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• We examined the impact of ambient air
pollution on mortality, DALYs and
welfare cost.

• We used the novel dynamic panel
bootstrap-corrected fixed-effects esti-
mator.

• We found a positive significant associa-
tion between outdoor air pollution and
mortality.

• China is the most vulnerable to eco-
nomic burden due to ambient air pollu-
tion.

• Ambient air pollution has a significant
impact on economic development.
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Environmental pollution in the era of sustained economic development is an inevitable occurrence. However, the
rising levels of pollutant emissions hamper air quality, hence, affecting health outcomes. Previous studies have
assessed the case-by-case effect of ambient air pollution on mortality and morbidity, however, the impact on
disability-adjusted life years (DALYs) and welfare cost have not been investigated entirely. Here, we conduct
an empirical analysis of the 28-Year trend to analyze the nexus between ambient particulate matter and
ozone, mortality, DALYs, and welfare cost across 195 countries and territories by employing novel dynamic
panel estimation methods. We find that none of the 195 countries and territories studied between 1990 and
2017 meet WHO guideline for air quality, thus, mitigating ambient air pollution is at risk. However, Spain with
an annual average of PM2.5 not exceeding 15.12 μg/m3 is closer to WHO guideline of 10 μg/m3/annum. Among
the countries (China, the US, Russia, India, Germany and Japan) with the highest welfare cost of premature
death associatedwith the exposure to outdoor PM2.5 and ozone, China is themost vulnerable to economic burden
– spendingUS$1.58 trillion (constant 2010) in 2017. This study demonstrates that ambient air pollution has a sig-
nificant impact on economic development (welfare cost) and health outcomes (mortality, premature deaths, and
DALYs).

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

According to World Health Organization (WHO) and health care
ministries across the globe, particulate matter (PM10 and PM2.5), Sul-
phur dioxide (SO2), nitrogen dioxide (NO2) and ozone (O3) have a sig-
nificant impact on the quality of health and well-being (Ritchie and
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Roser, 2019; Katsouyanni, 2003). Ambient air pollution is reported to af-
fect morbidity, disability-adjusted life years (Cohen et al., 2017), life ex-
pectancy in total years (premature deaths)(Hay et al., 2017),
environmental quality and largely contributing to climate change
(Sarkodie et al., 2019). In line with WHO standards for air quality, two
main criteria for particulate sizes in the atmosphere exist, thus, particu-
latematter less than 2.5 μmand 10 μm(PM2.5 and PM10 in aerodynamic
diameter) (Pope III, 1999; World Health Organization, 2016). In 2016,
the global age-standardized mortality rate associated with ambient
and household air pollution was 114/100,000 population. The 2017
mean annual air pollution (PM2.5) exposure was 46 μg/m3, with 91%
population exposed to levels exceeding WHO guidelines for PM2.5 not
exceeding 10 μg/m3 (The World Bank, 2019; World Health
Organization, 2018).

Environmental pollution is the contribution of both natural occur-
rences, such as volcanic eruptions, forest fires, among others, and an-
thropogenic activities (Katsouyanni, 2003) from energy production,
industrialization, land use, forestry, agriculture, transportation, build-
ings and waste generation (IPCC, 2016; Sarkodie and Strezov, 2018).
Thus, several studies have examined the extent of pollution on health
outcomes (Balakrishnan et al., 2019; Cohen et al., 2017; Huang et al.,
2018; Sarkodie et al., 2019). First, studies on the relationship between
pollution and health outcomes span from short- to long-term including
some cohort studies (Landrigan et al., 2018; Williams et al., 2019). Both
minimal and large exposures to ambient pollution have varying impacts
on quality of health and well-being, mostly among children and aged
(Brunekreef and Holgate, 2002; Landrigan, 2017; Landrigan et al.,
2019). Second, the degree to which various harmful ambient com-
pounds namely O3, NO2, SO2, PM10, and PM2.5 affect health and well-
being have been studied. For instance, several studies have assessed
air pollution – years of life lost due to non-accidental cardiovascular
and respiratory deaths across the globe and found a significant positive
association between pollution and health (Collaboration, 2018;
Fitzmaurice et al., 2018; Huang et al., 2018). While there are several
studies on the impact of ambient air pollution on environment and
health outcomes, literature on the effect of air pollution on financial de-
velopment is limited (Gakidou et al., 2017; Landrigan et al., 2018;
Mostofsky et al., 2012; Solomon et al., 2011). Air pollutants released
into the environment due to combustion of fossil fuels for industrial
and economic development leads to a trade-off between quality of life
and financial development. Thus, a shift from ‘money’ generating re-
sources such as fossil fuels to curb pollution comes with an economic
cost. Apart from direct loss in revenue due to reduced consumption of
fossil fuels, an indirect financial cost to the economy emerges from pre-
ventive and curative health cost, loss of working hours, migration, and
productivity loss (Oliva et al., 2019).

The geographical scope of studies on pollution-health nexus ranges
from regions, continents, countries and organizational groups to indi-
vidual countries, and sometimes across urban areas within specific
countries. However, a major challenge for studies on pollution-health
association is the non-availability of data. These studies obtained vary-
ing data sets, time periods and different estimation models, hence, pro-
ducing inconsistent results (Katsouyanni, 2003). Meanwhile, there is
still much to be considered in the nexus between pollution and health
outcomes, as anthropogenic emissions across the globe due to produc-
tion and consumption is increasing in magnitude (Landrigan et al.,
2018). Contrary to previous literature, this study for the first time inves-
tigates the impact of air pollution on welfare cost from exposure to am-
bient particulatematter and ozone. Second, usingWHO guideline for air
quality as a benchmark, we assess whether countries meet the accept-
able level. Third, we identify hotspot countries with air pollution-
related mortality and DALYs cases. Thus, this study contributes to the
extant literature by investigating the nexus between mortality,
disability-adjusted life years and welfare cost. We add to the global de-
bate on health-pollution nexus by employing a dynamic estimation
method across 195 countries and territories. The flexibility of the

novel dynamic panel bootstrap-corrected fixed-effects estimator
makes it possible to examine both parametric and non-parametric in-
ferences. It can be applied unrestrictedly to target series that are either
stationary or non-stationary. Using lagged dependent explanatory vari-
ables in the estimation technique, omitted variable bias and unobserved
common factor are constricted.

