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A B S T R A C T

We construct a simple measure to quantify the level of market efficiency. We apply this measure
to investigate the level of market efficiency and analyze its variation over time. The main con-
tribution of the new measure is that it makes it easy to compare market efficiency across assets,
time, regions, and data frequencies. We find that markets are often efficient, but can be sig-
nificantly inefficient over longer periods. Our empirical results indicates that in many periods of
major economic events, financial markets becomes less efficient. This corroborates earlier results
on market efficiency, and simplifies interpretation and comparisons.

1. Introduction

In this paper, we derive a new measure to quantify the level of market efficiency. We use the term Adjusted Market Inefficiency
Magnitude (AMIM). The AMIM increases as market efficiency decreases, and decreases as market efficiency increases. The maximum
level of AMIM is 1, which implies a highly inefficient market. There is no lower boundary, but if the measure produces a negative
number, the market is assumed to be efficient. This makes interpretation very simple: a positive AMIM indicates an inefficient market,
and a negative AMIM indicates an efficient market. The AMIM is very easy to compute, and is computationally inexpensive. This
implies that comparisons over time, assets, asset classes, and geographical regions are carried out with ease. We show that it has
several advantages over existing measures of market efficiency, and are able to detect periods of the economy that is known for much
uncertainty about prices and values.

The Efficient Market Hypothesis (EMH) is based on the idea that an asset’s price should reflect all relevant information and that
economic agents, and thus the financial markets, are rational. The EMH was introduced in the seminal paper by Fama (1970). Market
efficiency is usually described in three levels: weak, semi-strong, and strong form. There is a vast amount of literature in the field to
test if markets are efficient in both weak form and strong form, see for example the papers by Fama (1970), Fama (1991), and
Yen and Lee (2008) for more details. The consequence of market efficiency is that future prices, and returns, are random and should
not be possible to predict. This randomness can be modeled by a random walk, which is a mathematical description of a stochastic
process where each increment is random and independent of earlier increments. That stock returns are not totally random has been
shown in several empirical papers, for example (Reinganum, 1983; De Bondt and Thaler, 1985; Jegadeesh and Titman, 1993). In this
paper we derive an estimator of the level of market efficiency. The measure, AMIM, makes it possible to quantify how efficient the
market is, and determine whether it should be classified as inefficient or efficient.

According to Lo (2004), markets are not always rational, nor optimal, but sometimes heuristic, and emotional. Lo (2004, 2017)
proposes a concept called Adaptive Market Hypothesis (AMH), and suggests that we can use evolutionary models for studying the
markets. The assumption is that financial markets are not static objects, but adapt to a changing environment via simple heuristics. If
so, market efficiency is also dynamic and can change over time. Tests of the AMH for different markets, assets, and frequencies of
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observations, has been carried out by numerous authors, see for example (Urquhart and Hudson, 2013; Urquhart and McGroarty,
2014; 2016), and the references therein. These papers largely conclude that markets are adaptive, thus market efficiency varies over
time. This variation of market efficiency in time has been studied thoroughly, see, for example the paper by Lim and Brooks (2011)
for a survey on the matter. To study the variation of market efficiency, one often applies moving windows that consists of daily,
weekly or monthly data. These windows are then applied to investigate whether prices behave according to a random walk process,
see for example (Choi, 1999; Kim and Shamsuddin, 2008). The usual focus is on answering the question: Are markets always efficient?
We enlarge the discussion of market efficiency by addressing the questions: How large is the inefficiency level, and how does it vary over
time? We find that market efficiency is indeed varying over time. The AMIM-measure captures periods with much uncertainty and
hence difficulties in determining what information should be incorporated in prices.

The papers by Ito et al. (2014, 2016) and Noda (2016) derive a measure to quantify market efficiency. The authors investigate the
variation of the efficiency level by estimating the auto-correlation in stock monthly return through a time variant auto-regressive (TV-
AR) model, which is designed to capture a set of auto-correlation coefficients in each observation in time. In particular, Noda (2016)’s
measure aim to capture the time-varying degree of market efficiency (TIME). From the return auto-correlation coefficients, TIME
captures the time-varying degree of market efficiency, and hence aims to measure the inefficiency level of the market. In this paper,
we extend the results in two main areas: first, our model does not depend on the frequency of the data in the sample, whereas the
existing models are more suitable for low frequency data. Second, we do not choose the number of autocorrelation lags in advance.
Indeed, Ito et al. (2016, 2014) and Noda (2016) model is challenging to apply to high frequency data when the number of estimations
can be up to millions each day.

