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A B S T R A C T

Lumpfish (Cyclopterus lumpus) are widely applied as biological delousers in open net-pen farming of Atlantic
salmon. As a species new to farming it is necessary to obtain a comprehensive understanding of the capacity of
lumpfish to utilize plant derived feed ingredients. A feeding trial lasting for 54 days was conducted to investigate
the effects of replacing fishmeal (FM) with a mix of soy protein concentrate (SPC) and pea protein concentrate
(PPC) on growth, body chemical composition, and fast muscle fiber cellularity in juvenile lumpfish. Four iso-
nitrogenous and isoenergetic diets (52 % crude protein and 14 % crude lipid) were formulated; a FM based diet
was used as control (CTRL), and three experimental diets containing SPC and PPC (equal proportions of 1:1),
replacing FM on weight basis at 25 % (PP25) 50 % (PP50) and 75 % (PP75). The fish grew from approximately
6.9 g to an average weight of 40.2 g in 54 days. Fish fed PP50 had significantly higher body weight, length and
height compared to the other dietary groups. The whole body crude protein content of fish fed PP50 was sig-
nificantly higher compared to the CTRL diet, while crude lipids were lower than those on CTRL and PP25 diets.
Ash and dry matter did not differ among groups. Probability density functions showed no differences in fast
muscle fiber size distributions amongst feeding groups. A higher percentage of smaller fibers in all feeding
groups indicated hyperplasia was the dominant mechanism of muscle growth during the experimental period.
These results suggest that a mixture of SPC and PPC can replace up to 50 % of FM in diets for juvenile lumpfish
without any adverse effects on growth, chemical composition and fast muscle fiber cellularity.

1. Introduction

Two species of caligid copepods, salmon louse (Lepoptherius sal-
monis, Krøyer) and sea louse (Caligus elongatus) are a significant threat
to farmed and wild Atlantic salmon (Salmo salar). Challenges associated
with salmon lice have been reported since 1970 in Norway (Heuch
et al., 2005), and have become the main issue for growth and expansion
of Norwegian salmon production. Chemotherapeutants, such as bath
treatments (hydrogen peroxide and organophosphates) or in-feed
treatments (emamectin benzoate), have been used heavily to control
these ectoparasites (Burridge et al., 2010). The negative impacts im-
posed by chemical treatments has driven the industry to use a wider
selection of preventive and environmentally friendly alternatives
(Powell et al., 2018). Consequently, use of alternative control strategies

such as physical barriers, non-chemical baths and sea louse predators
(cleaner fish) are increasing (McEwan et al., 2019).

Lumpfish, also known as lumpsucker (Cyclopterus lumpus), have
little economic value as a food species other than use as a source of roe
which is processed and sold as a substitute for caviar in fisheries across
the North Atlantic regions (Davenport, 1985). Interest in the commer-
cial production of farmed lumpfish in Norway began in 2011 (Imsland
et al., 2014a), as a alternative solution to the sea-lice infestation issue.
Lumpfish display cleaning symbiosis; where organisms clean co-
operative host organisms, partly feeding on ectoparasites, diseased and
injured tissues, and unwanted food particles (Feder, 1966). Studies
performed to date have confirmed that lumpfish can be efficient de-
lousers, reducing the mature female lice levels by 93%–97% when co-
cultured with farmed salmon, at a stocking density of 10%–15%
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(Imsland et al., 2014a, b; Imsland et al., 2014c). The commercial use of
lumpfish for delousing has resulted in a rapid increase in their pro-
duction, reaching 28.9 million fish in 2018 (Norwegian Directorate of
Fisheries, 2018) making lumpfish the second largest aquaculture spe-
cies in Norway. Despite increased production and usage, there is lack of
published literature investigating their capacity to utilize commercially
and commonly used terrestrial feed ingredients in aquafeeds.

The fish feed industry is increasing the use of plant derived in-
gredients (Aas et al., 2019; Ytrestøyl et al., 2015) and SPC have come to
dominate feeds for Atlantic salmon, accounting for 19 % of the total
feed ingredients used (Aas et al., 2019). PPC has also shown great po-
tential as a feed ingredient for carnivorous species (Øverland et al.,
2009; Zhang et al., 2012), and is currently used in limited amounts (1.3
%) in Norwegian aquafeeds (Aas et al., 2019). Incorporating plant
proteins in fish feeds makes them a feasible, sustainable and cost-ef-
fective substitute to FM (Tacon and Metian, 2008). However, complete
replacement of FM is still a challenge due to the imbalanced essential
amino acid profile, poor palatability and presence of anti-nutritional
factors (ANF’s) in plant ingredients (Colburn et al., 2012; Drew et al.,
2007; Urbano et al., 2000). One way to overcome the limitations of
individual ingredients is to use a mixture of plant protein containing
ingredients.

Even though lumpfish are not farmed for food, studies conducted on
their muscle growth and development are crucial to elucidate feed ef-
fects. In most teleost fish species striated muscle predominants, are
composed mainly of fast muscle fibers constituting more than 70 % of
the total body mass (Sänger and Stoiber, 2001). Thus, changes in body
mass are largely attributable to changes in fast muscle fiber growth,
which are a consequence of variations in muscle hypertrophy (expan-
sion in fiber diameter) and/or hyperplasia (recruitment of new muscle
fibers) (Alami-Durante et al., 2010a). Muscle cellularity, the relative
contributions of hypertrophy and hyperplasia to muscle growth, is af-
fected by several factors such as egg incubation temperature (Johnston
et al., 2000) and length of the photoperiod (Johnston et al., 2003).
Protein is the basic component of fish feed and its level has been re-
ported to influence fish muscle cellularity in several species (Alami-
Durante et al., 2010a; Bjørnevik et al., 2003; Knutsen et al., 2019; Silva
et al., 2009b). To our knowledge, the effects of plant protein ingredients
on muscle development and growth of lumpfish have not been reported.
Therefore, the aim of the present study was to investigate the effect of
replacing FM with a mixture of SPC and PPC in feeds for juvenile
lumpfish, on growth performance, fast muscle development, and whole
body chemical composition.

