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Abstract 

Acquiring basic understanding of the main benthic community composition patterns 

together with the environmental drivers that structure them is an essential step prior to 

any monitoring program that uses macrofauna as proxy for the biological status of a 

system. The soft-benthic communities of North Norwegian fjords have been poorly 

studied in the last decades despite increasing human activities such as fish farming. A 

first assessment of the soft-bottom macrobenthic species composition patterns of Tysfjord 

is given in the present study together with the prevailing environmental drivers that 

potentially structure the communities along a “mouth” to “head” transect. Tysfjord is a 

sub-arctic fjord with 3 basins and 3 sills, being the deepest fjord of Northern Norway with 

a maximum depth of 725 m. Our results showed low species diversity in the main basins 

and each basin had distinct macrofauna assemblages. The faunal composition in the 

deepest basin resembled other deep fjords from Southern Norway, being mainly 

dominated by the suspension feeding bivalve Kelliella miliaris and the tube-building 

polychaetes Paradiopatra fiordica and Spiochetopterus typicus. The inner-most basin 

(450 m), which is delimited by a shallow sill (60 m), presented oxygen deficient 

conditions at the sampling time which was reflected by the presence of low-oxygen 

tolerant species such as the thyasirid bivalve Thyasira cf. rotunda and the siboglinid 

polychaete Siboglinum cf. ekmani. The percentage of organic matter in the sediments 

together with the oxygen conditions of the bottom water were identified as the 

environmental factors that explained most of the variance observed in the fauna dataset. 

Given the importance of these two environmental drivers, the potential addition of 

organic waste from the surrounding fish-farms or other sources as well as potential effects 

on the benthic fauna should be carefully monitored and a precautionary approach should 

be taken, especially, when evaluating future uses of the oxygen depleted inner-most 

region of Tysfjord. 
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1. Introduction 

Since the first ecological study in Norwegian fjords, dating from the 18th century and carried out 

by the Danish naturalist O. F. Müller, several studies have been conducted in these estuarine 

formations along the Norwegian coast (Brattegard et al., 2011). The first studies had a naturalistic 

motivation, since fjords were regarded as accessible places where the main human settlements 

tended to aggregate and where the main academic institutions were located (Bergen, Trondheim 

and Oslo). However, by the 20th century, a significant shift took place from the more descriptive 

studies towards investigating the effects of anthropogenic impacts from industrial areas and other 

sources. Those studies made evident that marine communities in fjords and their ecological 

functioning were threatened by human activities (Brattegard et al., 2011). 

Fjords are important both to humans and marine life. Fjords provide on their coasts suitable 

locations for human settlements and sheltered waters for safe navigation, while they also support 

unique communities of marine flora and fauna. For instance, they give room to nursery grounds 

for marine fish species and provide feeding areas for migratory birds (McLusky and Elliott 2004). 

It is due to all these ecosystem services that humans have been using these estuarine environments 

and, although being considered as highly resilient systems, significant changes in response to 

anthropogenic impacts can be detected (McLusky and Elliott, 2004). 

In response to anthropogenic impacts on coastal systems, the European Water Framework 

Directive (WFD, 200/60/EC) was established as a framework to monitor and protect groundwater, 

inland surface waters, estuarine waters and coastal waters (Borja, 2005). In Norway, the WFD is 

incorporated into the Norwegian Water Management Regulations that set an objective of reaching 

at least a “good quality status” for all Norwegian waters by 2021 (Husa et al., 2014). The 

ecological quality of the coastal waters is assessed by a combination of both biological and 

physical-chemical parameters (Borja, 2005; Husa et al., 2014).  

One of the biological components regarded as good indicator for such assessments are 

macrobenthic communities (Borja et al., 2000), which have been shown to respond to man-

induced or natural stressors (Pearson and Rosenberg, 1978; Dauer, 1993). In Norway, for 

instance, soft-bottom macro-fauna is assessed in the monitoring program MOM (Modelling-

Ongrowing fish farms_Monitoring) which evaluates the environmental impacts of aquaculture 

facilities.  

However, most benthic species in estuarine environments are relatively more tolerant to 

environmental variations than those from other marine ecosystems (in contrast to the open ocean, 

where conditions remain almost the same throughout time). Therefore, it is more difficult to detect 

man-induced impacts in the biota of fjords and discern them from natural drivers and 

environmental variability (Alden et al., 1997; Veríssimo et al., 2013). 
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The structuring drivers of benthic communities, as mentioned before, may consist both of 

natural and anthropogenic factors and processes (Son et al., 2016). It is important that prior to any 

environmental monitoring program the spatial structure of the main benthic components and their 

dynamics are known. By doing so, researchers lend an increased ecological insight that serves as 

a basis for identification and understanding of compositional change over time (Olsgard et al., 

1998; Økland and Eilertsen, 1996; Son et al., 2016). 

Soft-bottom community studies in north Norwegian fjords have been scarce in the last decades 

and most efforts have been focused on researching the off-shore waters for monitoring and 

management under the MAREANO programme (Buhl-Mortensen et al., 2015).   

Some of the deepest southern Norwegian fjords such as Hardangerfjord (max. depth 890 m) 

have been investigated (Buhl-Mortensen and Buhl-Mortensen, 2014; Husa et al., 2014), revealing 

that deep basins of silled fjords have relatively low species diversity (Fauchald, 1972; 1974). In 

this deep sub-euphotic environment, the benthic fauna seems to be controlled mainly by the 

import-export of carbon, the oxygen levels inside the basin and the sedimentation rate of particles 

(Burrell, 1988). The sub-euphotic benthic communities of fjords might play an important role in 

the recycling of organic matter since the deep basins may be important carbon sinks (Burrell, 

1988). 

So far, however, there is no well-grounded knowledge on the soft-bottom benthic communities 

inhabiting the third deepest fjord of the country: Tysfjord, the deepest fjord of Northern Norway 

with a maximum depth of 725 m. 

Tysfjord is regarded as an important spawning and overwintering region for pelagic clupeoids 

like herring that migrate to the sheltered waters of the fjord every year. Wintering herring enter 

the fjord in October following the copepod Calanus finmarchicus and then descend to deep 

waters, where they hardly eat, enter in a state of energy conservation and try to avoid predator 

encounters until the end of January (Nøttestad and Axelsen, 1999). Killer whales follow the 

migrating herring and predate on them. Big concentrations of these marine mammals provide a 

highly profitable touristic economical income for the region (Kuningas et al., 2013). 