The AMIM is derived using both the autocorrelation coefficients of a time series of stock returns and the confidence intervals of
these coefficients. The measure is thus robust against insignificant autocorrelation. Specifically, we start with a measure that we
denote market inefficiency magnitude (MIM), and use its confidence interval to adjust the MIM to produce AMIM. Therefore, our
measure is also a type of test of market efficiency. MIM builds upon (Noda, 2016)’s measure called time-varying degree of market
efficiency (TIME). The TIME measure has many novel contributions, but is relatively difficult to compute. Moreover, a more serious
drawback is that the denominator of TIME can be close to zero, equal to zero, or even change sign. Thus, there is a discontinuity that
is likely to occur, and which will make inference troublesome. MIM addresses both drawbacks of TIME, and offers a simple solution to
make analysis of market efficiency very simple. Our approach also provides a quicker way to find the confidence interval of the
inefficiency magnitude. The main reason for this is because our confidence intervals can easily be computed from the sample under
investigation. This is a major contribution, as comparable measures, for example the one applied in Noda (2016), relies on simu-
lations and bootstrapping. Finally, AMIM helps us to easily compare the inefficiency magnitude between different assets, across
different point in time.

We construct AMIM through 4 steps. The first step is to estimate the auto-correlation coefficients in the return series through
standard regression methods, and then standardize them. The second steps is to derive a raw measure of the market inefficiency
magnitude (MIM). The third step derives the confidence interval under the null hypothesis of efficient markets for MIM. In the final
step, we adjust MIM with its confidence interval to derive our measure AMIM. The measure is a convenient test score of market
inefficiency level; AMIM > 0 means that the market is significantly inefficient while AMIM < 0 means that we cannot reject the null
hypothesis of efficient markets. By design, the inefficiency magnitude will positively correlated with AMIM.

Second, our measure can be tested easily on samples that consist of many different assets over time by computing a unique set of
confidence intervals. This also decrease the computational burden, especially when analyzing big data. In contrast, even though TIME
is a very good measure of the inefficiency magnitude, its design implies that it can only be tested sample by sample.

Third, our measure is uniformly continuous, meaning that there are no discontinuities, in all levels of auto-correlation. This is very
important when conducting inference and interpreting the results. An inherent challenge with the measure applied in Ito et al. (2016,
2014) is that it is a fraction with sums of the autocorrelation coefficients included. Not only can the denominator be zero, but also the
summation can make positive auto-correlation canceling out negative-correlation. In this paper, we address these issues and compute
the absolute values of the auto-correlation coefficients before making any summation.

To test the performance of our measure, we estimate the AMIM for some US stock market indexes. Concerning robustness test and
compatibility with other market efficiency estimators, we apply AMIM to the same dataset studied in Noda (2016). We show that
AMIM can capture similar result in Noda (2016). We also do a simulation to check the power and the size of our test AMIM and make
some computations to show that AMIM is very reasonable in terms of producing estimates that corresponds to financial theory. The
results also show that market efficiency varies considerably over time, and reflects major economic events. This is also very im-
portant, as, according to the AMH, one can expect market efficiency to change over time. From an economic point of view, the
changes should not be completely random, but be linked to economic conditions around the world. Indeed, for the sample under
consideration in this paper, we can disentangle major economic events from the movement in the AMIM. AMIM also provides the
main results of Noda (2016) for the Japanese markets.