2. Materials and methods

This feeding experiment was approved by the Ethics and Animal
welfare committee at Nord University, following the Norwegian animal
welfare act (LOV-2009-06-19-97).

2.1. Lumpfish and experimental set up

Juvenile lumpfish of 4 g average weight were obtained from
Mørkvedbukta AS, Bodø, Norway. The fish were randomly allocated
into 12 indoor rearing tanks (500 L), with 208 fish per tank, at the
research station of Nord University, Bodø, Norway. Fish were accli-
mated to laboratory conditions for 2 weeks prior to the experiment,
during which time they were fed a commercial diet (Gemma Silk,
Skretting, Stavanger, Norway). Light intensity was controlled by four
florescent lamps (24 h) (Grunda Viktor work lamps, 38W, luminous
flux1350 lm) facing upward. Throughout the experimental period light
was dimmed to provide an illumination regime similar to that of
commercial rearing practice. Fish were provided with seawater from
Saltenfjorden, at 250m depth, with a stable salinity (34‰) through a
flow-through water system. Water flow rate was kept constant at 500 L/
h. The temperature (7.6 ± 0.9 °C) and dissolved oxygen (86.7 ± 0.11

%) of the rearing water was monitored daily.

2.2. Experimental diets and growth trial

The feed ingredient composition, calculated and analyzed prox-
imate composition of the experimental diets are presented in Tables 1
and 2, which were manufactured by SPAROS Lda. Olhao, Portugal. The
diets were formulated to be isoproteic and isoenergetic on the basis of
crude protein and gross energy content. A FM based diet was used as
control (CTRL) and three experimental diets were formulated to replace

Table 1
Ingredient composition of the experimental diets (g 100g-1 diet).

Ingredients CTRL PP25 PP50 PP75

Fish meal 1 58.00 43.50 29.00 14.50
Soy protein concentrate 2 0.00 7.20 14.45 21.67
Pea protein concentrate 3 0.00 7.20 14.45 21.67
CPSP 90 4 2.50 2.50 2.50 2.50
Krill meal 5 5.00 5.00 5.00 5.00
Wheat gluten 6 7.00 7.00 7.00 7.00
Wheat meal 7 10.00 9.16 6.95 4.59
Pea starch 8 5.35 5.35 5.35 5.41
Fish oil 9 7.00 7.00 7.00 7.00
Krill oil 10 1.50 2.25 3.05 3.85
Vitamin & Mineral Premix 11 1.00 1.00 1.00 1.00
Lutavit E50 12 0.05 0.05 0.05 0.05
Antioxidant powder 13 0.20 0.20 0.20 0.20
Sodium propionate 14 0.10 0.10 0.10 0.10
MCP 15 0.00 0.00 0.98 2.10
Carophyll Pink 16 0.05 0.05 0.05 0.05
Nucleotides 17 0.50 0.50 0.50 0.50
Garlic extract 18 0.50 0.50 0.50 0.50
L-Histidine 19 0.25 0.25 0.25 0.25
L-Tryptophan 20 0.00 0.09 0.17 0.26
DL-Methionine 21 0.00 0.00 0.35 0.70
L-Taurine 22 1.00 1.10 1.10 1.10

CTRL: Control, PP25: 25 % of SPC and PPC inclusion, PP50: 50 % of SPC and
PPC inclusion, PP75: 75 % of SPC and PPC inclusion.

1 NORVIK LT 70 : 70.3 % crude protein (CP) 5.8 % crude fat (CF)
(Sopropêche, France).

2 Soycomil : 63 % CP, 0.8 % CF (ADM, The Netherlands).
3 Lysamine GPS: 78 % CP, 0.9 % CF (Roquette Frères, France).
4 Soluble fish protein hydrolysate: 82.6 % CP, 9.6 % CF (Sopropêche,

France).
5 61.1% CP, 17.4 % CF (Aker Biomarine, Norway).
6 VITAL: 83.7 % CP, 1.6 % CF, (Roquette, Frères, France).
7 10.2% CP; 1.2 % CF (Casa Lanchinha, Portugal).
8 NASTAR 90 % starch, (Cosucra, Belgium).
9 (SAVINOR UTS, Portugal).
10 (Aker Biomarine, Norway).
11 Vitamins (IU or mg kg-1 diet): DL-alpha tocopherol acetate, 100mg; so-

dium menadione bisulphate, 25mg; retinyl acetate, 20000 IU; DL-cholecalci-
ferol, 2000 IU; thiamin, 30mg; riboflavin, 30mg; pyridoxine, 20mg; cyano-
cobalamin, 0.1 mg; nicotinic acid, 200mg; folic acid, 15mg; ascorbic acid,
1000mg; inositol, 500mg; biotin, 3mg; calcium panthotenate, 100mg; choline
chloride, 1000mg, betaine, 500mg. Minerals (g or mg kg-1 diet): cobalt car-
bonate, 0.65mg; copper sulphate, 9mg; ferric sulphate, 6mg; potassium iodide,
0.5 mg; manganese oxide, 9.6 mg; sodium selenite, 0.01mg; zinc sul-
phate,7.5 mg; sodium chloride, 400mg; calcium carbonate, 1.86 g; excipient
wheat middlings (PREMIX Lda, Portugal).