2. Materials & method

2.1. Data

Data used in this study were extracted from environmental risk and
health database of the Organization for Economic Co-operation Devel-
opment (OECD, 2018). The variables include exposure to ambient par-
ticulate matter [PM2.5, (μg/m3)], mortality from exposure to ambient
PM2.5 (per million inhabitants), mortality from exposure to ozone (per
million inhabitants), premature deaths from exposure to ambient
PM2.5, premature deaths from exposure to ozone, Disability-Adjusted
Life Years (DALYs) from exposure to ambient PM2.5 (per thousand in-
habitants), DALYs from exposure to ozone (per thousand inhabitants),
the welfare cost of premature deaths from exposure to ambient PM2.5

(US$,millions, 2010), and thewelfare cost of premature deaths fromex-
posure to ozone (US$, millions, 2010). Following routine data prepro-
cessing techniques, unevenly spaced data series were imputed using
the imputation algorithm in Orange data mining software version 3.24
by theUniversity of Ljubljanabased on a randomvaluemethod. This im-
putation algorithm has several advantages, as it keeps the distribution,
centring, minimum, maximum and dispersion of the original data
intact1.

2.2. Model estimation

There are several panel estimation techniques available and used in
the extant literature, however, this study used the novel dynamic panel
bootstrap-corrected fixed-effects estimator to develop mortality-
DALYs-PM2.5 models with lagged dependent explanatory variables.
Contrary to the traditional panel techniques that require only large
time dimension (T) for estimations to be asymptomatically valid, the
bootstrap-corrected fixed-effects — least squares dummy variable esti-
mator corrects the small T bias in panel dynamic models (Kiviet, 1995;
Nickell, 1981) using a simplified algorithm introduced in Everaert and
Pozzi (2007). Thus, the bootstrap-corrected fixed-effects estimator is
useful in estimating higher-order panel data models that contradict
the standard error structure, a situation encountered in this study.
Using the suitable resampling option in the dynamic panel estimator,
challenges such as, inter alia, cross-sectional dependence and
heteroskedasticity that undermine the analytical error correctionproce-
dures are controlled.

For brevity, the generic expression of the dynamic panel estimation
models constructed based on the bootstrap-corrected fixed-effects is
presented as (De Vos et al., 2015):

yi,t ¼ γ∗yi,t−1 þ β∗xi,t þ μ i þ εi,t ð1Þ

For cross-sectional dimension i=1,…, N and time dimension t=2,
…, T, where yi, t denotes the dependent variables, xi, t represents the
strongly exogenous regressors, γ is the autoregressive coefficient of
the lagged dependent variable, β is the estimated vector coefficients of
the independent variables, μi represents the uncorrelated and
exogeneous country-specific fixed-effects or unobserved heterogeneity
with a zero mean and greater than zero variance, and εi, t is the unob-
served and uncorrelated error term across cross-sectional units and

1 The characteristics of the data during pre-imputation and post-imputation are pre-
sented in Appendix A.
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time. To achieve a dynamic stable relationship between yi, t and xi, t, γ is
assumed to be less than 1.

Our models can be constructed by rewriting Eq. (1) as:

lnTOTMORi,t ¼ γ∗lnTOTMORi,t−1 þ β∗lnPM25i,t þ μ i þ εi,t ð2Þ

lnTOT_MORV i,t ¼ γ∗lnTOTMORV i,t−1 þ β∗lnPM25i,t þ μ i þ εi,t ð3Þ

lnTOTDALY i,t ¼ γ∗lnTOTDALY i,t−1 þ β∗lnPM25i,t þ μ i þ εi,t ð4Þ

lnTOT_SCV i,t ¼ γ∗lnTOT_SCV i,t−1 þ β∗lnPM25i,t þ μ i þ εi,t ð5Þ

lnTOTMORi,t ¼ γ∗lnTOTMORi,t−1 þ β1∗lnTOTDALY i,t þ β2∗lnTOT_SCV i,t
þ β3∗lnPM25i,t þ μ i þ εi,t ð6Þ

lnTOTMORi,t ¼ γ∗lnTOTMORi,t−1 þ β1∗lnTOTDALY i,t þ β2∗lnTOT_SCV i,t
þ β3∗lnTOT_SC_V_lnTOT_DALYi,t þ β4∗lnPM25i,t þ μ i
þ εi,t ð7Þ

For Eqs. (2)–(7): Where ln denotes the logarithmic transformation
of the data series, lnTOTMOR is the total mortality from exposure to
outdoor PM2.5 and ozone, lnTOT_MORV denotes premature deaths
from exposure to outdoor PM2.5 and ozone, lnTOTDALY is the total
Disability-Adjusted Life Years from exposure to outdoor PM2.5 and
ozone, lnTOT_SCV is the total welfare cost of premature deaths from ex-
posure to outdoor PM2.5 and ozone and lnPM25 is the exposure to am-
bient particulate matter. To control for heteroskedasticity and its
corresponding heterogeneity, themodel specification included a resam-
pling of error terms using the randomized temporal heteroskedasticity
scheme with analytical heterogeneous initialization. This implies that
the algorithm resamples the entire time period spanning 1990–2017,
followed by resampling of the error terms within the specified time pe-
riods (t= 1, …, 28). Sampling from a multivariate normal distribution
including cross-sectional specificmeans and variance-covariancematri-
ces were the initial conditions. To make unbiased statistical inferences
while preserving the dynamic panel structure of the estimated models,
we utilized the nonparametric bootstrap option of the simulation to re-
sample the original data series and subsequently apply the
bootstrapping bias-correction to the estimated fixed-effects of each
constructed samples (De Vos et al., 2015).