2. Model and estimation methods

According to Fama (1970) stock prices should, under the Efficient Market Hypothesis (EMH), reflect all relevant information in
the market. Therefore, if we are in period t, the return in the next period +t 1 should not be predictable. Hence, following the EMH,
an auto-regressive process AR(q) of returns (rt) on its own lags cannot explain the dynamics of returns over time. For example, if EMH
holds, then the AR(q) model
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= + + + + +r r r rt t t q t q t1 1 2 2 (1)

should have coefficients (β1, β2 …, , βq) that are all close to zero, or at least insignificantly different to zero. If the EMH does not hold,
the β coefficients are (significantly) non-zero. Lo (2004) used the first auto-regressive coefficient to characterize the inefficiency level.
If there are more lags with significant coefficients, then there is even more evidence against a strongly efficient market. Our aim is to
construct a measure that takes the auto-correlation coefficients into account. The Adjusted Market Inefficiency Magnitude, AMIMt, is
constructed following four steps:

2.1. Normalizing the auto-correlation coefficients (Step 1)

Let ^ be a column vector which contains the estimated coefficients ( ^ ,1
^
2 …, , ^ )q from Eq. (1). ^ will be asymptotically

distributed as follows:

N^ ( , ). (2)

Here β is the unknown true beta vector, i.e. the vector of auto-correlation coefficients. Σ is the asymptotic co-variance matrix of the
estimated ^ vector, which can be separated into two triangular matrices by Cholesky decomposition as: = LL . The estimated
coefficients have different standard errors and can be correlated. Therefore, we standardize the ^ vector multiplying it by the inverse
of the triangular matrix L. Thus, the standardized beta is given as:

= L^ ^.
standard 1 (3)

Under the null hypothesis that market is efficient ( = 0), then ^standard
should be normally distributed as follows:

N I^ (0, )
standard

(4)

Where I is an identity matrix. Therefore, the normalizing process in Eq. (3) helps us in two ways. First, by multiplying L ^,1 it makes

each component in ^standard
independent. Second, the standardized coefficients are very convenient for testing any measures con-

structed from ^standard
.

2.2. The magnitude of market inefficiency (Step 2)

In this section, we construct the unadjusted, or raw, measure of market inefficiency. To calculate the inefficiency level, we first
construct the Magnitude Market Inefficiency, MIMt, as follows:

=
+

=

=

MIM
| ^ |

1 | ^ |
t

j
q

j t
standard

j
q

j t
standard

1 ,

1 , (5)

As we are interested in violations of the assumption that the auto-regressive coefficients are zero, we use the absolute value to

eliminate the sign effect. MIMt is the Market Inefficiency Magnitude at time t whereas ^
j t
standard
, is the jth auto-correlation coefficient in

Eq. (1) after standardization. Following the above construction, the auto-correlation = | ^ |j
q

j t
standard

1 , is positively related to the Market
Inefficiency Magnitude. The variation of MIMt is smooth from 0 (very efficient market) to almost 1 (inefficient market). So when
comparing two stocks, the one having a higher MIMt will be more affected by the past than the one having lower MIMt.

Noda (2016) has the similar approach of using the auto-regressive coefficients to compute the Market Inefficiency Magnitude,
though different formula for market efficiency, TIMEt, is applied. TIMEt is given as:

= =

=

TIME
^

1 ^t
j
q

j t

j
q

j t

1 ,

1 , (6)

Eq. (6) uses the non-standardized coefficients from Eq. (1). Hence, it will be inconsistent when =
^ [0, 1]j

q
j t1 , . Indeed (Ito et al.,

2014)’s ratio will converge to ∞ when =
^

j
q

j t1 , is around 1. An interesting implication of this is that sometimes markets are oddly

more efficient when the auto-correlation level is high (i.e. ==
^ 2j

q
j t1 , ) than when the auto-correlation level is low (i.e.

==
^ 0.6j

q
j t1 , ). To see this, we get =TIME 0.667,t

2
1 ( 2) indicating a level of market efficiency of 0.667. In a more efficient case,

for example when the sum of auto-correlation coefficients equals 0.6, the TIME measure is = =TIME 1.5t
0.6

1 0.6 which indicates a
less efficient market even though the sum of autocorrelation coefficients having a very different meaning.

Although a simple example, the consequence is that TIMEt cannot be used for inference in this case. Furthermore, a large-scale
analysis using TIMEt will need to be accompanied by an individual check of each case to make sure that the result makes economic
sense. Furthermore, Eq. (6) sums all the raw coefficients. This can also make the measure inconsistent. For example, if we have two
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auto-correlation coefficients, = =0.5, 0.5,1 2 the Noda (2016)’s measure will equal to zero which indicates an efficient market.