12 (ROVIMIX E50, DSM Nutritional Products, Switzerland).
13 Paramega PX (Kemin Europe NV, Belgium).
14 Disproquímica (Portugal).
15 ALIPHOS MONOCAL, 22.7 % P (ALIPHOS, Belgium).
16 Carophyll Pink 10 % CWS (DSM Nutritional Products, Switzerland).
17 Nucleoforce Salmonids (BioIbérica, Spain).
18 Macrogard, 67.2 % beta-glucans (Biorigin, Brazil).
19 L-Histidine 98 %, (Ajinomoto Eurolysine SAS, France).
20 L-Tryptophan 98 %, (Ajinomoto Eurolysine SAS, France).
21 DL-METHIONINE FOR AQUACULTURE 99 %, (EVONIK Nutrition & Care

GmbH, Germany). 22
L-Taurine 98 %, (ORFFA, The Netherlands).
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25 % (PP25) 50 % (PP50) and 75 % (PP75) of the FM with a mixture of
SPC and PPC (1:1 proportion). The remaining protein ingredients such
as wheat gluten, krill meal, and CPSP 90 were kept constant. The diets
were supplemented with L-tryptophan, DL-methionine, L-taurine and L-
histidine to keep these ingredients similar among all diets. Wheat meal
was used to balance the starch and carbohydrate content among the
diets. Krill oil was used in increasing levels from CTRL to the PP75, to
increase the content of EPA, DHA and phospholipids.

All dry ingredients were mixed in a double-helix mixer (model
RM90, MAINCA Spain) passed through a 0.4 mm micro-pulverizer
hammer mill (model SH1, Hosokawa-Alpine, Germany). Diets were
extruded in a twin-screw extruder (model BC45, Clextral, France) with
a 1.5mm die and extruded pellets dried in a vibrating fluid bed dryer
(model DR100, TGC Extrusion, France). Oils were added post-extrusion
by vacuum coating (model PG-10VCLAB, Dinnissen, Netherlands).
Experimental diets were stored at room temperature until they were
used for feeding. The four diets were randomly allocated to triplicate
tanks (n=3 / feed group), and each tank was equipped with an au-
tomatic feeder (ArvoTec, Sterner, Norway). Fish were fed the experi-
mental diets to apparent satiation, with the feeding rate of 2.5 % of
their body mass. The feeding were closely monitored through visual
inspections and the feed were provided eight time points every day,
between 6:00 to 21:00 during the 54 day experimental period.

2.3. Sample collection

At the beginning and end of the growth trial, all fish were in-
dividually weighed to the nearest 0.5 g and their standard length and
body height measured to the nearest 0.1 mm. In addition, at each
sampling point liver and visceral weight were also recorded. A total of
20 fish per tank were sampled randomly for chemical composition
analysis. Fish were pooled into 10 fish per pool and 2 pooled samples
per tank (n= 6 fish / feed group), packed in plastic bags, and frozen at ˗

40 °C until further analysis. Five fish were sampled per tank and used
for the evaluation of muscle histology. All samples were taken at the
start, 19, 35, and 54 days (19D, 35D, 54D) of the growth trial. Prior to
sampling, fish were anaesthetized with MS-222 (Tricaine methane
sulphonate; Argent Chemical Laboratories, USA; 30 g /L) and dis-
patched by a sharp blow to the head.

2.4. Biochemical analyses

The frozen whole fish samples were thawed for approximately 5 h at
4 °C and pooled samples were homogenized using a conventional food
processor (Bosch GmbH, CNCM11, Slovenia). Part of this homogenate
was used to determine the dry matter and ash content in whole fish.
Remaining homogenate was freeze dried for 96 h at −70 °C (VirTis
benchtop K Mod, Warminster, U.S.A) and dry matter was recorded. The
freeze dried samples were frozen at −80 °C before being re-ground
(3×15 s) into a fine powder for crude protein and crude fat (dry basis)
analysis. The proximate composition of the feed pellets was also de-
termined. In brief, moisture content was determined by drying whole
fish (2.0 g) and feed (5.0 g) samples to a constant weight at 104 °C for
20 h (ISO 6496-1999). The whole fish samples were combusted in a
muffle furnace to a constant weight at 540 °C for 16 h to determine the
ash content at FBA, whereas, the feed was analysed by Eurofins (Moss,
Norway) (ISO 5984-2002). Crude protein of fish and feed were de-
termined from a 0.5 g samples using the Kjeldahl titration method (N x
6.25, KjeltecTM 2300, Foss Tecator AB, Höganäs, Sweeden ISO 5983-
1987). Crude fat was determined gravimetrically using 2.0 g of freeze
dried fish and 5.0 g of feed samples using the diethyl ester extraction
method, according to the (Norwegian Standard Association., 1994) and
feed energy analysed by bomb calorimeter (IKA C200, Staufen, Ger-
many: ISO 9831: 1998). All biochemical analyses of the feed and whole
fish were triplicated and duplicated respectively.

2.5. Fast muscle cellularity

To evaluate the muscle cellularity, a 5mm thick cross sectional
steak was cut just anterior to the second dorsal fin of juvenile lumpfish
(Fig. 1) and photographed together with graph paper to measure the
total fast muscle cross-sectional area (TCA) of the steak (SigmaScan pro.
5.0, Systat, Inc.). Depending on fish size, two to three muscle blocks
(5×5×5mm) from the dorsal left side of each fillet were taken for
histological analysis. In brief, muscle blocks were mounted on cork
sheets (1.5× 1.5 cm) covered in cryomatrix (Shandon Cryomatrix,
Thermo scientific) and frozen in 2-methyl butane (60 s) cooled to near
its freezing point (−159 °C) in liquid nitrogen. Frozen blocks were
stored at −80 °C until further analysis. Muscle blocks were sectioned
(7 μm) at−18 °C in a cryostat (Cryostar NX50, Thermo Scientific, USA),
air dried and stained with hematoxylin (Harris hematoxylin, Sigma
Aldrich, Steinheim, Germany). The outlines of the muscle fibers (area)
of 800 fibers per fish were examined using a light microscope (Axioscop
2 mot plus; Carl Zeiss INC., Germany) equipped with a camera, and area
measured using the software Axio Vision (Rel.4.2, Carl Zeiss INC.,
Germany). All the parameters measured for muscle cellularity were
normalized based on the size of fish, as described by Alami-Durante
et al. (2010a).

