
ORIGINAL RESEARCH
published: 28 February 2019

doi: 10.3389/fimmu.2019.00343

Frontiers in Immunology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 343

Edited by:

Alexandre Corthay,

Oslo University Hospital, Norway

Reviewed by:

Maria Rosaria Coscia,

Istituto di Biochimica delle Proteine

(IBP), Italy

Rowena Hoare,

University of Stirling, United Kingdom

Lora Petrie-Hanson,

Mississippi State University,

United States

*Correspondence:

Shi Xi Chen

chenshixi@xmu.edu.cn

Specialty section:

This article was submitted to

Molecular Innate Immunity,

a section of the journal

Frontiers in Immunology

Received: 02 December 2018

Accepted: 11 February 2019

Published: 28 February 2019

Citation:

Qiu HT, Fernandes JMO, Hong WS,

Wu HX, Zhang YT, Huang S, Liu DT,

Yu H, Wang Q, You XX and Chen SX

(2019) Paralogues From the Expanded

Tlr11 Gene Family in Mudskipper

(Boleophthalmus pectinirostris) Are

Under Positive Selection and Respond

Differently to LPS/poly(I:C) Challenge.

Front. Immunol. 10:343.

doi: 10.3389/fimmu.2019.00343

Paralogues From the Expanded Tlr11
Gene Family in Mudskipper
(Boleophthalmus pectinirostris) Are
Under Positive Selection and
Respond Differently to LPS/Poly(I:C)
Challenge

Heng Tong Qiu 1, Jorge M. O. Fernandes 2, Wan Shu Hong 1,3, Hai Xu Wu 4, Yu Ting Zhang 1,

Sheng Huang 1, Dong Teng Liu 1, Hui Yu 4, Qiong Wang 1, Xin Xin You 4 and Shi Xi Chen 1,3,5*

1 State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen,

China, 2 Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway, 3 Fujian Collaborative Innovation Center for

Exploitation and Utilization of Marine Biological Resources, Xiamen, China, 4 Shenzhen Key Laboratory of Marine Genomics,

Marine and Fisheries Institute, BGI-Shenzhen, Shenzhen, China, 5 State-Province Joint Engineering Laboratory of Marine

Bioproducts and Technology, Xiamen University, Xiamen, China

Toll-like receptors (TLRs) are major molecular pattern recognition receptors, which are

essential for triggering a series of innate immune responses against invading pathogens

by recognizing their evolutionary conserved molecular patterns. The mudskipper,

Boleophthalmus pectinirostris is exceptional among fishes due to its amphibious lifestyle

and adaptation to living on mudflats. The whole-genome sequencing of B. pectinirostris

has revealed that this species possesses an expansion of Tlr11 family [12 Tlr11 family

genes (one tlr21, 4 tlr22, and 7 tlr23)] that we focused on in the present study.

The full-length cDNA sequences of the 12 tlrs in B. pectinirostris were cloned and

their deduced amino acid sequences possessed a typical TLR domain arrangement.

Likelihood tests of selection revealed that these 12 Tlr11 family genes are under

diversifying selection. A total of 13 sites were found to be positively selected by more than

one evolution model, of which 11 were located in the ligand-binding ectodomain. The

observed non-synonymous substitutions may have functional implications in antigen and

pathogen recognition specificity. These 12 tlrs were highly expressed in immune-related

tissues, i.e. spleen and kidney. Tlr21 and tlr22b transcripts were significantly up-regulated

by LPS, whereas tlr22a, tlr22d, tlr23b, tlr23e, tlr23g were significantly up-regulated by

poly(I:C) in the spleen or/and kidney, which implies that the expanded Tlr11 family genes

may play roles in protecting the fish from the invasion of gram-negative bacteria and

double-stranded RNA viruses. The results from the present study suggested that the

expansion of Tlr11 family genes in B. pectinirostris may recognize ligands from various

pathogens found in the intertidal zone.
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INTRODUCTION

The Toll-like receptor (TLR) gene family is a class of pathogen
recognition receptors (PRRs) that play crucial roles in the
innate immune system by recognizing pathogen-associated
molecular patterns (PAMPs) derived from various microbes
(1, 2). TLRs interact with PAMPs from pathogens via their
clusters of extracellular LRRs (leucine-rich repeats), resulting
in conformational changes of TLRs. This further activates
cytoplasmic Toll-Interleukin-1 receptor (TIR) domain to recruit
cytosolic adaptor proteins, such as myeloid differentiation factor
88 (MyD88), and finally induces the production of multiple
cytokines (3). Since the discovery of Toll in fruit fly (Drosophila
melanogaster) in 1985 (4, 5), at least 28 TLRs have been identified
in vertebrates and can be divided into six major families: TLR1
(TLRs 1, 2, 6, 10, 14, 15, 16, 18, 24, 25, 27 and 28), TLR3 (TLR3),
TLR4 (TLR4), TLR5 (TLR5), TLR7 (TLRs 7, 8, 9), and TLR11
(TLRs 11, 12, 13, 19, 20, 21, 22, 23, and 26) (6). Bony fish are
thought to have an ancient immune system and there is great
scientific interest in comparing their innate and adaptive defense
mechanism with mammals (7). So far, at least 21 Tlrs have been
identified in fishes (8). TLR4 gene has been lost from the genomes
of most fishes (9). TLR6 and TLR10 are absent in fishes (10).
TLR5s, TLR14, TLR18 to TLR28 are considered to be termed as
“teleost-specific TLRs” (8, 11).

Key features of the fish TLRs and the factors involved in
their signaling cascade have high structural similarity to the
mammalian TLR system. However, fish TLRs also exhibit very
distinct features and large diversity which is likely derived from
their diverse evolutionary history and the distinct environments
that they occupy (7). In particular, some TLR genes in teleosts
are known to be shaped by positive (diversifying or adaptive)
selection, which enables them to cope with a large number of
rapidly evolving pathogens (12–18).

The mudskipper Boleophthalmus pectinirostris (Linnaeus
1758) is a burrow-dwelling fish, widely distributing throughout
the intertidal regions of China, Korea and Japan (19).
B. pectinirostris is usually found on the soft mudflats of estuaries
and coastal waters when they are exposed at ebb tide. Their
behaviors, physiological and morphological features have been

specialized and adapted for an amphibious lifestyle (20–25).
Pathogenic bacteria adhere to and colonize mucosal surfaces of
the susceptible host (26), or invade the body mainly through the
skin, gill, or gut (27). The peculiar environment of the mudflats,
which changes between flood and ebb tides, suggests that B.

