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A B S T R A C T

We analyze the possible impacts of pollution on a fishery by means of a dynamical systems theory approach. The
proposed model presupposes that activities stimulating economic growth also cause higher emissions that re-
mediate or accumulate in the oceans. The density of pollution is assumed to affect the fishery negatively by
reducing biological growth potential and decreasing marginal willingness to pay for the fish in the market.
Additionally, economic growth increases the general income and may also increase the demand for fish. We
show that the modelling framework permits a unique stable equilibrium state in the regime of moderate values
of the emission-remediation ratio. We also investigate how the ecological and market impacts alter both the
steady state and dynamics of an open access fishery.

1. Introduction

Human activities cause a large variety of wastes that are introduced
into the marine environment. Many coastal areas in the world have
reported damage from pollution, with negative effects on commercial
coastal and marine fisheries. See Islam and Tanaka (2004) and the re-
ferences therein. Land-based emissions, including atmospheric pollu-
tants, account for the majority of marine pollution (Williams, 1996).
The main sources are human settlements, agriculture, forestry, urban
development, maritime transport, tourism and other industries. In ad-
dition to taxonomy reflecting sources, pollutants are often classified by
their zone of influence, defined both horizontally and vertically (e.g.
local, regional or global), and also by the ability of the environment to
absorb pollutants.

In economics, contaminants for which the environment has little or
no absorptive capacity are often termed stock pollutants (Haavelmo,
1971; Keeler et al., 1971; Tietenberg and Lewis, 2014), since these
contaminants accumulate over time as emissions enter the environment
(e.g heavy metals, dioxin, PCBs). For other emissions the environment
has some absorptive capacity, and therefore as long as the emission rate
does not exceed this absorptive capacity, wastes do not accumulate. In
Watson et al. (2016) the concept of ecosystem service of waste re-
mediation in the marine environment is assessed. Here the waste types
are divided into three main groups: (a) Nutrients and organic matter,
(b) Biological wastes/contaminants and (c) Persistent contaminants.

A distinction between these forms of waste can be made in terms of

their movement through the marine system and their potential to be
broken down by abiotic and biotic processes. The more slowly a waste
is cycled the greater the chance of harmful effects. For instance, normal
components of natural ecosystems will likely be broken down and
completely re-cycled by the system or transformed into less harmful
organic matter (Watson et al., 2016). However, one of the main ocean
pollutants is reactive nitrogen, mainly as runoff from agriculture pro-
duction, human refuse and sewage. Nitrogen pollution may lead to
coastal eutrophication, algal blooms, and oxygen depletion. In extreme
cases, it could be harmful for any marine life (Perrings, 2016).

During recent decades some natural and synthetic wastes have be-
come more prevalent in the marine environment (e.g. pesticides, fer-
tilizers, metals and other manufactured goods) and thereby have be-
come a serious threat to the environment due to their persistence,
toxicity and ability to accumulate through the food chain - see
Watson et al. (2016) and the references therein. Furthermore, in recent
years extra attention has been given to plastic contamination in the
marine environment (e.g. Bråte et al., 2016; Gibb et al., 2017; Hallanger
and Gabrielsen, 2018).

This serves as background for the present paper. We model the
possible ecological and market effects of pollution and economic
growth on a fishery, using a dynamical systems theoretical approach.
We consider a single species commercial fishery in a particular coastal
region. The proposed dynamical model is conceptual in the sense that
we explore some possible impacts on the fishery concerned. Our main
focus are the economic and biological conditions in the fishery, and
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how this renewable resource harvest activity could be affected by
economic growth and pollution. The first part of the model describes
the development in production per capita, which measures the emis-
sions of both production and consumption activity on the marine en-
vironment. Here we assume exogenous economic growth together with
the capacity of the marine environment to self-clean. This part of the
model is inspired by discussions in Haavelmo (1971) and
Flaaten (2018). We assume that the flow of emissions affects the ability
of the marine environment to remediate the waste substances. The
second part of the model captures both the biological and the economic
impacts of growth and pollution on a commercial fishery. This element
of the model is an extended version of standard dynamic fishery models
(e.g. Clark, 2010; Copes, 1970; Smith, 1969), and used in similar ana-
lyses by Hoagland et al. (2003), Mikkelsen (2007), Foley et al. (2012),
and Perrings (2016). Beyond this application, the generalized Lotka -
Volterra type systems have been extensively investigated in population
dynamics, see for instance (Drossel et al., 2004; Hofbauer and Sigmund,
1998; Martinez et al., 2006; Paul et al., 2016; Smith, 1995).

The present paper is organized as follows: In Section 2 we present
our modeling framework. Section 3 is devoted to the analysis of the
model. Here we transform the actual system to a nondimensional form
by means of scaling, before proceeding to the study of the existence and
stability of equilibrium points. In Section 3 we elaborate on special
aspects of the model, and present some numerical illustrations of its
dynamics. Section 4 consists of concluding remarks and an outlook.
Appendix A contains a generalization of the economic growth function
and the self cleaning ability introduced in Section 2. Finally, important
aspects of the mathematical structure of the modeling framework are
explored in Appendix B, and the conditions for the existence of interior
equilibrium points are explored in Appendix C.

2. Model

The model consists of two main parts or blocks. The first part de-
scribes the economic growth and the associated emission to the marine
environment (Section 2.1). The second part is a modified fishery model
which includes biological and economic impacts from economic growth
and pollution (Section 2.2).

2.1. Economic growth and pollution

Let Y be time dependent production per capita, and assume that Y is
governed by means of an economic growth equation

=dY
dt

rf Y Y( ; ¯ ) (1)

where f is termed the economic growth function. The function f on the
RHS of (1) is a smooth realvalued function on the interval [0, ∞) and
satisfies the following properties:

(a) For <Y Y0 ¯ , >f Y Y( ; ¯ ) 0 whereas for >Y Ȳ we have
<f Y Y( ; ¯ ) 0.

(b) There is a function f̃ such that

=f Y Y Cf Y
C

Y
C

C( ; ¯ ) ˜ ;
¯

for all real
(2)

Here the parameters Ȳ and C have the same dimension as Y :
= =Y Y C[ ] [ ¯ ] [ ]. The property (2) is referred to as the homogeneity

property. Moreover, r has the dimension inverse time whereas the di-
mension of f is equal to the dimension ofY .1 Ȳ is the unique zero of f i.e.

=f Y Y( ¯ ; ¯ ) 0 (3)

The parameter r measures the rate of change in production per capita.
By assumption, r≥0. The zero-growth case, i.e. =r 0, is a special case
in which one considers a constant per capita income i.e. =Y t Y( ) 0. It
satisfies the saturation property.

=Y t Ylim ( ) ¯
t (4)

This means that =Y Ȳ is an asymptotically stable equilibrium point of
the system (1).

When we propose Eq. (1), we have implicitly assumed that the
economic development in production per capita is determined by ex-
ternal factors not specified in our model. Firstly, this means that the
fishery under consideration only has a marginal influence on the level
of economic growth, implying that it is possible to ignore this effect.
Secondly, we do not explicitly discuss the factors affecting the level of
economic growth, such as population growth, technical progress, in-
vestment in human capital, research and development etc. These factors
could be incorporated in the modelling framework by following the line
of thought elaborated in Appendix A - i.e. by assuming that the eco-
nomics growth function depends on several parameters and obey a
generalized homogeneity property. Our specification of economic
growth means the existence of a unique long run saturation level for the
production per capita given by Ȳ . This restrictive assumption is made as
an analytical simplification, since we do not focus on explaining eco-
nomic growth.2 However, in our forthcoming analyses, we will see how
a change in Ȳ affects the dynamics and equilibrium states in the fishery.

We then outline the dynamical evolution for the time-dependent
harmful pollution. Production and consumption activity causes emis-
sions of harmful substances to the marine environment. Let Z denote the
time dependent flow of pollution. This represents the harmful residual
emissions from the economic activity, i.e. waste from both production
and consumption. The pollution from industrial production can be ei-
ther a function of the production volume or its use of certain inputs. We
will use the often assumed simplification that this flow of pollution is
proportional to the production per capita Y, i.e.

=Z Y (5)

The positive proportionality constant ϱ is referred to as the emission
rate. In addition to the waste flow denoted by Z we consider accumu-
lation of waste over time as the main environmental problem. We study
the pollution problem as a renewable natural resource problem, and
assume that the environment has some absorptive capacity. An early
description and discussion of the self-cleaning issue can be found in
Haavelmo (1971). Within environmental and resource economics the
phenomenon of accumulation of waste over time has been long studied
- see, for example, early contributions by Keeler et al. (1971),
Haavelmo (1971), Strøm (1971), and dArge (1971). Both (Keeler et al.,
1971; Strøm, 1972) consider a model where ’the stock of pollution
deteriorates naturally’ as a result of alternative remediation capacities.
More recently, the concept of natural recycling as an ecosystem service
or a self-cleaning ability has become more common (Flaaten, 2018;
Førsund and Strøm, 1980; Watson et al., 2016).

We will describe this process in the following way: For small and
moderate values of the pollutant density S, the degradation rate of the
pollution will increase with S. When the pollutant exceeds a certain
threshold, the ability of the marine environment to carry out self
cleaning will be reduced and for high pollutant concentrations, it is
negligible. We summarize this self cleaning ability in a positive, two
times continuously differentiable function g of S, termed the remediation
capacity. In general, g depends on a number of biological and physical
parameters. In Appendix A we describe in detail the scaling property

1 Here and in the sequel we use the notation [Q] for the dimension (mea-
surement unit) of the variable/parameter Q.

2 Ȳ can be interpreted as the equilibrium state in output per worker in ac-
cordance with the Solow growth model (Solow, 1956).
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which the remediation capacity must fulfill. For simplicity, we here
consider the situation where the function g depends on only two
parameters.

In line with the above description we impose the following condi-
tions on the remediation capacity g:

(a) The function g depends on two parameters a and b which both
have the same dimension as S: = =S a b[ ] [ ] [ ]
(b) = >g a b g(0; , ) 0,0 = +g S a blim ( ; , ) 0

S
( ).

(c) There is a unique positive =S Smax which is a global maximum
point for g. This means that g is strictly increasing for 0≤ S≤ Smax
and strictly decreasing for S≥ Smax.
(d) The function g is concave (convex) for 0≤ S≤ S* (S> S*) where
S*> Smax. This means that S* is an inflection point for g.
(e) There is a function g̃ such that the homogeneity property

=g S a b C g S
C

a
C

b
C

C( ; , ) ˜ ; , for all real1
(6)

is fulfilled.

We thus end up with the pollution equation

= =dS
dt

Z g S a b Y g S a b( ; , ) ( ; , ) (7)

for the pollutant density S when making use of (5) and the points (a)-(e)
above. The positive proportionality constant ρ is referred to as the re-
mediation rate.

As comprehensively described in Watson et al. (2016) some con-
taminants may be broken down, re-cycled by the marine system or
transformed into less harmful organic matter, whereas other contaminants
accumulate over time as more emissions enter the environment (e.g heavy
metals, dioxin, PCBs, plastic). Here we assume that the marine environ-
ment has some capacity of remediation or self cleaning. Fig. 1 shows a
sketch of the nullclines for the production per capita Y and the accumu-
lated pollution S.