2.6. Calculations

Condition factor (B1) was calculated according to the formula pro-
posed by Richter et al. (2000). B1 (g cm−3) = fish weight (g) / [fork
length (cm) x body height 2 (cm)]. Somatic indices and Specific Growth
Rate (SGR) were calculated employing the following formulae: Hepa-
tosomatic index (HSI) = [liver weight (g) / fish weight (g)] × 100.
Visero-somatic index (VSI) = [visceral weight (g) / fish weight (g)] ×
100. SGR (% day -1)= 100 × ln [final mean weight (g) ˗ initial mean
weight (g)] / number of feeding days.

Table 2
Calculated and analyzed proximate nutrient composition of the experimental
diets on a as fed basis (%).

CTRL PP25 PP50 PP75

Calculated
Crude protein 53.9 53.9 53.9 53.9
Crude fat 13.4 13.4 13.4 13.4
Fiber 0.3 0.7 1.0 1.3
Starch 9.2 9.5 8.8 8.1
Ash 11.3 9.5 8.2 7.1
Gross Energy 20.0 20.2 20.3 20.4
Arginine 3.5 3.7 4.0 4.2
Histidine 1.4 1.4 1.4 1.4
Isoleucine 2.0 2.1 2.2 2.4
Leucine 3.8 3.9 4.0 4.1
Lysine 3.9 3.9 3.9 3.9
Tryptophan 0.5 0.5 0.5 0.5
Threonine 2.5 2.3 2.2 2.1
Valine 2.5 2.5 2.6 2.6
Methionine+Cysteine 2.3 2.0 2.0 2.0
Phenylalanine+Tyrosine 4.5 4.5 4.5 4.5
Taurine 1.2 1.2 1.2 1.2
Total Phosphorous 1.7 1.5 1.4 1.4
Vitamin C (mg/kg) 1000.0 1000.0 1000.0 1000.0
Vitamin E (mg/kg) 350.0 350.0 350.0 350.0
Eicosapentaenoic acid (EPA) 1.6 1.6 1.6 1.6
Docosahexaenoic acid (DHA) 2.0 1.9 1.8 1.6
EPA+DHA 3.5 3.4 3.4 3.4
Total phospholipids 2.6 2.6 2.6 2.6
Analyzed
Dry matter 93.9 94.9 95.3 93.3
Crude protein 51.1 52.1 52.5 52.4
Crude fat 14.9 14.8 14.4 14.5
Ash 11.3 9.7 8.5 6.2
Gross Energy 20.5 20.8 20.8 20.8
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2.7. Statistical analysis

The software Sigmaplot 14.0 (Systat software, San Jose, CA) was
used for the statistical analyses. A Shapiro-Wilk test was used to assess
the normality of distributions, and the Brown-Forsythe F-test to de-
termine the equality of group variances. One way analysis of variance
(ANOVA) was performed for the parametric data. Significant differ-
ences revealed in ANOVA were followed by Tukey’s multiple compar-
ison test. A Kruskal-Wallis one-way analysis of variance on ranks, fol-
lowed by Tukey’s multiple comparison test was used for the
nonparametric data. Dunn’s pairwise multiple comparison test was used
only to assess the significance of the unequal size of growth-related data
at the end of the experiment. Distribution of muscle fiber diameter was
evaluated using smooth non parametric distributions where 800 mea-
surements of fast fiber diameters were fitted using a kernel function
(Bowman and Azzalini, 1997; Johnston et al., 1999). Experimental
groups compared at the end of feeding period were of similar body
length (n=12 per group). Comparison of the distribution of muscle
fiber diameters was done by applying the nonparametric Kolmogorov-
Smirnov test, with the null hypothesis that one-dimensional probability
density functions (PDF) of groups were equal over all the diameters.
Bootstrap techniques were used to create the variability bands around
the group PDFs using the mean smoothing parameter. This was used to
identify which areas of the muscle fiber distribution of diameters con-
tributed to significant differences. Significance was established when
p < 0.05; data is presented as means ± SEM.

3. Results

3.1. Chemical composition of the experimental diets

Minor differences were observed between the calculated and

analyzed proximate composition of the diets (Table 2). The chemical
analysis showed that crude protein was slightly lower and crude lipid
was slightly higher than the calculated values, while ash and energy
were similar to the calculated values.

3.2. Growth performance

The experimental diets were well accepted and no mortalities were
recorded. The final weight of fish increased 5–6 fold their initial weight
(Table 3). Fish fed PP50 had significantly higher body weight, length
and height compared to the other diets at the end of the experiment.
The height of the fish increased from an average of 2.22 cm–4.22 cm
during the course of the experiment. Length of the fish appeared to be
proportional with weight gain and was significantly higher for fish fed
PP50 compared to all other diet groups. The fish fed PP50 diet tended
to have higher SGR (p= 0.06) compared to the other feding groups at
the end of the feeding period. The B1 ranged between 0.23 to 0.33 and
was slightly, but significantly higher in fish fed plant diets than those on
the CTRL diet at the end of the experiment. No significant differences
were found for the VSI among the feeding groups. HSI varied from
2.1–2.5 with the lowest value for fish receiving PP25 and highest for
fish on the PP75 diet (p < 0.05).

3.3. Chemical composition of fish

Crude fat, protein, ash and dry matter of whole body increased
slightly during the experimental period (Table 4). The crude fat content
of all groups showed a small numerical and temporal drop after being
introduced to the experimental diets compared to the initial levels
(p > 0.05). However, crude fat content increased for all four groups
after 19 days on experimental diets. The CTRL group showed a higher
crude fat content at the end of the experiment compared to PP25 and

Fig. 1. A) Schematic view of sampling locations in lumpfish, B) sample sites of muscle blocks from the dorsal left side of the steak, C) fast muscle histological section
(×10) highlight of the individual muscle fiber area measured.
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PP50 (p < 0.05). Additionally, the whole body crude protein content
was higher in the PP50 group compared to the CTRL at the end of the
experiment (p < 0.05).