Several studies have confirmed the presence of genetically isolated population of the European 

lobster (Homarus gammarus) in the eastern parts of Tysfjord which are adapted to the extreme 

light climatic conditions of Northern Norway, with 24h light during summer and permanent 

darkness in winter (Jørstad and Farestveit, 1999; Agnalt et al., 2009).  

 

Since a high number of human activities are developing in Tysfjord (fish farming, industry, 

tourism, fisheries, etc.) it is important to provide a first description of the seafloor communities 
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to provide a baseline for future monitoring programs studying the ecological quality status of this 

inlet.  

The present study investigates the soft-bottom communities of Tysfjord, a multibasin subarctic 

fjord. The main objectives are to: 1) provide a first assessment of the benthic communities 

along an outer-inner transect of the fjord, 2) describe the patterns of taxonomic diversity 

within the fjord, and 3) relate the patterns in species composition and ecological functioning 

to the prevailing environmental conditions. 
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2. Material and Methods 

2.1. Study area 

 

Tysfjord is the deepest fjord in Northern Norway (Fig. 1). Located in Nordland county, it has 

a maximum depth of 725 m. It is approximately 55 km in length and 4-5 km across at its widest 

part and 1-2 km at its narrowest section. The east margin of the fjord presents several connections 

to other secondary fjords that run into Tysfjord (Fig. 2). 

Tysfjorden is connected on its outermost part with Vestfjorden. Vestfjorden is an unusual fjord 

as it is wider than most typical fjords (Mitchelson-Jacob and Sundby, 2001). The mouth, around 

70 km wide, extends from Bodø to Røst, narrowing down along the Lofoten archipelago to around 

20 km in the inner most part.  

 

Tysfjorden is a multibasin type fjord with 3 main sills and 3 main basins (Fig. 3). The 

outermost sill of Tysfjord is called Korsnes sill and its upper part is relatively flat with a deepened 

section, reaching up to 280 m depth. Right after the Korsnes sill, a small basin at around 600 m 

depth takes place being separated from the main deepest basin by a prominent structure 

resembling a seamount or submarine ridge approximately 100 m high from the seafloor (Fig. 2 

and 3). 

Figure 1: Map of Vestfjorden with Tysfjord (indicated with a white box (Fig. 2)) with the bathymetric data. The blue 
arrows represent the main circulation pattern when SW winds prevail, while the red arrows represent the predominant 
circulation when NE winds dominate. Bathymetry data source: The Norwegian Mapping Authority Hydrographic Service 
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Figure 2: 
Bathymetric map 
showing the main 
seafloor accidents 
from Tysfjord. Notice 
the complex 
topography of the 
fjord, with very steep 
side walls 
surrounding the 
main basins and 
with big changes in 
depth in relatively 
short distances. 

 

 

The deepest basin of the fjord has a depth between 700 and 

725 m (Fig. 2 and 3). The walls of the submarine cliffs 

surrounding the basins are almost vertical and provide hard 

substrate habitats for a wide range of sponges, anemones and 

cold-water corals such as the reef-forming species Lophelia 

pertusa (MAREANO, 2018 and ROV observations by David 

Cothran_Lindblad Expeditions, LLC). 

Following towards the head of the fjord, the deep basin ends 

with a relatively pronounced slope (here named Drag Slope) 

that leads to a narrow channel (Drag Channel) at 330 m depth 

close to the settlement of Drag (Fig. 2 and 3). 

The Helland sill separates Tysfjord from Hellmofjorden. 

This sill is small, with 303 m deep at its shallowest point. The 

mouth of Hellmofjorden is relatively narrow (about 1 km), 

with depths between 370 and 350 m.   

Finally, a very pronounced sill called Musken sill, 

separates the middle basin from the inner-most part of the 

fjord. This sill rises from 350 m up to 60 m at its shallowest 

point and drops again down to 450 m where the last basin 
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starts. The inner-most basin ends with a narrow branch that leads to the head of the fjord, where 

the small settlement of Hellmobottn is located (Fig. 2 and 3). 

 

 

2.2. Environmental setting 

 

In a local scale, the oceanography of Tysfjord 

is driven by wind patterns (Faust et al., 2017). 

However, the tide fluctuations and the 

dynamics of the North Atlantic and Norwegian 

Coastal Current systems flowing northwards 

along the Vestfjord have an impact on the 

hydrography at a regional level (Furnes and 

Sundby, 1981; Mitchelson-Jacob and Sundby, 

2001).  

 

Mitchelson-Jacob and Sundby (2001) 

described a general circulation pattern in the 

Vestfjord system consisting of an inflow of 

Atlantic water along the mainland side and an 

outflow current along the Lofoten archipelago 

producing a cyclonic pattern. 

However, this general trend is often modified 

by changes in the wind direction. Upwelling 

episodes in the Lofoten side may take place when 

south-westerly winds prevail in the area (usually 

in winter), pushing the coastal waters into the 

Figure 3: Profile showing the seafloor characteristics along the Tysfjord transect (including the Hellmofjord section). 
Notice the 3 main sill (Korsnes, Helland and Musken) and the 3 main basins (Deep, Middle and Inner-most). The 
horizontal axis represents distance [m] along the profile and the vertical axis represents depth [m]. The profile starts 
from the “mouth” of the fjord and ends in the “head” section (from left to right) 

Figure 4: Schematic representation of the monsoon 
effect in the Vestfjord region. In summer, when winds 
from land to sea prevail, the general wind pattern 
acquires a northly component that, through the Ekman 
transport, flushes the waters out of the mainland fjords 
and produces downwelling in the Lofoten area. The 
complete opposite effect occurs in winter. 
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fjords of the mainland side (Fig. 1). However, when the prevailing winds blow from the north-

east, the effects are the opposite and upwelling is produced in the mainland side while surface 

waters are being flushed out from the fjords towards Vestfjord (Furnes and Sundby, 1981). These 

variations in wind direction are mainly induced by the so-called monsoon effect that affects the 

Norwegian coast on a seasonal basis (Sætre, 2007) (Fig. 4).   