It follows that if the nullcline for the production per capita Y sa-
tisfies the bounds

g a b Y g S a b(0; , ) ¯ ( ; , )max
(8)

we have two equilibrium points of the model (1)–(7). These equilibrium
points are marked with M1 and M2 in Fig. 1. The corresponding pol-
lution densities are S1 and S2, respectively. Linear stability analysis

shows that M1 is a stable equilibrium and M2 is unstable within the
framework of (1)-(7). If >Y g S a b¯ ( ; , )/max we have no equilibrium
point, and the pollution will steadily increase. For the case

<Y g a b¯ (0; , )/ it is easily seen that there is only one equilibrium
point for the model (1)–(7). This point is unstable and the accumulated
pollution may vanish or steadily increase3.

2.2. The fishery

We next consider the fish harvesting sector, where the fish supply
from harvesting is given by the Gordon-Schaefer production function

=H qXEs (9)

Here Hs is the time dependent supply of fish in the market (harvesting
rate), X the time-dependent fish stock (biomass), E the time-dependent
harvest effort and q a constant harvest efficiency rate.

We then combine the harvest function (9) with a logistic growth
model for the fish population. This assumption which is often used in
analyses of fisheries represents a simple way of describing the satura-
tion of the population due to the limited food resources available. See
Clark (2010) and the references therein. We assume that the fish po-
pulation density X develops according to the modified logistic growth
equation

= +dX
dt

X S
K

qE X1
(10)

Here σ is the intrinsic logistic growth rate and K the carrying capacity.
The term βS in (10) thus represents a possible decrease in growth of the
fish population due to the accumulated harmful pollution. Here we
assume that β≥0. The next step consists of prescribing simplified dy-
namics for the effort variable E. We do this by assuming free entry and
exit in proportion to profit. The expansions and the contractions of
effort in the fishery sector correlate with positive and negative profits,
and these adjustments include frictions and delays. Smith (1969) states
that the entry-speed coefficients are not necessarily equal to the exit-
speed coefficients. However, in order to simplify we will consider a
common speed parameter λ. Similar types of enter-exit mechanisms
concerning effort, which assume frictions and delays, are regularly used

Fig. 1. The nullclines for production variable Y (red curve) and accumulated pollution S (blue curve). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

3 As discussed in Perman et al. (2003) one may argue that the emission rate ϱ
is not constant, but rather a linear function of the income level per capita Y.
Moreover, that the flow of pollution Z is a concave function of Y. Notice that
this modification will not change the qualitative features of the dynamical
system modelling the interaction between the economic growth and the
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in fishery studies (Chakraborty et al., 2012; Ghosh and Kar, 2014;
Regnier and Schubert, 2016). We take these properties into account by
suggesting that the instantaneous change of rate of E is proportional to
the time-dependent sector profit = PH cE,s where P is the time
dependent unit product price of fish and c is a constant unit price of
effort i.e.

=dE
dt

PH cE[ ]s
(11)

Here λ is ’speed’ of adjustment in the fishery.
We assume that the demand side of the fishery market can be spe-

cified by the following time-dependent marginal willingness to pay
function P:

= + +P P P a Y a, 01 2 3 3 (12)

Here

=
+

=
+

P A a B H
H B

P C a D S
S D

,
d

d1 0 1 0
0

2 0 2 0
0

where

> > > >A B C D a a0, 0, 0, 0, 0, 00 0 0 0 1 2

Here we tacitly assume the constraints

a B A a D C,1 0 0 2 0 0 (13)

in order to ensure that the functions P1 and P2 are positive for all t.
These assumptions also mean that we assume P1 to be a decreasing and
convex function of the market volume Hd and to saturate on the lower
positive level A a B0 1 0. Similar types of market-volume-mechanisms
are often employed in fishery models, see e.g. Copes (1970),
Smith (1969), and Flaaten and Schulz (2010). It is also assumed that P2
decreases as a function of the harmful substance density S and saturates
on the lower positive level C a D0 2 0. The positive constant +A C0 0 is
interpreted as a potential market price for a given income per capita
(Y). a1, a2 and a3 are all non-negative parameters. The coefficient a1
describes a possible standard down sloped demand mechanism, while
the presence of finite a2 suggests that there could be some negative
impact on fish demand from pollution. This effect captures the possi-
bility that the pollution may harm the quality of the fish products or
affect consumers’ beliefs concerning the quality of the fish and thereby
reduce the willingness of consumers to pay for such products (Chen
et al., 2015; Fonner and Sylvia, 2014; Garzon et al., 2016; Wessells and
Anderson, 1995; Whitehead, 2006). The production per capita in the
economy at time t is modelled by means of Y. Here we also interpret it
as the general income level per capita. Y may have a positive influence
on consumers demand for fish products, capturing the ordinary income
effect on demand. Notice the interpretation of the special cases =B 0,0

=D 00 and =a 03 . =B 00 means that the marginal willingness pay is
independent of the quantity (perfect elastic demand). This special case
is realistic if the fishery under consideration has only a marginal impact
on the total market for relevant products. The condition =D 02 means
that the consumers are not sensitive to possible negative effects on the
fish quality from pollution, or that there are no negative effects on the
fish quality from pollution. Finally, =a 03 represents the case with low
or negligible income elasticity for the fish product. We also assume that
the cost per unit effort c satisfies the bound

< +c qK A C( )0 0 (14)

Finally, we assume market equilibrium in the fish product market i.e.

=H Hd s (15)

for all t.
Now, by combining (9), (11), (12), and (15), we end up with the

differential equation

=

+ +

+

+

A a B

C a D a Y qX c E

dE
dt

qXE
qXE B

S
S D

0 1 0

0 2 0 3

0

0 (16)

for the effort variable E. This equation, together with the production
and income Eq. (1), the population density Eq. (10) and the pollution
dynamics Eq. (7) constitutes a 4D autonomous nonlinear dynamical
system for the state variables X, E, S and Y.

The variables and the parameters in the model of differential
equations are summarized in Table 1. The measurement units given in
Table 1 are T for time (e.g. year, month), M (e.g. tons, kg), E for effort
(e.g. employee, capital) and currency C (e.g. Euro, Yuan etc.)

3. Analysis of the model

3.1. Scaling and general properties of the model

We scale the model (1), (7), (10) and (16) by following the proce-
dure outlined, for example, in Logan (1987). We proceed as follows:
Introduce the dimensionless quantities τ, ξ, η, θ, ψ, γ1, γ2, γ3, γ4, γ5, γ6,
γ7, γ8, γ9, γ10, γ11 and γ12 defined by

Table 1
The fishery-pollution model (1), (7), (10) and (16). The fundamental units are T
for time (e.g. year, month), M for mass (e.g. tons, kg), E for effort (e.g. employee,
capital) and C for currency (e.g. Euro, Yuan etc.).

Variables/ Biological/ Measurement
parameters economical interpretation units (dimensions)

t Time T
Y Total production value per capita C
S The harmful substance density (stock of

pollutant)
M

X Fish population density M
K Carrying capacity of the fish biomass M
H Production volume(harvest) in fishery MT 1

E Effort(capital and labour) input in fishery E
P Market value of fish CM 1

σ Intrinsic growth rate for the biomass T 1

β Pollution effect on biomass growth 1
q Fixed harvest efficiency rate E T1 1

r Economy growth rate T 1

Ȳ Long run production value per capita C
ϱ Emission (pollution) rate MC T1 1

ρ Remediation (natural absorptive ability) rate T 1

a Remediation capacity parameter M
b Remediation capacity parameter M
a1 Market price-volume demand impact fishery CM T2

a2 Pollution-demand impact fishery CM 2

a3 Income-demand impact fishery M 1

+A C0 0 Potential fish price CM 1

B0 Price-saturation constant fish supply MT 1

D0 Price-saturation constant pollution M
c Cost per unit effort CE T1 1

λ Speed of adjustment EC 1

(footnote continued)
pollution as compared with what we obtain for the constant ϱ-case (summar-
ized in Fig. 1): For remediation capacity g below a certain threshold, we have
only one equilibrium point which is unstable. In an intermediate range for this
capacity, we have two equilibrium points. The equilibrium point for which the
remediation capacity g is monotonically increasing is asymptotically stable,
while the equilibrium point corresponding to a monotonically decreasing re-
mediation capacity is unstable. Finally, when the remediation capacity exceeds
a certain threshold, no equilibrium points exist. For simplicity, we have not
undertaken any detailed analysis of the implications of the hypothesis in
Perman et al. (2003).
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= =

= = =

= = = =

= = + = =

= = = =

t X t K

E t
q

S t a Y t a

a
K

b
a

r

Y
a

qK A C a B qK B
K

a D qK D
a

aqKa c

, ( ) ( )

( ) ( ), ( ) ( ), ( ) ( )

, , ,

¯
, ( ) , ,

, , ,

1 2 3 4

5 6
0 0

7
1 0

8
0

9
2 0

10
0

11
3

12 (17)

We then end up with the 4D autonomous dynamical system

= =

= =

F G

H K

( , , , ), ( , , , )

( , , , ), ( , , , ) (18)

where F, G, H and K are the functions

=F ( , , , ) 1 1 (19)

=
+ +

+G ( , , , ) 6 7

2

8
9

10
11 12

(20)

=H R( , , , ) ( ; )2 3 (21)

=K f( , , , ) ˜ ( ; )4 5 (22)

where the notation ′ means differentiation with respect to τ. Here we
have tacitly made use of the homogeneity assumptions (2) and (6)
imposed on the economic growth function f and the remediation ca-
pacity g introduced in Section 2:

= =f C f C C C a( ; ) ˜ ( ; ),5
1

5 (23)

=R g ag a a b( , ) ˜ ( ; 1, ) ( ; , )3 3 (24)

The function f̃ is referred to as the nondimensional economic growth
function. In the subsequent numerical simulations we assume that the
nondimensional economic growth function is given by

=f̃ ( ; )5 5 (25)

The function R is referred to as the nondimensional remediation capacity.
In the subsequent numerical simulations we assume that the non-
dimensional remediation capacity is given by

= +
+

R ( ; ) 1
3 2

3
2 (26)

Due to conditions imposed on the parameters involved in our modelling
framework (1), (7), (10) and (16), we notice that all the dimensionless
parameters γ1, γ2, γ3, γ4, γ5, γ6, γ7, γ8, γ9, γ10, γ11 and γ12 are positive.
These dimensionless parameters are listed and interpreted in Table 2.
Fig. 2 summarises the model structure. Furthermore, we classify these
parameters into the following three groups based on their role in the
model:

• Group 1: Parameters in the economic growth and pollution part of
the model: γ2, γ3, γ4 and γ5.
• Group 2: Parameters capturing impacts from the economic growth
and the pollution on the fishery part of the model: γ1, γ9, γ10 and γ11.
• Group 3: Parameters in the fishery part of the model: γ6, γ7, γ8 and
γ12.