Therefore, we take the absolute value of ^
j t
standard
, before sum up all the coefficients. This process will help to avoid the eliminating

effect between positive and negative coefficients.
Moreover, we use the standardized ^ coefficients before compute MIMt. This step will be crucial to compute the confidence

interval in the following step. By standardizing the auto-correlation coefficients, we can derive a unique set of confidence intervals for
MIM under the null hypothesis of efficient markets, thus reducing the computational burden.

Fig. 1 illustrates the difference of the two methods of computing the market efficiency level where the level of auto correlation is

=
^

j
q

j t1 , in Noda (2016) and = | ^ |j
q

j t
standard

1 , in our method.
Second, we use a non-overlapping window method to compute the auto-correlation coefficients of each time interval1. Ito et al.

(2014, 2016) and Noda (2016) used a time-varying auto-regressive model (TV-AR) to compute the auto-correlation coefficients. The
latter model will give a set of coefficients for each observation in time. For example, if we have 1 observation/second then Ito et al.
(2014, 2016)’s model will have 3600 · q coefficients for each hour, where q is a constant number of lags. In brief, the total number of
coefficients is equal to the number of observation times q. Thus, this can be computationally intensive when the number of ob-
servations increases, in particular using high frequency data.

2.3. Building confidence intervals (step 3)

The Market Inefficiency Magnitude is by construction between 0 and 1. However, the raw value of the MIMt can give us a false
impression of the market efficiency. Due to an absolute process to eliminate the sign effect in step 2, the MIMt will be, by construction,
positively correlated with the number of lags in the Eq. (1). Even for markets that are very efficient, it is likely that MIMt can be very
high. This is undesirable.

To correct for this, we compute the confidence interval of MIMt. To get the confidence interval under the null hypothesis of

efficient markets ( =^ 0j t
standard
, ), we can either use convergence of random variables, or simulations. The former approach is quite

tricky with a function as MIM while the latter is more reasonable.

Because all ^
j t
standard
, are standard normal, knowing the number of lags in Eq. (1), we can identify the confidence interval of MIMt

under the null hypothesis through simulation. We first simulate 100 000 observations for each ^
j t
standard
, following a standard normal

Fig. 1. Market Inefficiency Magnitude MIMt with auto-correlation level =
^

j
q

j t1 , (Noda (2016) methods), and = | ^ |j
q

j t
standard

1 , (our methods).

1 In the empirical part, we also apply the rolling window methods and having the same results qualitatively.
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distribution. Based on ^ ,j t
standard
, we compute MIM. For each number of lags we have 100 000 observations of MIM under the null

hypothesis of market efficiency. After that, we find the 95th percentile of MIM. Because MIM is only varying in [0, 1), the interval
between this 95th percentile and 0 is the 95% confidence interval of MIM under the null hypothesis. This confidence interval is thus
unique for each number of lags. This again gives us a table of confidence intervals (CI) which can be used in a different context. See
Table 3 in the appendix for details of the computation of the confidence intervals.

2.4. The adjusted market inefficiency magnitude (step 4)

In this section, we derive the adjusted market inefficiency magnitude, AMIM. From the previous step, we know the 95% con-
fidence interval of MIMt under the null hypothesis of efficient markets. First, we compute the range of the confidence interval,
basically the distance between zero and the 95% quantile of MIM under the null hypothesis of market efficiency. We then adjust the
MIM by first subtracting the range of the CI from the MIM; MIM R ,CI then we divide this distance between MIMt and RCI with the
distance between the theoretical maximum value of MIM, which is one, and RCI. Mathematically, this is given as:

=AMIM MIM R
R1

.t
t CI

CI (7)

Because MIMt < 1, the estimates of AMIMt and RCI are always less than one as well. MIMt is also always greater or equal to zero,
which implies that AMIM can be negative. In fact, whenever AMIM > 0 the market is inefficient, whereas when AMIM < 0 the market
is efficient. Fig. 2 gives an illustration of AMIM formula. Loosely speaking, AMIM only stresses on the inefficient part of MIM, which
passes the null hypothesis CI. The AMIMt is thus more reliable than MIMt because it penalizes the mechanical variation of MIMt due to

high number of lags in ^
j t
standard
, . We divide MIM R( )CI by the difference between one and RCI to give a common ground for

comparison between stocks. Indeed, different stocks will have different MIM values with again different RCI’s at different point in
time. Adjusting for RCI gives us the same comparison criteria for all assets. By this construction when AMIMt < 0, we cannot reject the
null hypothesis that markets are efficient. If AMIMt > 0 we can say, markets are significantly inefficient. Markets are more inefficient
when AMIMt increases.