 

The region presents a complex physiographic setting marked by an alpine landscape with 

mountains sometimes higher than 1000 m and sparse vegetation (Faust et al., 2017). Due to the 

irregular topography, precipitation is greatly variable within short distances (500-2000 mm/a). 

The rivers running into Tysfjord 

are generally small (Faust et al., 

2017). The total catchment area 

that drains into Tysfjord is 

approximately 1147 km2 (data 

from The Norwegian Water 

Resources and Energy 

Directorate (NVE)) and 51,62 % 

of this area is represented by 14 

sub-fluvial systems with their 

respective catchment areas (Fig. 

5). Due to the small size of the 

catchment area and the small 

riverine system in the area, the 

freshwater inflow is rather 

diffuse.  

Faust et al. (2017) found a 

complex pattern of mineral and 

grain size distribution in the 

surface sediments of the 

Tysfjord basins which is most 

likely explained by the irregular 

erosion and the inhomogeneous 

sediment supply from each 

drainage area. This produces 

strong patchiness in the seafloor 

sediment composition over short 

distances. 

Figure 5: Topographic map of the area surrounding Tysfjord. The main 
rivers are in light blue and the main catchment areas are indicated in dark 
colour. Topographic data and river data source: Kartverket.no and The 
Norwegian Water Resources and Energy Directorate (NVE). 
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Current direction models from SINMOD, SINTEF suggest an average annual pattern of water 

flushing out of Tysfjord through the upper layer of the water column (2 m depth), mostly brackish 

water (Fig. 6). However, the annual average for the layer at 50 m depth suggest a complex 

circulation marked by eddies over the whole fjord.  

The water column of Tysfjord presents seasonal variations in temperature and salinity 

(Brklijacic et al., 2016). The temperature of the surface waters at the deep basin area during 2015 

varied between 3.5 – 5.5ºC in winter to a maximum temperature of 14.4 – 15.1ºC in July. The 

salinity of the surface water ranged from 33.0-33.1 in winter and dropped down to 24.5-25.5ºC 

between June and July. During summer and winter, the thermocline lies down as deep as 50 m 

(Brklijacic et al., 2016).  

Twelve aquaculture farms operate in Tysfjord, the majority of them dedicated to the 

cultivation of Atlantic Salmon. Moreover, a concrete factory in Kjøpsvik and a quarz plant in 

Drag operate in the region. 

 

Figure 6: Simplified representation of the current direction models from MODS Nordland by SINTEF. In the upper water 
column (2m depth in red arrows) the annual pattern consists mainly in water being flushed from Tysfjord out to 
Vestfjord. In contrast, at 50m depth (in blue arrows) am complex series of eddies predominate throughout Tysfjord. 
Source: http://nordland.sinmod.com/. 
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2.3. Sampling strategy 

The sampling campaign was conducted between the 22nd and the 26th of May 2017 on board 

RV Tanteyen. A Van Veen grab of 0.1 m2 was deployed to retrieve a total of 36 samples along a 

transect from the innermost to the outermost part of Tysfjord, including the Hellmofjorden branch 

and two stations outside the Korsnes sill in Vestfjorden (see Table 1 and Fig. 7) 

For each grab, measurements of temperature (°C), pH and Redox potential (mV) were 

recorded from the surface layer of the sediments using electronic probes (EcoSense® ORP15A 

ORP Temperature Pen Tester 11 and EcoSense® pH10A Pen Tester). The upper 5 cm and 2 cm 

of the sediment were sampled with a 50 mL syringe for granulometric analysis and total organic 

content, respectively. All sediment subsamples were filled in plastic bags and immediately frozen 

at -20ºC. 

The remaining content of the grabs was sieved on board using a 1 mm mesh size sieve and 

preserved with 4% formaldehyde seawater buffered with Borax.  

 

The environmental conditions of the water column were measured with 23 CTD casts 

deployed along the transect (see Fig. 8). For all casts, temperature [°C], salinity, dissolved oxygen 

[mg/L], fluorescence [µg/L] and density [Kg/L] were measured every second while the CTD was 

ascending at an approximate speed of 1 m/s. Only the up-cast records were processed and 

analysed.  

Table 1: Stations sampled during the Tysfjord campaign in May 2017 

Station Latitude Longitud Depth 

[m] 

Station Latitude Longitud Depth 

[m] 

1 68°17,262 15°53,897 596 19 68°02,428 16°07,607 325 

2 68°17,321 16°01,487 284 20 68°01,753 16°11,135 334 

3 68°17,278 15°57,406 548 21 68°00,894 16°11,093 375 

4 68°15,735 16°06,299 630 22 68°00,833 16°11,104 350 

5 68°14,901 16°08,180 620 23 68°00,050 16°11,863 374 

6 68°13,974 16°09,974 630 24 67°59,204 16°13,821 367 

7 68°14,332 16°07,467 580 25 67°57,800 16°14,979 360 

8 68°12,483 16°09,428 716 26 67°55,984 16°14,452 346 

9 68°11,580 16°11,014 719 27 67°55,505 16°14,200 333 

10 68°11,017 16°13,550 714 28 67°54,588 16°12,932 278 

11 68°10,712 16°11,078 715 29 67°53,913 16°14,848 110 

12 68°09,486 16°11,200 713 30 67°53,184 16°17,466 438 

13 68°09,529 16°11,218 710 31 67°52,799 16°19,329 452 

14 68°07,653 16°11,305 708 32 67°52,526 16°20,730 455 

15 68°06,418 16°11,227 703 33 67°52,153 16°21,932 450 

16 68°05,346 16°10,712 575 34 67°51,379 16°24,081 354 

17 68°04,143 16°09,280 486 35 67°49,708 16°27,099 100 

18 68°03,136 16°06,116 325 36 67°49,381 16°28,845 88,7 
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Figure 7: Map of the study region with the sampling locations indicated in red and aquaculture farms indicated 
in yellow. Depth is indicated by the colour scale. 
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A good sampling strategy is crucial in order to retrieve successfully the underlying gradients 

in species composition. Both the environmental variation and the species composition of each site 

have to be properly represented (Son et al., 2016). Traditionally this has been achieved by a 

strategy of “many-samples, one-site” where replication allows for robust statistical analysis in a 

rather experimentally methodological approach (Schweiger, 2016). However, limited resources 

(money, time, etc.) force researches to find a balance between the number of sites visited and the 

number of samples per site. As a consequence, a strategy of “many-sites, one-sample” may be 

beneficial since it allows to visit more sites in the study area, optimizing this way the coverage of 

spatial variability in species composition (Son et al., 2016). Aarnio et al. (2011) pointed out that 

although this last strategy may recover fewer species per site, a higher number of species will be 

recovered in total since species missed at one site will most likely appear at other sites. In the 

present study, the strategy “many-sites, one-sample” was chosen.  