In the forthcoming analysis we will also make use of the two
parameters ι and ω defined by

= =

= =
+

Y
a

c
qK A C

¯

( )

5

2

12

6 0 0 (27)

The parameters ι and ω which are listed in Table 2, are referred to as the
emission-remediation ratio and the cost-potential price ratio, respectively.
Notice that the condition (14) implies that ω<1.

We next describe some fundamental properties of the nondimen-
sional system (18)–(22). Let

=x

(28)

Introduce the vector field F: 4 4 defined by

=

F
G

H
K

F x( )

( , , , )
( , , , )
( , , , )
( , , , ) (29)

Then the system (18)–(22) can conveniently be rewritten on the
compact vector form

=d
d

x F x( ) (30)

Since the vector field F: 4 4 is a smooth vectorfield, Picards the-
orem implies that the initial value problem of the autonomous dyna-
mical system (30) is locally wellposed (Arnold, 1988; Guckenheimer
and Holmes, 1983). Moreover, since the same vector field depends

Table 2
Definition and interpretation of the nondimensional parameters γi

=i( 1, 2, 12), ι and ω in the model (19)–(22).

Parameter definition Intepretation

= a K/1 The biomass growth damage rate.
= /2 The relative remediation rate.
= b a/3 Remediation capacity parameter.
= r/4 The relative economic growth rate.
= Y a¯ /5 Relative long run emission.
= +qK A C( )/6 0 0 Potential revenue per unit effort in fishery.
= a B qK/7 1 0 Harvest volume demand impact
= B K/8 0 Demand parameter market volume.
= a D qK/9 2 0 Pollution demand impact.
= D a/10 0 Demand parameter pollution.
= aqKa /11 3 Income demand impact.
= c/12 Relative unit cost of effort in fishery.

= /5 2 Emission-remediation ratio.
= /12 6 Cost-potential price ratio.

Fig. 2. Schematic representation of the pollution-fishery model (18). Non-
dimensional state variables (ξ, η, θ, ψ). Nondimensional parameters in the
economic growth and pollution part of the model: γ2, γ3, γ4 and γ5 (Group 1),
nondimensional parameters capturing impacts from the economic growth and
the pollution on the fishery part of the model: γ1, γ9, γ10 and γ11 (Group 2), and
nondimensional parameters in the fishery part of the model: γ6, γ7, γ8 and γ12
(Group 3).
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continuously on the input parameters = …i, 1, 2, , 12,i any solution of
the initial value problem of (30) will be continuous functions of these
parameters.

In the present study we restrict ourselves to the dynamical evolution
in the positive part of the phase space i.e. the region for which all the
coordinates of x are positive. In Appendix B we prove that region Σ
defined by

= > > > R{( , , , ) ; 0, 0, 0, (0; )}4
2 3 (31)

is an invariant region of the system (30) provided γ5≥ γ2R(0, γ3)
(Theorem 1).

3.2. Simplified models

We first consider different parts of the model. This can provide a
better understanding of how the model mechanisms work.

3.2.1. The growth and the pollution part of the model
The 2D subsystem

= =R f( ; ), ˜ ( ; )2 3 4 5 (32)

of the modelling framework (30) plays a crucial role in the analysis of
this framework.

The problem of invariant regions of the system (32) is explored in
detail in Appendix B. Here we only summarize the result of this in-
vestigation. We readily find that the set Σ2 defined by

= > > R{( , ) ; 0, (0; )}2
2

2 3 (33)

is an invariant region of the subsystem (32) provided γ5≥ γ2R(0; γ3).
This means that any solution of the system (32) starting in Σ2 will re-
main in that region. In the complementary regime i.e. when
0< γ5< γ2R(0; γ3), the set Σ2 is not an invariant region. In this case we
can find solutions which will enter the region θ<0 within finite time.

Let us next examine the existence of equilibrium points and their
respective stabilities. The result of this investigation is summarized in
Table 3.

For the case where the nondimensional remediation capacity is
modeled by means of (26) we conveniently discuss the number of
equilibrium points of the subsystem (32) in the first quadrant of the θ,
ψ-plane as function of the input parameters ι≡ γ5/γ2 and 3

2 in terms of
a phase plot. See Table 2. The actual phase plot is depicted in Fig. 3.
Here we have introduced the subsets ,non ,eq,2 eq,2 and defined by

= >

= < <

= <

= =

{( , ) ; [ ]}

{( , ) ; 1/ [ ]}

{( , ) ; 0 1/ }

{( , ) ; [ ]}

non

eq

eq

3
2 2

3
2

,2 3
2 2

3
2

3
2

,1 3
2 2

3
2

3
2 2

3
2

(34)

Here Γ: (0, ∞)→ (0, ∞) is the function defined by

=
+ +

[ ] 1
2

1 1
3
2 3

2

3
2 (35)

The curve is derived from the nontransversal intersection condition
= =R R( ; ), ( ; ) 03

2
3
2 .

In Figs. 4–6 we present numerical examples which illustrate the
behaviour of this part of the model corresponding to point K and L in
Fig. 3.

Let us assume that we have at least one equilibrium point of the
system (32). According to the results summarized in Table 3 this takes
place when 0< ι≤ R(θmax; γ3). The stability problem for the equili-
brium points is then easily resolved by means of the Jacobian of the
system (32) evaluated at these points. The Jacobian is given by

Fig. 3. The number of equilibrium points of the subsystem (32) as a function of
the Group 1 - parameters γ2, γ3 and γ5. The subsets ,non ,eq,1 eq,2 and of
the ( , )3

2 -plane are defined by (34). Region non (blue shaded region) produces
no equilibrium points, region eq,2 (yellow shaded region) two equilibrium
points and eq,1 (green shaded region) one equilibrium point. The curve se-
parating eq,1 from eq,2 is given by the hyperbola = 1

3
2 . The separatrix curve

(red curve) represents a transition between a region corresponding to two
equilibrium points and a region corresponding to no equilibrium points. The
point =K (1, 1.1) represents the input data for the numerical computations
leading to Figs. 4–5 b. The point = = +L (1, [1]) (1, ( 2 1))1

2 (located on the
separatrix curve ) represents the input data for the numerical computations
leading to Fig. 6. The separatrix curve corresponds to a saddle-node bi-
furcation at the equilibrium point of the subsystem (32). Cf. the discussion of
the Jacobian (36). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 4. Phase portrait illustrating the behavior of the pollution part (32) of the
model with the nondimensional remediation capacity given by (26). The red
curve is the nullcline = 5 for the system (32) (the nondimensional production
variable). The blue curve is the graph of the nondimensional accumulated
pollution = R ( ; )2 3

2 . The input parameters are = = = 1,2 3 4 = 1.1,5
which correspond to the point =K (1, 1.1) in Fig. 3. The equilibrium point

= =M ( , ) (0.11, 1.1)e e1 is asymptotically stable whereas the equilibrium point
= =M ( , ) (0.79, 1.1)e e2 is a saddle point. = =IC ( , ) (0.6, 0.6)1 0 0 and
= =IC ( , ) (0.6, 1.4)2 0 0 are the initial conditions for the solutions depicted in

Fig. 5a and b, respectively. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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=
R

f
( ; ) 1

0 ˜ ( ; )
l e

2
( ) 2 5

4 5 5 (36)

Here θe denotes a solution to the equation

=R ( ; )3 (37)

Moreover, the notation ’ means differentiation of R and f̃ with re-
spect to θ and ψ, respectively. Now, due to the assumptions imposed on
the function f̃ we have <f̃ ( ; ) 0e 3 . We thus find that <det { } 0l

2
( )

( >det { } 0l
2
( ) ) if and only if R′(θe; γ5)< 0 (R′(θe; γ5)> 0). Moreover,

<tr { } 0,l
2
( ) if R′(θe; γ5)> 0. We hence conclude that the point (θe, ψe)

(with ψe≡ γ5) is a saddle point of the system (32) if R′(θe; γ5)< 0
whereas it is an asymptotically stable equilibrium with the framework
of (32) if R′(θe; γ5)> 0. For =R ( ; ) 0,e 5 we have the unique solution

=e max . In this case we have a saddle-node bifurcation at the equi-
librium point (θmax, ψe). This situation is described by means of the
separatrix curve depicted in Fig. 3. In this case Hartman-Grobmans
theorem shows that we cannot base the stability analysis of the equi-
librium point on the linear analysis (Guckenheimer and Holmes, 1983).
Nonlinear effects have to be taken into account in this analysis. We do
not pursue this problem here.

We notice that the saddle-node bifurcation condition given by (35)
can be expressed as

=Y Y a b
a

¯ c̄r

2

when making use of (27) and the definition of γ3. Cf. Table 2. This
condition can be interpreted as the case where the flow of emission
exactly equals the (maximum) remediation capacity per time unit. The
previous analysis shows that when the long run production per capita
level, Ȳ , exceeds the threshold value Ȳ ,cr there are no equilibrium points
in the production and pollution part of the model. This means that we

Fig. 5. Numerical example illustrating the behavior of the pollution part (32) of the model with the nondimensional remediation capacity given by (26). Input
parameters as in Fig. 4. (a) The nondimensional production variable ψ (red curve) and nondimensional accumulated pollution θ (blue curve) as function of the
nondimensional time τ. Initial condition: =( , ) (0.6, 0.6),0 0 i.e. point IC1 in Fig. 4. Stable equilibrium point = =M ( , ) (0.11, 1.1)e e1 . (b) ’Uncontrolled’ pollution
growth following from high initial production level. The nondimensional production variable ψ (red curve) and nondimensional accumulated pollution θ (blue curve)
as function of nondimensional time τ. Initial condition: =( , ) (0.6, 1.4),0 0 i.e. point IC2 in Fig. 4. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 6. Numerical example illustrating the behavior of the pollution part (32) of
the model with the nondimensional remediation capacity given by (26). The
nondimensional production variable ψ (red curve) and nondimensional accu-
mulated pollution θ (blue curve) as function of the nondimensional time τ.
Initial condition: =( , ) (0.6, 0.6), i.e. point IC1 in Fig. 4. The input parameters
of the bold curve are = = = 1,2 3 4 = 1.205 with (1,1.20) as the corre-
sponding point in the phase plot in Fig. 3. Stable equilibrium point

=( , ) (0.33, 1.20)e e . The input parameters for the dotted curve are
= = = 1,2 3 4 = 1.215 with (1,1.21) as corresponding point in the phase plot

in Fig. 3. Notice that the points (1,1.20) and (1,1.21) belong to the subsets eq,2
and ,non respectively, and that they are located in the vicinity of the point L in
Fig. 3. We notice eventually ’uncontrolled’ pollution growth following from an
emission-remediation ratio above the critical level. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article.)