2.3. Model validation

The assurance of quality control measures is essential to the validity
and replicability of the estimated models. To ensure the independence
of the model residuals, we first assumed cross-section independence
of the panel series by testing for unit root using first generational
panel unit root tests namely Breitung (Breitung, 1999) and Im-
Pesaran-Shin (IPS) (Pesaran et al., 2003) which all requires a balanced
panel, a challenge that led to data imputation of the unevenly spaced
data series. The unit root tests were conducted to examine the station-
arity of panel data series under the null hypothesis of a unit root in
the panel. The tests were essential to deal with highly persistent time
series that may influence the model estimation, hence, producing mis-
leading results leading to biased statistical inferences. The results of
first generational panel unit root tests are presented in Appendix B.
The results confirm the presence of unit root among variables except
PM 2.5 at level, however, the null hypothesis of unit root is rejected at
first difference in all series. Second, we suspected an issue with cross-
section dependence (CD), a challenge with panel data settings, hence,
we employed a CD test following the algorithm outlined in Pesaran
(2004); Pesaran (2015). The CD test is suitable for both balanced and
unevenly spaced panel dataset and examines the average correlation
between cross-sectional units assuming a standard normal distribution
based on the null hypothesis of either strict cross-sectional independence
or weak cross-sectional dependence (Pesaran, 2004; Pesaran, 2015).

Evidence from the test for cross-section dependence in Appendix C re-
veals that the null hypothesis of either strict cross-sectional indepen-
dence or weak cross-sectional dependence is rejected — providing
strong evidence of correlation across countries. The next stepwas to ex-
amine the likelihood of heterogeneity, another challenge in panel data
setting. We used the modified Wald (MWALD) statistics in a fixed-
effect regression that assumes normality of errors based on the null hy-
pothesis of homoskedasticity expounded in Greene (2000). The results
of the test presented in Table 1 rejects the null hypothesis of
homoskedasticitywith a p-value close to zero, thus, providing strong ev-
idence of heteroskedasticity. With the presence of strong correlation
and a violation of normality, the study re-examined the unit root
using the second generational panel unit root tests useful in making a
critical judgement on the evidence of unit roots in heterogeneous
panel with strong correlation across panel units. We utilized both
cross-sectionally augmented IPS (CIPS) and cross-section augmented
Dickey-Fuller (CADF) based on the null hypothesis of homogeneous
non-stationary for the former (Pesaran, 2007) and null hypothesis as-
suming all series are non-stationary in heterogeneous panel with
cross-sectional dependence for the latter (Pesaran et al., 2003). The em-
pirical results of the second generational panel unit root tests in Appen-
dix D corroborate the first generational panel unit root tests.

3. Results

3.1. Rankings

Choropleth maps showing the geographical distribution of various
data series are presented in Figs. 2–6. The top ten countries with the
highest concentrations of PM2.5 include Nepal (57.91 μg/m3), India
(54.48 μg/m3), Saudi Arabia (52.93 μg/m3), Niger (50.71 μg/m3),
Central African Republic (46.65 μg/m3), Egypt (46.3 μg/m3), Cameroon
(45.85 μg/m3), Gabon (44.24 μg/m3), Pakistan (44.21 μg/m3), and
Equatorial Guinea (43.4 μg/m3) while countries with lower PM2.5 con-
centrations include Spain (15.12 μg/m3), New Zealand (16.17 μg/m3),
Denmark (16.62 μg/m3), Canada (17.05 μg/m3), Norway (18.16 μg/
m3), Sweden (18.65 μg/m3), Finland (19.41 μg/m3), the US (20.13 μg/
m3), Brazil (20.23 μg/m3), and Portugal (20.44 μg/m3) [see Fig. 1]. It
can be observed that all countries with higher concentrations are devel-
oping economies striving to improve livelihoods through economic ad-
vancement, however, the carbon-embedded economic structure comes
with an environmental cost. The particulate emissions are primarily
from the vast usage of automobiles, combustion of domestic waste in
open areas, and industrial factories that do not adhere to regulations
that will ensure safe emission levels (Van Vliet and Kinney, 2007).

Egypt (27 per 1000 people), Ukraine (26 per 1000 people),
Belarus (23 per 1000 people), Russia (22 per 1000 people),
Turkmenistan (21 per 1000 people), Nigeria (21 per 1000 people),
Bulgaria (20 per 1000 people), Tajikistan (18 per 1000 people),
Uzbekistan (17 per 1000 people), and India (17 per 1000 people)
are countries with the most estimated cases of DALYs from exposure
to ambient PM2.5 and ozone whereas Nicaragua (3 per 1000 inhabi-
tants), Paraguay (3 per 1000 people), Libya (3 per 1000 people),
Honduras (3 per 1000 people), Mozambique (3 per 1000 people),
Malawi (4 per 1000 people), Dominican Republic (5 per 1000 peo-
ple), Colombia (5 per 1000 people), Uganda (5 per 1000 people),
and Madagascar (5 per 1000 people) are countries with the least
cases of DALYs for the study period (see Fig. 2).

Ukraine (1130 per million people), Belarus (1012 per million
people), Russia (894 per million people), Bulgaria (891 per million
people), Latvia (731 per million people), Lithuania (704 per million
people), Hungary (685 per million people), Czech (678 per million
people), Slovakia (658 per million people) and Serbia (652 per mil-
lion people) have the highest estimated mortality rate from expo-
sure to ambient PM2.5 and ozone whereas Libya (56 per million
people), Mozambique (65 per million people), Nicaragua (71 per

3P.A. Owusu, S.A. Sarkodie / Science of the Total Environment 742 (2020) 140636



million people), Malawi (86 per million people), Mali (90 per million
people), Honduras (91 per million people), Uganda (93 per million
people), Paraguay (93 per million people), Madagascar (95 per

million people) and Kenya (100 per million people) have the lowest
ambient PM2.5 and ozone attributable mortality rates depicted in
Fig. 3.