3. The size and power of AMIM

To investigate the size and power of AMIM, we carry out a Monte Carlo simulation. We simulate an AR(1) model for returns where
ρ is the auto-correlation coefficient. We set the return innovation as normally distributed with mean 0.03 % a day and a daily
standard deviation of 1 %. This is the typical long-run mean and standard deviation for the S&P 500 index. We set ρ to be (0, ± 0.3,

Fig. 2. Illustration of Adjusted Market Inefficiency Magnitude Calculation ( =AMIM MIM RCI
RCI1 ). The curvature line is the upper bound of 95%

confidence interval of MIM under the null hypothesis of efficient markets.
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± 0.5, ± 0.7, ± 0.9) respectively. With ρ = 0, we have the efficient market case. For this case, we expect AMIM to be smaller or
equal 0. For other cases ρ ≠ 0, we expect AMIM to be greater than 0. For each ρ value, we simulate 100 000 batches. Each batch
consists 200 observations. Each batch gives one value of AMIM. We end up with 100 000 AMIM values for each ρ value. Table 1 gives
the estimates of the simulation. Here, N is the number of observations of AMIM, and Q is the quantile of the AMIM distribution.

In the Efficient Market case = 0, hence AMIM is supposed to be smaller than, or equal to zero. 90% of our simulated AMIM is
smaller than 0.052. Subsequently, 95% AMIM is smaller than 0.127. These results show that in the efficient market case, we do not
make a huge mistake with AMIM. Even in case we make a mistake, the error is not big because AMIM is wrongly positive, but it is
small and very close to zero. Therefore, if we wrongly conclude that markets are inefficient instead of efficient, the wrong inefficient
level is also small which makes less harm.

In the inefficient market case, for example = 0.3, AMIM is supposed to be greater than zero. 99% of our simulated AMIM is
greater than 0. The logic goes so on with different ρ values. These results show that when market is not efficient, the AMIM measure
makes very little to no mistake of discovering it. In summary our AMIM measure performs quite well in simulation to detect the size
and power of the test. Of course, our drawback is not considering all the available alternative hypotheses. Such a full analysis is out of
scope of this research and is worth investigating in future research.

4. Data

To have a better comparison with Noda (2016)’s measure, we use the same dataset as they applied. The dataset is price levels for
the Tokyo Stock Price Index (TOPIX) and the Tokyo Stock Exchange Second Section Stock Price Index (TSE2). Stocks in TOPIX and
TSE2 indexes are different. The TOPIX index has a much higher market capitalization and trading volume than TSE2. The data source
is Bloomberg. We compute the log return rt from the daily prices, pt, thus =r p plog( / )t t t 1 .

We also investigate the efficiency level of US stock markets for both small stocks and large stocks. We use S&P 500 index as a
proxy for large stocks. For US small stocks, we first sort stocks belonging to AMEX, NYSE, NASDAQ exchanges from CRSP database
into decile portfolios based on market capitalization, then taking the value weighted return of the first portfolio as an index portfolio
for small stocks. We call this portfolio as CAP1.2

We use these datasets to compute AMIM. The frequency of the data is daily, and cover the period from 1962 through 2017. We
compute the auto-correlation coefficients ( ^) for each index in each year using all daily return. To identify the number of lags of each
time interval, we use Akaike information criterion (AIC)3 We required that each year having at least 200 observations to run the
regression. For each year, the model estimates one Market Inefficiency Magnitude, MIMt, and one Adjusted Market Inefficiency
Magnitude, AMIMt.

We also estimate AMIM using rolling-window data. In detail, we estimate AMIM daily using one year rolling-window data. Then
every day we will have one value of AMIM.