Abbreviations: Bp, Boleophthalmus pectinirostris; CD, cluster of differentiation;

CDS, complete codinig sequence; CpG-ODNs, CpG-oligodeoxynucletides; CT, C-

terminus; MD-2, myeloid differentiation factor 2; eef1α, eukaryotic translation

elongation factor 1α; hpi, hours post injection; LPS, lipopolysaccharide;

LRRs, leucine-rich repeats; Map3k, mitogen-activated protein kinase kinase

kinase; miRNA, microRNA; NF-κB, nuclear factor-κB; NOD, nucleotide-binding

oligomerization domain; NT, N-terminus; PAMPs, pathogen-associated molecular

patterns; poly(I:C), polyinosinic-polycytidilic acid; ppme1, protein phosphatase

methylesterase-1; RIPK2, receptor-interacting serine-threonine kinase 2; SEM,

standard error of the mean; Sh3kbp1, SH3-domain kinase binding protein 1;

SRB, scavenger receptor class B; TIR, Toll-Interleukin-1 receptor; TLR, Toll-

like receptor; TRIF, TIR-domain-containing adapter-inducing interferon-β; UTR,

untranslated region.

pectinirostrismay have evolved specific immunity genes to adapt
to their habitat. Interestingly, genomic study of B. pectinirostris
showed that the fish species possesses the largest number (11
copies) of TLR13 in vertebrates sequenced so far (28). However,
in the present study, based on the sequences of 11 Tlr13 of
B. pectinirostris, we further cloned one more Tlr13 gene from
B. pectinirostris. However, the phylogenetic analysis indicated
that the 12 Tlr13 from B. pectinirostris should be classified as
Tlr21, Tlr22, and Tlr23, which belong to TLR11 family. Similar
TLR11 family expansion was also reported in Atlantic cod (Gadus
morhua), and 12 tlr22 paralogues of Atlantic cod responded
differently to pathogenic challenge, which indicated that they are
undergoing neofunctionalization via positive selection and can
recognize bacterial pathogen-associated molecular patterns (13).

The aim of this study was to investigate if expansion of Tlr11
family in B. pectinirostris have been retained through adaptive
evolution in order to provide special immune defense against
pathogens from Vibrio, Klebsiella, Salmonella, etc. in intertidal
mudflat (29, 30). After obtaining the full-length cDNA sequence
of 12 Tlr11 family genes in B. pectinirostris, we conducted synteny
analysis and chromosome localization. In order to assess the
adaptive evolution of Tlr11 family genes of B. pectinirostris,
positive selection analysis was performed. We further examined
the tissue distribution and the expression profiles of these
genes in response to lipopolysaccharide (LPS) and polyinosinic-
polycytidilic acid [poly(I:C)] challenges.

MATERIALS AND METHODS

Experimental Fish and Sampling
Adult mudskipper B. pectinirostris (body length 105–
145mm, body weight 20–45 g) used in this study were purchased
from a seafood market in Xiamen, Fujian province, China.
The fish were maintained in plastic tanks with 1.5 cm deep
seawater at water temperature of 28–28.5◦C, and salinity of 15
ppt. Before sampling, the fish were anesthetized with 0.01%
MS222 (Sigma-Aldrich, St. Louis, MO, US). All experiment
protocols were approved by the Institute of Animal Care and Use
Committee of Xiamen University.

cDNA Cloning, Gene Structures of tlr21,
tlr22, and tlr23 Paralogues
The fasta format of whole genome shotgun sequences of B.
pectinirostris was downloaded from NCBI, and a local blast
database was created with BioEdit (31). The partial fragments of
previous published 11 tlr13 genes of B. pectinirostris (28) were
obtained from BGI (The Beijing Genomics Institute, Shenzhen),
these sequences were used to search for the reference sequences
from the database by BioEdit software. We found a new TLR11
family gene from local blast database based on the conserved
cDNA sequence of TIR domain of B. pectinirostris. The start and
stop codons of these genes were predicted by BLASTP searches
(NCBI). Finally, we got sequences of 12 Tlr11 family genes in B.
pectinirostris. Specific primers were designed to amplify the open
reading frames of these genes (Supplementary Table 1). A cDNA
library from kidney tissue was synthesized using the ReverAid
First Strand cDNA Synthesis Kit (Thermo Scientific, USA)
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following the manufacturer’s instructions and used to amplify
these 12 tlr transcripts. Thirty-five cycles of standard PCR were
performed on a Bio-Rad T100 Thermal Cycler, the annealing
temperature was 58◦C and the elongation time depended on the
length of fragments amplified. No more than twenty cycles of
nested PCR amplification with an annealing temperature of 58◦C
were performed when necessary.

The full-length end cDNA sequences of these 12 tlr genes
were obtained using a SMART RACE cDNA Amplification
kit (BD, Clontech) following the manufacturer’s instructions,
and the combined PCR sequences were used to deduce the
full-length cDNA sequences of the 12 tlr genes. Briefly, total
RNA extracted from the fresh kidney was used to synthesize
the RACE Ready first-strand cDNA. The 3′RACE cDNA was
synthesized using 3′-CDS Primer A, and the 5′ RACE cDNA
was synthesized using 5′-CDS Primer A and SMARTer IIA
oligo. RACE primers for these 12 genes were designed based
on the sequence information of the fragments obtained above
(Supplementary Table 2). The PCR products were cloned into
pMD19-T simple vector (TaKaRa Dalian, China) and sequenced
by Invitrogen Ltd. (Guangzhou, China). Intron-exon boundaries
of these 12 tlrs were identified using corresponding genome
sequences and gene structure display server (http://gsds.cbi.pku.
edu.cn/). Furthermore, we searched for the highly conserved
tandem repeat sequences in the full-length cDNA sequences of
these 12 tlrs from B. pectinirostris using the online software
“Tandem Repeats Finder” (32).

Synteny Analysis and Chromosome
Location of tlr21, tlr22, and tlr23

Paralogues
Synteny analysis was performed manually based on the genome
assemblies of large yellow croaker (Larimichthys crocea) (genome
assembly accession no. GCF_000972845.1), green-spotted
pufferfish (Tetraodon nigroviridis) (GCA_000180735.1), tiger
pufferfish (Takifugu rubripes) (GCF_000180615.1), yellowtail
kingfish (Seriola lalandei dorsalis) (GCA_002814215.1),
amberjack (Seriola dumerili) (GCF_002260705.1), Asian seabass
(Lates calcarifer) (GCF_001640805.1).

A high-quality chromosome map comprising 916.23Mb
(93.2%) of B. pectinirostris entire sequence was constructed as
part of our program, and will be published separately (data
not shown). The full-length cDNA sequences of these 12 tlr
genes were used to determine their locations in the 23 pseudo-
chromosomes of B. pectinirostris by BLAST searches (https://
blast.ncbi.nlm.nih.gov/Blast.cgi).