Table 1
Baseline model estimation of ambient air pollution and health outcomes using Drisc-Kraay panel regression.

Estimation Mortalitya Premature DALYs Welfare cost Mortalityb Mortalityc

γ −0.033***
[0.011]

−0.024***
[0.002]

−0.035***
[0.010]

−0.833***
[0.045]

−0.188***
[0.034]

−0.197***
[0.036]

DALYs – – – – 0.168***
[0.031]

0.124***
[0.022]

Welfare cost – – – – 0.004***
[0.001]

−0.013***
[0.005]

Welfare cost × DALYs – – – – – 0.009***
[0.003]

PM2.5 0.005**
[0.002]

0.005***
[0.002]

0.004**
[0.002]

0.049
[0.031]

0.005**
[0.002]

0.004**
[0.002]

1992 0.003***
[0.002]

0.003***
[0.000]

0.003***
[0.000]

0.078***
[0.004]

0.004***
[0.000]

0.004***
[0.000]

1993 0.005***
[0.000]

0.004***
[0.000]

0.005***
[0.000]

−0.009*
[0.005]

0.007***
[0.000]

0.007***
[0.000]

1994 −0.003***
[0.000]

−0.004***
[0.001]

−0.003***
[0.000]

0.006
[0.005]

0.001
[0.001]

0.002*
[0.001]

1995 −0.007***
[0.003]

−0.008***
[0.001]

−0.007***
[0.000]

0.077***
[0.003]

−0.001
[0.001]

0.000
[0.001]

1996 0.001*
[0.003]

0.000
[0.001]

0.000
[0.000]

0.173***
[0.007]

0.005***
[0.001]

0.007***
[0.001]

1997 −0.001***
[0.000]

−0.001
[0.001]

0.000
[0.000]

0.076***
[0.011]

0.005***
[0.001]

0.006***
[0.002]

1998 −0.004***
[0.000]

−0.003***
[0.001]

−0.003***
[0.000]

0.179***
[0.007]

0.004**
[0.002]

0.005**
[0.002]

1999 −0.008***
[0.001]

−0.008***
[0.001]

−0.008***
[0.000]

0.166***
[0.010]

0.001
[0.002]

0.002
[0.002]

2000 −0.015***
[0.003]

−0.015***
[0.001]

−0.015***
[0.000]

0.160***
[0.011]

−0.004
[0.002]

−0.003
[0.003]

2001 −0.005***
[0.000]

−0.005***
[0.001]

−0.005***
[0.000]

0.288***
[0.011]

0.005**
[0.002]

0.006**
[0.002]

2002 −0.002***
[0.000]

−0.001
[0.001]

−0.004**
[0.000]

0.237***
[0.016]

0.009***
[0.002]

0.010***
[0.003]

2003 −0.005***
[0.003]

−0.003*
[0.001]

−0.006***
[0.000]

0.232***
[0.015]

0.008***
[0.003]

0.009***
[0.003]

2004 −0.013***
[0.003]

−0.010***
[0.002]

−0.013***
[0.000]

0.320***
[0.014]

0.002
[0.003]

0.003
[0.003]

2005 −0.011***
[0.003]

−0.008***
[0.002]

−0.011***
[0.001]

0.487***
[0.018]

0.004
[0.003]

0.005
[0.003]

2006 −0.003***
[0.003]

0.001
[0.002]

−0.001*
[0.001]

0.471***
[0.027]

0.010***
[0.003]

0.012***
[0.003]

2007 −0.002***
[0.004]

0.002
[0.002]

−0.001*
[0.001]

0.473***
[0.026]

0.012***
[0.003]

0.013***
[0.003]

2008 −0.006***
[0.004]

−0.001
[0.002]

0.006***
[0.001]

0.536***
[0.027]

0.009***
[0.003]

0.011***
[0.003]

2009 −0.008***
[0.004]

−0.003
[0.002]

−0.008***
[0.001]

0.453***
[0.030]

0.009**
[0.003]

0.011***
[0.004]

2010 −0.010***
[0.004]

−0.005**
[0.002]

−0.012***
[0.001]

0.552***
[0.027]

0.008*
[0.004]

0.010**
[0.004]

2011 0.006***
[0.004]

0.011***
[0.002]

−0.004***
[0.001]

0.562***
[0.031]

0.022***
[0.003]

0.024***
[0.004]

2012 −0.020***
[0.004]

−0.015***
[0.002]

−0.022***
[0.001]

0.546***
[0.031]

0.002
[0.005]

0.004
[0.005]

2013 −0.017***
[0.004]

−0.012***
[0.002]

−0.019***
[0.001]

0.601***
[0.031]

0.006
[0.005]

0.008
[0.005]

2014 −0.019***
[0.004]

−0.015***
[0.002]

−0.023***
[0.001]

0.678***
[0.033]

0.004
[0.005]

0.007
[0.005]

2015 0.029***
[0.004]

0.034***
[0.002]

0.024***
[0.001]

0.652***
[0.037]

0.046***
[0.004]

0.048***
[0.004]

2016 −0.028***
[0.004]

−0.022***
[0.003]

−0.032***
[0.001]

0.779***
[0.036]

0.000
[0.006]

0.003
[0.006]

2017 0.007***
[0.004]

0.012***
[0.003]

−0.002*
[0.001]

0.691***
[0.042]

0.031***
[0.005]

0.033***
[0.005]

Constant 0.174***
[0.055]

0.175***
[0.043]

0.061***
[0.019]

5.436***
[0.338]

