the project may pay the amount K to restart the bivariate

stochastic process {(Xt, Yt)} at some favorable “initial” location (XI , YI), where YI > XI .

Exercising this option is termed renewal of the project. The decision maker may renew the

project as often as desired.

We differ from AP in assuming that opportunities to renew the project arrive at the

Poisson arrival rate λ <∞, where λ is large but finite. We denote the (optimal) value of

the project by Vλ(X, Y ); this includes the value of the perpetual compound option to

renew the project. In our setting, when the decision maker “stops”, she actually renews the

project and hence receives the project value at the renewal location, that is Vλ(XI , YI),

minus the renewal cost K. Thus the problem of finding Vλ(X, Y ) amounts to solving a

2AP denote costs and revenues by Ct and Pt, respectively, but for consistency with Section II

we use Xt and Yt.
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stopping problem with a stopping gain g(X, Y ) = Vλ(XI , YI)−K, which is itself unknown.

It follows that the value of the project satisfies PDE (1) with g(X, Y ) = Vλ(XI , YI)−K,

that is

(9) r Vλ(X, Y ) = LVλ(X, Y ) + f(X, Y ) + λ
[
Vλ(XI , YI)−K − Vλ(X, Y )

]+
.

To solve this PDE, we set up the following iterative scheme by analogy with algorithm (7):

(10) [ (r + λ)I− L ] V
(j)
λ = f + λmax

{
[V

(j−1)
λ (XI , YI) − K]1 ,V

(j−1)
λ

}
, j ≥ 2,

where 1 is an M × 1 vector containing ones, the max operator is applied elementwise, and

V
(j−1)
λ (XI , YI) denotes the (scalar) element in the vector V

(j−1)
λ that represents the value at

the renewal location (XI , YI). Each iteration of algorithm (10) updates both the

(discretized) value function V
(j)
λ as well as the (discretized) stopping gain

[V
(j)
λ (XI , YI)−K]1. If the initialization V

(1)
λ can be chosen such that algorithm (10) is

nondecreasing for the first iteration, then it is nondecreasing for all subsequent iterations.

In some cases a solution may be desirable for a situation in which the decision

maker can renew the project at most N <∞ times. In this case we use Vλ,n(X, Y ) for

n = 0, 1, 2, . . . , N to denote the value of the project when a maximum of n renewals

remain. The project value with a maximum of n renewals remaining, that is Vλ,n(X, Y ),

satisfies PDE (1) with stopping gain g(X, Y ) = Vλ,n−1(XI , YI)−K, that is

(11) r Vλ,n(X, Y ) = LVλ,n(X, Y ) + f(X, Y ) + λ
[
Vλ,n−1(XI , YI)−K − Vλ,n(X, Y )

]+
.
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In this case, algorithm (7) for fixed n may be amended to read

[(r + λ)I− L] V
(1)
λ,n = f + 1λ [Vλ,n−1(XI , YI)−K](12)

[(r + λ)I− L] V
(j)
λ,n = f + λmax

{
1 [Vλ,n−1(XI , YI)−K] ,V

(j−1)
λ,n

}
, j ≥ 2,

where Vλ,n−1(XI , YI)−K is assumed known for n = 1, and, for n ≥ 1, can be based on the

output of the algorithm corresponding to n− 1. In using algorithm (12), we iterate over the

number of possible renewals n = 1, 2, . . . , N and, for each n ≤ N , over fixed-point

iterations j. We approximate the case N =∞ by taking N to be large but finite.

For its initialization, algorithm (12) relies on the project with 0 renewals remaining,

that is Vλ,0(X, Y ), being defined. For the case considered by AP, the net present value

(NPV) of continuing the project indefinitely (when no renewal options remain) equals

(13) Vλ,0(X, Y ) = E(X,Y )

∫ ∞
0

(Yt −Xt) exp(−r t) dt =
Y

r − θY
− X

r − θX
,

where E(X,Y ) denotes an expectation conditional on the current state (X, Y ). Following AP,

here we assume that θX , θY < r; otherwise, the integral in equation (13) would be

unbounded. Of course, the stopping problem with θY ≥ r > θX would be trivial, since the

decision maker would continue forever and reap infinite benefits (revenues increase faster

than costs). However, the problem with θX ≥ r > θY is nontrivial as costs increase faster

than revenues. In this case, the decision maker will renew the project frequently to avoid

“infinite” costs. Although the NPV of continuing indefinitely, that is Vλ,0(X, Y ), no longer

exists (it is negative infinity), the value of the project may still be finite, even positive. In
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this case, algorithm (10) must be used instead of algorithm (12); that is, the value of the

project with an infinite possible number of renewals must be found directly (i.e., without

looping over the number of renewals n).

IV Critical Review of the QA Method

The quasi-analytic (QA) method for valuing real options was introduced by Adkins

and Paxson (2011b) and used by numerous subsequent articles. This section contains a

critical review of the QA method for treating the renewal option discussed in Section III.