2.4. Fauna processing 

The formaldehyde fixed grab samples were rinsed with freshwater for at least 30 minutes and 

macrofauna was sorted under a stereomicroscope. Prior to the sorting, a picture was taken of each 

sample for posterior visual examination of the general appearance of the seafloor material.  

All benthic macrofauna was identified to the lowest taxonomic level possible. Foraminifera 

were discarded during the sorting together with planktonic organisms like copepods.  

For each sampling station, taxon abundance (ind./0.1 m2) was assessed.  

2.5. Grain-size analysis 

The frozen samples for grain size analysis were defrosted and steered in a beaker with water 

to homogenize its content. Any large organisms were removed. The content was washed through 

a set of sieves (mesh sizes: 2mm-1mm-500µm-250µm-125µm-63µm). The effluent (<63 µm) 

was collected into a bucket. Each sediment grain size fraction was transferred into a pre-weighed 

aluminium container. The effluent collected in the buckets was left to settle for at least 48 hours 

and up to 1 week. Once the water was clear from particles, the excess of water was decantated 

without disturbing the sediment. Finally, the content left in the bottom of the buckets was 

transferred into a pre-weighed aluminium container. All containers were placed in an oven at 

90ºC for approximately 24 hours until all water content evaporated. All containers were weighed 

again and the weight of the individual size fractions was calculated by deduction of the container 

weight. 

The weights of each size fraction for each grab sample were introduced in the software 

GRADISTAT (Blott and Pye, 2001) in order to calculate the mud content [%] and the textural 
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group for each sample based on the Folk and Ward (1957) ternary classification in terms of Mud, 

Sand and Gravel.  

2.6. Percentage of organic matter in sediments 

The organic matter content (in%) of the sediment samples was quantified through the method 

of loss on ignition (LOI). LOI is a widely used method to estimate both the organic and the 

carbonate content of sediments by burning sequentially the sediment samples at different 

temperatures in a muffle oven to achieve different degrees of oxidization of carbon (Heiri et al., 

2001). 

For the present study, only the organic fraction was assessed. 

For the LOI procedure, porcelain crucibles were dried in an oven at 105ºC for 20 minutes to 

remove any traces of humidity, then transferred to a desiccator and each crucible was weighted 

on a fine scale with 0,0001g precision. The frozen sediment samples were transferred into the 

crucible and steered to defrost the sediments.  Large animals or other large inorganic particles 

(e.g. shells, wood, etc.) were removed from the sample.  Finally, the crucibles with the samples 

were dried in an oven: first at 90ºC for ca. 3 hours and then at 105ºC for ca. 20 hours. At first, the 

temperature was set to be lower than 100ºC to avoid spilling the samples when reaching the 

boiling point too violently. Therefore, the temperature was increased to 105ºC when most of the 

water already evaporated. 

Thereafter, the crucibles were transferred into the desiccator and, after cooling down for 10 to 

20 minutes, the weight was measured.   

Once the dry weight for each crucible was recorded, the samples were transferred in a muffle 

oven Heraeus D-6450 and burned at 520ºC for 5 hours. After this time, the muffle oven was 

switched off and the door was opened to cool it down. With protecting gloves and with the aid of 

a pair of oven pincers, the crucibles were transferred once more into the desiccator. After 10 to 

20 minutes, the weight of the crucibles was once more recorded. 

The TOC content was then calculated as: 

𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝐷𝑟𝑖𝑒𝑑 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑖𝑛 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 − 𝐶𝑟𝑢𝑐𝑖𝑏𝑙𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑒𝑚𝑝𝑡𝑦 

𝐿𝑂𝐼 = 𝐷𝑟𝑖𝑒𝑑 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑖𝑛 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 − 𝐵𝑢𝑟𝑛𝑒𝑑 𝑠𝑒𝑑𝑖𝑚𝑒𝑛𝑡 𝑖𝑛 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 

% 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑚𝑎𝑡𝑡𝑒𝑟 =
𝐿𝑂𝐼 ∗ 100

𝐷𝑟𝑦 𝑊𝑒𝑖𝑔ℎ𝑡
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2.7. Hydrography  

The CTD data of the up-cast for all CTD stations was cleaned and plotted in Golden Surfer © 

to obtain a profile plot along the fjord for each variable using a krigging method to interpolate the 

data from the measurement points. 

The values for the bottom water of each CTD were assigned to the closest grab to represent 

the prevailing environmental parameters. 

2.8. Statistical Analysis 

Today, unconstrained and constrained analysis are the method of choice to identify spatial 

patterns of benthic community structure and environmental gradients that might play a role in 

shaping these patterns (Legendre and Legendre, 2012). 

For long, the chi squared distance was considered to be the suitable metric for species data 

with unimodal distribution along an environmental gradient. However, severe drawbacks with 

this metric have led to a frequent choice to work with Euclidean distances (Legendre and 

Legendre, 2012). For this metric, PCA (principal-component analysis; for unconstrained 

ordination) and RDA (redundancy analysis; for constrained ordination) are used. The problem 

when working in Euclidean distances with raw species data along long gradients is that at some 

point some species for one site will be mostly replaced by others in other distant sites. This 

generates a large number of zeros in the dataset and ecologists have been arguing for long time 

that Euclidean distances are not suited for species abundance data with null abundances (Clarke 

and Warwick, 2001). 

Legendre and Gallagher (2001), proposed to transform the abundance species data with the 

Hellinger transformation in order to work with Euclidean distances employing PCA or RDA 

analysis. This transformation allows to preserve the chosen distance among objects, avoiding this 

way the problem with many zeros in the dataset. Hellinger transformed data is also recommended 

for clustering analysis with species abundance data. Legendre and Legendre (2012) also suggested 

a better compromise between linearity and resolution after running simulations with Hellinger 

transformed data. 

In this study, all statistical analyses were performed using the computing software R©, Version 

1.1.383. 