0.636***
[0.117]

0.767***
[0.152]

Prob N F 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***
R2 0.151 0.147 0.153 0.419 0.259 0.271
Cointegration† Yes Yes Yes Yes Yes Yes

Notes: [.] denotes Drisc/Kraay robust standard errors, γ represents lagged dependent variable; and ***, **, * denote statistical significance at 1, 5, and 10% levels. † represents the estimation
of cointegration using Westerlund test; YES represents the rejection of the null hypothesis of no cointegration at 1, and 5% significance levels; a, b, c denote Mortality ~ f(Ambient air pol-
lution),Mortality ~ f(DALYs, welfare cost and ambient air pollution) andMortality ~ f(DALYs, welfare cost, ambient air pollution and interaction between DALYs andwelfare cost). Legend:
DALY is the average total Disability-Adjusted Life Year from exposure to PM2.5 and ozone, R2 means R-squared, and Prob N F is the probability of Fisher's test statistic.
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China (821,688 deaths) and India (537,818 deaths) are the two
countries with the highest number of estimated premature deaths due
to the exposure to ambient PM2.5 and ozone (see Fig. 4). The estimated
welfare cost of premature death associated with the exposure to out-
door PM2.5 and ozone was high in China (605,592 millions, 2010 US$),
the US (471,173 millions, 2010 US$), Russia (236,556 millions, 2010
US$), India (214,412 millions, 2010 US$), Germany (157,671 millions,
2010 US$) and Japan (150,151 millions, 2010 US$) [Fig. 5].

3.2. Model-based assessment

En route to the model estimation, the study first tested for station-
arity using first generational panel unit root tests (Appendix B). We

subsequently tested for a possible cross-sectional dependence in the
panel (Appendix C), where the results confirmed the existence of
cross-sectional dependence among the panel units. Hence, the first gen-
erational unit root tests were incapable of handling cross-sectional de-
pendence, a verdict that led to re-estimation of stationarity using
second generational unit root tests (Appendix D). After meeting the
preconditions, the study proceeded to test for panel cointegration
using Westerlund test under the null hypothesis of no cointegration.
This form of residual-based panel cointegration is capable of accounting
for country-specific short-run dynamics and country-specific slope pa-
rameters (Westerlund, 2005). The empirical results in Table 1 show
that the variables in the model specification are cointegrated in all
panels.

Fig. 1. Geographical distribution of the mean exposure to ambient particulate matter [PM2.5, (μg/m3)] across 195 countries.

Fig. 2. Geographical distribution of DALYs from exposure to PM2.5 and ozone per 1000 inhabitants. Legend: TOT_DALY is the average total Disability-Adjusted Life Year from exposure to
PM2.5 and ozone.
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We developed a baseline estimation model using Drisc/Kraay
panel fixed-effects regression with robust standard errors. The
nonparametric method is robust in both balanced and unbalanced
cross-sectionally dependent panels with heteroskedastic and
autocorrelated error structure (Driscoll and Kraay, 1998). The empir-
ical results of the model estimates based on Drisc/Kraay panel fixed-
effects regression are presented in Table 1. Contrary to the extant lit-
erature on pollution-health nexus, we accounted for both country-
specific fixed-effects and time effects across countries. It can be ob-
served that the estimated models are statistically significant at 1%
level, with corresponding predictive power (R2) ranging from 15 to
42%. The lagged dependent variable (γ) is negative and statistically
significant (p-value b 0.01) across all estimated models, signifying a

transitory effect of historical trends of mortality, premature deaths,
DALYs, and Welfare Cost. Meaning that the historical instabilities
are corrected to equilibrium with time. The intercept parameter for
the estimated models is positive and statistically significant at 1%
level. Meaning that holding all regressors constant, ambient PM2.5

increase mortality by 0.17–0.77%, premature deaths by 0.18%,
DALYs by 0.06% andwelfare cost by 5.44%. The time effects show het-
erogeneous parameters from 1992 to 2017, confirming the presence
of heterogeneity. To verify the robustness of the Drisc/Kraay panel
fixed-effects regression, we employed the average marginal effects
of all covariates as a post-estimation method (Fig. 6). Fig. 6 shows
that the estimated coefficients are within the 95% confidence inter-
val using the population average over the estimation sample.

Fig. 3.Geographical distribution ofmortality from exposure to PM2.5 and ozone per 1000,000 inhabitants. Legend: TOT_MOR is themean totalmortality from exposure to PM2.5 and ozone.

Fig. 4. Geographical distribution of premature death from exposure to PM2.5 and ozone per persons. Legend: TOT_MOR_V denotes the average premature deaths from exposure to PM2.5

and ozone.
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To validate the presence of heterogeneity in the panel estimation,
we used the modified Wald test (MWALD test) estimation technique
to examine groupwise heteroskedasticity. The results of the MWALD
test presented in Table 2 reject the null hypothesis of homoskedasticity,
thus, violating the normality assumption across cross-sectional units.
The baseline models were re-estimated using dynamic panel
bootstrap-corrected fixed-effects to control for cross-sectional depen-
dence, panel heterogeneity, and small sample period bias. The specifica-
tion of the estimated models included randomized temporal
heteroskedasticity resampling error termwith analytical heterogeneous
initialization via a bootstrapping algorithm to correct both country-
specific fixed-effects and time effects. The estimated parameters from
the dynamic panel bootstrap-corrected fixed-effects are presented in
Table 2. Contrary to the negative parameter of the lagged-dependent
variable (γ) in Table 1, the results in Table 2 produce a positive and sta-
tistically significant (p-value b 0.01) coefficient of γb1, confirming a dy-
namic stable relationship between the target variables and regressors.
The estimates of the regressors in the bootstrap-corrected fixed-
effects specification are qualitatively similar to the baseline regression
estimates but vary in quantities. The coefficient linked to the relation-
ship between ambient PM2.5 and mortality is positive and statistically
significant at 5% (Table 1) and 1% (Table 2) level across models. Thus,
a 1% increase in exposure to ambient air pollution increases mortality
by 50 in every 1000,000 inhabitants. This confirms our a priori expecta-
tion of ambient air pollution attributable to mortality. The nexus be-
tween premature deaths and ambient PM2.5 produces similar
significant results; the coefficient is positive and statistically significant
at 1%. Consequently, increasing exposure to ambient PM2.5 by 1% spur
premature deaths across countries. We find a positive and significant
(p-value b 0.05) coefficient between DALYs and exposure to outdoor
air pollution. This means that increasing the exposure to ambient air
pollution increases the global burden of disease. In terms of the impact
of exposure to outdoor air pollution on welfare cost, we find that a per-
centage increase escalates the welfare cost of premature deaths by
0.05%. In the fifth model, we plugged in ambient air pollution, DALYs
and welfare cost in a mortality function to control for omitted variable
bias. We observe that the magnitude of impact on mortality ranges
from DALYs N ambient PM2.5 Nwelfare cost. Thus, DALYs from exposure
to outdoor PM2.5 increases mortality by 0.17% whereas outdoor air