3.4. Fast muscle cellularity

No differences were found for muscle cellularity among the diet
groups, except for mean diameter and muscle fiber size category ran-
ging from 50 μm to 70 μm (Table 5). At the start of the experiment, fish
had an average fast muscle fiber number of 62659 ± 4645 and in-
creased for all groups close to five fold during the experimental period.
The daily recruited muscle fiber numbers were numerically higher in
the PP50 group (4768) compared to the control (4274), PP25 (3882)
and PP75 (4283). Size distribution of fast muscle fibers were categor-
ized into 7 groups. Juvenile lumpfish showed a higher number of
smaller fibers ranging from 10 to 70 μm and fewer of the larger fibers in
the size range 90−120 μm. The fibers with diameters 10 < D≤ 30 μm
were the most common and abundant in all diet groups. The only sig-
nificant difference among diets were for fiber diameters ranging from
50 < D≤ 70 μm that were lower in fish fed PP75 compared to the
other groups. The PDFs for fiber diameter distribution showed, how-
ever, no differences among the feeds (Fig. 2, p > 0.05).

4. Discussion

In the present study, the utilization of the plant protein concentrates
of SPC and PPC in diets for juvenile lumpfish were evaluated based on
growth performance, body chemical composition and muscle develop-
ment.

4.1. Fish growth performance

In the wild, lumpfish feed on a variety of prey items including,
plankton, jellyfish and polycheates (Daborn and Gregory, 1983;
Davenport, 1985; Ingólfsson and Kristjánsson, 2002; Mitamura et al.,
2012), as well as seaweeds and seagrass (Davenport, 1985). Lumpfish
have the ability to switch their natural prey choice to whatever is
available (Imsland et al., 2015a, b). This opportunistic feeding behavior
combined with a gut length twice the body length (Davenport, 1985)
indicate that lumpfish are omnivorous and may explain why the best
growth performance (i.e. body weight, length, and height) was ob-
served in fish fed the PP50 diet. The experiment was not designed to
study feed intake, but all the groups were fed in excess to secure ad
libitum feed intake, assumed to promote fast growth and maximize
utilization of the feed. With regard to delousing, smaller juvenile stages
(initial weight of 20 g) are more efficient compared to larger con-
specifics (Imsland et al., 2016). Therefore, in order to achieve optimal

Table 3
Growth parameters and condition indices of lumpfish fed diets with different levels of plant protein concentrates.

Parameter Feeding trial period Plant protein inclusion levels p - Value

CTRL PP25 PP50 PP75

Growth parameters
Body weight (g) Start (0 days) 6.88 ± 0.06 6.80 ± 0.06 6.83 ± 0.06 7.03 ± 0.06 0.246

Continuous phase I (19D) 14.63 ± 0.31ab 14.25 ± 0.24ab 15.09 ± 0.26a 13.72 ± 0.34b 0.021
Continuous phase II (35D) 26.34 ± 0.57 25.67 ± 0.59 26.92 ± 0.51 26.5 1 ± 0.63 0.286
End (54 D) 40.75 ± 0.56b 40.58 ± 0.59b 46.26 ± 0.68a 35.84 ± 0.94c < 0.001

Body length (cm) Start (0 days) 4.59 ± 0.01 4.61 ± 0.02 4.64 ± 0.01 4.71 ± 0.07 0.432
Continuous phase I (19D) 6.24 ± 0.05a 6.20 ± 0.03a 6.22 ± 0.04a 6.03 ± 0.05b 0.005
Continuous phase II (35D) 7.65 ± 0.06ab 7.59 ± 0.06ab 7.72 ± 0.05a 7.51 ± 0.06b 0.043
End (54 D) 8.69 ± 0.04b 8.55 ± 0.05b 8.91 ± 0.05a 7.91 ± 0.08c < 0.001

Body height (cm) Start (0 days) 2.23 ± 0.01 2.23 ± 0.01 2.22 ± 0.01 2.26 ± 0.01 0.283
Continuous phase I (19D) 3.06 ± 0.03 3.07 ± 0.02 3.09 ± 0.02 3.05 ± 0.03 0.726
Continuous phase II (35D) 3.78 ± 0.03c 3.76 ± 0.03b 3.82 ± 0.03abc 3.91 ± 0.04a 0.008
End (54 D) 4.07 ± 0.03b 4.27 ± 0.03bc 4.48 ± 0.03a 4.07 ± 0.05b < 0.001

SGR (% day −1) Start (0 days) n.a n.a n.a n.a
Continuous phase I (19D) 3.94 ± 0.14 3.89 ± 0.17 4.18 ± 0.002 3.49 ± 0.21 0.074
Continuous phase II (35D) 3.84 ± 0.13 3.78 ± 0.07 3.92 ± 0.06 3.72 ± 0.11 0.579
End (54 D) 3.30 ± 0.03 3.32 ± 0.05 3.55 ± 0.05 3.13 ± 0.16 0.062

Condition indices
HSI Start (0 days) 2.53 ± 0.08 2.58 ± 0.09 2.59 ± 0.08 2.44 ± 0.10 0.395

Continuous phase I (19D) 2.47 ± 0.05 2.50 ± 0.11 2.27 ± 0.05 2.40 ± 0.07 0.066
Continuous phase II (35D) 2.22 ± 0.05 2.20 ± 0.04 2.14 ± 0.04 2.26 ± 0.05 0.259
End (54 D) 2.37 ± 0.06ab 2.18 ± 0.04b 2.22 ± 0.04b 2.48 ± 0.04a < 0.001

VSI Start (0 days) 12.84 ± 0.19 12.57 ± 0.20 12.83 ± 0.19 12.49 ± 0.31 0.210
Continuous phase I (19D) 15.18 ± 0.22 15.32 ± 0.22 14.94 ± 0.33 14.56 ± 0.31 0.202
Continuous phase II (35D) 13.86 ± 0.19 13.30 ± 0.26 13.04 ± 0.25 13.54 ± 0.21 0.086
End (54 D) 13.72 ± 0.28 13.34 ± 0.17 13.51 ± 0.33 13.23 ± 0.19 0.144