AP denote the (optimal) value of the project by V (X, Y ). It is assumed the decision maker

can continuously exercise the option to renew; hence, there is no subscript λ. No-arbitrage

arguments require V (X, Y ) to satisfy the following PDE:

(14) r V (X, Y ) = LV (X, Y ) + Y − X ,

which holds for any location (X, Y ) in the continuation region, and where the infinitesimal

generator L is given in our equation (2). We refer to this equation as the “no-arbitrage

PDE.” In the stopping region, where renewal is imminent, the classic value-matching

condition requires V (X, Y ) = V (XI , YI)−K = constant. Importantly for our argument

below, this constant depends only on the problem setup; that is, it does not vary with the

coordinates (X, Y ). To solve the no-arbitrage PDE, AP assume θX , θY < r and propose the
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following candidate solution:

V (X, Y ) =
Y

r − θY
− X

r − θX
+ AXη Y β ,(15)

which is assumed to hold for any (X, Y ) in the continuation region. At this point it is

assumed that the parameters A, β and η are constant, although AP later violate this

assumption. Candidate solution (15) splits the project value V (X, Y ) into an intrinsic part,

Y/(r − θY )−X/(r − θX), which represents the NPV of continuing the project indefinitely,

and an option value, AXηY β, that captures the value of being able to renew the project. If

the parameters A, β, and η are assumed to be constant, substituting candidate

solution (15) into the no-arbitrage PDE (14) gives rise to the following characteristic root

equation for β and η:

(16)
1

2
σ2
Xβ(β − 1) +

1

2
σ2
Xη(η − 1) + ρσXσY βη + θY β + θXη − r = 0.

We follow AP in using hatted coordinates (X̂, Ŷ ) to denote points on the stopping

boundary, which separates the stopping region from the continuation region. To determine

the unknown parameters A, β, and η, AP propose using the standard value-matching and
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smooth-pasting conditions for all coordinates (X̂, Ŷ ) on the stopping boundary as follows:

Ŷ

r − θY
− X̂

r − θX
+ AX̂ηŶ β =

YI
r − θY

− XI

r − θX
+ AXη

I Y
β
I −K = constant,(17)

dV (X̂, Ŷ )

dX̂
= ηA X̂η−1 Ŷ β − 1

r − θX
= 0,(18)

dV (X̂, Ŷ )

dŶ
= βA X̂η Ŷ β−1 +

1

r − θY
= 0.(19)

AP suppose that exactly one critical value of Ŷ corresponds to each value of X, such that

Ŷ = Ŷ (X), and proceed to numerically solve the four equations (16)–(19) for each possible

value of X, to obtain four quantities Ŷ (X), A, β, and η. Unfortunately, it is impossible to

solve this equation set for different values of X if constant values of A, β, and η are

imposed. Hence, candidate solution (15) cannot technically be correct. AP resort to solving

equations (16)–(19) by means of approximation, allowing the purported constants A, β,

and η to vary with X. This implies the constants in the QA method are only quasi

constant (i.e., it would be more precise to write A(X), β(X), and η(X)).

While AP acknowledge that their constants vary with X (indeed, their Figure 3

shows considerable variation), they stop short of acknowledging four important drawbacks.

First, the value V (X, Y ) in (15) remains undefined for any (X, Y ) inside the continuation

region, because the constants A, β, and η are determined only along the stopping boundary.

Hence, the QA method does not provide a value in the entire state space (e.g., V (XI , YI) is

left undefined). Second, the presence of the varying constants means that the candidate

solution no longer satisfies the no-arbitrage PDE, because the derivation of equation (16) is

invalidated. This concern was also raised in a recent working paper by Compernolle,
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Huisman, Kort, Lavrutich, Nunes, and Thijssen (2018). As a general rule, substantial

variation in the purported constants along the stopping boundary ought to set off alarm

bells about the potential inaccuracy of the QA method. Third, the value along the stopping

boundary, V (X̂, Ŷ ) = V (XI , YI)−K (which should be a single number), is no longer

uniquely identified, as the right-hand side of equation (17) now varies with X (because A,

β, and η vary with X). Indeed, for the base-case parameters used by AP, rather than being

constant, the right-hand side of equation (17) varies in the range from 260 to 1,032 as X

varies along the positive real line.3 Large as this range is, it does not actually contain the

true value of the project at the stopping boundary, which we find to be in excess of 1,200

(see Section V). Fourth, the impact of variable constants on the derived policy in the AP

exposition is unclear, but turns out to be considerable (again, see Section V).

V Comparison between QA and Proposed Solution

Method

This section compares the stopping boundary and value function obtained using the

QA method against those obtained by our proposed solution method. We consider the AP

renewal option with their base-case parameters as in our footnote 3. We compute the

project value Vλ,n(X, Y ) using algorithm (12) based on a Poisson intensity λ = 512

(implying that there are, on average, 512 renewal opportunities per year) for

3In their base case, AP take (XI , YI) = (80, 20), θY = −0.01, θX = 0.04, σY = σX = 0.30,

ρ = 0, K = 100, and r = 0.07 on an annual time scale (see their Table 1, p. 795).
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n = 0, 1, . . . , N with N = 30 (implying a maximum of 30 renewals). Both numbers proved

to be sufficiently large for the project value to be stable as a function of λ and n.4

Graph A of Figure 1 shows the optimal stopping boundary (solid line), which turns

out to resemble a straight line. In contrast, the boundary produced by the QA method

(dotted line) is curved and mostly lies below the optimal boundary, except in a small

section for X between 21 and 34, where it marginally lies above the optimal boundary.

