
Submitted 4 December 2019
Accepted 16 February 2020
Published 16 March 2020

Corresponding authors
Artem Nedoluzhko,
artem.nedoluzhko@nord.no
Jorge M.O. Fernandes,
jorge.m.fernandes@nord.no

Academic editor
Yuriy Orlov

Additional Information and
Declarations can be found on
page 7

DOI 10.7717/peerj.8757

Copyright
2020 Nedoluzhko et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

CircParser: a novel streamlined pipeline
for circular RNA structure and host gene
prediction in non-model organisms
Artem Nedoluzhko1,*, Fedor Sharko2,3,*, Md. Golam Rbbani1, Anton Teslyuk2,
Ioannis Konstantinidis1 and Jorge M.O. Fernandes1

1 Faculty of Biosciences and Aquaculture, Nord University, Bodø, Bodø, Norway
2Complex of NBICS Technologies, National Research Centre ‘‘Kurchatov Institute’’, Moscow, Russia
3 Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow,
Russia, Russia

*These authors contributed equally to this work.

ABSTRACT
Circular RNAs (circRNAs) are long noncoding RNAs that play a significant role in
various biological processes, including embryonic development and stress responses.
These regulatory molecules can modulate microRNA activity and are involved in
different molecular pathways as indirect regulators of gene expression. Thousands
of circRNAs have been described in diverse taxa due to the recent advances in
high throughput sequencing technologies, which led to a huge variety of total RNA
sequencing being publicly available. A number of circRNA de novo and host gene
prediction tools are available to date, but their ability to accurately predict circRNA
host genes is limited in the case of low-quality genome assemblies or annotations. Here,
we present CircParser, a simple and fast Unix/Linux pipeline that uses the outputs from
the most common circular RNAs in silico prediction tools (CIRI, CIRI2, CircExplorer2,
find_circ, and circFinder) to annotate circular RNAs, assigning presumptive host genes
from local or public databases such as National Center for Biotechnology Information
(NCBI). Also, this pipeline can discriminate circular RNAs based on their structural
components (exonic, intronic, exon-intronic or intergenic) using a genome annotation
file.
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INTRODUCTION
De novo genome sequencing has become a routine procedure, due to a decrease
in sequencing costs, diversification of high-throughput sequencing platforms and
improvement of bioinformatic tools (Ekblom &Wolf, 2014). However, the quality of
non-model species genome assemblies and, as a result, their annotations are often of
unsatisfactory quality, because of (1) repetitive sequences, including transposons, and
short sequence repeats (SSRs); (2) gene and genome duplications; (3) single-nucleotide
polymorphisms (SNPs) and genome rearrangements (Lien et al., 2016; Negrisolo et al.,
2010; Rodriguez & Arkhipova, 2018; Yahav & Privman, 2019).
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CircRNAs are relatively poorly studied members of the non-coding RNA family. These
unique single-stranded molecules are generated through back-splicing of pre-mRNAs in
a wide range of eukaryotic and prokaryotic taxa (Danan et al., 2012; Holdt, Kohlmaier &
Teupser, 2018), and even viruses (Huang et al., 2019). CircRNAs play a significant role in
the regulation of the molecular pathways not only through modulating of microRNA and
protein activity, but also by the affecting transcription or splicing (Holdt, Kohlmaier &
Teupser, 2018).

These regulatory molecules have been known for decades, but the development of
high-throughput DNA analysis methods lead to a rapid increase in the number of studies
related to these type of non-coding RNAs. This, in turn, resulted in a requirement for
additional circRNA prediction tools. The miARma-Seq (Andres-Leon & Rojas, 2019)
with CIRI predictor (Gao, Wang & Zhao, 2015), circRNA_finder (Westholm et al., 2014),
find_circ (Memczak et al., 2013), CIRCexplorer2 (Zhang et al., 2016), and other tools are
very popular today for prediction of circRNAs sequences based on transcriptomic data
(Hansen et al., 2016; Szabo & Salzman, 2016), despite significant output differences. Several
circRNA predictors (CIRI, CIRI2, and CircExplorer2) can use genome annotation files
for host gene prediction but they are definitely useful only for well-annotated genomes,
and even, such as CircView (Feng et al., 2018) or circMeta (Chen et al., 2019), have been
designed specifically for them.