Condition factor
B1 (g cm−3)

Start (0 days) 0.30 ± 0.001 0.30 ± 0.001 0.30 ± 0.001 0.30 ± 0.001 0.417

Continuous phase I (19D) 0.25 ± 0.002b 0.24 ± 0.002a 0.25 ± 0.002b 0.24 ± 0.002a 0.001
Continuous phase II (35D) 0.24 ± 0.001a 0.24 ± 0.001a 0.24 ± 0.00 a 0.23 ± 0.001b 0.001
End (54 D) 0.28 ± 0.002a 0.32 ± 0.060b 0.30 ± 0.050b 0.33 ± 0.020b 0.001

CTRL: Control, PP25: 25 % of SPC and PPC inclusion, PP50: 50 % of SPC and PPC inclusion, PP75: 75 % of SPC and PPC inclusion. Values represented as
means± SEM. Growth parameters and CF for week 0 are based on measurements of all fish. Similarly, growth parameters and CF at the end of the feeding trial based
on both fish sampled and fish remaining after 54 days. Significant differences between treatment groups at the same time point indicated with different superscript
letters (p< 0.05).
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delousing, it is essential to maintain their uniform and slow to moderate
growth during the process of co-culture with hosts (Imsland et al.,
2018). Fast growth rate is not desirable in lumpfish in the pens with the
salmon, because fish larger than 350 g become less interested in louse
(Imsland et al., 2014b). Growth performance is, however, established as
a parameter to evaluate the efficiency of alternative feed ingredients
(Shearer, 2000) and is considered to be an important welfare indicator
(Huntingford and Kadri, 2014).

The experimental diets were optimized to be isoenergetic and iso-
proteic. Assuming that fish were fed to satiation, reduced weight gain
for fish fed the PP75 diet may be explained by the reduced utilization of
energy or nutrients provided in this diet. Reduced utilization of plant
based diets may be explained by ANF’s palatability, as well as modified
energy metabolism. ANF’s such as lectins, saponins, glucosinolate and
oligosaccharide are removed from the SPC (Colburn et al., 2012; Drew
et al., 2007), while phytate and non-starch polysaccharides (NSP’s) are
still present in SPC as well as in PPC (Collins et al., 2013; Storebakken
et al., 1998). Phytate is known to interfere with mineral absorption and
growth (Baeverfjord et al., 2019). Atlantic salmon fed 50 % of untreated

SPC diet showed reduced whole body element concentrations (Ca, Mg,
and Zn) and a lower apparent digestibility coefficient of the same ele-
ments compared to the phytase treated SPC diet (Storebakken et al.,
1998). Air classified PPC also contain saponins (Penn et al., 2011), and
may result in growth arrest (González-Rodríguez et al., 2016; Tian
et al., 2018), associated with histopathology of the distal intestine
(Krogdahl et al., 2015). A study with Atlantic salmon fed 35 % air
classified PPC in their feed resulted in reduced weight gain, with SGR
and enteropathy present in the distal intestine (Penn et al., 2011). Re-
search with the omnivore sharp-snout sea bream (Diplodus puntazzo)
showed that inclusion of PPC at 160 and 320 g kg−1 gave poor growth,
and alterations in the distal intestinal morphology associated with ANFs
in the PPC (Nogales-Mérida et al., 2016). Hence, plant protein in-
gredients may be less palatable (Grey et al., 2009), and have a negative
effect on feed intake (Kader and Koshio, 2012; Takakuwa et al., 2019).
The diets in the present experiment were supplemented with feed at-
tractants in order to enhance their acceptability and growth perfor-
mance. Nucleotides (Burrells et al., 2001), krill meal (Hatlen et al.,
2017; Kousoulaki et al., 2013; Zhang et al., 2012) and soluble fish

Table 4
Chemical composition [%] of whole body of lumpfish fed diets with different inclusion levels of plant protein concentrates.

Parameter Feeding trial period Plant protein inclusion levels p - value

CTRL PP25 PP50 PP75

Dry matter (%) Start (0 days) 13.33 ± 0.13 13.05 ± 0.10 13.19 ± 0.17 12.89 ± 0.15 0.190
Continuous phase I (19D) 13.40 ± 0.08 13.29 ± 0.09 13.32 ± 0.05 12.90 ± 0.18 0.138
Continuous phase II (35D) 13.75 ± 0.12 13.37 ± 0.11 13.24 ± 0.14 13.29 ± 0.16 0.056
End (54 D) 14.30 ± 0.12 13.79 ± 0.15 14.03 ± 0.08 13.94 ± 0.14 0.057

In dry matter, %

Crude protein Start (0 days) 60.47 ± 0.38 60.79 ± 0.34 59.76 ± 0.21 60.50 ± 0.33 0.255
Continuous phase I (19D) 60.47 ± 0.38 60.89 ± 0.46 61.28 ± 0.12 61.54 ± 0.79 0.474
Continuous phase II (35D) 61.16 ± 0.46 61.46 ± 0.67 61.75 ± 0.33 62.68 ± 0.77 0.373
End (54 D) 60.67 ± 0.22b 61.06 ± 0.39ab 62.20 ± 0.24a 61.16 ± 0.17ab 0.012

Crude lipid Start (0 days) 18.58 ± 0.29 18.17 ± 0.39 18.71 ± 0.46 18.27 ± 0.37 0.731
Continuous phase I (19D) 17.59 ± 0.05 16.32 ± 0.52 17.29 ± 0.14 16.03 ± 0.66 0.108
Continuous phase II (35D) 19.26 ± 0.77 18.04 ± 0.22 18.40 ± 0.37 17.14 ± 0.84 0.278
End (54 D) 21.08 ± 0.44a 19.27 ± 0.46b 18.98 ± 0.38b 20.13 ± 0.30ab 0.006