For all statistical tests involving the biological community data, the Hellinger transformation 

was applied using the “vegan” package (Oksanen et al., 2010). 

The present study falls into the category of being an exploratory investigation since it is the 

first time that a thorough assessment of soft-bottom communities is conducted in Tysfjord. Clarke 
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et al. (2008) suggested that in studies with a null-hypothesis backbone hierarchical cluster analysis 

is a good approach to identify statistically significant groupings of a priori unstructured samples 

of assemblage data. This method tests for the null-hypothesis among the distances (Euclidean, in 

our case) of randomly selected samples to define which are the significant groupings among all 

samples. For that, a clustering analysis with a SIMPROF test was performed with 999 

permutations and an alpha of 0.05 using the package “clustsig” (Whitaker 2014). 

Following, the 5 most abundant species in each cluster group were determined. 

For the ordination analysis, a variation partitioning analysis was performed. In variation 

partitioning, in contrast to the simple redundancy analysis, groups of independent variables are 

defined to create sets or variables representing broad factors (in our case environmental variables) 

in order to infer the common and unique contributions into the model of the different sets (Mood, 

1969, Peres-Neto et al., 2006) through multiple redundancy analysis. In this study, the 

environmental factors recovered after the sampling were grouped in 4 sets according to their 

belonging into biochemical properties, physical properties, sediment properties and depth (see 

Table 2). 

When too many factors are included as explanatory variables to an already fitted model the 

model tends to lose predictive power. This happens as a violation of the parsimony principle, 

which postulates that the less explanatory variables needed to explain the model, the better 

(Blanchet et al., 2008). For this reason, Forward Selection (FwS) was applied to the sets of 

environmental variables presented in Table 2 prior to the variation partitioning to determine which 

of them contributed significantly to the explanation of the model. The FwS uses two stopping 

criteria: the alpha significance level (0.05) and the adjusted coefficient of multiple determination 

(R2
adj) calculated using all explanatory variables (Blanchet et al., 2008). Only the significant 

variables in each set were included in the model for the variation partitioning analysis. 

The forward selection was performed with the packages “adespatial” (Dray et al., 2018) for 

the numerical factors and “ade4” (Dray, 2018) for the categorical factors (for the sediment 

properties). For the variation partitioning analysis, the package “vegan” was employed.  

The Shannon index (H’log e) (Shannon, 1948) and Pielou’s evenness (J’) (Pielou, 1977) 

diversity indices were calculated for the fauna dataset using the package “vegan”. In addition, the 

species richness (S) was calculated for each phylum subset (Mollusca, Polychaeta, Echinodermata 

and Arthropoda)  

For all analysis mentioned above, the species of Porifera from all samples were removed. 
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Table 2: Sets of the explanatory environmental variables for the constrained analysis  

Set of environmental variables Environmental variables 

Biochemical properties - Organic matter % in the sediment 

- O2 % in bottom water 

- O2 mg/L in bottom water 

Physical properties - Salinity of the bottom water 

- Temperature of the bottom water 

- Temperature of the sediments 

Sediment properties - Mud % 

- Sand % 

- Textural Group 

Depth - Depth 
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3. Results 

3.1. Environmental conditions 

The temperature profile of the CTD revealed a colder layer of water from the surface down to 

around 100 m depth throughout the whole fjord (Fig. 8). Beneath this upper layer, a gradient of 

temperature from warmer to colder appears in the direction from outer to inner Tysfjord. The 

water temperature at the Korsnes sill was 7.6 oC, decreasing towards the Middle basin with values 

between 7.5 and 7.4 oC. The Inner-most basin presented the lowest temperatures at the bottom 

water, with 6.6 oC (Fig. 8). 

The salinity measurements showed a similar pattern to the temperature profile. While the 

salinity at the outer-most part of the fjord was 35.25 at the Korsnes sill, it decreased slightly 

towards the Helland sill with 35 and was around 34.75 in the Inner-most basin. In the upper-most 

water layer values ranged from as low as 22 to 34.5 within the upper 100 m with the lowest values 

at the inner-most basin (Fig. 8). 

Oxygen values ranged between 9.5 to 7.5 mg/L in the outer region and the deep and middle 

basins of Tysfjord (Fig. 8). However, at the Inner-most basin, dissolved oxygen levels between 4 

and 6 mg/L were recorded, with the lowest values at the deepest parts of this basin. 

 

Figure 8: CTD profiles for Temperature [ºC], Salinity and Dissolved Oxygen [mg/L] for Tysfjord. The map shows the 
points where measurements were taken with the CTD that later on were interpolated to create the profiles. 
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Regarding the pH in the sediments (Fig. 9) the lowest values were found at station 5, with 

values of 6.73. The highest pH values were recorded at station 14, with 8.2. A gradient to more 

alkaline values was found from station 6 all the way to station 13, at the deep basin. At the middle 

basin, pH values were between 8.04 and 7.96. Relatively low values of pH were recorded in the 

shallowest and inner-most station, while they were a bit higher in the central part of the Inner-

most basin, with 7.88 at station 31.  

The highest temperatures at the sediment surface (Fig. 9) were recorded along the middle 

basin, and were highest at station 23, with 8.5 oC. The lowest temperature was recorded at the 

inner-most basin, with values between 7 and 7.2 oC (stations 30 to 33). The part of the deep basin 

closer to Drag seems to have higher sediment temperatures than the part closer to the Korsnes sill. 

The Redox potential at the sediments was highest at stations 5 with 285 mV and stations 18 and 

19 with 276 and 273 mV, while the lowest values were recorded at station 3, at the Korsnes sill, 

with 60 mV. All Redox potential values were above 0.  

Regarding the mud % in the sediment composition (Fig. 9), the lowest values were found at 

the Musken sill (stn. 29) with 3.8%. The highest mud % was recorded at station 8 with 92.8%. 

The stations of the deep basin closer to the Drag slope had relatively lower % in mud content than 

the stations closer to Korsnes, although it seems that the values in this basin are quite 

heterogeneous. At the stations closer to the Helland sill less % in mud was found, while it was 

higher at the central parts of the middle basin. In general, a pattern of high mud content in basins 

and low mud content in sills was found. 