Table 3
The number of equilibrium points of (32) as a function of the parameters 5

2
(emission-remediation ratio) and 3

2. R(θ; γ3) is the nondimensional remediation
capacity defined by (24) whereas θmax is defined by =S amax max ).

Parameter regime The number of equilibrium points of (32)

0< ι≤ R(0; γ3) 1
R(0; γ3)< ι< R(θmax; γ3) 2

= R ( ; )max 3 1
ι> R(θmax; γ3) 0
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identify as Ȳ as a control parameter with Ȳcr as bifurcation value.
The numerical findings are indeed consistent with the previously

presented theoretical analysis. Fig. 4 displays the nullclines and the
phase portrait of the subsystem (32) for a scenario with two equilibrium
points. Here the two equilibrium states are marked with M1 and M2,
consistent with the notation used in Fig. 1, and presented as point K in
Fig. 3. Fig. 5a and b show the development of the nondimensional
variables θ and ψ for two different scenarios. In Fig. 5a the outcome of
the situation with a moderate initial production per capita is depicted
(initial condition: =IC (0.6, 0.6)1 ). Here the solution relaxates towards
the equilibrium M1. Fig. 5b shows what can happen when the initial
value of the initial production per capita is increased above a certain
threshold by choosing the initial condition as =IC (0.6, 1.4)2 : The ac-
cumulated pollution grows in an unbounded way as time elapses. Fig. 6
illustrates how a small perturbation in the long run production per
capita causes the solution characteristics to change dramatically from a
situation where the solution relaxates towards the stable equilibrium
M1 to a situation with ’uncontrolled’ accumulated pollution within fi-
nite time.

3.2.2. The dynamical evolution in the case of no fish population ( = 0).
When ξ≡0, the equation = F ( , , , ) in the hierarchy (18) is

automatically fulfilled. Now by letting = 0 in the function G defined
by (20), we find that =G ( , , , ) 12. Hence the equation

= G ( , , , ) simplifies to the linear decay equation

= 12 (38)

in this case. The pollution part of the model is governed by the sub-
system (32).

We readily observe that η(τ)→ 0 and ψ(τ)→ γ5 as τ→∞. This result
is indeed what one would expect: When there are no resources avail-
able, the harvesting effort will decrease and vanish. Simple linear sta-
bility analysis reveals that the equilibrium point (0, θe, γ5) is asymp-
totically stable within the framework of the dynamical system (32) and
(38) when =e whereas it is a saddle point if = +e .

Finally, but equally important, we show in Appendix B that the
subset

= > > > R{( , , ) ; 0, 0, (0; )}1
3

2 3

is an invariant region of the system (32) and (38) provided the con-
straint γ5≥ γ2R(0; γ3) is fulfilled i.e. a solution starting at a point in Σ1

will remain in that region under this constraint.

3.2.3. The dynamical evolution in the case of no fishery effort ( = 0).
When η≡0, the equation = G ( , , , ) is automatically ful-

filled. By inserting = 0 into the expression F defined by (19), we
readily find that the equation = F ( , , , ) in the hierarchy (18)
simplifies to the logistic equation

= (1 )1 (39)

Just as earlier, the subsystem (32) governs the pollution part of the
dynamical evolution. The noncrossing property of the orbits of the
system (18) implies in this case that the dynamical evolution in this
case takes place in the = 0-hyperplane. Here the stability analysis
shows that the equilibrium point (0, θe, γ5) is always unstable within
the framework of (32) and (39) whereas the equilibrium point
(1 , , )e e1 5 is asymptotically stable if R′(θe; γ3)> 0 and unstable if
R′(θe; γ3)< 0. Here we have tacitly assumed that 0< θe<1/γ1 in
order to ensure all the coordinates of the equilibrium points are non-
negative. This result makes sense: In the case when the fish resource is
not harvested, the only influence from outside is the resource growth
damage from accumulated pollution. If the pollution level is stabilized
at a moderate level (e.g. illustrated by point M1 in Fig. 1) the fish stock
is expected to stabilize at a certain level as well.

We also here make use of the results in Appendix B to prove that a
solution starting in the subset Σ2 defined by

= > > > R{( , , ) ; 0, 0, (0; )}2
3

2 3

will remain in Σ2 provided the constraint γ5≥ γ2R(0; γ3) is satisfied i.e.
a solution starting at a point in Σ2 will remain in that region under this
constraint.

3.3. Equilibrium points of the model

We finally examine the existence of equilibrium points in our
modelling framework (30). Here we first notice that any such points
must be on the form

=( , , , ) ( , , , )e e e e (40)

if they exist. Here =e 5 and θe is a solution of (37). Notice that this
equation has no solutions if γ5> γ2R(θmax; γ3). This means that the
system (30) has no equilibrium points when γ5 exceeds the threshold
γ2R(θmax; γ3).

We conveniently divide the discussion into two subcases. In the first
case we study the possibility of having equilibrium points located in the
hyperplanes = 0 and = 0 (Section 3.3.1) whereas in the second case
we search for equilibrium points for which all the coordinates are
strictly positive (Section 3.3.2).

3.3.1. Equilibrium points in the hyperplanes = 0 and = 0
The equilibrium points of the dynamical system (30) are denoted by

(ξe, ηe, θe, ψe). Here =e 5 whereas θe is the solution of (37). ξe and ηe
satisfy = =F G( , , , ) ( , , , ) 0e e e e e e e e e e . For = 0, we will have

= 0. Hence equilibrium points in the hyperplane = 0 are given by

=Q (0, 0, , )e e0 (41)

For the hyperplane = 0, we readily find equilibrium points on the
form

=Q (1 , 0, , )e e e1 1 (42)

Here we tacitly assume that γ1θe≤1. Notice that =Q Q0 1 when
= 1/ e1 . Notice that θe is either or + in the regime R(0; γ3)< ι< R

(θmax; γ3) (cf. Table 3). In that regime we impose the condition
1/1 . In the regimes when there is only one positive solution of

(37), the condition reads +1/1 .

3.3.2. Equilibrium points in Σ.
We notice that the equilibrium condition =F ( , , , ) 0e e e e (with F

given by means of (19)) implies that

= =1 , 1e e e e e e1 1 (43)

Thus, in order to ensure positivity of both ξe and ηe, we must impose the
restrictions < <0 1 ,e e1 < <0 1e e1 and 0< θe<1/γ1. In
the sequel we will denote the interior equilibrium point by

=Q ( , , . )e e e e e .
By plugging (43) into the equilibrium condition =G ( , , , ) 0e e e e

(with G given by means of (20)) we readily find that ξe satisfies the
equation

=( ; , , , ) 0e3 0 1 2 3 (44)

where 3 is the cubic polynomial

= + + +( ; , , , )e e e e3 0 1 2 3 3
3

2
2

1 0 (45)

Here the coefficients =i, 0, 1, 2, 3i are given by
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+

+

=

( )(1 )

( ) (1 )

e

e

e

e
e

e

e
e

3 7 6 9
10

5 11

2 5 11 7 6 9
10

1 12

1 6 9
10

5 11 8 12 1

0 8 12 (46)

This means that the equilibrium problem boils down to a study of the
number of zeros of the polynomial 3 on the interval (0, 1 )e1 as a
function of the input parameters = …i, 1, 2, 3, , 12i . In order to carry
out this study we first express 3 in terms of the cubic polynomial 3
defined by

=

+ +

µ

µ µ

µ

( ; , , , ) ( ; , , )

( ; , , ) 3 3

3
,

3
,

e e

e e e e

3 0 1 2 3 3 3

3
3 2

2

3

1

3

0

3 (47)

In Appendix C we investigate in detail the properties of the polynomial
3. The outcome of this analysis is that the parameters μ and γ are

strictly positive whereas ν is sign-indefinite. Simple analysis reveals that
3 has two local extreme points for = ±± µ µ2 provided ν< μ2.

Moreover, we find that >+ 0, >µ(0; , , ) 0,3 >µ( ; , , ) 03 and
µ( ; , , )3 as . Hence 3 has one and only one ne-

gative real zero and maximal two positive zeros.
We proceed as follows when investigating the number of zeros as a

function of the input parameters μ, ν and γ: First, we locate points for
which the nontransversality condition =+ µ( ; , , )3 =+ µ( ; , , ) 03
is fulfilled. Here 3 is the cubic polynomial (47). By exploiting the
homogeneity property

=µ µ
µ µ µ

( ; , , ) ( ; 1, , )3
3

3 2 3 (48)

we readily find that

=+ µ µ v u( ; , , ) ( [ ])3
3 (49)

where

= + <

= =

u u u u

v
µ

u
µ

[ ] 2 3 2(1 ) , 3
4

,

3/2

3 2 (50)

The curve (50) separates the region in the (u, v)-parameter plane for which
we have no equilibrium points of the subsystem (56) from the region
where we have two equilibrium points of the same subsystem. This result
is depicted in the phase plot in Fig. 7. Notice that the points in this plane
are obtained through the computation procedure based on (37), (46) and
(47) i.e. by

µ u v( , , ) ( , , , ) ( , , ) ( , )1 12
(37),(46)

0 1 2 3
(47)

(51)

Here we have introduced the subsets non and eq defined by

= >

= < < <

= = <

u v v u

u v v u u

u v v u u

{( , ) ; max( [ ], 0)}

( , ) ; 0 [ ], 3
4

( , ) ; [ ], 3
4

non

eq

2

2

2

(52)

The previous results regarding the number of equilibrium points of the
subsystems (32) and (56) as functions of the respective input parameters
together with the sign of u v( ; 1, , )e3 (with µ(1 )e e1

1) enable
us to predict the number of equilibrium points of the model (18)-(22) as a

function of the input parameters = …i, 1, 2, , 12i . The outcome of this
investigation is summarized in Table 4.

3.4. Stability of the equilibrium points

The Jacobian 4 of the vector field F is given by

=

+

+

F

G

R
f

0

0 0 ( ; ) 1
0 0 0 ˜ ( ; )

F F F

G G G G

4

2 3

4 5 (53)

where F and G are defined by (19) and (20), respectively. Here the
notation ′ means differentiation of the functions R and f̃ with respect to
the respective variables θ and ψ. The structure of this Jacobian makes it
possible to factorize the characteristic polynomial 4:

= =

+ + +

det

f R

( ) { }

( ˜ ( ; ))( ( ))( )( )

4 4 4

4 5 2

Here

= ±± tr tr det1
2

{ } ( { }) 4 { }u u u
2
( )

2
( ) 2

2
( )

(54)

where u
2
( ) is 2× 2 - block matrix

=
+

+

F

G
u

F F

G G2
( )

(55)

of 4. Notice that u
2
( ) is the Jacobian of the 2D subsystem

= =F G( , , , ), ( , , , ) (56)

Table 4
The number of equilibrium points of the system (30) in the first orthant of the
phase space as a function of the input parameters = …i, 1, 2, ,12i . The subsets

,non ,eq,1 ,eq,2 , ,non eq and are defined by means of (34) and (52). ,3

+ and αe are given by (47), ++ µ µ2 and µ(1 ) ,e e1
1 respec-

tively. + is the local minimum point of 3 for the case ν< μ2.