Phylogenetic Analyses
The deduced amino acid sequences of the expanded Tlr11
family genes were obtained using the ExPASy Translate Tool
(http://www.expasy.ch/tools/dna.html). Protein domains, signal
peptide, and transmembrane regions were predicted using
SMART (http://smart.embl-heidelberg.de/), SignalP 4.1 (http://
www.cbs.dtu.dk/services/SignalP/) and the TMHMM Server v.
2.0 (http://www.cbs.dtu.dk/services/TMHMM/), respectively.
A homology search was performed using the BLAST tool at

NCBI (http://www.ncbi.nlm.nih.gov/BLAST/). The phylogenetic
reconstruction was performed using MEGA software 7 (33) by
theNeighbor-joiningmethod, and a bootstrap consensus tree was
inferred from 1,000 replicates. We also constructed a maximum
likelihood phylogenetic tree in MEGA software 7 (33) using the
Tamura 3-parameter model and γ distributed rates with invariant
sites (G+I) and 5 γ categories, and a bootstrap consensus tree
was inferred from 1,000 replicates. GenBank accession numbers
of tlr genes for alignment of amino acids and phylogenetic tree
construction are as follows: Anser cygnoides TLR21 (AMB20882);
Gallus gallus TLR21 (NP_001025729); Epinephelus coioides
TLR21 (AEK49148); Takifugu rubripes TLR21 (AAW69371);
Oreochromis niloticus TLR21 (AHK13949.1); Gadus morhua
TLR21 (AFK76484.1); Salmo salar TLR21 (CDH93614.1);
Danio rerio TLR21 (CAQ13807); Anolis carolinensis TLR21
(XP_008123135.2); Xenopus tropicalis TLR21 (XP_002936443.2);
Epinephelus coioides TLR22 (AGA84053.1); Scophthalmus
maximus TLR22 (AIC75881.1); Takifugu rubripes TLR22
(AAW69372.1); Larimichthys crocea TLR22 (XP_010741403);
Tetraodon nigroviridis TLR22 (CAG05452.1); Gadus morhua
TLR22b (AFK76486.1); Gadus morhua TLR22d (AFK76488.1);
Gadus morhua TLR22g (AFK76491.1); Gadus morhua TLR22i
(AFK76493.1); Miichthys miiuy TLR23 (ALJ55575.1); Takifugu
rubripes TLR23 (AAW70378.1); Gadus morhua TLR23a
(AFK76497.1); Gadus morhua TLR23b (AFK76498.1);
Labrus bergylta TLR23 (XP_020513361.1); Tetraodon
nigroviridis TLR23 (CAF93842.1); Seriola dumerili TLR23a
(XP_022616855.1); Seriola dumerili TLR23b (XP_022603128.1);
Seriola dumerili TLR23c (XP_022603127.1); Lates calcarifer
TLR23a (XP_018537426.1); Lates calcarifer TLR23b
(XP_018546010.1); Lates calcarifer TLR23c (XP_018517760.1);
Seriola lalandi dorsalis TLR23a (XP_023286622.1); Seriola
lalandi dorsalis TLR23b (XP_023252716.1); Seriola lalandi
dorsalis TLR23c (XP_023252714.1).

Analyses of Positive Selection
The complete coding sequences (CDS) of the 12 Tlr11
family genes from B. pectinirostris (Table 1) were first aligned
with MUSCLE (www.ebi.ac.uk/Tools/msa/muscle) and a codon
alignment was obtained using RevTrans 2.0b (www.cbs.dtu.dk/
services/RevTrans-2.0/web) followed by Codon Align (www.
hiv.lanl.gov). The N- and C- terminal portions (60 and 12
codons, respectively) of the codon aligned TLR11 sequences were
too variable and hence not included in the following analysis.
Gaps present in more than one sequence were also manually
removed. The refined codon alignment used in the selection
tests comprised 93% of the total CDS and did not have any
stop codons. This alignment was used to construct a maximum
likelihood phylogenetic tree in MEGA7 (33) using the Tamura
3-parameter model and γ distributed rates with invariant sites
(G+I) and 5 γ categories. A bootstrap consensus tree was inferred
from 1,000 replicates.

The average number of synonymous and non-synonymous
(amino acid-changing) substitutions, insertions and deletions
in the codon alignments were calculated using SNAP (www.
hcv.lanl.gov). This algorithm performs pairwise comparisons
between all sequences in the alignment using the method
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TABLE 1 | The characterization of tlr21, tlr22, and tlr23 paralogues in B. pectinirostris.

Gene name Full cDNA (bp) ORF (bp) 5′UTR (bp) 3′UTR (bp) No. of exons Number of amino acids Scaffold Genbank accession no.

tlr21 3520 2898 255 367 1 965 scaffold9 MH744540

tlr22a 3820 2853 72 895 4 950 scaffold291 MH744541

tlr22b 3559 2697 165 697 4 898 scaffold890 MH744542

tlr22c 3219 2877 74 268 4 958 scaffold183 MH744543

tlr22d 4637 2856 1524 257 3 951 scaffold103 MH744544

tlr23a 3694 2814 194 686 5 937 scaffold936 MH744545

tlr23b 2878 2748 45 85 4 915 scaffold1155 MH744546

tlr23c 4825 2883 37 1905 5 960 scaffold294 MH744547

tlr23d 4904 2820 436 1648 4 939 scaffold1045 MH744548

tlr23e 4410 2766 1410 234 3 921 scaffold219 MH744549

tlr23f 3451 2805 37 609 5 934 scaffold294 MH744550

tlr23g 3574 2835 9 730 5 944 scaffold50 MH744551

developed by Nei and Gojobori (34). In protein coding genes,
the ratio (ω) between non-synonymous (dN) and synonymous
(dS) substitution rates is related to evolutionary constraints at the
protein level (35). A value of ω >1 indicates positive Darwinian
selection, whereas ω <1 suggests negative or purifying selection.
A codon based Z-test of selection was performed to test the
hypothesis of positive selection in MEGA7 (33) using the
modified Nei-Gojobori method with Jukes-Cantor correction
(36). The hypothesis of positive selection was further tested using
the likelihood methods implemented in the CODEML program
of PAML v4.9 (37) and theDatamonkey adaptive evolution server
(38), as detailed elsewhere (39). In PAML, the data set was
fitted to 6 models of codon substitution: M0 (one ratio), M1
(two site classes), M2 (positive selection with three site classes,
M3 (discrete), M7 (β) and M8 (continuous). Bayesian posterior
probabilities were calculated for positively selected sites using
naïve empirical Bayes in the case of model M3 or Bayes empirical
Bayes for models M2 and M8. Likelihood ratio tests were used to
compare the corresponding models with and without selection
(i.e., M2 vs. M1, M3 vs. M0, and M8 vs. M7). FEL, SLAC
and REL analyses were performed in Datamonkey to calculate
dN-dS values for each codon, along with the corresponding
probability values. Overall differences in diversifying selection
between paralogous genes were determined with GA-branch
method implemented in Datamonkey.