In terms of organic matter % in the sediments (Fig. 9), the highest % was recorded at station 

1, outside Tysfjord, wih 7.9%. The highest values in the Deep basin were found closer to the Drag 

slope, at stations 13 and 14 with 7.13 and 7.20% respectively. The lowest values were found at 

station 19 (Helland sill) and 29 (Musken sill) with values of 1.75 and 0.74% respectively. At the 

Middle basin, the % values in organic matter were relatively lower than in the inner-most basin. 

However, it is clear that, in general, values of organic matter were higher before the Helland sill 

and lower after, towards the head of the fjord. In general, a pattern of high organic content in 

basins and low organic content in sills was observed. 

3.2. Infauna community 

3.2.1. Community composition 

A total of 206 taxa and 5378 individuals were identified belonging to 115 different families. 

The overall highest abundances were recorded in stations 19, 20 and 22 (in the region of the 

Helland sill) with 302, 275 and 280 individuals respectively and in station 36, (at the inner-most 

station) with 280 individuals (Fig. 9). In general terms, the abundance of individuals tended to 
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decrease from the beginning of the deep basin towards the Drag slope. The maximum abundance 

in the deep basin was in station 8, with values of 234 individuals. The average abundances in the 

middle basin (119 ind./0.1 m2) and in the inner-most basin (115 ind./0.1 m2) were lower than in 

the deep basin (152 ind./0.1 m2). The lowest abundance in this study was recorded at station 10 

of the deepest basin, with 54 individuals. 

The phyla Polychaeta (1801 ind.) and Mollusca (2905 ind.) dominated along the whole fjord, 

followed by Echinodermata (238 ind.), Arthropoda (172 ind.), Sipuncula (165 ind.) and Cnidaria 

(71 ind.). Mollusca, however, were very poorly represented in the shallowest stations (29, 35 and 

36). The number of Mollusca decreased progressively, especially in the middle basin towards the 

head of the fjord (Fig. 9). Polychaeta abundances, in contrast were more or less constant until the 

Musken sill, where afterwards they were higher. Echinodermata were only found in high 

abundances close to the Helland sill (Stations 18-23), while they were only found in low 

abundances within the basins. Cnidaria were almost exclusively recorded at the shallowest 

stations 29, 35 and 36. Arthropoda were relatively low in abundance in all fjord, with slightly 

higher abundances around the Helland sill and in the shallowest and inner-most stations. The 

phylum Sipuncula was practically anecdotic, with highest abundances at stations 21, 22 and 33. 

In general polychaetes and molluscs were dominating the basins while other taxa were more 

important at the sills and shallowest stations. 

The Shannon index showed highest values in diversity at stations 19 and 28 with H’ values of 

3.46 and 3.32 respectively (Fig. 9). The lowest values in H’ index were found at station 2 (1.70). 

While the shallowest stations, together with the middle basin stations had relatively high values 

in H’ index, the deep basin and the outer-most regions of Tysfjord presented lower values. 

Accordingly, samples can be divided in two groups: shallow (depth<400m; H’>2.5) and deep 

stations (Depth>400m; H’<2.5). Also, the inner-most basin had low values in H’. In terms of 

Pielou’s Evenness index (J’), the values were higher from the Helland sill and towards the inner 

parts.  However, in general, they are lower going towards the outer parts. 

The species richness (S) was high in the sills and the shallowest inner stations (Fig. 9). 

However, low values for S were recorded for the three main basins of the fjords. The species 

richness for polychaetes was lower in the basin stations than in the sills and for molluscs a 

tendency of decreasing towards the head after the Helland sill. Arthropoda and Echinodermata 

presented a comparatively lower species richness than the other two phyla mentioned above, with 

more or less stable values along the whole transect. 

- Polychaeta: 

In the outer stations and the Deep basin, the polychaetes from the families Chaetopteridae, 

Onuphidae and Siboglinidae were the dominating ones (Fig. 11). However, after the Helland sill, 
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a shift occured and polychaetes from the families Capitellidae, Spionidae, Siboglinidae, 

Trichobranchidae and Amphinomidae became dominant. It is quite noticeable the large amountof 
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different families at the stations from the Helland sill towards the inner-fjord in comparison with 

the deeper and outer parts (Fig. 11). 

 

Figure 10: Species richness (S) for each phylum (Polychaeta, Mollusca, Echinodermata and Arthropoda) at each 
station. 

By looking at the species level, the pattern for polychaetes looked quite similar to the one for 

families. In the deepest parts, from stations 1 to 17, the most abundant species were 

Spiochaetopterus typicus, Paradiopatra fiordica and P. quadricuspis (Fig. 12). After the Helland 

sill there was a noticeable increase in Heteromastus filiformis with the exception of stations 29, 

30 and 35. At the extreme sides of the inner-most basins (stations 30, 35 and 36) there was a high 

abundance in Prionospio cirrifera. S.typicus was found in high abundances in the deep basin, had 
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Figure 11: Abundance of individual/0.1m2 (left) and relative abundance in % (right) for the families of Mollusca in 
Tysfjord. Missing stations had no abundances. 

 

 

intermediate abundances in the middle basin and it was completely absent from the inner-most 

basin. Terebellides stroemi was quite abundant at the inner-most basin, specially at the centre of 

the basin, together with Siboglinum cf. ekmani (Fig. 12). This last species was also found in most 

of the stations of the deep basin. 

-  

- Mollusca: 

The family Kelliellidae was the most abundant from the Mollusca at the deepest basin and 

parts of the Middle basin (Fig. 13). However, from the station 24 until the head of the fjord, 

Kelliellidae was almost absent. The family Thyassiridae was the second one in abundance in all 

stations but was relatively low in the deep basin. This family was most abundant at stations 19 

and 20 (Helland sill) and was almost the only one present in the inner-most basin (Fig. 13). 

Nuculidae were also present in all stations to some extent but were almost completely absent in 

Figure 10: Abundance of individual/0.1m2 (left) and relative abundance in % (right) for the most-abundant species of 
Polychaeta in Tysfjord. Missing stations had no abundances. 
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the inner-most basin (Fig. 13). Most of the molluscs observed in Tysfjord belonged to the class 

Bivalvia. 

For the family Thyassiridae the species Thyassira cf. rotunda and Thyassira obsoleta were the 

most common (Fig. 14). T. obsoleta was the most common species of Thyassiridae outside of the 

inner-most basin, while in that basin, T. cf. rotunda was the most common and almost unique 

species present (Fig. 14). The species Genaxinus eumyarius was also a species of Thyassiridae 

mostly present in all stations from the Helland sill stations (from station 24) towards the outer 

parts of the fjord. However, this species was completely absent in the Inner-most basin (Fig. 14). 