Parameter regime The number of equilibrium
points of (18)-(22)

u v( , ) or ( , )non non3
2 0

u v( , ) , ( , )eq eq eq3
2

,1 ,2

> >+ u v1 , ( ; 1, , ) 0e e1 3 0

u v( , ) , ( , ) ,3
2

<+ 1 e1 1

u v( , ) , ( , ) ,eq3
2

<u v( ; 1, , ) 0e3 1
u v( , ) , ( , )eq3

2
,1

< >+ u v1 , ( ; 1, , ) 0e e1 3 1

u v( , ) , ( , ) ,eq eq3
2

,1

<u v( ; 1, , ) 0e3 1
u v( , ) , ( , ) eq3

2

< >+ u v1 , ( ; 1, , ) 0e e1 3 2

u v( , ) , ( , ) ,eq3
2

,2

<+ 1 e1 2

u v( , ) , ( , ) ,eq eq3
2

,2

<u v( ; 1, , ) 0e3 2
u v( , ) , ( , ) ,eq eq3

2
,1

< >+ u v1 , ( ; 1, , ) 0e e1 3 2

u v( , ) , ( , ) ,eq eq3
2

,2

< >+ u v1 , ( ; 1, , ) 0e e1 3 4
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Notice that the lower 2× 2 - block matrix of (53) is the Jacobian of the
subsystem (32).

We first investigate the stability of the boundary equilibrium points
Q0 and Q1 given by (41) and (42), respectively. For Q0 we find that

= <det { } (1 ) 0u
e2

( )
12 1

from which it follows that Q0 always is a saddle point. For Q1 we have
the following results: For the case R′(θe; γ3)< 0, we will have a saddle
point at Q1. In the complementary regime, it is necessary to study the
invariants of the upper 2×2-block matrix u

2
( ) in order to assess the

stability property. We readily find the expressions

= +

= +

det

tr det

{ } [ ( ) ]

{ } [ { }]

u
e e

u
e e

u

2
( )

12 3 7

2
( ) 1 2

2
( )

for the invariants of the matrix u
2
( ) in this case. Here α3 is given by (46).

This means that Q1 is a saddle point if

< ( ) e12 7 3

In the complementary regime

> ( ) e12 7 3 (57)

we observe that > <det tr{ } 0, { } 0u u
2
( )

2
( ) . Hence, if = ,e the equili-

brium point Q1 will be asymptotically stable when the condition (57) is
fulfilled.

The boundary equilibrium point Q1 represents a state with no
fishery effort. The interpretation of the stability condition (57) is re-
lated to the profitability of the fishery. The condition (57) is fulfilled
when values of Group 2 and Group 3 parameters in combination with
the level of accumulated pollution (θe) altogether result in an un-
profitable state for the fishery. For instance, we notice that high value
of the cost-potential price ratio (ι) contributes to low profitability. A
strong demand pollution effect also causes a low profiatbility. The
consumers willingness to pay for the fish is influenced by the accu-
mulated marine pollution. If this sensibility is strong (represented by
the value of γ9), and/or the accumulated pollution density (θe) is re-
latively high, then a low market price has the possibility of making the
fishery unprofitable. This may result in a stable equilibrium state
characterized by a positive fish stock but no fishery effort.

Finally let us examine the stability of equilibrium points (ξe, ηe, θe,
ψe) in the positive part of the phase space. This means that we assume

= =F G( , , , ) ( , , , ) 0e e e e e e e e . In this case we find that the in-
variants of ,u

2
( ) evaluated at the equilibrium point (ξe, ηe, θe, ψe) are

given as

=
+

=
+

= +
+

<

det µ
µ

u v

tr

{ } ( ; , , , ) ( ; 1, , )

{ }
( )

0

u e e

e e
e

e e

e e

e

u
e

e e

e e

2
( )

8
3 0 1 2 3

3

8

2
3

2
( )

7 8

2

8
3

(58)

where 3 and 3 are the polynomials defined by (45) and (47), re-
spectively. Here 3 means differentiation of 3 with respect to ξ, i.e.

=µ µ( ; , , ) ( ; , , )d
d3 3 . In the process of deriving (58) we have

also exploited the homogeneity property (48).
We first consider the case when the equilibrium points are hyper-

bolic points i.e. the case when R′(θe; γ3)≠ 0 and µ( ; , , ) 0e3 .
Since α3< 0, we arrive at the following conclusion: If either

>µ( ; , , ) 0e3 or R′(θe; γ3)< 0, the equilibrium point (ξe, ηe, θe, ψe)
is a saddle point. If <µ( ; , , ) 0e3 and R′(θe; γ3)> 0, the corre-
sponding equilibrium point is (ξe, ηe, θe, ψe) is asymptotically stable.
Thus the monotonicity properties of the self cleaning function R and the
equilibrium polynomial 3 play crucial roles in the linear stability
analysis. In accordance with Hartman-Grobmans theorem we can assess
the stability of the equilibrium points in this case by means of the

analysis of the linearized problem. See Guckenheimer and
Holmes (1983) for details.

Next, let us examine the case when the equilibrium points are
nonhyperbolic. This happens when either =R ( ; ) 0e 3 or

=µ( ; , , ) 0e3 . Hartman-Grobmans theorem shows that the linear-
ization procedure is inconclusive with respect to the stability assess-
ment in this case. Nonlinear effects have to be taken into account in
order to determine the stability properties. First let us consider the si-
tuation =R ( ; ) 0e 3 . As pointed out in Section 3.2.1, we have saddle-
node bifurcation within the framework of the 2D subsystem (32) in this
case. For the corresponding interior equilibrium point Qe, Shoshi-
taishvilis theorem implies that this equilibrium point is unstable if

>µ( ; , , ) 0e3 . See for example Chapter 6 in Arnold (1988). For the
complementary regime i.e. when µ( ; , , ) 0,e3 one has to carry
out a detailed analysis of the nonlinear effects to conclude about the
stability. We do not pursue any details of this analysis here, however.
Secondly, let us study the case when =µ( ; , , ) 0e3 and R′(θe;
γ3)≠ 0. This case also represents a saddle node bifurcation with the
generation/vanishing of two equilibrium points as a possible outcome.
Again, by appealing to Shoshitaishvilis theorem we conclude that we
have an instability if R′(θe; γ3)< 0. The complementary regime R′(θe;
γ3)> 0 requires a more thorough analysis of the nonlinear effects in
order to resolve the stability issue. We will not enter into a discussion of
this issue here, however.

We can now exploit the results summarized in Table 4 in the sta-
bility assessment of the equilibrium states. We first notice that the se-
paratrix curves and defined by means of (34) and (52) produce
nonhyperbolic equilibrium points of the saddle-node type. Secondly, by
appealing to Table 4 and monotonicity properties of the self cleaning
function R and the equilibrium polynomial ,3 we conclude that we
have a unique asymptotically stable equilibrium point in the first or-
thant of the phase space in the following two parameter regimes:

1. <u v u v( , ) , ( , ) , ( ; 1, , ) 0eq eq e3
2

,2 3 .
2. < >+u v u v( , ) , ( , ) , 1 , ( ; 1, , ) 0eq eq e e3

2
,2 1 3 .

The subset non (blue shaded region in Fig. 7) gives no equilibrium
points of the complete model. This represents cases where the price and
cost conditions altogether make the fishery unprofitable. The subset eq
(green shaded region Fig. 7) can give rise to a possible stable equili-
brium of the complete model. This represents profitable fishing condi-
tions.

The discussion in Section 3.2.1 shows that it is easy to identify a
relevant bifurcation parameter (e.g. Ȳcr), when we consider the pro-
duction and pollution part of the model isolated. However, when it
comes to the bioeconomic part (56) of the model, we have the following
situation: With a given set of Group 1 - parameters, all parameters
belonging to Group 2 and Group 3 will influence the fishery profit. The
parametric complexity of the problem makes it not particular mean-
ingful to single out one specific bioeconomic bifurcation parameter in
the subsystem (56) of the model, corresponding to points located on the
red separatrix curve in Fig. 7.

3.5. Special cases of the model and numerical examples

We now consider some special cases of our model with particular
emphasis on possible equilibrium states and their respective stabilities.
By excluding some mechanisms and combinations of mechanisms, we
separate different elements in the model. This will provide for a better
understanding of how the model works. Moreover, it facilitates easier
interpretations of the results. Some of these results are reported in
earlier works. We will use input parameters which produce points lo-
cated in the blue shaded regions of Fig. 7 in the numerical simulations.

3.5.1. No pollution and economic growth impacts ( = = =D a 00 3 )
Considering the fishery part of the model, we start out by assuming
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no impacts from the growth and pollution part of the model. This means
to assume that = = =D a 00 3 in our modelling framework. In the
dimensionless setting this assumption corresponds to

= = = = 01 9 10 11 . From (19) and (20) it follows that the non-
dimensional fishery part of the model simplifies to the 2D system

= (1 ) (59)

=
+6 7

2

8
12

(60)

For the purpose of detecting equilibrium points, we conveniently ex-
press the equilibrium polynomial (45) as

= µ( ; , , , ) ( ; , , )e e3 0 1 2 3 3 3 1 1 (61)

where

+ + + =µ µ µ( ; , , ) (1 ) ( ) 0e e e e3 1 1
3

1
2

1 1 1 (62)

Here

µ , ,1
12

6 7
1

6 8

6 7

12

6

We notice that the condition (13) and the definition (17) imply that
γ6> γ7. Hence μ1>0 and ν1>0. Moreover, in accordance with Table 2
and (14), we have 0<ω<1. A detailed study then reveals that the
polynomial 3 has one and only one zero in the interval (0,1). Moreover,
for this zero (denoted by ξe) we must have <µ( ; , , )) 0e3 1 1 . Since
α3<0, we conclude by using (58) and (61) that the equilibrium point
( , 1 )e e is asymptotically stable within the framework (59) and (60).
Given the fact that any solution that starts in the first quadrant remains in
this quadrant, the actual equilibrium point acts as an attractor for all
points in the first quadrant. Notice that the system (59) and (60) is similar
to the models discussed in Smith (1969) and Copes (1970).

Now, by making the additional assumption =B 00 (corresponding
to a constant fish price), it follows that = = 07 8 and hence the fra-
mework (59) and (60) becomes the standard Gordon-Schaefer model

= (1 ) (63)

= ( )6 12 (64)

The properties of (63) and (64) are indeed the same as those observed
for (59) and (60): It has an asymptotically stable interior equilibrium
point, =( , ) ( , 1 )e e . Moreover, any solution of (63) and (64) in
the first quadrant remains in this quadrant.

To explore how the model works, we present some numerical ex-
amples. In Table 5 we have listed the input parameters γ1, ⋅⋅⋅, γ12 of
each of the examples we will consider, together with the corresponding
u, v-coordinates of the points in the phase plot depicted in Fig. 7.
Table 5 contains the input parameters for the numerical computations
underlying Fig. 8a–Fig. 9b, the separate mechanism by means of the
group 2 parameters (γ1, γ9, γ10, γ11) and the sensitivity analyses pre-
sented in Fig. 10a–Fig. 12b. The fourth column in Table 5 contains the
stable equilibrium values for the nondimensional biomass variable ξ
and the nondimensional effort variable η.

Baseline parameters belonging to the fishery part of the model are
given in Table 6. By inserting these fundamental parameter values into
(17) we find that = 2,6 = 112 and = =/ 0.512 6 .