The three-dimensional structure of B. pectinirostris
Tlr23a was predicted by SWISS-MODEL (40). In brief,

structural template searches against the SWISS-MODEL
template library were performed with BLAST and HHBlit.
The highest quality template was then selected for model
building based on the target-template alignment using
ProMod3. The global and per-residue model quality has
been assessed using the QMEAN scoring function (41). For
improved performance, weights of the individual QMEAN
terms have been trained specifically for SWISS-MODEL. The
local quality plot was shown in Supplementary Figure 1.
Positively selected codons were identified in the three-
dimensional protein using the web-based viewer iCn3D at
NCBI (www.ncbi.nlm.nih.gov/Structure/icn3d/full.html).

Expression of tlr21, tlr22, and tlr23

Paralogues in Different Tissues
To further explore the potential functions of tlr21, tlr22, and
tlr23 paralogues in B. pectinirostris, the basal expression levels of
these 12 Tlr11 family genes in different tissues were quantified
by real-time qPCR. Tissues including brain, heart, spleen, gills,
liver, intestine, testis, seminal vesicle, ovary, skin, eye, kidney,
blood cells were collected separately from seven B. pectinirostris.
All the samples were snap-frozen in liquid nitrogen and stored
at −80◦C until analyses. Total RNA extraction, cDNA synthesis
and real-time qPCR were performed as described in section
Real-Time qPCR.

Expression of tlr21, tlr22, and tlr23

Paralogues in Response to LPS and
Poly(I:C) Challenges
LPS is the main component of the cell surface of Gram-negative
bacteria and poly(I:C) is used here as a model of double-stranded
RNA virus infection. To investigate the potential functions of
the 12 Tlr11 family genes in B. pectinirostris, the expression
levels of these genes in the spleen and kidney were analyzed
following intraperitoneal injections of LPS and poly(I:C). Male
B. pectinirostriswith similar size (body length 119–132mm, body
weight 29.5–33.6 g) were transported live in plastic tanks and
acclimated to laboratory conditions (seawater at salinity 15 ppt
and temperature 28–28.5◦C) for 1 day. For the LPS challenge
experiment, fish were randomly divided into two groups and
each fish was intraperitoneally injected with LPS (Sigma, E. coli
0127:B8) dissolved in sterile 100 µL PBS at the dose of 0.1mg
in the treated group or with 100 µL sterile PBS in the control.
At 3, 6, 12, 24 h post injection (hpi), the spleen and kidney
of five or six individuals from each group at each time point
were surgically sampled, frozen immediately in liquid nitrogen
and stored at −80◦C until analyses. For the poly(I:C) challenge
experiment, the fish were prepared as described above. Each
fish was intraperitoneally injected with poly(I:C) (Sigma, P0913)
dissolved in sterile 100µL PBS at the dose of 0.1mg in the treated
group or with 100µL sterile PBS in the control group. The spleen
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and kidney of five or six individuals from each group at 3, 6,
12, and 24 hpi were surgically collected. Total RNA extraction
and cDNA synthesis of these organs were conducted as described
in section Real-Time qPCR. Real-Time qPCR was performed as
described in section Real-Time qPCR.

Real-Time qPCR
Total RNA was extracted from tissues using the RNAiso Plus
(TaKaRa Dalian, China) and treated with RNase-free DNase I
(Fermentas, USA) to eliminate contaminated genomic DNA.
1.5 µg total RNA was used for the synthesis of the first
strand cDNAs using the RevertAid first stand cDNA synthesis
kit (Thermo Scientific, USA). The gene specific primers used
for real-time qPCR analysis and amplicon lengths are listed
in Table 2. Amplification was conducted on a qTOWER 2.2
Real-Time PCR (Analytik Jena AG, Jena, Germany) using the
PowerUp SYBR Green Real-time PCR Master Mix kit (Thermo
Scientific, USA). Each 20 µL reaction contained 10 µL of
PowerUp SYBRGreen Real-time PCRMasterMix, 2µL of cDNA
template, 1 µL of each primer (10µM), and 6 µL of water.
Sterilized water was substituted for the cDNA in negative control
samples. The amplification program was performed as follows:
predenaturation at 95◦C for 2min followed by 40 cycles at 95◦C
for 15 s, 60◦C for 30 s, and 72◦C for 30 s. Each sample was
analyzed in duplicate.

Statistical Analysis
Statistical analysis was performed using Graphpad software
and the relative abundance of mRNA for target genes was
calculated using 2−11Ctmethod (42) with the eukaryotic
translation elongation factor 1α (eef1α, Genbank accession No.
XM_020932525.1) gene as the reference. Data were presented as
mean ± standard error of the mean (SEM) and the Student’s
t-test was used to assess statistical differences of expression
levels between groups. For multiple group comparison, one-
way ANOVA followed by Tukey’s test was used for statistical
analysis. Differences were considered to be statistical significance
when p < 0.05.

RESULTS

cDNA Sequences of tlr21, tlr22, and tlr23

Paralogues
The characterization of tlr21, tlr22, and tlr23 paralogues is
summarized in Table 1 and their structures are showed in
Figure 1, based on the genome assembly of B. pectinirostris.
Although the lengths of these 12 tlr cDNAs varied from 2,878 to
4,904 bp, the deduced protein sizes were conserved, ranging from
898 to 965 amino acids. With 3,520 bp, the tlr21 full cDNA was
encoded by a single exon, including 255 bp 5′-UTR, 367 bp 3′-
UTR, and the 2,898 bp complete coding region corresponding to
a 965 aa protein. Among tlr22 and tlr23 orthologs, only tlr22d and
tlr23e comprised 3 exons and had longer 5′-UTRs, while tlr23c
and tlr23d contained longer 3′-UTRs.

Several highly conserved tandem repeats were found
mainly within 5′-UTR or 3′-UTR of tlr22b, tlr23a, tlr23d
(Supplementary Table 3) and tlr22d (Supplementary Figure 2).

TABLE 2 | The primers for Real-time qPCR in this study.

Primer Sequence (5′
− 3′) Amplicon length (bp)

tlr21 rtF AACTCTGTCTACATCACAGAGAC 272

tlr21 rtR CAGATAGGTCTTCTTAAGCATGAC

tlr22a rtF CTGGAGAACGATCAAGGCTGGAAG 146

tlr22a rtR CACTCGCTCTGTAGATATCGTCTG

tlr22b rtF TTCAGCAGATTTCACCTGAGTTAC 241

tlr22b rtR CTTCAGCGATGTTCTCCACGATG

tlr22c rtF TATAGAGAACTAGTGCCACATCTG 214

tlr22c rtR GCTCATCGAACAAACGGAAACTG

tlr22d rtF GCGTAGAGGATCAGTACGATG 178

tlr22d rtR CTTCCATAAATGGCATCAGCAATG

tlr23a rtF GCTGGAGGCTTTGTCTGCACCAC 186

tlr23a rtR CGTCTTTGTGCTCATCGAACAGAC

tlr23b rtF CGTTCGTTTCCTACAACGTTCACG 263

tlr23b rtR CACGTCCTTCTGCTCATCGAACAG

tlr23c rtF ATTTACCTACCTTTTATACCCTAC 321

tlr23c rtR GCTCAAGTACAAATAGAGTCAATC

tlr23d rtF GTTTCTAAGGACAAAGCTCATGAC 247

tlr23d rtR CACAGACTTATTTTGGAGCATCTG

tlr23e rtF TGTGTCCTACAACTGTCACGATG 167

tlr23e rtR ACAGAGTCTTCCTGCTTCTGTAG

tlr23f rtF AACAACAAAATTGATCATATTTCC 248

tlr23f rtR CGAAATTTGGTCAAAGTATCTGAG

tlr23g rtF CTACAACGTTCATGATGAGAACTG 251

tlr23g rtR CATCCTTCTGCTCATCAAACAGAC

eef1α rtF TGGAACCTCTCAGGCTGACT 275

eef1α rtR ATCCAGAGATGGGCACAAAG

F, forward; R, reverse.