Ash Start (0 days) 1.41 ± 0.09 1.31 ± 0.04 1.45 ± 0.12 1.37 ± 0.08 0.670
Continuous phase I (19D) 1.44 ± 0.14 1.47 ± 0.12 1.44 ± 0.12 1.42 ± 0.15 0.904
Continuous phase II (35D) 1.62 ± 0.04 1.60 ± 0.01 1.58 ± 0.02 1.62 ± 0.03 0.624
End (54 D) 1.62 ± 0.02 1.63 ± 0.03 1.66 ± 0.02 1.62 ± 0.02 0.716

CTRL: Control, PP25: 25 % of SPC and PPC inclusion, PP50: 50 % of SPC and PPC inclusion, PP75: 75 % of SPC and PPC inclusion. Values represented as
means± SEM (n = 6 / treatment). Significant differences between treatment groups at the same time point indicated with different superscript letters (p< 0.05).

Table 5
Fast muscle cellularity of lumpfish; data normalized by total length.

Start End (54 D) p - value

CTRL PP25 PP50 PP75

Fiber number 62659 ± 4645 310233 ± 20243 284228 ± 21793 331334 ± 26872 298406 ± 20353 0.528
D mean 35.2 3 ± 1.18 33.47 ± 0.55a 32.77 ± 0.83ab 32.13 ± 1.11ab 31.48 ± 0.73b 0.047
D median 30.71 ± 1.63 25.97 ± 0.62 25.16 ± 0.79 24.59 ± 0.77 24.89 ± 0.75 0.376
D max 117.66 ± 14.64 171.38 ± 17.07 175.33 ± 21.23 163.72 ± 18.15 142.16 ± 4.98 0.113
D mean of upper 95th percentile 75.79 ± 2.31 81.77 ± 1.95 80.19 ± 2.73 80.12 ± 3.52 78.24 ± 1.18 0.185

Proportion (%) white muscle fibers with
D ≤ 10 μm 3.80 ± 3.05 6.60 ± 0.97 5.35 ± 0.72 7.13 ± 1.25 6.33 ± 1.14 0.743
10 < D≤ 30 μm 45.15 ± 7.47 52.54 ± 1.64 54.84 ± 1.57 55.34 ± 1.15 55.97 ± 1.97 0.210
30 < D≤ 50 μm 30.21 ± 5.88 21.85 ± 1.60 22.67 ± 1.51 21.05 ± 1.36 22.21 ± 1.68 0.854
50 < D≤ 70 μm 13.98 ± 3.77 11.08 ± 0.79a 9.57 ± 0.71ab 9.06 ± 0.81ab 8.21 ± 0.71b 0.046
70 < D ≤ 90 μm 5.37 ± 1.99 4.13 ± 0.40 4.19 ± 0.36 3.78 ± 0.42 4.03 ± 0.29 0.639
90 < D≤ 120 μm 1.18 ± 0.99 2.68 ± 0.22 2.37 ± 0.26 2.46 ± 0.26 2.52 ± 0.13 0.607
D > 120 μm 0.29 ± 0.95 1.10 ± 0.22 0.99 ± 0.27 1.72 ± 0.35 0.71 ± 0.13 0.115

CTRL: Control, PP25: 25 % of SPC and PPC inclusion, PP50: 50 % of SPC and PPC inclusion, PP75: 75 % of SPC and PPC inclusion.
Values are represented as mean± SEM. Raw means for the end of the feeding period with different superscript letters differ significantly (p< 0.05).
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protein concentrates (Kousoulaki et al., 2009, 2012) in the diets of
Atlantic salmon and rainbow trout are known to have growth pro-
moting effects.

Length-weight relation is used to monitor growth and to evaluate
the nutritional status or condition of the fish (Jones et al., 1999). In the
present study, length and height were doubled with the 5–6 fold in-
crease in weight. The three dimensional growth pattern suggests that
condition factor (CF) should not only be based on weight and length,
but also height. The CF commonly reported in the scientific literature is
mainly calculated based on Fulton’s condition factor (1911),
K=100 wt (g) × length (cm)−3. The K values at termination of the
experiment were 6.15 ± 0.05, 6.37 ± 0.05, 6.44 ± 0.05 and
6.79 ± 0.06 for the CTRL, PP25, PP50 and PP75, respectively. These
K-values were higher than the values of 2.6–4.2 reported earlier for
lumpfish (50 % crude protein) (Imsland et al., 2018), suggesting that
the fish were in a good nutritional condition. All K values were slightly
reduced at termination compared to the start of the experiment, with
the highest value noted for the PP75 diet and lowest for the CTRL. This
is simillar to results reported by Imsland et al. (2018) were the highest
K also was found for the group with lower weight gainIn conjugation
with K values, the B1 showed lower values for the CTRL diet compared
to the other three experimental diets. Furthermore, B1 did not show any
decline in value between the start and end of the experiment, sug-
gesting that B1 may be a more robust measure than the traditional K
value and should be considered in future studies with lumpfish. Fish
liver is the major organ with respect to nutrient metabolism, producing
bile-salts and storing lipid and glycogen (Brusle and Anadon, 1996).
Liver size varies a lot among fish species and HSI can range from 1.2 to
1.6 in Atlantic salmon (Gong et al., 2019; Kiron et al., 2016; Sørensen
et al., 2017) and up to 9–11 in Atlantic cod (Ingebrigtsen et al., 2014)
depending on energy intake (Hatlen et al., 2007). The large liver in cod
reflects its importance in storage of lipid; up to 80 % of the lipid content
can be found in the liver (Albrektsen et al., 2006). The HSI values in
lumpfish in the present experiment were higher than usually found in
Atlantic salmon, but still in the lower range of Atlantic cod. The higher
HSI in fish fed PP75 is in line with a study performed with juvenile
gilthead sea bream, where HSI was higher (0.87 versus 0.80; p < 0.05)

in fish on a diet where 75 % of FM was replaced with a mixture of corn
gluten meal, wheat gluten, extruded peas, rapeseed meal and extruded
whole wheat compared with those on FM diet (De Francesco et al.,
2007). In contrast, studies with seabass (Dicentrarchus labrax) showed
no effect on HSI when more than 50 % of FM was replaced with plant
protein mixtures in their diets (Kaushik et al., 2004).