The species Aspalima cristata was also somehow present in stations 1, 10, 13 and 15. Abra nitida 

was abundant in the stations adjacent to Helland (19, 20, 21 and 22) (Fig. 14). 

 

 

 

- Echinodermata: 

Regarding the families of Echinodermata, the brittle stars of the family Ophiuridae dominated 

in station 18, 19, 20, 21, 22, 23, 28, 29, 35 and 36 (Fig. 15). The family Spatangidae, which are 

irregular sea urchins, also dominated most of these stations. These two families appeared to be 

abundant in the sill and the shallowest stations but were almost absent at the basins (Fig. 15).  In 

some of the deepest stations, together with stations close to the Helland sill and part of the Middle 

basin the Amphilepididae representatives were also present (Fig. 15). 

Figure 12: Abundance of individual/0.1m2 (left) and relative abundance in % (right) for the most-abundant species of 
Mollusca in Tysfjord. Missing stations had no abundances. 
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Most of the families of Echinodermata were represented by only 1 species. Only in station 20, 

21 and 22, the family Ophiuridae was split between Ophiura carnea cf. and Ophiuridae juveniles 

(Fig. 16). 

 

- Arthropoda: 

The most abundant arthropoda families were the amphipoda Eriopisidae mainly at the Helland 

sill and inner-most basin and the ostracods Cyprididae at the sills and station 24 (Fig. 17). The 

Figure 13: Abundance of individual/0.1m2 (left) and relative abundance in % (right) for the families of 
Echinodermata in Tysfjord. Missing stations had no abundances. 

 

 

Figure 14: Abundance of individual/0.1m2 (left) and relative abundance in % (right) for the most-abundant species of 
Echinodermata in Tysfjord. Missing stations had no abundances. 
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cummacea family Diastylidae was also quite abundant at the stations after the Helland sill towards 

the inner parts. 

 

The ostracod Vargula norvegica was the dominant species around the Helland sill and the 

Musken sill and was also abundant at stations 34 and 35 (Fig 18). The cumacean Diastylis lucifera 

was mainly present in the Helland sill and Middle basin, and also abundant at station 36. The 

amphipod Eriopisa elongata was the only arthropod species  that was repeatedly found in the 

inner-most basin (Fig. 18).  

 

 

3.2.2. Spatial patterns 

The cluster analysis showed 4 main branches based on the distances between samples which 

reflected the similarity based on the community species composition (Fig. 19). The outer stations 

Figure 15: Abundance of individual/0.1m2 (left) and relative abundance in % (right) for the families of Arthropoda in 
Tysfjord. Missing stations had no abundances. 

 

 

Figure 16: Abundance of individual/0.1m2 (left) and relative abundance in % (right) for the most-abundant species of 
Arthropoda in Tysfjord. Missing stations had no abundances. 
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and the deep basin stations were grouped in one branch. This branch had some degree of similarity 

with the branch grouping the Helland sill stations and the middle basin. However, the stations of 

the inner-most basins were more different from those two branches mentioned, and the stations 

of the Musken sill and the shallowest inner-most stations appeared to be the more distinct ones 

from the rest. 

The SIMPROF analysis applied to the Hellinger transformed data identified 7 significantly 

different groups (Fig. 19). The first group included the station from the Musken sill and the two 

inner-most stations of the transect, which correspond to the shallowest stations in the study. 

Another group was formed by the stations of the inner-most basin. The deepest stations (from the 

small basin and the deep basin (station 2 to 17 excluding 10 and including 23)) formed a consistent 

significant group. the Drag Channel stations clustered together, while the Helland sill (20, 21 and 

22) formed another group. The stations from the Middle basin (24, 25, 26, 27 and 28) were 

significantly different from all the others and finally, station 1 and 10 formed a last single group. 

 

 

 

 

 

The mean average of each species for the samples of the different cluster groups identified the 

5 most abundant species which corresponded as well with the patterns observed for each station 

mentioned in the community species composition section (Fig. 20).  Polychaetes and Molluscs 

were the most abundant for each cluster group. 

Figure 17: Cluster analysis for the Hellinger transformed data. The vertical axis is the Euclidean distance. De 
different colours indicate the statistically significant groups obtained after the SIMPROF test (with 999 
permutations and alpha=0.05).  

Drag 
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3.2.3. Environmental drivers 

After applying the Forward Selection only some variables for each set of environmental factors 

were selected (Fig. 21). For the biochemical properties the organic matter % in the sediments the 

oxygen percentage (%) and dissolved oxygen (mg/L) of the bottom water were selected. The 

temperature of the bottom water was excluded from the physical properties set and for the 

sediment properties, the mud content (%) was the only one preserved. The depth factor was 

maintained as a single variable for its set. 

The variation partitioning results (Fig. 21) showed that the biochemical parameters such as 

organic matter in the sediments and oxygen (dissolved % and mg/L) of the bottom water reflected 

a big part of the variance of the faunal patterns (36%) together with the physical parameters (3%) 

of salinity of the water column and temperature of the sediments and depth (2%). All together 

they explained 32% of the variance in the community composition. The mud % reflected a total 

11% of the total variation when included together with all the other variables but was the one 

contributing the less by its own adding only to 1% of the variation. Altogether, the environmental 

data explained a total of 41% of the variance, while 59% of the variation remained unexplained. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Diagram showing the variation partitioning results for the environmental drivers. Each circle represents a 
set of environmental variables. When the circles overlap it means that both sets explain part of the variance of the 
community patterns. The number in each part of the circles indicate how much of the variance (in %) is explained.  The 
residual value indicates that a 59% of the total variance for the community data is not explain by any of the 
environmental sets presented in this study.  



33 

4. Discussion 

The results obtained after the analysis of the soft-bottom benthic communities revealed 

different patterns in the assemblages between basin and sill regions but also indicated that the 

macrofauna communities in each basin seem to be distinct. Molluscs and Polychaetes seemed to 

dominate the Tysfjord system and two main environmental drivers were suggested as the main 

structuring factors for the fauna dataset: the organic matter content in the sediment (%) and the 

oxygen conditions of the bottom water. 