Fig. 8a and b illustrate the behaviour of the fishery part of the model
for the case with a constant fish price, i.e. the system (63) and (64). A
notable feature here is standard fishery adjustments under open access
where the nondimensional biomass and effort variables oscillate and
relaxate towards a level determined by the cost-potential price ratio

= = +c qK A C/ / (12 6 0 0).4 When the harvest volume demand impact is

included, i.e. when γ7> 0, γ8> 0, as in Fig. 9a and b, we notice the
same type of oscillatory development. However, since the harvest vo-
lume influences prices and makes a high catch volume less profitable,
the equilibrium effort becomes lower and the biomass density higher
compared to what one obtains in the constant price case.

3.5.2. Different mechanisms influencing the fishery
In order to study how changes in the level of economic growth and

pollution may influence the fishery, it is convenient to consider the case
with =B 00 . This means that the marginal willingness to pay is in-
dependent of the harvest volume i.e. the situation with perfect elastic
demand. This parameter regime captures the situation when the fishery
has a marginal impact on the total market for relevant products. By this
assumption it follows that = = 0,7 8 and from (19) and (20) it follows
that the nondimensional fishery part of model simplifies to

= (1 )1 (65)

=
+

+6 9
10

11 12
(66)

In this case the equilibrium polynomial 3 defined by (45) can be
written as

=

= +

µ

µ µ µ

( ; , , , ) ( ; , )

( ; , ) ( )

e e e

e e e

3 0 1 2 3 3 2 2 2

2 2 2
2

2 2 2 2

Here

Fig. 7. The number of equilibrium points of the subsystem (56) as a function of
=u v µ µ( , ) ( / , / )2 3 where μ, ν and γ are defined by means of (47). The subsets

,non eq and of the (u, v)-plane are defined by means of (52). The subset non
(blue shaded region) gives no equilibrium points of (56), whereas the subset eq
(green shaded region) produces two equilibrium points of (56). The separatrix
curve (red curve) which represents the transition between non and eq gives
a saddle-node bifurcation of the equilibrium points of the subsystem (56). Cf.
the outcome of the stability analysis in the Section 3.4. The points A, B, C, D, E
and F which are obtained by means of the computational procedure (51), are
listed in Table 5 together with the corresponding input parameters γ1, ⋅⋅⋅, γ12.
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

4 The equilibrium point ( = =, 1e e ) corresponds to

(footnote continued)
= = +X K c q A C/ ( )e e 0 0 and = = +E c q A C[1 / ( )]e q q 0 0 when restoring to the

dimensional quantities by means of (17). In some textbooks this equilibrium are
often labeled (X∞, E∞). See for example Flaaten (2018).
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= +
+

= =µ , 1

e

e

e

3 6 9
10

5 11

2
12

3
2 1

Since α3< 0 it follows that μ2< 0 whereas 0< ν2< 1 (due to the re-
quirement < <0 1 1e1 ). The zeros of 2 are given as =+

e
( )

2 and
= µe 2. Since α3< 0, we find that < < <+0 1e e

( ) ( ) .
For the sake of the stability examination, we first observe that

=± ± ±Q( ) ( )e e e3
( )

3
( )

2
( )

Simple analysis of the quadratic polynomial Q2 and the general stability
result developed in Section 3.4 (i.e. the expressions (58) for the trace
and determinant of the Jacobian u

2
( )) reveal that the interior equili-

brium point ( , 1 )e2 2 1 is unstable whereas the equilibrium
point +µ µ( , 1 )e2 2 1 is asymptotically stable.

These results can indeed be used to assess the stability of the interior

equilibrium points of the full model (30) when = = 07 8 : Let =e
be the solution to (37) for which R′(θe; γ5)> 0. The interior equilibrium
point ( , 1 , , )2 2 1 5 is unstable within the framework of the
model (30) whereas the other interior equilibrium point

+µ µ( , 1 , , )2 2 1 5 is asymptotically stable.
Furthermore, we utilize the numerical example depicted in Fig. 8a

and b, to clarify the different mechanisms of economic growth and
pollution on the fishery and examine the role of the Group 2 parameters
i.e. γ1, γ9, γ10 and γ11. These parameters both influence the stable
equilibrium states and the dynamical evolution in the fishery. Table 5
summarizes how the separate mechanisms alter the coordinates of the
stable equilibrium in this case.

From the third row in Table 5 we infer that when only the biomass
growth impact from pollution (represented by a finite γ1) is present, the
fish stock equilibrium value remains unchanged. The explanation for
this is that the stock level is determined by the cost-potential price level
ratio ω in this special case of the model. Cf. Section 3.5.1. Since this

Fig. 8. Numerical example illustrating the solutions of the fishery part of the model (the system (63) and (64)). Input parameters: = 2,6 = 1,12 ( = = 07 8 ). This
example corresponds to the point B in Fig. 7. (a) Phase portrait of the system (63) and (64). Stable equilibrium point, =B (0.5, 0.5)1 . Saddle point, =B (1, 0)2 . (b) The
nondimensional biomass variable ξ (green curve) and nondimensional effort variable η (black curve) as a function of the nondimensional time τ. Initial condition:

=( , ) (0.6, 0.4)0 0 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Numerical example illustrating the solutions of the fishery part of the model (the system (59) and (60)). Input parameters: = 2,6 = 1,12 = = 1/27 8 . This
case corresponds to point A in Fig. 7. (a) Phase portrait of the system (59) and (60). Stable equilibrium point, =A (0.545, 0.455)1 . Saddle point, =A (1, 0)2 . (b) The
nondimensional biomass variable ξ (green curve) and nondimensional effort variable η (black curve) as a function of the nondimensional time τ. Initial condition:

=( , ) (0.6, 0.4)0 0 . (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ratio is not affected by a reduction in the biomass growth (caused by
accumulated pollution), the fish biomass equilibrium is unchanged.
However, the steady state effort level is decreased because of the re-
duction in the long run harvest volume. Furthermore, we infer from the
fifth row in Table 5 that a partial introduction of the income effect
(represented by a finite γ11) increases the fish demand and thereby
makes the fishery more profitable which causes a higher level of effort
and a lower fish stock biomass in the long run. From the input para-
meters of the sixth row in Table 5 (”Demand pollution”), we notice that
the partial negative effect on the marginal willingness to pay for fish
from pollution (represented by finite γ9 and γ10), makes the fishery less
profitable because of reduced demand in the fish market. This implies
the existence of an equilibrium state with lower effort and higher bio-
mass.

Fig. 10. Impact of ’short run’ economic growth and long run level of production per capita. (a) The impact of economic growth measured by means of the
nondimensional parameter γ4. Initial condition as in Fig. 5a and Fig. 8b. The nondimensional biomass ξ (green curve) and the nondimensional effort η (black curve)
as function of the nondimensional time τ (with an increased short run growth). Bold curve: The reference values given in Table 5 ( = 14 ) and represented in Fig. 7 as
point C. Dotted curve: The reference values given in Table 5 but, = 24 . (b) The impact of long run level of production per capita. The nondimensional biomass ξ
(green curve) and the nondimensional effort η (black curve) as function of the nondimensional time τ with increased long run production level measured by means of
the nondimensional parameter γ5. Bold curve: The reference values given in Table 5 ( = 1.15 ) Dotted curve: The reference values given in Table 5, but with = 1.115 .
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 5
Summary of numerical cases. Different set of input parameters = …, 1, 2, ,12i and corresponding (u, v)-coordinates in Fig. 7 obtained by means of the procedure
(51). The fourth column in Table 5 contains the stable equilibrium values for the nondimensional biomass variable ξ and the nondimensional effort variable η. For
the example in Fig. 13 the stable equilibrium values for the nondimensional accumulated pollution variable and the nondimensional production per capita variable
are given as = 0.33e and = 1.2,e respectively. For the example in Fig. 13 the stable equilibrium values for the nondimensional accumulated pollution variable
and nondimensional production per capita variable are = 0.13e and = 1.11,e respectively. For all other examples we have = 0.11e and = 1.1e .

Numerical examples presented in Section 3.5.

…( , , ., )1 2 12 (u, v) (in Fig. 7) (ξe, ηe)
Fig. 8 (0,1,1,1,1.1,2,0.5,0.5,0,0,0,1) =A (0, 1.944) (0.55,0.46)
Fig. 7 (0,1,1,1,1.1,2,0,0,0,0,0,1) =B (0.667, 0) (0.5,0.5)
Biomass Growth (1,1,1,1,1.1,2,0,0,0,0,0,1) (0.691, 0)(≈ B) (0.5,0.39)
Demand Income (0,1,1,1,1.1,2,0,0,0,0,0.1,1) (0.655, 0)(≈ B) (0.45,0.55)
Demand Pollution (0,1,1,1,1.1,2,0,0,1,0.5,0,1) (0.687, 0)(≈ B) (0.61,0.39)
Ref. case (1,1,1,1,1.1,2,0.5,0.5,1,0.5,0.1,1) =C ( 0.062, 2.352) (0.56,0.33)
Fig. 9a (1,1,1,2,1.1,2,0.5,0.5,1,0.5,0.1,1) =C ( 0.062, 2.352) (0.56,0.33)
Fig. 9b (1,1,1,1,1.11,2,0.5,0.5,1,0.5,0.1,1) C( 0.069, 2.420)( ) (0.57,0.31)
Fig. 10a (1,1.1,1,1,1.1,2,0.5,0.5,1,0.5,0.1,1) =D ( 0.039, 1.968) (0.52,0.48)
Fig. 10b (1,1.1,1,1,1.21,2,0.5,0.5,1,0.5,0.1,1) C( 0.067, 2.357)( ) (0.555,0.335)
Fig. 11 (1,1,1,1,1.1,2,0.5,0.5,1,0.5,0.1,1.72) =E (0.271, 1.771) (0.89,0)
Fig. 12 (1,1,1,1,1.2,2,0.5,0.5,1,0.5,0.1,1) =F ( 0.212, 3.352) (0.59,0.07)

Table 6
Baseline fishery parameters. The measurement units are =M Tons, =C Euro,

=E Vessels and =T Year .

Parameters Values Measurement units

K 4000000 M
+A C0 0 10000 CM 1

q 0.000002 E T1 1

λ/σ 0.000025 ETC 1

c 40000 CE T1 1

γ6 2 -
γ12 1 -

= 12
6

1
2

-
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3.5.3. Impacts of economic growth and pollution on equilibrium and
stability in the fishery

Finally, we will illustrate the impacts of the economic growth
modelled by means of changes in the parameters r and Ȳ in our model.
We also consider the influence of the remediation capacity. This si-
tuation corresponds to changes in the nondimensional parameters γ4
and γ5, and the normalized remediation rate γ2. In the following nu-
merical analyses all the mechanisms are present, given by means of
the parameter values listed in Table 5. We use the following parameter
set as the reference case: = = = = = = 1,1 2 3 4 9 12 = 26

= = = = =1.1, 0.5, 0.15 7 8 10 11 and the initial condition as in
Fig. 5a and Fig. 8a. The Group 2 input parameters are the same as the
ones underlying the computations of the stable fishery equilibrium
given in Table 5, and also represented by means of point C in Fig. 7.