4.2. Chemical composition

The higher content of whole body protein in fish fed PP50 compared
to those fed the CTRL diet confirm the higher growth of this group, as
body protein is a key predictor for gain of body weight (Dumas et al.,
2007). A correlation between protein deposition and body weight has
also been reported for rainbow trout (Brinker and Reiter, 2011; Dumas
et al., 2007). Crude lipid content of whole body decreased below the
initial levels after introduction of the experimental diets. This ob-
servation indicates that lumpfish were in a negative energy balance and
used body lipid during the acclimation period before they fully ac-
cepted the experimental diets. Fat seems to be the preferred energy
source over protein in anorectic lumpfish.

The whole body lipid content showed minimal increase during the
course of the experiment for all diet groups, indicating that lumpfish are
not depositing much lipid in body tissues and organs. The low body
lipid content should be reflected in the diets of this species. The sig-
nificantly higher lipid content in lumpfish fed the CTRL compared to
groups fed PP25 and PP50 indicated that lipid or energy utilization was
affected by incorporation of plant protein concentrates in the diets.
Altered lipid metabolism in fish fed plant proteins have been reported
in a number of other studies such as Atlantic salmon fed air classified
faba bean protein concentrate at 50 to 200 g kg−1 (De Santis et al.,
2015), gilthead sea bream fed 100 % of rapeseed protein concentrate
and 100 % SPC (Kissil et al., 2000), yellow croaker (Larimichthys crocea)
fed 100 % SPC (Wang et al., 2017), and Senegalese sole (Solea senega-
lensis) fed plant protein mix ranged from 70 to 80% (Silva et al., 2009a).
The changes in lipid metabolism may be explained by reduced re-ab-
sorption of bile acids (Romarheim et al., 2006; Sørensen et al., 2011)
resulting in lower lipid digestibility, and reduced cholesterol in fish

Fig. 2. Bootstrapping analysis comparing all four groups over all fast fiber diameters. Probability density functions of mean fiber distribution in juvenile C. lumpus fed
mix of SPC and PPC diets showing in; red (CTRL), blue (PP25), green (PP50) and brown (PP75) represent in dotted lines. Black solid line represent the overall mean of
all four groups. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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plasma (Dias et al., 2005; Kortner et al., 2013). However, further stu-
dies are needed to establish the requirement for lipid in diets, and the
relationship between lipid metabolism and plant protein ingredients in
juvenile lumpfish.

4.3. Muscle cellularity

The muscle fiber distribution, analysed using both the PDFs and the
muscle fiber size classes, illustrates that the growth of juvenile lumpfish
mainly takes place through hyperplastic growth. The fast muscle fiber
data in all groups showed a similar fiber distribution, being dominated
by fast fibers of< 30 μm, following a sharp decline in the presence of
muscle fibers> 30 μm. This is not unique to lumpfish but is ubiquitous,
being described in several other juvenile fish species such as Atlantic
salmon (Bjørnevik et al., 2003; Higgins and Thorpe, 1990), white sea-
bass (Atractoscion nobilis) (Zimmerman and Lowery, 1999), Senegalese
sole (Valente et al., 2016), and rainbow trout (Alami-Durante et al.,
2010a). The significant differences observed for muscle fibers with
diameters between 50 < D≤ 70 μm of fish fed PP75 vs. CTRL diet
were not supported by the PDFs. Fiber population analysis is a stronger
statistical tool than individual measurements (Johnston et al., 1999),
suggesting that diet had no effect on the fiber size distribution or fiber
number. Similar results have been reported from feed experiments on
Atlantic salmon with no or only minor influence on muscle cellularity
(Bjørnevik et al., 2003; Johnston et al., 2002). In contrast, fiber analysis
showed that the size distribution of fast muscle fibers of juvenile
blackspot seabream (Pagellus bogaraveo) fed a protein rich diet favored
muscle growth by hyperplasia (Silva et al., 2009b).

Relatively few studies have attempted to elucidate the effect of plant
protein sources or FM replacement by plant ingredients on muscle
cellularity (Alami-Durante et al., 2010a, b; Knutsen et al., 2019). Sen-
sitivity to dietary protein source and amino acid profile was found in
juvenile rainbow trout on a diet of high soybean meal inclusion. This
resulted in a lower median fiber diameter of white muscle than fish
with high wheat and pea inclusions (Alami-Durante et al., 2010b).
Clearly then, plant protein ingredients lead to significant changes in
reported muscle fiber cellularity (Alami-Durante et al., 2010a). When
replacement of FM with a mix of plant protein ingredients at 75–100 %
showed a significantly lower median diameter of white muscle fibers in
juvenile rainbow trout (Alami-Durante et al., 2010a), this was sug-
gested to be a consequence of increased cathepsin D expression, an
enzyme involved in proteolysis. Furthermore, total replacement of FM
with rice protein concentrate (RPC) resulted in a decrease in the large
diameter (> 50 μm) of white muscle fiber of blunt snout bream
(Megalobrama amblycephala) (Cai et al., 2018). Changes in muscle fiber
growth was used to explain the poor growth performance of fish fed
RPC in that experiment. However, diets used in the present study were
isoproteic, and balanced with essential amino acids; thus poor growth
in fish receiving PP75 is not explained by changes in muscle cellularity.

5. Conclusion

Based on the results of the present study, it can be concluded that
lumpfish are capable of utilizing mixtures of plant protein concentrates
in their diet. The FM in diets for juvenile lumpfish can be replaced with
up to 50 % of SPC and PPC without adversely affecting growth per-
formance, body chemical composition, or fast muscle fiber cellularity.
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