This implies the decision maker should generally renew the project earlier than suggested

by the QA method. The dotted line decreases sharply for low costs X; this is not visible in

Figure 3 of AP, because their horizontal axis starts at X = 20. AP remark that “the

boundary could be represented by its least squares line, resulting in a simple, approximate

renewal rule” (p. 796). As the optimal stopping boundary is indeed nearly linear, this is

not incorrect as such. However, as Graph A of Figure 1 shows, a straight line based on the

QA method would probably be suboptimal; not only for small but also for large costs,

where the slope appears to be too small.

Graph B of Figure 1 contains a surface plot of the project value Vλ,n(X, Y ) as

computed on our grid (only part of the grid is shown). The dot located at

(XI ;YI ;Vλ,n(XI , YI)) = (20; 80; 1,302) shows that the value of the project at the renewal

location is just over 1,300. Since the QA method cannot be used to compute project values

4Appendix E contains further details on the grid and boundary conditions. Further, while our

solution Vλ,n(X,Y ) depends on the chosen values for λ and n, Appendix F demonstrates that the

stopping boundary and project value Vλ,n(X,Y ) are robust as a function of λ and n when both

are sufficiently large.
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Figure 1: Optimal Policy and Value Function with Base-Case Parameters

Graph A of Figure 1 displays the stopping boundary (solid line) using the proposed solution
method with λ = 512 and n = 30 versus that produced by the QA method (dotted line). As
in Section III, the variables X and Y denote the cost and revenue generated by the project,
respectively. The stopping boundary (solid curve) is shown in both Graphs A and B. Graph
B shows the project value Vλ,n(X, Y ) for λ = 512 and n = 30. The value at the renewal
location is indicated by the dot at (XI ;YI ;Vλ(XI , YI)) = (20; 80; 1,302). A comparison with
AP is impossible because the QA method does not produce a value function.

Graph A. Stopping Boundaries

Graph B. Value Function
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in the continuation region, a direct comparison of this number with AP is impossible. The

QA method does produce project values on the stopping boundary via the value matching

condition (17), which gives rise to values within the range from 260 to 1,032 for different

points on the stopping boundary. As can be seen in Graph B, however, we find the value on

the stopping boundary to be 1,202 (exactly K = 100 lower than the value at the renewal

location), which falls outside of the AP range.

We deviate from AP in considering, in addition to the base-case parameters as in

our footnote 3, the case where the risk-free rate is lowered from r = 0.07 to r = 0.04 at an

annual time scale. This has the consequence that the intrinsic value of the project as in

equation (13) (the NPV of continuing forever without renewing the project) no longer

exists, since θX = 0.04 (i.e., the costs grow at a rate that equals the discount rate). The

QA method’s candidate solution (15), which includes the term −X/(r − θX), no longer

applies; indeed, the intrinsic value of continuing indefinitely without renewing is negative

infinity. However, the option value of being able to renew the project, which allows the

decision maker to avoid this undesirable situation, is positive infinity. The project value,

which is the sum of the intrinsic value and the option value, is bounded, and even positive,

as we will see. Moreover, algorithm (10) still applies. The resulting optimal stopping

boundary and value function are shown in Graphs A and B of Figure 2, respectively. We

find that the project value (with r = 0.04) is greater than that in the base case (where

r = 0.07). As the dot in Graph B of Figure 2 shows, the value at the renewal location is

2,888, which is more than double the corresponding value in the base case, due to the lower

discounting of future cash flows. While the intrinsic value of the project decreases (to

negative infinity), the decision maker can achieve a positive project value by renewing more
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frequently than in the base case. This can be seen from the fact that the stopping

boundary in Graph A of Figure 2 lies higher than that in Graph A of Figure 1. A

comparison with the QA method is not possible, as candidate solution (15) is undefined.
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Figure 2: Optimal Policy and Value Function with r = 0.04

Graph A of Figure 2 shows the stopping boundary (solid curve) obtained by algorithm (10)
using λ = 512, n = 30 and the base-case parameters (see our footnote 3), except r = 0.04. As
in Section III, the variables X and Y denote the cost and revenue generated by the project,
respectively. A comparison with the QA method is not possible as candidate solution (15) is
not defined. The stopping boundary (solid curve) is shown in both Graphs A and B. Graph B
shows the project value Vλ(X, Y ). The value at the renewal location is indicated by the dot
at (XI ;YI ;Vλ(XI , YI)) = (20; 80; 2,888).

Graph A. Stopping Boundary

Continuation

region

Stopping

region

Renewal

location

Graph B. Value Function
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VI Conclusion

We have presented a new numerical method, inspired by Lange et al. (2018), which

uses Poisson optional stopping times (POST) to value liquidity-constrained real options

with multiple state variables. In our problem setup, the decision maker is permitted to

exercise the option only at a set of Poisson arrival times that arrive at rate λ <∞. For

some real options, such a liquidity constraint may be realistic (e.g., off-shore operations

that require particular weather conditions). Alternatively, the case λ <∞ may be viewed

as a mathematical tool that makes the problem corresponding to λ =∞ more amenable.

The POST algorithm finds the project value as the limit of a monotone

(nondecreasing) sequence of lower bounds. Moreover, this property persists through the

discretization. In essence, each iteration of POST adds a single (Poisson) optional stopping

time, at which point the decision maker may (but need not) exercise the option, thereby

yielding the monotonicity of the algorithm. While related to “penalty methods” in the

financial engineering literature, the proposed algorithm is, to the best of our knowledge,

new.