Fig. 10a and Fig. 10b show the temporal development of the non-
dimensional biomass and the nondimensional effort when the short
term economic growth and the long term production per capita level
are changed. In Fig. 10a we observe that an increase in the short run
growth rate will cause increased fishery fluctuations. Both the biomass
and the effort are characterized by an increase in the level of oscilla-
tions, without actually changing the corresponding equilibrium values.
Fig. 10b shows the case where the long term production per capita is
increased (measured by means of the nondimensional parameter γ5).
Here the changes in the temporal behaviour of the biomass and the
effort are less pronounced. In our example, the equilibrium value of the
effort is reduced and the stock size is increased, which follows from a
net increase in the cost-price ratio. This means a reduced profitability in
the fishery. Fig. 11a and b demonstrate how the remediation rate in-
fluences the fishery. Fig. 11a illustrates the impact on the temporal
evolution of the biomass and the effort variables, as well as on the
equilibrium values, for a partial increase in the remediation rate (by
changing = 12 to = 1.12 ). It is seen that this leads to a reduction in the
biomass and an increase in the effort equilibrium values. Moreover, the
oscillations become more pronounced as the remediation rate increases.
In Fig. 11b we have increased both the remediation rate and the long
run production level, but kept the emission-remediation-ratio ι (defined
in Table 2) unchanged. In our example we observe minor changes
compared to the isolated changes in the remediation rate. Changes in
the model parameters may also cause changes affecting the existence of

stable equilibrium points for the fishery part of the model. In Fig. 12a
we demonstrate how the high relative unit cost of effort makes the
fishery unprofitable. This effect is captured within the present non-
dimensional setting by means of the parameter γ12. By strengthening
the general cost effect (which is done by increasing the ’cost’ parameter
from the reference value = 112 to = 1.7212 ), we observe that fishery
effort becomes zero, whereas the fish biomass survives and stabilizes at

= =1 0.89e e1 . This is consistent with the fact that
=Q (0.89, 0, 0.11, 1.1)1 defined by (42) in accordance with (57) is an

asymptotically stable equilibrium point in this case. This equilibrium
solution with a unprofitable fishery (zero effort), may also follow from
combinations of other model mechanism which influences the profit-
ability. For instance it follows that a stronger ”Demand pollution” effect
(represented by γ9 and γ10) could also make the fishery unprofitable, i.e
and stabilize at Q1 defined by (42) in accordance with (57). We also
notice that the interior stable equilibrium for the reference case
( = 112 ) is =Q (0.56, 0.33, 0.11, 1.1)e and that the corresponding
boundary equilibrium point Q1 is unstable in accordance with (57).

In Fig. 13 we demonstrate how the stability acts on the fishery by
means of a partial increase in the long run production and income level
Ȳ . Within the present nondimensional setting, this means an increase in
the value of the parameter γ5. In Fig. 6 we have illustrated the identical
case for the pollution part of the model. With the selected initial con-
ditions and parameter values, we observe that an increase in the long
run production and the income level leads to a relatively rapid decrease
in the effort, and eventually to a drop in the stock level. With = 1.205
the fishery becomes less profitable causing low equilibrium effort and a
stabilization in biomass density, while in the case with = 1.215 both
the fish stock and the fishery activity are wiped out within finite time.

4. Concluding remarks

Since the early 1970s economists and scientists from different fields
have been engaged in the research on the consequences of emissions
from economic activities on ecosystems. Growing economies often
mean higher emissions. In particular, the effect of pollution on marine
ecosystems has recently received greater attention from the research
community. The ability of the ecosystem to conduct remediation or self-
cleaning in order to reduce harmful effects from the pollution appears

Fig. 11. Impact of remediation and economic growth. Initial condition as in Fig. 5a and Fig. 8b. (a)The impact of increased relative remediation rate (γ2). The
nondimensional biomass ξ (green curve) and the nondimensional effort η (black curve) as function of the nondimensional time τ. Bold curve: The reference values
given in Table 5 ( = 12 ). Dotted curve: The reference values given in Table 5, but = 1.12 . (b) The nondimensional biomass ξ (green curve) and the nondimensional
effort η (black curve) as function of the nondimensional time τ (with higher remediation rate and long run production level, but with an unchanged emission-
remediation-ratio.) Bold curve: The reference values given in Table 5 ( = =1, 1.12 5 ). Dotted curve: The reference values given in Table 5, but = 1.12 and = 1.21,5
( = =/ 1.15 2 ). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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to be a key issue in this context.
In the present work we have proposed a dynamical model de-

scribing the interactions between production and consumption, re-
mediation and biomass production. This model decomposes into two
parts: In the first part we have formulated a model accounting for the
assumption that the production and consumption cause emissions, and
that these emissions either remediate or accumulate in the ocean. In the
second part, we propose a traditional Gordon-Schaefer fishery model
with open access, where the density of damaging emissions can cause a
reduction in the biological growth of the fish stock. Additionally, the
economic growth is assumed to increase the general income, which may
increase the willingness of consumers to buy fish. Finally, in the

demand function we also investigate the possibility that pollution may
reduce consumers’ marginal willingness to pay for the fish, either be-
cause the fish quality actually is reduced or at least consumers believe
that pollution is harming its quality.

As far as we know, the study of remediation or self-cleaning using a
dynamical systems theory approach is new in this literature. The key
ingredient in the description of this process is the so called remediation
capacity introduced in Section 2.1. The remediation capacity is a posi-
tive and two times continuously differentiable function of the pollution
density. This function models the self-cleaning ability of the marine
ecosystem. The most prominent feature of the remediation capacity is
that it increases for low and moderate levels of the pollutant emission.
This means that the marine system is capable of undertaking self-
cleaning. However, when the pollution density exceeds a certain
threshold, this ability gradually weakens. We have taken care of this
property by assuming the remediation capacity to decrease in line with
the pollution density in this regime. For large values of the pollution
density the remediation capacity will vanish, indicating that the self-
cleaning ability of the marine ecosystem is completely destroyed in the
case of large emissions of pollutants. It is shown that these assumptions
lead to the existence of one stable equilibrium in the economic growth
and pollution part of the model. This stable steady state serves as the
starting point for the investigation of the consequences that growth and
pollution have on the fishery in the long run.

4.1. Main results

First, we notice that when there are only a biomass growth impact
from pollution, the harvest volume and the equilibrium effort in the
fishery are reduced, while the fish stock equilibrium value remain un-
changed. The explanation for this is that the stock level is determined
by the cost-potential price level ratio which is constant in this special
case of the model. Second, a partial positive income demand effect from
the growth, leads to increased profitability, higher equilibrium effort
and a lower fish stock. Third, a partial consequence of reduced will-
ingness to pay for fish as pollution increases, gives the opposite con-
clusion, i.e. a reduced equilibrium effort and a higher fish stock. If this
negative effect on the marginal willingness to pay for fish from pollu-
tion is strong enough it could make the fishery unprofitable.

Fig. 12. Examples of a profitable fishery being wiped out. (a) Bold curve: A profitable fishery. The reference values are given in Table 5. Initial condition as in Fig. 5a
and Fig. 8b ( = = = =0.6, 0.4, 0.6, 0.60 0 0 0 ). Stable equilibrium: =Q (0.56, 0.33, 0.11, 1.1)e . Dotted curve: The same parameter values as for the bold curve,
except = 1.7212 (increased cost level). Initial condition as for the bold curve. =Q (0.89, 0, 0.11, 1.1)1 given by (42) is a stable equilibrium point. (b) Initial condition,
with high level of production per capita (ψ) gives unbounded pollution growth and extinction of the fish stock. Parameter values equal to the reference values given in
Table 5, except = 1.7212 . Bold curve: (which is the dotted curve in (a)). Initial condition: ( = = = =0.6, 0.4, 0.6, 0.60 0 0 0 ). Dotted curve: Initial condition
( = = = =0.6, 0.4, 0.6, 1.40 0 0 0 ), which is the initial condition marked as point IC2 in Fig. 4 and also described in Fig. 6.

Fig. 13. A profitable fishery wiped out by a high long run production and in-
come level. Development in the nondimensional biomass variable ξ and non-
dimensional effort variable η is depicted as a function of the nondimensional
time τ. Bold curve: = 1.205 and = = = =1, 0.5, 0.11 9 10 11 . Dotted curve:

= 1.215 and = = = =1, 0.5, 0.11 9 10 11 . Initial condition as in Fig. 5a and
Fig. 8b.

H. Bergland, et al. Ecological Complexity 38 (2019) 56–74

70



Furthermore, we introduce an illustrative example to discuss how
growth, emission and remediation may influence the fishery. First we
show that an increase in the short term growth in the economy may
affect the effort and stock development over time, but the long term
equilibrium is unchanged. However, a partial increase in the long term
production per capita, is in our example shown to reduce the equili-
brium of fishery effort and increase the stock size, following from a net
increase in the cost-price ratio. Moreover, a partial increase in the re-
mediation rate is seen to reduce the biomass equilibrium and increase
the long term effort. When both the remediation and the long run
growth rate is increased such that the emission-remediation-ratio stays
unchanged, the changes in equilibrium effort and biomass values be-
comes relative small. From the numerical analyses it is seen that eco-
nomic growth and remediation capacity influences the temporal de-
velopment in both effort and fish biomass. Finally, we notice that if
production per capita exceeds a certain threshold (causing high emis-
sions of pollutants) the fishery activity become less profitable, and
within finite time the effort go to zero and the fish stock become extinct.

The outcome of the stability analysis shows that it is possible to
have bistability in the present modelling framework. This means that
there are parameter regimes which produce coexistence of a stable
boundary equilibrium point (Q1) and a stable interior equilibrium point
(Qe) in the first orthant of the phase space. This property will lead to a
division of the first orthant of the phase space into a union of disjoint
attractor basins for the two equilibrium points. However, for the con-
crete examples we have explored numerically in the present paper we
do not observe the bistability phenomenon.

4.2. Possible extensions

We emphasize that our reasoning is based on a simplified and
conceptual model where we have made many simplifying assumptions.
For instance, we only consider one typical exploited wild fish stock and
the consequences of economic growth and pollution on the growth
potential of that fish stock and the market where fish products are sold.
In reality, economic activities and pollution can have multiple external
and economic effects on oceans and coastal areas, and thereby exert
more complex dynamical influences on the fisheries.

For simplicity we have assumed that the biological growth satisfies
the conditions of the Verhulsts population growth model, and used the
Gordon-Schaefer harvest production function. Modifications of these
assumptions, as discussed in e.g. Clark (2010), Flaaten (2018) or
Eide (2018), represent possible extensions of the present analysis.

Another interesting extension of the model would be to describe in
much greater detail how various pollution types could affect the fish
stocks, and to analyze dynamical effects stemming from these different
emission sources. For instance, some activities may cause marine
emissions that harm the fishery at different stages. Following
Cushing (2013) and the references therein, one could incorporate these
effects by including absolute and distributed time lag effects in the
modelling framework. We expect that this will change the dynamical
features as compared with the output from the present model.