5. Empirical results

Fig. 3 shows the value of MIM over year using non-overlapping window of TOPIX and TSE2. We can spot a clear fluctuation of
MIM over time. However, it is hard to say that TOPIX is more efficient than TSE2 or the other way around. It is also hard to say which
time the markets are more efficient than the other is. As discussed above, at each point in time with each asset we have a different
confidence interval value of MIM. Therefore, we do not have a same base for comparison. Indeed, we can have a high MIM value but

Table 1
Simulation of AMIM. We simulate an AR(1) model for returns where ρ is the auto-correlation coefficient. We set the return innovation as normal
distributed with mean 0.03 % a day and a daily standard deviation of 1 %. For each ρ value, we simulate 100 000 batches. Each batch consists 200
observations. Each batch gives 1 value of AMIM. N is number of observations of AMIM. Q is the quantile of the AMIM distribution.

ρ N Q0.01 Q0.05 Q0.1 Q0.25 Q0.5 Q0.75 Q0.9 Q0.95 Q0.99
0 100 000 −0.22 −0.143 −0.061 0 0 0 0.052 0.127 0.235
0.3 100 000 0.104 0.206 0.251 0.316 0.392 0.467 0.525 0.555 0.603
0.5 100 000 0.296 0.359 0.391 0.445 0.506 0.561 0.604 0.627 0.667
0.7 100 000 0.345 0.402 0.432 0.481 0.534 0.582 0.622 0.644 0.681
0.9 100 000 0.322 0.38 0.41 0.458 0.51 0.558 0.599 0.621 0.66
−0.3 100 000 0.125 0.217 0.26 0.324 0.399 0.474 0.534 0.563 0.609
−0.5 100 000 0.297 0.359 0.391 0.446 0.506 0.562 0.605 0.629 0.671
−0.7 100 000 0.341 0.399 0.429 0.48 0.533 0.582 0.622 0.644 0.683
−0.9 100 000 0.319 0.377 0.407 0.457 0.509 0.558 0.599 0.622 0.661

2 The sorting procedure is done through Wharton Research Data Service called “CRSP Stock File Indexes - Daily Index Built on Market
Capitalization” at: https://wrds-web.wharton.upenn.edu/wrds/ds/crsp/indexes_a/mktindex/cap_d.cfm?navId=124

3 AMIM is very flexible in choosing the number of lags in contrast with a fixed number of lags setting in TV-AR methods. AMIM does not depend
only on AIC or any information criteria. With our construction, it is possible to apply other criteria to select the number of lags in the first step. In our
paper, we only use AIC as a decision criterion, because the focus is more on introducing our measure AMIM, how to use it, and its feature to reflect
major economic events.
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being not significant and vice versa a low MIM value but showing a significant inefficiency level.
AMIM solve this issue by adjusting MIM with the confidence interval. Now it is enough to compare with the same base line of zero;

remember that AMIM > 0 implies a significant inefficiency level, and AMIMt < 0 implies an efficient market. Fig. 4 shows the
evolution of AMIM for TOPIX, TSE2, S&P 500, and CAP1. For the Japan market, we can also confirm the major empirical findings of
Noda (2016) with our measure. These are: i) first, market efficiency changes over time with both TOPIX and TSE2; ii) TOPIX has a
lower and less volatile inefficiency level (mean (μ) =0.08, standard deviation (σ) = 0.15) than TSE2 (μ = 0.47, σ = 0.20); iii) both
TOPIX and TSE2 inefficiency level significantly decreases after 2010. Hence, both markets becomes more efficient after 2010. Table 2
gives the summary statistics of AMIM of the indexes.

For the US market, we find a similar difference in AMIM between S&P 500 and CAP1. The small stock index has a higher mean
( =µ 0.38), a higher standard deviation ( = 0.22) than the ones of S&P 500 ( = =µ 0.09, 0.17). So for both US and Japan markets,
large stocks indexes (TOPIX, S&P 500) are more likely efficient. Both TOPIX and S&P 500 have a low median near zero. This means
that 50% of time, these indexes are efficient.