Here we describe CircParser, a novel and easy to use Unix/Linux pipeline for prediction
of host gene circular RNAs using the blastn program and the freely available bedtools
software (Quinlan & Hall, 2010). CircParser can be also implemented as a part of pipelines
for de novo prediction of circular RNA because of its versatile output files. CircParser is
most useful for circRNA host gene prediction analysis in whole transcriptomic datasets for
low-quality assembled, as well as poorly annotated genomes. It sorts and joins overlapped
circular RNAs sequences and predicts host gene name for overrepresented circRNAs,
while identifying their structural components. We demonstrate the prediction capacity of
CircParser on a recently published transcriptomic data set from the wild and domesticated
females of Nile tilapia (Oreochromis niloticus) fast muscle (Konstantinidis et al., under
review) using the five most popular circRNAs in silico prediction tools—CIRI, CIRI2,
CircExplorer2, find_circ, and circFinder.

MATERIALS & METHODS
The results of Illumina sequencing of twelve ribosomal RNA depleted RNA-seq
libraries reads have been downloaded from Gene Expression Omnibus (accession
number GSE135811). The DNA reads were filtered by quality (phred > 20) and
library adapters were trimmed using Cutadapt software (version 1.12) (Marcel,
2011). The Nile tilapia reference genome (ASM185804v2) and its gene-annotation
(ref_O_niloticus_UMD_NMBU_top_level.gff3) were used in the following analysis.

CircRNA prediction was performed for each ribosomal RNA depleted RNA-seq library
using the circRNA in silico prediction tools (i) CIRI (Gao, Wang & Zhao, 2015) that is
linked to miARma-Seq pipeline (Andres-Leon & Rojas, 2019), (ii) CIRI2 (Gao, Zhang
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Table 1 CircParser.pl usage. Required and optional parameters.

Parameter Parameter description

-h, –help Show this help message and exit
-b CircRNA input file (required)
-g, –genome Reference genome file (required)
-t, –tax NCBI TaxID (optional)
-a Genome annotation file, gff/gff3 file (optional)
–np Prohibition for coordinate merging (optional)
-c, –ciri Input circRNA from CIRI|CIRI2 in silico predictors, (default: input from CircExplorer2,

find_circ, circFinder, and BED files)
–threads Number of threads (CPUs) for BLAST search (optional)
-v, –version Current CircParser version

& Zhao, 2018), (iii) CircExplorer2 (Zhang et al., 2016), (iv) find_circ (Memczak et al.,
2013), and (v) circFinder (Westholm et al., 2014). Prediction output files from all libraries
were converted separately to coordinate file format. After sorting, these coordinate files
(from different prediction algorithms, but for each library) were merged using bedtools
multiinter (Quinlan & Hall, 2010) to determine a joint prediction output from CIRI,
CIRI2, CircExplorer2, find_circ, and circFinder (see Table S1).

We developed CircParser, as a streamlined pipeline, which makes use output files from
the most popular circRNAs in silico predictors. CircParser works under Linux/Unix system
and its parameters are presented in Table 1.
Usage: perl CircParser.pl [-h] -b INPUT_FILE—genome REF_GENOME

CircParser can merge overlapped circRNAs coordinates from circRNAs predictor
outputs using bedtools merge (Quinlan & Hall, 2010) at the first stage of the pipeline; this
ensures that they are related to the same host gene and creates separate coordinates files
(bed file) with overlapped circRNAs coordinates. In addition, it is optionally possible to
merge circRNA without overlapping coordinates but located in the contiguous genome
locus using the special option.

The separate coordinate files (bed file) are converted to fasta files using bedtools getfasta
(Quinlan & Hall, 2010). Finally, CircParser uses fasta files for host gene prediction using
a NCBI database (the longest stage of pipeline) for circRNAs (Fig. 1A). CircParser works
by default with the NCBI online database, but it can optionally use a custom database
or a pre-compiled NCBI database installed locally. CircParser includes the following
blast parameters, which are necessary for host gene prediction, and assigns sequences
to the respective circRNA: -perc_identity 90; -max_target_seqs 1000; -max_hsps 1; the
maximum number of aligned sequences to keep is 1000; the minimum percent identity of
matches to report is 90%. CircParser also filters out non-informative blast results, such as
‘‘uncharacterized’’, ‘‘clone’’, ‘‘linkage group’’ and others from the output table.