For diffusion processes, each POST iteration can be performed efficiently using a

sparse linear solver and convergence is guaranteed (at a geometric rate) irrespective of the

resolution of the grid used for the discretization. The algorithm remains valid for

jump-diffusion processes, although the sparsity of the linear system is lost, such that

solving the problem becomes more computationally intensive (although part of this

additional computational burden may be alleviated using operator-splitting methods).
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As a case study, we considered the renewal option of Adkins and Paxson (2011b),

which they solve using a quasi-analytic (QA) method. We showed that the QA method is

internally inconsistent and therefore only an approximate method for determining optimal

stopping boundaries. This fact has been explicitly recognized in two recent articles

interrogating the accuracy of the QA method. Dockendorf and Paxson (2013) compare it

with an alternative method and find the QA approximation to be acceptable, for one

specific case, although they do not consider its accuracy more generally. Compernolle et al.

(2018), moreover, demonstrate that the QA method produces an incorrect exercise

boundary for a stopping problem with a cash flow f(X, Y ) = 0 and stopping gain

g(X, Y ) = X + Y −K (using our notation from Section II). As we have shown, the QA

method computes a policy, albeit inaccurately, but no value function. For these reasons we

would urge caution in using this method. Our proposed solution method enabled us to

derive a more accurate stopping boundary and compute project values at points in the

state space away from the stopping boundary.

In short, the combination of interpretability, flexibility, and reliability make the

POST algorithm particularly attractive from a practical viewpoint. We expect this method

to have broad applicability in the analysis of real options with multiple state variables.
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Appendix A Derivation of Equation (1)

For any (X,Y ) in the continuation region, the decision maker receives the infinitesimal

cash flow f(X,Y )dt as well as the expected value of the value of the project at time t+ dt, the

present value of which equals (1− r dt) EVλ(X + dX,Y + dY ), where r is the risk-adjusted

discount rate. By Bellman’s optimality principle, the sum of both terms must be equal to the

value of the project itself, and thus we require

Vλ(X,Y ) = f(X,Y )dt+ (1− r dt) EVλ(X + dX,Y + dY ),

= f(X,Y )dt+ (1− r dt) [Vλ(X,Y ) + LVλ(X,Y )dt] +O(dt2),

= Vλ(X,Y ) +
[
(L− r)Vλ(X,Y ) + f(X,Y )

]
dt+O(dt2),

where, in line two, we have used

EVλ(X + dX,Y + dY ) = Vλ(X,Y ) + LVλ(X,Y )dt+O(dt2),

which holds by Itô’s lemma, and we ignore terms of order O(dt2). It follows that

(L− r)Vλ(X,Y ) + f(X,Y ) = 0

for all (X,Y ) in the continuation region.

Similarly, for any (X,Y ) in the stopping region, the decision maker receives g(X,Y ) if an

option to stop presents itself, which happens with probability λ dt, and the expected present value

of continuing otherwise. By Bellman’s optimality principle, the weighted average of both
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possibilities must be equal to the value of the project, and thus

Vλ(X,Y ) = g(X,Y )λdt+ (1− λ dt) [f(X,Y )dt+ (1− r dt) EVλ(X + dX,Y + dY )] ,

= g(X,Y )λdt+ (1− λ dt) [f(X,Y )dt+ (1− r dt) (Vλ(X,Y ) + LVλ(X,Y )dt)] +O(dt2),

= Vλ(X,Y ) +
[
(L− r)Vλ(X,Y ) + f(X,Y ) + λ (g(X,Y )− Vλ(X,Y ))

]
dt+O(dt2).

It follows that

(L− r)Vλ(X,Y ) + f(X,Y ) + λ (g(X,Y )− Vλ) = 0

for all (X,Y ) in the stopping region.

By optimality, (X,Y ) is part of the stopping region if and only if g(X,Y )− Vλ(X,Y ) ≥ 0.

Combining both arguments above, it follows that on the entire state space R2
≥0 it must hold that

(L− r)Vλ(X,Y ) + f(X,Y ) + λ [g(X,Y )− Vλ(X,Y )]+ = 0, ∀(X,Y ) ∈ R2
≥0,

which is equivalent to equation (1) in the main text. It can be shown that this equation is not

only necessary but, in fact, also sufficient (see Lange et al. (2018)). Any algorithm that solves

equation (1) thus solves the original problem.

Appendix B Proof of Theorems 1 and 2

This section shows that algorithm (5) converges both monotonically and geometrically as

long as the constant c(X,Y ), which appears in the computable bound (6), is itself bounded, where

(B-1) c(X0, Y0) := sup
t≥0

E0 sup
s≥0

e−r s {Et [(L− r)g(Xt+s, Yt+s) + f(Xt+s, Yt+s)]}+ .
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Here Et[·] := E[·|Ft], such that the operator E0 takes an expectation conditional on the current

state (X0, Y0). Condition (B-1) is hardly restrictive5, because the decision maker would continue

forever without stopping and reap infinite benefits if it were not satisfied. To explain intuitively

why the constant c(X,Y ) should be bounded, we consider the infinitesimal gain of a small delay

in stopping. By postponing the decision to stop for a short time dt, the decision maker gains

[f(X,Y ) + Lg(X,Y )]dt relative to stopping right away; that is, the received cash flow and the

expected change in the stopping gain. If, instead, the decision maker had stopped right away, then

the additional gain after time dt would have been r g(X,Y )dt; that is, the risk-free rate r times

the stopping gain. Hence the infinitesimal gain of postponing for a short time dt relative to

stopping right away equals f(X,Y ) + (L− r) g(X,Y ). For the project value at location (Xt, Yt) to

be bounded, the positive part of Et[f(Xt+s, Yt+s) + (L− r) g(Xt+s, Yt+s)] cannot grow faster than

ers; otherwise, the decision maker would continue forever and reap infinite benefits. However, even

if the project value at location (Xt, Yt) is unbounded, c(X0, Y0) may remain finite if it is

improbable that location (Xt, Yt) is reached when starting from location (X0, Y0). That is, there

may exist locations (Xt, Yt) for which Vλ(Xt, Yt) =∞, as long as the set containing such locations

has measure 0 under the expectation operator E0. This explains the appearance of two

expectation operators in (B-1).