pollution and welfare cost increase mortality by 0.005% and 0.004%, re-
spectively. In the sixthmodel, an interactive effect betweenDALYs from
exposure to outdoor PM2.5 and welfare cost was introduced in addition
tomodel five.We find that the initially significant positive coefficient of
welfare cost turns significant negative with a positive interactive effect.
Thismeans thatwelfare cost of premature deaths from exposure to out-
door PM2.5 and ozone serves as a mitigation effect of ambient PM2.5 at-
tributable deaths in countries where DALYs and welfare cost interplay.
We validated the estimated models using the bootstrap-stimulated dis-
tribution post estimation technique with autoregressive (AR) coeffi-
cients presented in Fig. 7. The histogram shows the bootstrap
distribution residuals of the estimated models. We can observe the
overlay of the kernel fit and normal distribution confirming residual in-
dependence and heterogeneous time effects.

4. Discussion

We examined the relationship between exposure to ambient air
pollution, mortality, DALYs, and welfare cost using the dynamic
bootstrap-corrected fixed-effects estimator. Our estimation reveals
that using dynamic models are essential to capture unobserved com-
mon factors and variable dynamics of a varied population compared
to static models. Our dynamic model successfully controlled for the
minimal sample bias (T), omitted variable bias, heterogeneity, country
and year-specific effects and provided significant statistical inferences.

Exposure to ambient air pollution is a major public health concern,
due to its impact on health outcomes. Our annual estimation of ambient
air pollution from 1990 to 2017 reveals that no nation from the 195
countries and territories has PM2.5 (annual mean) below WHO guide-
line of 10 μg/m3 for air quality. However, Spain is the only country closer
to the guideline with an annual average of PM2.5 not exceeding
15.12 μg/m3. The intensity of ambient air pollution is relatively high in
South Asia, Africa and Saudi Arabia while a visible sign of low PM2.5

levels is observed in high-income countries corroborating the previous
findings (Brauer et al., 2016). It is reported that the high levels of partic-
ulate matter can be linked to rapid urbanization and its associated en-
ergy intensity (Sarkodie et al., 2020), fossil fuel-dominated energy
consumption (Sarkodie et al., 2019), agriculture, forestry and land use
(Vadrevu et al., 2017), transportation (Zhang et al., 2019) and

Fig. 5. Geographical distribution of the welfare cost of premature deaths from exposure to PM2.5 and ozone (millions, 2010 US$). Legend: TOT_ SC_V is the mean total welfare cost of
premature deaths from exposure to PM2.5 and ozone.
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industrialization (Liu et al., 2016). Countries with persistently high
levels of PM2.5 depend primarily on solid fuels such as traditional bio-
mass — inter alia, charcoal, straw, and fuelwood; and coal (Liu et al.,
2016). The dependence on solid fuels is reported to have contributed
to 3 million deaths and 86 million disability-adjusted life years in
2015 (Cohen et al., 2017). Households in low-income countries cannot
easily afford alternatives to traditional biomass and often rely on these
unsustainable forms of energy consumption for cooking and heating

purposes (Meng et al., 2019). Urbanized areas are largely the industrial
hub ofmany countries,which comeswith an environmental cost.While
rapid urbanization is reported to decline the reliance on solid fuels,
hence, reducing household air pollution, urban-driven fossil fuel con-
sumption due to economic development exacerbates ambient air pollu-
tion in developing countries (Zhao et al., 2018). In contrast, migration-
induced urban population density is reported to have amitigating effect
on pollutant emissions in high-income countries, stemming from

Fig. 6.Averagemarginal effects of all covariateswith 95% CI using the population average over the estimation sample for the: (a) relationship betweenmortality and PM2.5 (b) relationship
between premature deaths and PM2.5 (c) relationship between DALYs and PM2.5 (d) relationship between welfare cost of premature deaths from exposure to PM2.5 and O3 and PM2.5

(e) relationship between mortality versus PM2.5, DALYs, and the welfare cost of premature deaths from exposure to PM2.5 and O3 (f) relationship between mortality versus PM2.5,
DALYs, the welfare cost of premature deaths from exposure to PM2.5 and O3, and the interactive effective of DALYs and welfare cost of premature deaths from exposure to PM2.5 and
O3. Notes: The red spikes denote the 95% Confidence Interval (CI). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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environmental policy stringency and pollution-abatement technologies
(Sarkodie et al., 2020; Sarkodie et al., 2019; Zhao et al., 2018). Agricul-
ture, forestry and land use activities contribute immensely to ambient
air pollution in developing countries whose agrarian economy depends

on vintage technologies. Pre-harvesting, harvesting and post-harvesting
activities such as burning of crop residues, burning forest products and
forest fires increase anthropogenic emissions and are more severe in
countries with high level of deforestation (Phairuang et al., 2017). The

Table 2
Parameter estimates of ambient air pollution and health outcomes using dynamic panel bootstrap-corrected fixed-effects.