The longest tandem repeats spanning 563 bp were identified in
the 5′-UTR of tlr22d, and the shortest tandem repeats spanning
96 bp were found in the 5′-UTR of tlr22b. The copy number
of 11 bp tandem repeat within the 3′-UTR of tlr22b was up to
50. The tandem repeats of tlr23a started at the 5′ end of the
cDNA. The tandem repeats of tlr23d were completely distributed
within 3′-UTR.

Synteny Analysis and Chromosome
Location of tlr21, tlr22, and tlr23

Paralogues
Both tlr23c and tlr23f were present in the same scaffold
(scaffold294), while the other paralogues were mapped to
different scaffolds (Table 1; Figure 2A). Partial synteny analysis
based on the current mudskipper genome build revealed
conservation between tlr22a in B. pectinirostris and tlr22 coding
genes in large yellow croaker, green-spotted pufferfish and
tiger pufferfish, within the genomic region containing sh3kbp1,
map3k15, and cnksr2 (Figure 2B). Tlr23a in B. pectinirostris and
tlr23as in yellowtail kingfish, amberjack and Asian seabass were
adjacent with the same gene “ppme1-like” (Figure 2B).

All these 12 tlr genes, except tlr23b, mapped on
seven chromosomes of B. pectinirostris (Figure 3,
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FIGURE 1 | Gene structures of tlr21, tlr22, tlr23 paralogues in B. pectinirostris. Graphical representation of tlr21, tlr22, and tlr23 gene structures. UTRs and CDS are

represented in light blue and red, respectively. Introns are indicated by continuous lines.

Supplementary Table 4). Tlr21 was located at chr7, tlr22a,

tlr22b, tlr22c, and tlr22d were located at chr12, chr8, chr7, and

chr17, respectively. Among tlr23 genes, three of them (tlr23c,

tlr23d, tlr23f ) were present in the same chromosomal region
(chr11), while tlr23a and tlr23g were found in chr6 and chr18,

respectively. The location of tlr23b needs to be further explored.

Phylogenetic Analysis and Protein Domain
Arrangements of tlr21, tlr22, and tlr23i
Paralogues in B. pectinirostris
The phylogenetic tree was constructed using the Neighbor-
joining method on the basis of deduced amino acid sequences
of TLR21, TLR22, and TLR23 of vertebrates (Figure 4).
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FIGURE 2 | Partial synteny map of the genomic region surrounding Tlr11 family genes in B. pectinirostris. (A) Partial map of the genomic regions surrounding the

tlr21, tlr22, and tlr23 paralogues in B. pectinirostris. (B) Partial synteny map between tlr22a, tlr23a from B. pectinirostris and tlr22, tlr23a from large yellow croaker (L.

crocea), green-spotted pufferfish (T. nigroviridis), tiger pufferfish (T. rubripes), yellowtail kingfish (S. lalandi dorsalis), amberjack (S. dumerili), and Asian seabass (L.

calcarifer). The vicinity of tlr22 and tlr23 paralogues are connected by blue lines to show synteny amongst different species.

FIGURE 3 | Distributions of tlr21, tlr22, tlr23 paralogues in pseudo-chromosomes of B. pectinirostris. The genes were indicated with red lines. The SNP markers in

each chromosome are showed in black lines.

Phylogenetic analysis showed that TLR21, TLR22, and TLR23
constituted three major groups. In the tree, all TLR21 were
grouped under a single clade, while TLR22 and TLR23 formed

a separate cluster. The Tlr22 orthologs in B. pectinirostris
were grouped together. All Tlr23 orthologs except Tlr23a
clustered together in B. pectinirostris. Similar results were also
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FIGURE 4 | Phylogenetic analysis of TLR21, TLR22, and TLR23 using MEGA 7 by the Neighbor-joining method and 1,000 replications of bootstrap. Proteins of B.

pectinirostris are highlighted within blue box.
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FIGURE 5 | Protein domain structures of Tlr21, Tlr22, and Tlr23 proteins in B. pectinirostris. The domain organizations of Tlr21, Tlr22, and Tlr23 in B. pectinirostris

were predicted using SMART, SignalP, and TMHMM analyses. LRR, leucine-rich repeat; LRR-TYP, leucine-rich repeat typical subfamily; TIR, Toll/IL-1 receptor; NT,

N-(nitrogen) terminal; CT, C-(carboxyl) terminal; �, signal peptide; �, transmembrane region; �, low complexity region.
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found in the phylogenetic tree based on Maximum Likelihood
method (Supplementary Figure 3).

The protein domain arrangements of tlr21, tlr22, and tlr23
paralogues in B. pectinirostris are presented in Figure 5. All Tlrs
amino acid sequences comprised of a signal peptide, several
LRRs, a transmembrane domain and a TIR domain. These
Tlrs contained various numbers of LRR domains, and the LRR
number in each TLR ranged from 10 to 21: 17 (Tlr21), 16
(Tlr22a), 21 (Tlr22b), 15 (Tlr22c), 19 (Tlr22d), 13 (Tlr23a),
10 (Tlr23b), 16 (Tlr23c), 16 (Tlr23d), 11 (Tlr23e), 12 (Tlr23f),
12 (Tlr23g). Most of these Tlrs had C-terminus LRRs (LRR-
CT) with the exception of Tlr21 and Tlr23a. Only Tlr23d and
Tlr23e contained N-terminus LRRs (LRR-NT). Besides, Tlr22b
contained a shorter TIR domain than other Tlrs.