For the renewal option considered in Section III, where f(X,Y ) = Y −X, for

condition (B-1) to hold it is sufficient that θX > θY , such that costs increase faster than revenues.

Having explained the intuition behind condition (B-1), we proceed to the formal proofs of

Theorems 1 and 2.

5Note that Lg(X,Y ) itself need not be bounded above, which is relevant when L contains

second derivatives and g(X,Y ) contains kinks, in which case Lg(Xt, Yt) can be interpreted in a

(Schwarz) distributional sense under the expectation (i.e., integral) operator Et.
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Proof of Theorem 1. To prove the convergence of the algorithm (5), we first note that for any

j ≥ 2, it can be written as follows:

V
(j)
λ (X0, Y0) = (r + λ− L)−1

[
f(X0, Y0) + λ max{g(X0, Y0), V

(j−1)
λ (X0, Y0)}

]
,(B-2)

=

∫ ∞
0

e−(r+λ)tE0

[
f(Xt, Yt) + λmax{g(Xt, Yt), V

(j−1)
λ (Xt, Yt)}

]
dt,

where the first line is purely formal, while the second holds by the resolvent formalism (see, e.g.,

Revuz and Yor ((1999), pp. 89–90, 290–291) or Rogers and Williams ((2000), pp. 234–238)). The

probability density λ exp(−λ t)dt is recognized as the (marginal) probability density of the first

Poisson arrival time. From equation (B-2), it is clear that V
(j)
λ (X,Y ) is equal to the value of

receiving the cash flow f(Xt, Yt) until the first Poisson arrival time, while the decision maker

chooses the maximum of g(Xt, Yt) and V
(j−1)
λ (Xt, Yt) if and when the first Poisson arrival time

occurs. By the (time-homogeneous) Markov property, equation (B-2) implies

V
(j)
λ (Xt, Yt) =(B-3) ∫ ∞

0
e−(r+λ)sEt

[
f(Xt+s, Yt+s) + λmax{g(Xt+s, Yt+s), V

(j−1)
λ (Xt+s, Yt+s)}

]
ds,

for all j ≥ 2 and all (Xt, Yt), as we will use below.

To prove that the iterations in algorithm (B-2) produce a nondecreasing sequence, we use

the fact that max{g(Xt, Yt), V
(1)
λ (Xt, Yt)} cannot be exceeded by g(Xt, Yt), which implies

V
(2)
λ (X0, Y0) :=

∫ ∞
0

e−(r+λ)tE0

[
f(Xt, Yt) + λmax{g(Xt, Yt), Vλ(Xt, Yt)}

]
dt,

≥
∫ ∞
0

e−(r+λ)tE0

[
f(Xt, Yt) + λ g(Xt, Yt)

]
dt =: V

(1)
λ (X0, Y0),
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hence V
(2)
λ (X0, Y0) ≥ V (1)

λ (X0, Y0) and thus the algorithm is nondecreasing at the first step. By

induction it follows that the algorithm is nondecreasing at all subsequent steps.

To prove that the algorithm converges at a geometric rate λ/(r + λ), we define the

difference between two iterations of (B-2) as follows:

∆
(j)
λ (X0, Y0)(B-4)

:= V
(j+1)
λ (X0, Y0)− V (j)

λ (X0, Y0),

=

∫ ∞
0

λ e−(r+λ)tE0

[
max

{
g(Xt, Yt), V

(j)
λ (Xt, Yt)

}
−max

{
g(Xt, Yt), V

(j−1)
λ (Xt, Yt)

}]
dt,

for j ≥ 2, which follows from equation (B-2)

≤
∫ ∞
0

λ e−(r+λ)tE0

[
V

(j)
λ (Xt, Yt)− V (j−1)

λ (Xt, Yt)
]

dt,

=

∫ ∞
0

λ e−(r+λ)tE0 ∆
(j−1)
λ (Xt, Yt)dt,

≤ λ

r + λ
sup
t≥0

E0 ∆
(j−1)
λ (Xt, Yt).