Estimation Mortality Premature DALYs Welfare Cost Mortality Mortality

γ 0.310***
[0.036]

0.274***
[0.034]

0.315***
[0.030]

0.211**
[0.085]

0.841***
[0.028]

0.831***
[0.028]

DALYs – – – – 0.147***
[0.026]

0.108***
[0.024]

Welfare cost – – – – 0.004***
[0.001]

−0.012***
[0.004]

Welfare cost × DALYs – – – – – 0.008***
[0.002]

PM2.5 0.001***
[0.000]

0.001***
[0.000]

0.001***
[0.000]

0.048***
[0.014]

0.005***
[0.001]

0.005***
[0.001]

1992 – – – 0.073
[0.061]

0.004**
[0.002]

0.004**
[0.002]

1993 0.000
[0.002]

0.000
[0.002]

0.000
[0.002]

−0.012
[0.065]

0.007***
[0.002]

0.007***
[0.002]

1994 −0.008***
[0.002]

−0.009***
[0.002]

−0.007***
[0.002]

0.003
[0.075]

0.000
[0.002]

0.001
[0.002]

1995 −0.010***
[0.002]

−0.011***
[0.002]

−0.010***
[0.002]

0.078
[0.062]

−0.002
[0.002]

−0.001
[0.002]

1996 −0.001
[0.002]

−0.002
[0.002]

−0.000
[0.002]

0.169**
[0.079]

0.005**
[0.002]

0.006***
[0.002]

1997 −0.006***
[0.002]

−0.006***
[0.002]

−0.003
[0.002]

0.066
[0.067]

0.005*
[0.003]

0.006**
[0.003]

1998 −0.008***
[0.002]

−0.008***
[0.002]

−0.006**
[0.003]

0.171**
[0.073]

0.003
[0.002]

0.004*
[0.002]

1999 −0.012***
[0.002]

−0.013***
[0.002]

−0.010***
[0.002]

0.154*
[0.090]

0.000
[0.003]

0.001
[0.003]

2000 −0.017***
[0.002]

−0.018***
[0.002]

−0.015***
[0.003]

0.148**
[0.066]

−0.005*
[0.003]

−0.004
[0.003]

2001 −0.005**
[0.002]

−0.006***
[0.002]

−0.003
[0.002]

0.279***
[0.083]

0.004
[0.003]

0.005*
[0.003]

2002 −0.005**
[0.002]

−0.006***
[0.002]

−0.005**
[0.002]

0.225**
[0.106]

0.008***
[0.003]

0.009***
[0.003]

2003 −0.008***
[0.002]

−0.009***
[0.002]

−0.007***
[0.002]

0.211***
[0.070]

0.007**
[0.003]

0.008***
[0.003]

2004 −0.016***
[0.002]

−0.016***
[0.002]

−0.013***
[0.002]

0.303***
[0.105]

0.001
[0.003]

0.002
[0.003]

2005 −0.011***
[0.002]

−0.012***
[0.002]

−0.009***
[0.002]

0.469***
[0.099]

0.002
[0.003]

0.004
[0.003]

2006 −0.004*
[0.002]

−0.005**
[0.002]

−0.000
[0.002]

0.445***
[0.105]

0.009***
[0.003]

0.011***
[0.003]

2007 −0.006***
[0.002]

−0.007***
[0.002]

−0.003
[0.002]

0.448***
[0.099]

0.010***
[0.003]

0.012***
[0.003]

2008 −0.009***
[0.002]

−0.010***
[0.002]

−0.007***
[0.002]

0.510***
[0.128]

0.008**
[0.004]

0.009***
[0.003]

2009 −0.010***
[0.002]

−0.011***
[0.002]

−0.008***
[0.004]

0.422***
[0.124]

0.007**
[0.004]

0.009**
[0.004]

2010 −0.012***
[0.002]

−0.013***
[0.003]

−0.011***
[0.002]

0.534***
[0.097]

0.006*
[0.004]

0.008**
[0.004]

2011 0.005*
[0.003]

0.003
[0.003]

−0.006**
[0.003]

0.533***
[0.111]

0.021***
[0.004]

0.022***
[0.004]

2012 −0.026***
[0.003]

−0.027***
[0.003]

−0.025***
[0.004]

0.521***
[0.138]

0.000
[0.005]

0.002
[0.005]

2013 −0.015***
[0.003]

−0.017***
[0.003]

−0.014***
[0.003]

0.568***
[0.104]

0.003
[0.004]

0.005
[0.004]

2014 −0.018***
[0.003]

−0.021***
[0.003]

−0.017***
[0.003]

0.650***
[0.140]

0.002
[0.004]

0.004***
[0.004]

2015 0.031***
[0.006]

0.028***
[0.006]

0.031***
[0.006]

0.619***
[0.107]

0.044***
[0.006]

0.046
[0.006]

2016 −0.041***
[0.004]

−0.042***
[0.004]

−0.041***
[0.004]

0.747***
[0.125]

−0.003
[0.004]

0.000***
[0.004]

2017 0.012***
[0.003]

0.008***
[0.002]

0.012***
[0.002]

0.652***
[0.111]

0.028***
[0.004]

0.030
[0.004]

Convergence Yes Yes Yes Yes Yes Yes
MWALD test (ProbNchi2)‡ 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000***

Notes: [.] denotes Bootstrapped standard errors, Bootstrap 95% (percentile-based) confidence intervals and Inference performed with non-parametric bootstrap; γ represents the lagged
dependent variable; ***, **, * denote statistical significance at 1, 5, and 10% levels; a, b, c denote Mortality ~ f(Ambient air pollution), Mortality ~ f(DALYs, welfare cost and ambient air pol-
lution) andMortality ~ f(DALYs,welfare cost, ambient air pollution and interaction betweenDALYs andwelfare cost). ‡ denotes themodifiedWald test used as a post-estimation technique
to examine groupwise heteroskedasticity under the null hypothesis, H0:σ(i)2 =σ2 for all i. Legend: DALY is the average total Disability-Adjusted Life Year from exposure to PM2.5 and ozone,
MWALD means the modified Wald statistics, and ProbNchi2 is the probability of Chi-squared test.