Molecular Evolution of the Tlr11 Family in
B. pectinirostris
A sliding window analysis of the complete coding sequences of
tlr21, tlr22, and tlr23 paralogues revealed that the cumulative
number of non-synonymousmutations per codon (dN) exceeded
the number of synonymous substitutions (dS) and that their
occurrence was not uniform throughout the tlr21, tlr22, and
tlr23 coding sequences (Figure 6). The average dS of all pairwise
comparisons was higher than dN but different between the
LRR and TIR domains, with dS/dN ratios of 4.044 and
6.933, respectively. A pairwise codon-based Z-test did not
reject the null hypothesis of strict-neutrality (dN = dS) in
favor of positive selection (dN > dS) (Supplementary Table 5).
Nevertheless, the dN/dS ratios (ω) varied between tlr11 genes

FIGURE 6 | Cumulative non-synonymous (dN, red) and synonymous (dS,

green) substitutions for all pairwise comparisons between 12 tlr11 paralogues

in B. pectinirostris. Insertions and deletions are shown in blue. The average dS

and dN of all pairwise comparisons for the LRR and TIR domains are indicated

above the corresponding regions. Divergence at non-synonymous sites is

higher in the LRR region than in the TIR domain.

and were highest in tlr23 paralogues, particularly in tlr23c-g
(Supplementary Figure 4).

A more detailed site-specific analysis was performed using
likelihoodmodels to identify codons under diversifying selection.
Likelihood ratio tests in PAML showed that models allowing
for positive selection fitted the data better than those that did
not (M3 vs. M0, 21LnL = 1614, p = 0; M2 vs. M1, 21LnL
= 45, p = 0; M8 vs. M7, 21LnL = 40.6, p = 0) (Table 3).
Models, M2, M3, and M8 identified 4, 46 and 3 codons under
positive selection (Bayesian posterior p < 0.05) and ω values of
5.39, 1.02, and 2.8, respectively. The best model of nucleotide
substitution was 012032 with an Akaike information criterion of
63195. FEL and SLAC analyses found 18 and 3 codons under
positive selection with p < 0.1 and REL identified 6 positively
selected sites with Bayes factor >50 (Table 3). In total, 13 codons
were identified bymore than one likelihoodmodel as being under
significant positive selection pressure. In particular, codon 68 (F,
H, K, N, R, S, T, V, or W) was flagged by all models, except
REL (Supplementary Figure 5). Only two out of these 13 codons
were present within the TIR domain, whereas 11 were found in
the ectodomain. Most positively selected sites (8 out of 13) were
found in LRR regions, especially in the coils on the convex surface
of this horseshoe-shaped domain. Two sites under diversifying
selection (405 and 597) were located in beta sheets within the
concave surface (Figure 7, Supplementary Figure 5).

Tissue Distribution of tlr21, tlr22, and tlr23

Paralogues in B. pectinirostris
Tlr21, tlr22, and tlr23 paralogues showed distinguishable tissue
expression patterns (Figure 8). They were all expressed in
immune-related organs, i.e., spleen and kidney. In addition,
tlr21 was widely distributed and predominantly expressed in
the brain, testis and eye (Figure 8A). Among tlr22 paralogues
(Figures 8B–E), only tlr22c was detectable in all tissues
examined (Figure 8D). Compared with tlr21 and tlr22, tlr23
paralogues were exclusively expressed in the spleen and kidney
(Figures 8F–L). The expression of these tlr genes in the seminal
vesicle, ovary and skin was weak.

Expression of the tlr21, tlr22, and tlr23

Paralogues in Response to LPS and
Poly(I:C) Challenges
The expression of tlr21, tlr22, and tlr23 paralogues responsed
differently to LPS (Figures 9, 10) and poly(I:C) (Figures 11,
12) challenges. The expression of tlr21 was significantly up-
regulated by LPS in the spleen and kidney at 12 hpi (Figures 9A,
10A). Among tlr22 paralogues, LPS administration significantly
stimulated tlr22b in the spleen at 3 hpi (Figure 9C), and
down regulated tlr22a in the spleen at 6 hpi (Figure 9B) and
tlr22c in the kidney at 6 hpi (Figure 10D). However, the
expression profiles of these genes didn’t show time-dependent
significant differences. In response to poly(I:C) administration,
tlr22a and tlr22d in the spleen showed clear significantly time-
dependent increase pattern, and reached the significantly highest
levels at 12 hpi (Figures 11B,E). In the kidney, only tlr22a
significantly increased at 6 hpi after poly(I:C) stimulation, and
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TABLE 3 | Positively selected sites in mudskipper tlr21, tlr22, and tlr23 paralogues.

Method Model Parameter estimates Ln likelihood Model comparison Positively selected sitesa

CODEMLb M0: neutral ω = 0.32 −30533.3 None

M1: nearly

neutral

ω0 = 0.15, ω1 = 1.00

p0 = 0.50, p1 = 0.50

−29907.2 Not allowed

M2: positive

selection

ω0 = 0.15, ω1 = 1.00, ω2 = 5.39

p0 = 0.47, p1 = 0.50, p2 = 0.03

−29884.7 M2 vs. M1

21LnL = 45

df = 2, p = 0.00

68, 116, 311, 500

M3: discrete ω0 = 0.04, ω1 = 0.33, ω2 = 1.02

p0 = 0.26, p1 = 0.52, p2 = 0.22

−29726.0 M3 vs. M0

21LnL = 1614

df = 4, p = 0.00

1, 20, 46, 63, 68, 73, 89, 91, 92, 96,

97, 116, 139, 161, 176, 190, 204, 208,

212, 223, 238, 241, 263, 267, 286,

287, 299, 306, 311, 319, 333, 338,

373, 405, 413, 470, 481, 483, 500,

522, 531, 534, 544, 593, 597, 660

M7: β p = 0.66, q = 1.06 −29714.7 Not allowed

M8: β + ωS > 1 p = 0.71, q = 1.24

ω = 2.80

p0 = 0.96, p1 = 0.04

−29694.4 M8 vs. M7

21LnL = 40.6

df = 2, p = 0.00

68, 116, 311

Datamonkeyc SLAC 68, 129, 534

FEL 68, 96, 129, 152, 208, 347, 371, 405,

463, 529, 534, 544, 569, 597, 639,

655, 789, 844

REL 702, 789 823, 834, 844, 853

aCodons identified by more than one maximum likelihood method are underlined.
bOnly positively selected sites with Bayesian posterior probabilities equal or >95% are indicated. Sites with a posterior probability > 99% are highlighted in bold.
cOnly positively selected sites with p < 0.01 (SLAC and FEL) or Bayes factor > 50 (REL) are shown.

FIGURE 7 | Positively selected sites on B. pectinirostris Tlr23a. Its tertiary

structure was obtained by homology modeling using human TLR5 (PDB 3J0A)

as template. Sites found to be under positive selection by more than one

likelihood model are indicated in magenta and their side chains are shown.

Residue numbers are based on the codon alignment used for positive

selection analysis (Supplementary Figure 5).

followed by significantly dropping down for the rest experimental
period (Figure 12B). Among tlr23 paralogues, several genes were
significantly down-regulated by LPS stimulation in both spleen

and kidney (Figures 9, 10). However, the expression profiles of
these genes didn’t show time-dependent significant differences.
Similar expression patterns were observed in response profiles
of tlr23c and tlr23g after poly(I:C) stimulation in the kidney
(Figures 12H,L). In spleen, except tlr23c and tlr23f showed
similar down-regulation patterns (Figures 11H,K), tlr23b, tlr23e,
and tlr23g were significantly stimulated by poly(I:C) at 3 or 12
hpi (Figures 11G,J,L). However, the expression profile of tlr23b
showed significant increasing trend during sampling periods in
both control and treated groups (Figure 11G). In contrast to
tlr23g (Figure 11L), only tlr23e showed a clear significantly time-
dependent increase pattern in the spleen, and reached the highest
level at 24 hpi (Figure 11J).