In addition, our measure also offers an additional feature. AMIM reflects very well important economic events, for example, it
increases in periods of economic turbulence or crisis, then decreases after such periods. For Japan market, we can see this pattern
with both TOPIX and TSE2 through the Oil-Crisis (1973–74), the bursting of Japanese asset bubble (1991–92), the Asian financial
crisis (1997–99), and the financial crisis (2008). AMIM also decreases in 2013, which reflects the period of quantitative easing.

For US market, we catch the similar pattern. AMIM of both S&P 500 and CAP1 raises in the Oil-Crisis (1973–74) then decreases.
AMIM raises again in the 1987 crisis and in the 2001 dot-com bubble burst. In these two crises (1987, 2001), AMIM of small stocks
(CAP1) raises more than AMIM of large stock (S&P 500). These two crises could hit small stocks harder than large stocks. However in
the financial crisis 2008, AMIM of large stocks (S&P 500) experienced a sharp increase and being almost as high as AMIM of CAP1.
This can be due to the fact that a lot of large stocks (especially financial industry stocks) was smashed very hard during that crisis.

For a robustness check, we also estimate AMIM using rolling window. In detail, we estimate AMIM daily using a one year rolling
window of data. So we will have one AMIM value per day. The results of the overlapping window estimates corroborates our earlier
results. The summary statistics of AMIM using rolling window is in Table 4 in the appendix. For a clearer illustration of the trend of
AMIM, we calculate a 100-day Moving Average (MA) of AMIM and plot it below in Fig. 5. As the figures illustrates, the S&P 500-index
indicates an efficient market most of the time from 1980 through 2018, but with some periods of inefficiency. For example, during
the oil-crisis in the early 70-ies, and during the more recent financial crisis of 2008-09, the market is inefficient. Smaller stocks are,
not surprisingly, less efficient than large stocks, only being significantly efficient over small periods of time.

The fact that AMIM increases in times of crisis, and then decreases afterwards, confirms the results of Lo (2004, 2017) on the
hypothesis of adaptive markets; financial markets are not always efficient, nor always inefficient but changing overtime. These results
also indicate that our measure is a valid measure of the level of market efficiency.

One caveat of our study is that we do not establish the causal effect between different factors (i.e. inflation, interest rates,
unemployment rates, etc.) to market efficiency. Another caveat is that we do not have a full horse race between all efficiency
measures in all markets. We recognize them as interesting subjects for further research. We herein focus more on developing AMIM,
explaining how to use it, and showing its important features. Hence, we consider AMIM as a good alternative measure of efficiency
that is easy to use, light in computation, alongside with other measures such as the variance ratio, TIME, etc.

6. Conclusion

This study derives a measure for the level of market efficiency, named Adjusted Market Inefficiency Magnitude AMIM. The
measure is easy to be applied and computed via four steps. AMIM improves two challenges of the measures derived in Noda (2016).
First, AMIM demands less computational effort and can easily be interpreted. Second, AMIM also provides a better foundation for

Fig. 3. MIM of TOPIX and TSE2 indexes. MIM is estimated with non-overlapping window. The solid line is MIM value while the dotted line is the
95% confidence interval under the null hypothesis of market efficiency.
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Fig. 4. Adjusted Market Inefficiency Magnitude AMIM, using non-overlapping window, of TOPIX, TSE2, S&P 500, and CAP1. CAP1 is the portfolio
containing 10% of small stocks on NYSE, AMEX, and NASDAQ exchanges. The data range is from 1962 to 2017.
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comparison the inefficiency level between different assets in different time. Applying our measure to the same dataset as in
Noda (2016), we can confirm the major findings of Noda (2016)’s work. In addition, our measure also reflects very well major
economic events in the US and Japanese economies. These empirical results shows that market efficiency is not constant over time,
assets, or regions, which corroborates the Adaptive Market Hypothesis of Lo (2004, 2017).

Fig. 5. Moving average (MA) 100-day of AMIM of TOPIX and TSE2, S&P 500, and CAP1. AMIM is estimated daily using a 1 year rolling window
data. CAP1 is the portfolio containing 10% of small stocks on NYSE, AMEX, and NASDAQ exchanges. The data range is from 1962 to 2017.
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Appendix A. Confidence Interval of MIM under the null hypothesis of Market Efficiency.

Appendix B. Summary statistics of AMIM using rolling window
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