9P.A. Owusu, S.A. Sarkodie / Science of the Total Environment 742 (2020) 140636



effect of land use on ambient air pollution depends on the share of land
occupied bywater bodies and land allocated for green space, residential,
industrial and agricultural activities. Transportation and industrial ac-
tivities spur the levels of PM2.5 especially in urban areas in countries
with industrialized economy. The combustion of fossil fuels in power
plants for manufacturing and power generation; and fuel for road, air
and maritime transportation propel ambient air pollution (Brauer
et al., 2016; Hu et al., 2017). Aside the drivers outlined, it is reported
that other underlying factors affecting the levels of ambient air pollution

across countries include topography (altitude, slope), meteorology
(precipitation, wind speed, temperature and humidity), and traffic
emissions (road network) (Huang et al., 2017).

It is observed that the distribution of premature deaths, totalmortal-
ity and DALYs from exposure to PM2.5 and ozone vary significantly
across the globe. The panel regression model found strong evidence
that ambient air pollution intensifies premature deaths, total mortality,
and DALYs. It is reported that exposure to ambient air pollution contrib-
uted to 4 million global deaths and 103 million DALYs in 2015 (Cohen

Fig. 7. Post estimation bootstrap-stimulated distribution of autoregressive (AR) coefficients and their sum for the: (a) relationship between mortality and PM2.5 (b) relationship between
premature deaths and PM2.5 (c) relationship between DALYs and PM2.5 (d) relationship between welfare cost of premature deaths from exposure to PM2.5 and ozone and PM2.5

(e) relationship between mortality versus PM2.5, DALYs, and the welfare cost of premature deaths from exposure to PM2.5 and ozone (f) relationship between mortality versus PM2.5,
DALYs, the welfare cost of premature deaths from exposure to PM2.5 and ozone, and the interactive effective of DALYs and welfare cost of premature deaths from exposure to PM2.5

and ozone.
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et al., 2017). China, India, Russia and the US have the highest number of
premature deaths due to exposure to ambient PM2.5 and ozonewhereas
Africa and Australia have low levels of reported cases of ambient PM2.5

and ozone attributable premature deaths. In terms of total global deaths,
Eastern Europe has the highest mortality rates (≤1130 per million in-
habitants) from both PM2.5 and ozone while Africa has the lowest vul-
nerability to ambient PM2.5 and ozone attributable mortality rates.
However, North Korea, China and India have the highest vulnerability
to ozone attributable mortality. The confirmed cases of DALYs attribut-
able to PM2.5 and ozone are high in some countries in Eastern Europe,
Central and South Asia whereas generally lower cases are reported in
Africa, America and the Caribbean.

The health outcomes associated with ambient air pollution have
significant policy implication on the welfare cost. Carbonized and
energy-intensive economic structure is associated with a trade-off
between economic development and environmental quality. China,
the US, Russia, India, Germany and Japan are countries with the
highest welfare cost of premature death associated with the expo-
sure to outdoor PM2.5 and ozone. Our study reveals that China is
the most vulnerable to economic burden due to premature death as-
sociated with exposure to outdoor PM2.5 and ozone. In 2017, China's
economic loss (welfare cost) increased to US$1.58 trillion (constant
2010) compared to India [US$581 billion (constant 2010)], the US
[US$516 billion (constant 2010)], Russia [US$236 billion (constant
2010)], Japan [US$180 billion (constant 2010)], and Germany [US
$170 billion (constant 2010)] (OECD, 2018). A similar study found
economic loss due to outdoor PM2.5 and ozone attributable prema-
ture deaths higher in China compared to Europe and the US (Matus
et al., 2012). These countries are within the top 7 nations in the
world whose economic development is driven by high energy de-
mand – leading to high CO2 emissions from fuel combustion
(Enerdata, 2019). The 2019 global statistics on CO2 emissions from
fuel combustion ranks China, the US, India, Russia, Japan and
Germany as top tier – with corresponding emissions of 9467
MtCO2, 5118 MtCO2, 2277 MtCO2,1755 MtCO2, 1123 MtCO2, and
733 MtCO2, respectively (Enerdata, 2019).

5. Conclusion

In recent years, climate change, ambient and household air pollution
and its associationwith health outcomes have receivedmuch attention.
The historical trend of premature deaths, total mortality, DALYs and
welfare cost has a persistent effect on future occurrences across
countries, hence, has policy implications. Here, we investigated the
global effect of ambient air pollution on mortality, premature deaths,
disability-adjusted life years and welfare cost. The empirical testing re-
sults showed a significant positive association between outdoor air pol-
lution, mortality, premature deaths, DALYs and welfare cost. Several
high-income economies have in recent years made effort to reduce air
pollution and improve air quality, hence, declining premature deaths,
mortality, DALYs and welfare cost. In contrast, emerging and industrial-
ized economies including China and India are still experiencing the out-
growth of air pollution. This has in effect increased the confirmed cases
of DALYs andwelfare cost of premature deaths attributed to ambient air
pollution and ozone. The seemingly high levels of ambient air pollution
in developing countries can be ascribed to several socio-economic fac-
tors. Our study demonstrated that unsustainable and carbon-intensive
economic development has environmental, economic and health out-
comes. Thus, mitigating air pollution by decarbonizing the economic
structure is useful in reducing the overall pollutant emissions.
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