Additionally, an aspect that would be interesting to consider is how
the economic growth and the ocean pollution affect ecological systems
where the fish stock is only one important element. Widening the
biological focus could reveal different effects on various species that are
interrelated in the ecological system, and such an analysis could cap-
ture important dynamical aspects of pollution on the fisheries.

Another possible extension consists of adding time dependent sto-
chastic effects. This is indeed motivated by the fact that quantities in
both model blocks are subject to uncertainties, and should thus be
modelled as stochastic processes. This will eventually lead to a mod-
eling framework which should be dealt within the theory of stochastic
dynamical systems. Here we could follow the line of thought in for
example Evans (2012) and Øksendal (2003), i.e. that we rewrite the
model as an autonomous dynamical system of first order equations and
thereafter incorporate the stochastic effects as additive noise terms in
this system. We list this problem as a topic for future research.

Moreover, the consequences of economic growth and pollution on
harvesting and fish markets may be more complex and sophisticated
than captured by our model. For instance, we have made an over-
simplification by assuming a proportional relationship between the
economic growth and the pollution density. Following the line of
thought as in Perman et al. (2003), a more realistic relationship might
be that the emissions - due to technological progress and steadily more
environmental awareness in production and consumption - can be
modelled by means of a concave function of the production per capita.
We have also ignored that fishery activities could be a source of both
economic growth and ocean pollution. If so, we would then have a
feedback mechanism from the fishery on the economic growth and
pollution level that we have disregarded in our approach.

Our analysis presumes that the fishery is characterized by an open
access regime. In future investigations one should also focus on en-
vironmental and fishery policies. Such policies could be based on
maximizing social welfare in a dynamic perspective, i.e. identifying
preferred allocations of possible stable equilibrium states of economic
growth, emissions, size of the fish stock and the effort in harvesting.
Here public regulatory mechanisms can play a role. Such mechanisms
could work to limit the economic growth, reduce the emissions impact
of growth or find ways of increasing the remediation capacity.
Regulations might take the form of renovation policies, or use indirect
means, such as taxes and subsidies to bring about a preferable devel-
opment.

Developing the model further by taking into account one or more of
the possibly complicating aspects mentioned above, is an interesting
task for future research on marine pollution and fishery dynamics.
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Appendix A. The scaling properties of the economic growth function and the remediation capacity.

Let Φ be a realvalued function which depends on the parameters a1, a2, ⋅⋅⋅, aN. We assume that there is a function ˜ so that the scaling property

=x C za[ ; ] ˜ [ ; ] (A.1)

is fulfilled. Here = a a aa ( , , , )N
N

1 2 is a parameter vector. The variable z is defined as =z x A/ where =A x[ ] [ ]. AΦ and CΦ are monomials in
the components a1, a2, ⋅⋅⋅, aN. Moreover, = C[ ] [ ]. The components Π1, ⋅⋅⋅, Πm of the vector m are independent, dimensionless monomials of
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the components a1, a2, ⋅⋅⋅, aN of the parameter vector a. According to Buckinghams Π-theorem, =m N r where r is the rank of the dimension
matrix deduced from the parameters a1, a2, ⋅⋅⋅, aN (Logan, 1987).

This means that ˜ is a dimensionless function of the dimensionless variable z and the dimensionless parameters , , N r1 . Notice that the
scaling property (A.1) ensures that all the terms in Φ have the same dimension.

Let a be a parameter vector which contains the parameters in our model and that the vector contains the independent, nondimensional
parameters constructed by means of a. We assume that the remediation capacity g described in Section 2 satisfies a scaling property of the type (A.1)
i.e.

= =S
A

g S C ga, ; ˜ ,
g

g
(A.2)

This yields the nondimensional version

=
B
A

C
A

g̃ ; , , , ,g

g

g

g
N1 2 3

of the pollution Eq. (7). Here Bg is the amplitude factor of the general production and income function Y i.e. =Y Bg . Moreover, we have made use of
= t . We choose

= = =C A a B a,g g g
(A.3)

and end up with the nondimensional version

= g̃ [ ; , , , , ]N r2 1 2 3

of the pollution equation. Here = /2 and a1≡ a.5

We finally assume that the economic growth function f obeys a scaling property of the type (A.1) i.e.

= =Y
A

f Y C fa, ; ˜ ,
f

f
(A.4)

By using =Y Af and = t we derive

=
rC
A

f̃ ; , , , ,f

f
N r1 2 3

(A.5)

from (1). In this case we choose

= = = =C A a Y
A

Y
a

,
¯ ¯

f f
f

1
(A.6)

and end up with

= f̃ [ ; , , , , ]N4 5 2 3 (A.7)

Here = r
4 and = Y

a5
¯
.

Appendix B. Invariant regions.

We first prove the following lemma:

Lemma 1. Assume that γ5≥ γ2R(0; γ3). Then the set Σ2 defined by

= > > R{( , ) ; 0, (0; )}2
2

2 3 (B.1)

is an invariant region of the subsystem (32) i.e.

( )2 2

Here : 2 2 is the flow induced by the system (32).

Proof. The smooth vectorfield F :2
2 2 defining the dynamical system (32) is given by

=
R

f
F ( , )

( ; )
˜ ( ; )2

2 3

4 5

Assume that (θ, ψ) belongs to the first quadrant of the θ, ψ-plane i.e. θ, ψ≥0. We readily find flux conditions

=

=

R

f

F e

F e

(0, )· (0; )

( , 0)· (0; )

2 2 3

2 4 5

on the boundaries of the first quadrant. Here e and e are the unit vectors along the θ- and ψ-axis, respectively. By assumption, f(0; γ5)> 0. Hence

5 Here and in the sequel we make us of the definitions and the notations introduced in (17).
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>F e( , 0)· 02 from which it follows that the orbits of (32) are directed inwards into the first quadrant at points located on the positive θ-axis. Next,
we observe that >F e(0, )· 02 if ψ> γ2R(0; γ3). This means that no orbit can leave the first quadrant across the part of the ψ-axis for which ψ≥ γ2R
(0; γ3). In the complementary regime, 0≤ ψ< γ2R(0; γ3), the directed orbits leave the first quadrant.

Let us examine the region Σ2 defined by (B.1).
Assume first that 0< γ5< R(0; γ3). In this case ψ′ < 0, θ′ < 0 for points located on the horizontal line segment = R (0; ),2 3 0< θ< θe where

= 0 and = > 0e are the two solutions of the equation =R Re( ; ) (0; )3 3 . This means that there are orbits starting in Σ2 leaving this region.
Hence Σ2 is not an invariant region in this case. Notice the fate of the orbits when they have left Σ2: The ψ-coordinate of these orbits will approach

= 5 whereas the θ-coordinate will decrease with time. In accordance with the flux condition <F e(0, )· 02 on the line segment 0< ψ< γ2R(0;
γ3), = 0 these orbits will then leave the first quadrant through this line segment within finite time.

Next, let us investigate the regimes when γ5≥ γ2R(0; γ3). In this case ψ′ > 0 on the horizontal line = R (0; ),2 3 θ>0 from which it follows that
all the orbits starting on this line will enter Σ2. In the case γ2R(0; γ3)≤ γ5≤ γ2R(θmax; γ3), the equilibrium point ( , )5 acts as an attractor for a
subset of Σ2 whereas the remaining part of Σ2 evolves into a state for which ψ→ γ5, θ→∞. For γ5> γ2R(θmax; γ3) all the points in Σ2 are moved into
the state ψ→ γ5, θ→∞. □

We easily prove the following lemma which holds true for any dynamical system of the Lotka-Volterra type:

Lemma 2. Let F and G be given by (19) and (20). The initial value problem

= =

= =

F

G

( , , , ), (0)

( , , , ), (0)
0

0 (B.2)

is equivalent with the fixed point problem

=

=

F s s s s ds

G s s s s ds

( ) exp ( ( ), ( ), ( ), ( ))

( ) exp ( ( ), ( ), ( ), ( ))

0
0

0
0 (B.3)

Proof. Assume that (B.3) is satisfied. For = 0 we have =(0) 0 and =(0) 0. Differentiation of the expression (B.3) with respect to τ shows that ξ
and η satisfy the differential equations in (B.3). Next, assume that (B.3) is satisfied. The fact that = = F(ln(| |)) / and = = G(ln(| |)) / , a
subsequent integration and the initial condition =(0) ,0 =(0) ,0 implies the fixed point problem (B.3). □

Lemma 2shows that =( , (0, 0)0 0 if and only if =( ( ), ( )) (0, 0) for τ ∈ I0, where I0 is the existence interval for the solution. Moreover, we
have ξ0> 0 (η0> 0) if and only if ξ(τ)> 0 (η(τ)> 0) for τ ∈ I0.

Hence, by appealing to Lemma 1 and Lemma 2, we end up with the following result:

Theorem 1. Assume that γ5≥ γ2R(0; γ3). Then the set Σ defined by (31) is an invariant region of the dynamical system (30) i.e.

( )

Here : 4 4 is the flow of the dynamical system (30). Moreover, the sets Σ1 and Σ2 defined in Section 3.2.2 and Section 3.2.3, respectively, are
invariant sets of the dynamical system (30) i.e.

=i( ) , 1, 2i i

Appendix C. Existence of equilibrium points in the interior of the first orthant of the phase space.

Here we investigate the properties of the polynomial 3 defined by (47). We start out by determining the signs of the coefficients =i, 0, 1, 2, 3i
in the polynomial 3 defined by (46). We first notice that the positivity of γ8 and γ12 implies that α0< 0. Moreover, since <+ 1,e

e 10
we find that

< +3 7 6 9 5 11

Then, by the constraints in (13) and the definition (17) we find that

+ < 07 9 6

from which it follows that α3< 0. By observing that

= +(1 )e2 3 1 12

we immediately conclude that α2> 0. The parameter α1 is sign-indefinite. The signs of α0, α1, α2, α3 imply that the coefficients μ and γ of the
polynomial 3 are strictly positive whereas ν is sign indefinite. Now, since µ( ; , , )e3 as e and >µ(0; , , ) 0,3 we conclude that

3 has at least one negative zero. This means that 3 has maximum two positive zeros. In order to extract more information, we study the
monotonicity property of 3. Simple calculation shows that

= +µ µ µ( ; , , ) 3(( ) )e e3
2 2

For ν≥ μ2, 3 is increasing and hence we have no positive zeros in this case. In the complementary regime ν< μ2 we get two extreme points ξ ±

given as

= ±± µ µ2
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Further analysis shows that < +0 if ν≤0, whereas < < +0 for 0< ν< μ2. We notice that >µ( ; , , ) 03 in both cases. For the extreme
point + the corresponding function value + µ( ; , , )3 may change sign. If <+ µ( ; , , ) 0,3 we will get two positive real zeros. If we take into
account the restriction < <0 1 ,e e1 we find that if <u v( ; 1, , ) 0e3 (with µ (1 )e e

1
1 and = =u µ v µ/ , /2 3), we have only one positive

zero in the interval (0, 1 )e1 whereas if >u v( ; 1, , ) 0e3 both positive zeros are located in this interval. The results of this investigation are
summarized in Table 4.
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