The first inequality follows from max{a, c} −max{b, c} ≤ a− b for a ≥ b and a, b, c ∈ R. The

penultimate line holds by the definition of ∆
(j−1)
λ (Xt). Using the (time-homogeneous) Markov

property, the last line of equation (B-4) holds not only at location (X0, Y0), but rather for all

locations (Xs, Ys) as follows:

(B-5) ∆
(j)
λ (Xs, Ys) ≤

λ

r + λ
sup
t≥s

Es ∆
(j−1)
λ (Xt, Yt), j ≥ 2, s ≥ 0,

where the expectation on the right-hand side is conditional on the information set at time s, and

the supremum is taken over all times t ≥ s. In turn, as we will show below, inequality (B-5)
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implies P-almost surely that

∆
(j)
λ (Xs, Ys) ≤

(
λ

r + λ

)j−1
sup
t≥s

Es ∆
(1)
λ (Xt, Yt), j ≥ 2, s ≥ 0.(B-6)

Equation (B-6) says that the maximum possible increase in the approximate solution shrinks at

the geometric rate λ/(r+ λ) as the number of iterations of the algorithm increases. Of course, this

holds if and only if supt≥s Es∆
(1)
λ (Xt, Yt) is bounded, as will be shown below. To prove that

inequality (B-5) implies inequality (B-6), we take j = 3 in equation (B-5) and write

∆
(3)
λ (X0, Y0) ≤

λ

r + λ
sup
s≥0

E0 ∆
(2)
λ (Xs, Ys),(B-7)

≤
(

λ

r + λ

)2

sup
s≥0

E0 sup
t≥s

Es ∆
(1)
λ (Xt, Yt),

which follows by applying inequality (B-5) for j = 2

=

(
λ

r + λ

)2

sup
s≥0

E0 Es ∆
(1)
λ

(
Xt∗(s), Yt∗(s)

)
,

where t∗(s) := arg max
t≥s

Es ∆
(1)
λ (Xt, Yt), if the supremum is attained

=

(
λ

r + λ

)2

sup
s≥0

E0 ∆
(1)
λ

(
Xt∗(s), Yt∗(s)

)
,

which follows by the tower property

=

(
λ

r + λ

)2

E0 ∆
(1)
λ

(
Xt∗(0), Yt∗(0)

)
,

because t∗(0) is the maximiser of E0∆
(1)
λ (Xt, Yt)

=

(
λ

r + λ

)2

sup
t≥0

E0 ∆
(1)
λ (Xt, Yt) ,

which follows by the definition of t∗(s).

By repeatedly applying this argument we obtain inequality (B-6). This argument is insufficient if

the supremum is not attained. However, the result remains true, because the four equalities in the
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above calculation amount to the equality

sup
s≥0

E0 sup
t≥s

Es ∆
(1)
λ (Xt, Yt) = sup

t≥0
E0 ∆

(1)
λ (Xt, Yt),

which remains true if the suprema are not attained (the details are omitted but available from the

authors).

To establish that algorithm (5) converges, what remains to be done is to confirm that

supt≥s Es∆
(1)
λ (Xt, Yt) is bounded. To this end, we write the stopping gain g(Xt, Yt) as

(B-8) g(Xt, Yt) =

∫ ∞
0

e−(r+λ)sEt[(r + λ− L)g(Xt+s, Yt+s)]ds,

which follows by the Markov property in combination with the resolvent formalism as long as

function g is sufficiently well behaved at spatial infinity.6 Using equation (B-8), we consider the

first difference ∆
(1)
λ (X0, Y0) produced by algorithm (B-2) as follows:

∆
(1)
λ (X0, Y0)

(B-9)

:= V
(2)
λ (X0, Y0)− V (1)

λ (X0, Y0),

=

∫ ∞
0

λ e−(r+λ)t
[
E0 max

{
g(Xt, Yt), V

(1)
λ (Xt, Yt)

}
− E0g(Xt, Yt)

]
dt,

which follows from (B-2)

=

∫ ∞
0

λ e−(r+λ)tE0

{
V

(1)
λ (Xt, Yt)− g(Xt, Yt)

}+
dt

6It is sufficient if E0[g(Xt, Yt)] = o(e−rt) as t→∞. Further, the quantity Lg(Xt, Yt) does not

necessarily need to exist as a (bounded) function; it needs only to exist, possibly as a distribution

function, under the expectation (i.e., integral) operator Et for almost all t ≥ 0 in a Lebesgue sense.
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=

∫ ∞
0

λ e−(r+λ)tE0

{∫ ∞
0

e−(r+λ)sEt[λ g(Xt+s, Yt+s) + f(Xt+s, Yt+s)]ds− g(Xt, Yt)
}+

dt,

which follows from (B-3)

=

∫ ∞
0

λ e−(r+λ)tE0

{∫ ∞
0

e−(r+λ)sEt[λ g(Xt+s, Yt+s) + f(Xt+s, Yt+s)]ds

−
∫ ∞
0

e−(r+λ)sEt[(r + λ− L)g(Xt+s, Yt+s)]ds

}+

dt,

which follows from (B-8)

=

∫ ∞
0

λ e−(r+λ)tE0

{∫ ∞
0

e−(r+λ)sEt [(L− r) g(Xt+s, Yt+s) + f(Xt+s, Yt+s)] ds

}+

dt,

which follows by combining terms

=

∫ ∞
0

λ e−(r+λ)tE0

∫ ∞
0

e−(r+λ)s
{

Et [(L− r) g(Xt+s, Yt+s) + f(Xt+s, Yt+s)]
}+

dsdt,

which follows from {
∫

[·]}+ ≤
∫

[{·}+]