DISCUSSION

Several types of gene duplication have been observed in genome
to date, including whole genome duplication (43), segmental
duplication (44), DNA-mediated duplicative transposition and
retrotransposition (45). Paralogous or duplicated Tlr genes in
teleosts, probably resulting from the third or fourth round
of whole genome duplication event, have been identified in
Danio rerio (46, 47), Oncorhynchus mykiss (48), and Cyprinus
carpio (49). In the present study, we reported an extensive
duplication of tlr23 genes (7 paralogues). Previous study in
Atlantic cod has reported an extensive duplication of tlr22
genes (12 paralogues) (13). Such intensive duplication may be
not only due to genome duplication but also due to other
mechanisms of gene duplication. DNA-mediated duplicative
transposition and retrotransposed duplication are ongoing
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FIGURE 8 | Tissue distribution of tlr21 (A), tlr22 (B-E), and tlr23 (F-L) paralogues in B. pectinirostris. The levels of the respective mRNAs were determined using

qPCR and normalized to the internal housekeeping gene eef1α. The results were expressed as mean ± SEM (n = 7). Columns with different letters are significantly

differences with each other (p < 0.05, One-way ANOVA followed by Tukey’s test).
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FIGURE 9 | The relative expression of tlr21 (A), tlr22 (B-E), and tlr23 (F-L) paralogues in the spleen after intraperitoneal injection with LPS. Relative expression of

these 12 tlr genes in the kidney were examined at different time points (3, 6, 12, 24 h) by Real-time qPCR and all data were expressed as the mean ± SEM (n ≥ 5) and

normalized to the expression of eef1α. Significant difference between PBS and LPS treated group was indicated with *(p < 0.05, Student’s t-test) or **(p < 0.01,

Student’s t-test). Columns with different letters are significantly differences with each other (p < 0.05, One-way ANOVA followed by Tukey’s test). Lowercase and

uppercase letters indicate control and treated groups, respectively.
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FIGURE 10 | The relative expression of tlr21 (A), tlr22 (B-E), and tlr23 (F-L) paralogues in the kidney after intraperitoneal injection with LPS. Relative expression of

these 12 tlr genes in the kidney were examined at different time points (3, 6, 12, 24 h) by Real-time qPCR and all data were expressed as the mean ± SEM (n ≥ 5) and

normalized to the expression of eef1α. Significant difference between PBS and LPS treated group was indicated with *(p < 0.05, Student’s t-test) or **(p < 0.01,

Student’s t-test). Columns with different letters are significantly differences with each other (p < 0.05, One-way ANOVA followed by Tukey’s test).
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FIGURE 11 | The relative expression of tlr21 (A), tlr22 (B-E), and tlr23 (F-L) paralogues in the spleen after intraperitoneal injection with poly(I:C). Relative expression of

these 12 tlr genes in the kidney were examined at different time points (3, 6, 12, 24 h) by Real-time qPCR and all data were expressed as the mean ± SEM (n ≥ 5) and

normalized to the expression of eef1α. Significant difference between PBS and poly(I:C) treated group was indicated with *(p < 0.05, Student’s t-test) or **(p < 0.01,

Student’s t-test). Columns with different letters are significantly differences with each other (p < 0.05, One-way ANOVA followed by Tukey’s test). Lowercase and

uppercase letters indicate control and treated groups, respectively.
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FIGURE 12 | The relative expression of tlr21 (A), tlr22 (B-E), and tlr23 (F-L) paralogues in the kidney after intraperitoneal injection with poly(I:C). Relative expression of

these 12 tlr genes in the kidney were examined at different time points (3, 6, 12, 24 h) by Real-time qPCR and all data were expressed as the mean ± SEM (n ≥ 5) and

normalized to the expression of eef1α. Significant difference between PBS and poly(I:C) treated group was indicated with * (p < 0.05, Student’s t-test). Columns with

different letters are significantly differences with each other (p < 0.05, One-way ANOVA followed by Tukey’s test).
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process, continually expanding the genetic repertoire of modern
organisms (45). A common result of DNA-mediated duplication
is a new gene that preserves the intron-exon architecture
and the cis-regulatory elements of the parental gene, whereas
retrotransposed duplication often generates an intronless gene
copy as a result of a process in which a spliced mRNA is reverse-
transcribed into cDNA and spontaneously integrated into a
random genomic location (45). Besides, it has been suggested that
the influence of short tandem repeats may substantially increase
the rate of duplication of a DNA segment located between them
(50). In B. pectinirostris, both tlr22 and tlr23 paralogues showed
similar intron-exon architectures. Moreover, short tandem repeat
sequences were identified in the UTRs of tlr22b, tlr22d, tlr23a,
and tlr23d. Thus, it is possible that tlr22 and tlr23 paralogues
resulted from the DNA-mediated duplicative transposition.

Similar to other teleosts (13, 51, 52), there exists only one
tlr21 ortholog encoded by a single exon in B. pectinirostris.
Besides, in B. pectinirostris and other fish species, Tlr21molecules
do not have an LRR-CT, in contrast to the chicken and goose
TLR21 sequences (51). The structure of these molecules may
suggest that the function of Tlr21 is highly conserved in teleosts.
B. pectinirostris tlr21 (Bptlr21) was constitutively expressed at
different levels in all examined tissues, which is similar to the
expression patterns of tlr21 in large yellow croaker (L. crocea)
and Atlantic cod (13, 51). TLR21 in chicken (G. gallus) and
zebrafish play a role in immune response to bacterial infection by
recognizing CpG-oligodeoxynucletides (CpG-ODNs) as a danger
signal (53, 54). In the present study, upon stimulation with LPS,
the expression of Bptlr21 was significantly up-regulated in the
spleen and kidney at 12 hpi in B. pectinirostris. In the mammal
immune system, the complex of TLR4, CD14, and MD2 has been
proved to be the receptor for LPS at the cell surface (55). Unlike in
mammals, tlr4 gene has been lost from the genomes ofmost fishes
(9) including B. pectinirostris, and Tlr4 in fish does not recognize
the stimulation of LPS (56). However, LPS does have multiple
biological effects on fish including enhancing the production
of immune related cytokines (57, 58). Recently, study in miiuy
croaker (Miichthys miiuy) showed that NOD1 can identify LPS
and activate the NF-κB signal pathway by recruiting RIPK2 and
then promoting the expression of inflammatory cytokines to
induce the resistance of organism against bacterial infection (59).
Another study further demonstrated that scavenger receptor class
B 2a (SRB2a), a novel isoform of the mammalian SRB2 gene,
mediates LPS internalization for interaction with NOD1 and
NOD2 to initiate NF-κB in teleost macrophages (60). The results
from the present study suggest that BpTlr21 may be involved in
immune response to bacterial infection in B. pectinirostris, and
further studies should be focused on whether the stimulatory
effects of LPS on Bptlr21 was mediated by SRB2a and NOD
in B. pectinirostris.