CircParser can also discriminate circular RNAs by their structural components: exonic,
intronic, exon-intronic or intergenic using genome annotation gff/gff3 file (-a parameter).
In this case, the user should avoid circRNAs coordinate merging (using –np parameter)
during the pipeline implementation for correct results (Fig. 1B).
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Figure 1 An overview of the CircParser pipeline. (A) The pipeline includes merging of the circRNAs
with overlapping genome coordinates and presents the number of different circRNAs originating from
one host gene. (B) CircParser includes the prediction of circRNA structural components using a genome
annotation gff/gff3 file.

Full-size DOI: 10.7717/peerj.8757/fig-1

Usage: perl CircParser.pl -np -b INPUT_FILE –genome REF_GENOME -a GENOME.gff
However, poor quality of annotation file can lead to errors in the circRNAs structure

analysis.
The Perl implementation of CircParser is available at https://github.com/SharkoTools/

CircParser.

RESULTS
We applied CircParser to twelve merged coordinate files that contained information about
joint coordinates for circRNAs predicted using CircExplorer2, miARma-Seq (with CIRI
predictor), CIRI2, find_circ, and circFinder. The five different algorithms predicted on
average ∼131 (CircExplorer2); ∼501 (CIRI); ∼706 (CIRI2); ∼257 (find_circ), and ∼398
(circFinder) circRNAs per sample, with an insignificant overlap ∼37 circRNAs (Fig. 2;
Table S1), similarly to previously published comparisons (Hansen, 2018; Hansen et al.,
2016).

To access the host gene of circular RNAs and to reduce false-positive rates, only
overlapping circRNAs (Fig. 2) were used in CircParser. This pipeline allows the elimination
of non-informative outputs (e.g., contains only chromosome/contig name, number of
uncharacterized loci, or name of BAC clone, and etc.), while keeping more the relevant
blast results and retrieving the likely host gene name for the circular RNAs; in the case of
impossibility to find identical sequences in the database, this tool mark these sequences as
NOT ASSIGNED).
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Figure 2 Number of circular RNAs that have been predicted by CIRI, CIRI2, CircExplorer2, find_circ,
circFinder, and that are common between all prediction algorithms.

Full-size DOI: 10.7717/peerj.8757/fig-2

DISCUSSION
The CircParser results also allow us to determine the number of circRNA types from one
host gene and their minimum and maximum size in base pairs (bp). We showed that our
algorithmdetected presumable host gene names for the vastmajority of predicted circRNAs.
Moreover, most of them were related to muscle functions (e.g., calcium/calmodulin-
dependent protein kinase, troponin T3, myocyte-specific enhancer factor 2C, and others), and
immune-related genes (MHC class IA antigen), which were consistently found among
different individuals (Table S2), despite the relatively low coverage for circRNAs analysis of
the sequencing data used (Mahmoudi & Cairns, 2019). An example of circRNA structure
analysis for CIRI, CIRI2, CircExplorer2, find_circ, and circFinder outputs is presented in
Supplementary Table S3.

To estimate the capacity of our pipeline we compared a number of host genes that were
predicted by CircExplorer2 and CircParser (CircExplorer2 outputs were used as input files)
for the same O. niloticus fast muscle datasets used earlier. As a result, CircParser shows
greater efficiency for Nile tilapia, improving the number of predicted host genes up to
two-fold (Fig. 3).

Another equally important aspect of CircParser concerned the accuracy of this pipeline.
The most well-annotated reference genome of zebrafish (assembly GRCz11) and zebrafish
muscle transcriptomic dataset (ERR145655) were used for accuracy estimation, i.e., the
agreement between the annotation file and CircParser output. We showed that in this case,
CircParser host gene prediction was confirmed in 82.4% cases.
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Figure 3 CircParser capacity: number of host genes that were predicted by CircExplorer2 and Circ-
Parser.

Full-size DOI: 10.7717/peerj.8757/fig-3

CONCLUSIONS
Thus, we conclude that CircParser represents a reproducible workflow that enables
researchers to effectively predict the host genes for circular RNAs, even in non-model
organisms with poorly annotated genome assemblies.
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