≤
∫ ∞
0

λ e−(r+λ)t sup
t≥0

E0

∫ ∞
0

e−λ s
[
sup
s≥0

e−r s
{

Et [(L− r) g(Xt+s, Yt+s) + f(Xt+s, Yt+s)]
}+
]

dsdt,

by inserting suprema in both integrals

=
1

r + λ
sup
t≥0

E0 sup
s≥0

e−r s
{

Et [(L− r) g(Xt+s, Yt+s) + f(Xt+s, Yt+s)]
}+

because
∫

e−λsds = 1/λ and
∫
λe−(r+λ)tdt = λ/(r + λ)

=:
1

r + λ
c(X0, Y0),

where the constant c(X0, Y0) was defined in equation (B-1). For our computations below, note

that the (time-homogeneous) Markov property implies

(B-10)

c(Xt, Yt) := sup
s1≥0

Et sup
s2≥0

e−r s2 {Et+s1 [(L− r)g(Xt+s1+s2 , Yt+s1+s2) + f(Xt+s1+s2 , Yt+s1+s2)]}+ .
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By similar arguments as before, ∆
(1)
λ (X0, Y0) being bounded by c(X0, Y0)/(r + λ) implies that

supt≥0 E0∆
(1)
λ (Xt, Yt) is bounded by the same quantity, because

sup
t≥0

E0 ∆
(1)
λ (Xt, Yt)

(B-11)

≤ 1

r + λ
sup
t≥0

E0 c(Xt, Yt),

by last line of (B-9)

=
1

r + λ
sup
t≥0

E0 sup
s1≥0

Et sup
s2≥0

e−r s2 {Et+s1 [(L− r)g(Xt+s1+s2 , Yt+s1+s2) + f(Xt+s1+s2 , Yt+s1+s2)]}+ ,

from the definition of c(Xt, Yt) in (B-10)

=
1

r + λ
sup
t≥0

E0 sup
s1≥0

Et h(t+ s1),

by defining h(t+ s1) := sup
s2≥0

e−r s2 {Et+s1 [(L− r)g(Xt+s1+s2 , Yt+s1+s2) + f(Xt+s1+s2 , Yt+s1+s2)]}+ ,

=
1

r + λ
sup
t≥0

E0 Et h(t+ s∗1(t)),

by defining s∗1(t) := arg max
s1≥0

Eth(t+ s1)

=
1

r + λ
sup
t≥0

E0 h(t+ s∗1(t)),

by the tower property

=
1

r + λ
E0 h(0 + s∗1(0)),

the sup
t≥0

sets t = 0, because s∗1(0) maximises E0 h(s1)

=
1

r + λ
sup
t≥0

E0 h(t),

from the definition of s∗1(0)

=
1

r + λ
sup
t≥0

E0 sup
s2≥0

e−r s2 {Et [(L− r)g(Xt+s2 , Yt+s2) + f(Xt+s2 , Yt+s2)]}+ ,

from the definition of h(t)
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=
1

r + λ
c(X0, Y0),

from the definition of c(X0, Y0).

In sum, we have shown that the right-hand side of (B-6) is bounded. In turn, this means that the

maximum possible increase in the approximate solution shrinks at the geometric rate λ/(r + λ) as

the number of POST iterations increases; thus algorithm (5) is convergent. This concludes the

proof of Theorem 1.

Proof of Theorem 2. Continuing with the same notation as in the proof of Theorem 1, we note

that Vλ(X,Y ) = V
(j)
λ (X,Y ) +

∑∞
k=j ∆

(k)
λ (X,Y ), which implies

0 ≤ Vλ(X0, Y0)− V (j)
λ (X0, Y0)

=

∞∑
k=j

∆
(k)
λ (X0, Y0),

≤
∞∑
k=j

(
λ

r + λ

)k−1
sup
t≥0

E0 ∆
(1)
λ (Xt, Yt), from equation (B-6)

≤
∞∑
k=j

(
λ

r + λ

)k−1 1

r + λ
c(X0, Y0), from the last line of equation (B-11)

=
1

λ

∞∑
k=j

(
λ

r + λ

)k
c(X0, Y0)

=
1

λ

(
λ

r + λ

)j ∞∑
k=j

(
λ

r + λ

)k−j
c(X0, Y0)

=
1

λ

(
λ

r + λ

)j 1

1− λ
r+λ

c(X0, Y0)

=
1

λ

(
λ

r + λ

)j r + λ

r
c(X0, Y0),

=

(
λ

r + λ

)j−1 c(X0, Y0)

r
.
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Hence the computable bound (6) holds and any desired precision level can be achieved by

choosing the number of iterations j sufficiently large.

Appendix C Convergence of Algorithm (7)

Convergence of algorithm (7) as j →∞ is guaranteed at the geometric rate λ/(r + λ) if

the matrix L satisfies the following conditions:

1. The matrix L is weakly diagonally dominant. That is, in each row the absolute value of the

diagonal element is greater than or equal to the sum of the absolute values of the

off-diagonal elements.