The four tlr22 orthologs cloned from B. pectinirostris grouped
under a single clade in the phylogenetic tree, separately from the
Atlantic cod orthologs of Bptlr22, suggesting that the expansion
of tlr22 occurred independently during evolution of these two
species. Bptlr22 orthologs are not adjacent in the B. pectinirostris
genome. The genomic region surrounding tlr22a is conserved
in comparison with tlr22 from several fish species, and the

region contains the genes sh3kbp1, map3k15, and cnksr2. It has
been proposed that selection favors the organization of gene
clusters to facilitate the coordinated control of gene expression
and related biological processes (61). In mammals, Sh3kbp1 is
involved in the B cell receptor signaling in normal lymphocytes
(62). Besides, it has been reported that the B-cell response
to CpG S-ODN is mediated through TLR9 (63). Therefore,
conserved syntenic localization between Tlr22a and Sh3kbp1
suggests that Tlr22a may participate in biological processes
related to B cells in teleosts. Map3k15 (ASK3) is likely a
component of ASK1 (Map3k5) signalosome and can interact
with ASK1 (64), and ROS-dependent activation of TRAF6-ASK1-
p38 pathway is crucial for TLR4-mediated innate immunity (65),
which suggest that Map3k15 may take part in Tlr22a signaling
pathway. Further study would be interesting to examine these
adjacent genes involved in the Tlr22amediated signaling pathway
in B. pectinirostris.

In other teleosts, poly(I:C) challenge up-regulated the
expression of tlr22 in many tissues (66, 67). It was reported,
in tiger pufferfish, that Tlr22 localizes to the cell surface and
recognizes long-sized dsRNA or poly(I:C) and links the IFN-
inducing pathway via the TRIF adaptor (68). In the present study,
the expression of tlr22a and tlr22d in spleen, and tlr22a in kidney
showed clear time-dependent up-regulation after poly(I:C)
stimulation. These results may suggest that the function of Tlr22a
and Tlr22d might play a role in innate immune response to
virus. Nevertheless, some Bptlr22 paralogues (including tlr22a)
showed a response after LPS stimulation. A study in Atlantic cod
indicated thatmost of tlr22 orthologs transcripts are up-regulated
after bacterial bath challenge (13). However, it is worth noting
that, after LPS stimulation, the expression profiles of Bptlr22
paralogues didn’t show time-dependent significant differences.
Therefore, further studies would be necessary to investigate
the possibility that the expansion of Tlr22 likely increases the
detectable ligand repertoire, e.g., to recognize dsRNA and PAMPs
from pathogen origin.

The function of TLR23 is still largely unknown (13). B.
pectinirostris encoded 7 copies of tlr23 genes and possessed the
largest group of Tlr23 in vertebrates sequenced. It is noteworthy
that all BpTlr23 except Tlr23a clustered under a single clade in
phylogenetic tree, which suggests that BpTlr23 under the same
clade may evolve independently in comparison with BpTlr23a
and other teleost Tlr23. We found that Tlr23a genes in several
fish species are often adjacent to the ppme1-like gene, which
suggests that the function of tlr23amay be conserved in different
teleost species. Recently, it was found that activation of TLR4
signaling pathway will increase the expression of MFHAS1,
which further inhibits expression of inflammatory factors and
plays a role in negatively regulating TLR4 signaling pathway
(69). During this process, MFHAS1 combines with the B and
C subunits of PP2A, which involves up-regulation of PPME-1
(70). Therefore, it is possible that ppme1 may be involved in the
negative regulation of signaling pathway of tlr23a, and even other
tlr23 paralogues.

Tlr23 paralogues in B. pectinirostris responded differently to
LPS and poly(I:C) challenges. Tlr23e and tlr23g were significantly
up-regulated in the spleen upon poly(I:C) stimulation, which
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suggest that tlr23e and tlr23gmay participate in antiviral immune
processes. In contrast to up-regulation, several B. pectinirostris
tlr23 paralogues showed down-regulation after LPS and poly(I:C)
challenges. Atlantic cod tlr23a is also significantly reduced upon
a bath challenge with Gram-negative bacteria V. anguillarum
(13). In teleost fish, several studies have identified subsets of
microRNAs (miRNAs) that are differentially expressed in organs
challenged with DNA or RNA virus, LPS or poly (I:C) (71).
Based on the use of bioinformatics approaches and whole
transcriptome analysis, increasing studies have discovered that
miRNAs negatively regulate the expression of Tlr genes (72).
It would be necessary to predict miRNA regulators of tlr23
paralogues and elucidate their roles in the regulation of tlr23
paralogues in B. pectinirostris.

The average number of synonymous changes was higher than
the non-synonymous substitutions in all pairwise comparisons
between tlr11 genes in B. pectinirostris, indicating overall
purifying selection, likely due to functional constraints (73). In
fish, the prevalence of purifying selection signatures has been
reported not only in tlr genes (13) but also in other immune-
related genes, such as antimicrobial peptides (39). Nevertheless,
substitution rates were not uniform across tlr11 paralogues
in B. pectinirostris and the observed differences contribute to
explaining how the TIR domains of Tlr21, Tlr22, and Tlr23 are
more conserved than their LRR regions. The TIR domain is
generally conserved across species as well as between different
TLRs, since it is involved in signal transduction (74).

Homology modeling of B. pectinirostris Tlr23a based on
human TLR5 revealed a characteristic horseshoe-shaped
structure with a single ectodomain architecture. Most positively
selected sites were found in the ectodomain, especially in the
convex side of the extracellular solenoid structure, which is most
important for ligand binding. Non-synonymous substitutions at
the positively selected sites may affect ligand specificity through
changes in the amino acids within the beta sheets or in the convex
surface of the horseshoe-shaped domain (75). For example,
variations in the LRR coil at position 68 between small polar (S
and T), positively charged (R, K and H) and large hydrophobic

aromatic (F and W) amino acids will likely affect the polarity
and structure of the ectodomain, thus affecting ligand specificity.
This functional diversification of the B. pectinirostris Tlr11
family through positive selection may be linked to adaptation to
evolving pathogens.

In conclusion, we identified and annotated 12 tlr genes (one
tlr21, 4 tlr22, and 7 tlr23) representing all members of the high
expanded Tlr11 family in the mudskipper B. pectinirostris. The
expanded Tlr11 family in B. pectinirostris provides a good model
to better understand how and why so many TLR genes have been
retained during vertebrate evolution.
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