2. The matrix L contains nonpositive diagonal entries and nonnegative off-diagonal entries.

If these conditions hold, then for any r, λ > 0 the inverse ((r+ λ)I−L)−1 exists and contains only

nonnegative entries (Plemmons (1977)), while its operator norm (with respect to the infinity

norm under RM , where M is the number of grid points) is bounded above by 1/(r + λ) (Ahlberg

and Nilson (1963)). It can easily be shown that the nonnegativity yields the monotonicity of

algorithm (7), while the norm yields the contraction.
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Appendix D Discretization

In the base case considered by AP (see our footnote 3), ρ = 0. In this case, the 5-point

stencil below generates a matrix L that satisfies both conditions in Appendix C:

· Y 2 σ2
Y

2 dY 2 +
Y θ+Y
dY ·

X2 σ2
X

2 dX2 +
X2 θ−X
dX −X2 σ2

X
dX2 −

Y 2 σ2
Y

dY 2 − X |θX |
dX − Y |θY |

dY

X2 σ2
X

2 dX2 +
X θ+X
dX

· Y 2 σ2
Y

2 dY 2 +
Y θ−Y
dY ·

,

where (·)+ = max(0, ·) and (·)− = max(0,−·) denote the positive and negative parts of a real

number, while dX and dY denote the horizontal and vertical spacing of X and Y . For

presentation purposes we use a homogeneous grid; in computation we do not. Condition 1 in

Appendix C is satisfied since the value in the centre, which ends up on the diagonal of L, is not

exceeded in absolute value by sum of the other values in the stencil. Condition 2 in Appendix C is

satisfied because the centre value, which is placed on the diagonal of L, is nonpositive, while the

values corresponding to its four neighbors, which are placed on off-diagonal elements of L, are

nonnegative.

In the approximation of second derivatives, the 5-point stencil uses a central difference

scheme, which uses grid points to both sides of the centre point. In the approximation of first

derivatives, we only use the neighbor on one side; which one is chosen depends on the direction of

the drift. In the horizontal direction, the nearest neighbor on the right gets a positive value if the

drift is towards the right. Conversely, the nearest neighbor on the left gets a positive value if the

drift is towards the left. In both cases, negative values are guaranteed to end up at the centre of

the stencil, such that condition 2 in Appendix C is guaranteed.
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While ρ = 0 in the base case of AP, a nonzero correlation can be dealt with by using the

following stencil

− ρ σX σY X Y

4 dX dY
· ρ σX σY X Y

4 dX dY

· · ·

ρ σX σY X Y

4 dX dY
· − ρ σX σY X Y

4 dX dY

,

see, for example, Abramovitz and Stegun ((1972), p. 884, eq. 25.3.26). While this stencil does not

satisfy the diagonal dominance and sign requirements in Appendix C, convergence is found to be

fast regardless. In any case, correlated processes may be avoided altogether by framing the

problem in terms of two uncorrelated processes; something that for correlated geometric

Brownian motions is always possible.

Appendix E Grid and Boundary Conditions

Our inhomogeneous rectilinear grid contains M = 201 grid points and ranges from 10−6 to

3, 000 in both directions, where the grid points are placed at

[10−6, (1 : 1 : 100), (102 : 2 : 200), (210 : 10 : 400), (425 : 25 : 500), (550 : 50 : 1,000), (1, 500 : 100 : 3,000)].

This grid proved to be sufficiently large and fine-grained to ensure a discretized solution of

acceptable precision and resolution.

With respect to the boundary conditions, when we reach the edge of our grid, some points

in our stencil may not be “available.” The simplest method for dealing with nonexistent grid

points is to set the corresponding value to 0, which leads to Dirichlet boundary conditions.

Alternatively, we may set the corresponding value equal to that of the centre value, leading to
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Neumann boundary conditions. Finally, we may use a linear extrapolation to obtain the value

corresponding to the nonexistent grid point. For our results, we impose Dirichlet boundary

conditions on the bottom, left-, and right-hand sides of our grid, while we perform a linear

extrapolation at the top, where the project value is particularly high (and increasing). We

experimented with Dirichlet and Neumann boundary conditions on all four sides and found the

differences to be sufficiently small.

Appendix F Robustness

Graph A of Figure F1 shows that, as λ increases, the stopping boundary moves

downwards, so that the decision maker waits longer before renewing the project. That is, if

opportunities to renew arrive more frequently, the decision maker can afford to wait longer to

renew. In contrast, Graph B shows that, as n increases, the stopping boundary moves upwards, so

that the decision maker renews the project earlier. That is, if a larger number of renewals is

allowed, the decision maker is more inclined to renew. The black dotted line, which corresponds

to λ = 512 and n = 30, is the same in both figures. It is clear that these values of λ and n are

sufficiently large for the stopping boundary to be stable.

Graph A of Figure F2 shows that the AP project value at the renewal location, that is

Vλ,n=30(XI , YI), is relatively insensitive as a function of the Poisson intensity λ for λ ≥ 64.

Similarly, Graph B shows that Vλ=512,n(XI , YI) is relatively insensitive as a function of n for

n ≥ 15. The project value Vλ=512,n=30(XI , YI) = 1, 302 is shown in both figures and referenced in

the main text.

49



Figure F1: Convergence of the Stopping Boundary

Graph A of Figure F1 shows the stopping boundary of the AP renewal option discussed in

Section III for n = 30 and different values of λ. Graph B shows the stopping boundary for

λ = 512 and different values of n. The black dotted line, which represents the optimal

stopping boundary for λ = 512 and n = 30, is shown in both Graphs A and B.

Graph A. Convergence as λ Increases Graph B. Convergence as n Increases

Stopping

region

Renewal

location

Stopping

region

Renewal

location
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Figure F2: Convergence of the Value Function

Graph A of Figure F2 shows the project value Vλ,n(XI , YI) with n = 30 as a function of λ.

Graph B shows the project value Vλ,n(XI , YI) with λ = 512 as a function of n.

Graph A. Convergence as λ Increases Graph B. Convergence as n Increases
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