4.1. Faunal patterns - abundance, diversity and evenness 

All basins in Tysfjord, independently of location along the outer/inner gradient, showed 

relatively low diversity measures (Shannon Wiener diversity (H’ log e) ranging from 1.7 to 3.46) 

(Fig. 9).  

Generally, the highest species richness was found at the shallowest stations (Helland and 

Musken sills and the two inner-most stations) (Fig. 9) which seems in contradiction with the 

findings of Holte et al. (2004) that suggested an increased infauna species richness with increasing 

depth in three north Norwegian fjords. However, Holte et al. (2004) only sampled to a maximum 

depth of 90 m in all fjords while the shallowest station sampled in our study was 88.7 m deep, 

indicating that this pattern may not be applicable to the deep environments of north Norwegian 

fjords. In fact, it is known that the basins of deep fjords such as Hardangerfjord and Sognefjord 

are generally poorer in species than other off-shore regions with similar depths (Fauchald, 1972; 

1974). The deep basin of Tysfjord generally presented a higher abundance of individuals than the 

middle and the inner-most basins and the low evenness index (J’) indicates that a few species 

were dominant (Fig. 9), especially the suspension feeder bivalve Kelliella miliaris, the thyasirid 

bivalves Mendicula ferruginosa and Genaxinus eumyarius and the tube-building polychaetes 

Paradiopatra fiordica and Spiochaetopterus typicus.(Fig. 20).  

The changes in benthic diversity along the sampling transect in Tysfjord, with low values of 

H’ (around 2.5) in stations deeper than ca. 400 m depth, together with low values in species 

richness (Fig.9), suggests that the environmental gradients associated with changes of depth or 

with the inner/outergradient of the fjord were influencing the fauna. Similarly, Rosenberg et al. 

(1996), identified a deep faunal assemblage of species characteristic of deep communities (>400 

m) in the deep part of the Skagerrak, in the Norwegian Trench (with maximum depths of 700 m). 

They suggested that the main structuring factors for the communities in the deep Skagerrak were 

the sediment characteristics, sediment transport and accumulation rates. Since depth is a variable 

that co-varies with other environmental factors we could expect different environmental 

conditions for the deep basins of Tysfjord than for the shallow parts of the fjord. However, 



34 

together with depth, different drivers structuring the communities at each one of the three main 

basins could play a role, which will be discussed further below. Buhl-Mortensen and Høisæter 

(1993) reported a decrease in the richness of mollusca species along an outer to head gradient in 

a fjordic system in south-western Norway adjacent to the Norwegian trench. A similar trend is 

seen for the mollusca species in Tysfjord, with a species richness decline towards the inner-most 

basin (lowest value at the inner-most station) (Fig. 10). Spatial patterns and the according 

environmental drivers can differ between epifauna and infauna (Silberberger et al., in press), and 

it has to be kept in mind for the comparisons of this study with Buhl-Mortensen and Høisæter 

(1993), who conducted their study with epibenthic sleds.  

Kȩdra et al. (2013) described a higher abundance and species richness in polychaeta species 

at the opening and central regions of Hornsund, an arctic fjord in the south of Svalbard, with lower 

values at the head of the fjord. In Tysfjord, however the S values for polychaeta species at the 

head were quite high (26 species at Stn. 36) (Fig. 10) and total polychaete abundance (Fig. 9, 11 

and 12) seemed to increase from the mouth towards the head of the fjord. This does not seem to 

be in line with the patterns described by Kȩdra et al. (2013). However, fjords in the archipelago 

of Svalbard are relatively shallow (in the case of Hornsund the maximum depth is 260 m), which 

again raises the question whether the differences in the patterns observed for polychaetes, and 

other benthic taxa, are highly influenced by depth variations in Tysfjord, or if other abiotic factors 

are the ones really inducing these patterns. At the same time, it is worth mentioning that Hornsund 

is a fjord with a glacier in its head which could be causing the patterns described by Kȩdra et al. 

(2013), where they found that the polychaete assemblages where mainly determined by bottom 

temperature, sediment characteristics (grain size), and distance to the glacier. 

4.2. Linking the faunal patterns with the environment 

One of the main forcing drivers of fjordic ecological processes is the seafloor topography of 

the fjord (Burrell, 1988) which ultimately influences many other variables (hydrography, 

sedimentation rates, etc.) and to which benthic communities may respond accordingly. Since each 

fjord has unique topographic characteristics it is difficult to infer a general and universal theory 

to describe their ecological parameters. Even fjords belonging to the same geographical region, 

expecting similar environmental conditions, present marked differences in their benthic species 

composition (Larsen, 1997).  

In Tysfjord, significantly different benthic communities suggest distinct environmental 

conditions between the three main basins and also for the shallowest parts of the fjord. The 

variation partitioning analysis indicates that these variations are mainly driven by the organic 

matter content in the sediments and by the oxygen conditions of the bottom waters (Fig. 21). 

Together with those variables, depth, salinity of the bottom water and sediment temperature are 
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also relatively important explanatory variables for the faunal patterns observed. The sediment 

grain size, in contrast, seems to be less important to structure the benthic communities in Tysfjord. 

4.2.1. The deep basin and the outer stations 

The deep basin group was dominated by the subsurface suspension feeder (Holte, 1998) 

bivalve Kelliella miliaris (Fig. 20). This species is very common in Norwegian fjords below 

depths of 100m (Warén, 1989) and is susceptible to high rates of sediment deposition (Holte, 

1998). K. miliaris, among other benthic species, is a typical representative of the Lusitanian-

boreal species (Buhl-Mortensen and Hoisaeter, 1993) and it is believed that this faunistic group 

migrated north following Atlantic water masses flowing into Norwegian fjords, replacing more 

arctic species, after the last glacial maximum (around 7800 yr BP). The fact that this species is 

especially common in deep water fjords indicates that silled fjords could act as a refugium for this 

bivalve. However, this species is also commonly found along the Norwegian shelf (MAREANO 

2018).  K. miliaris was also dominating at the group of the Litl-Hulloya basin and the Helland sill 

stations (stns. 20, 21 and 22) and was relatively abundant in the groups of stations 1 and 10 and 

the Drag Channel group. The 4 cluster groups mentioned above, therefore, seem to present a rather 

low sedimentation rate, which fits well with the rather little presence of rivers at the outer parts 

of Tysfjord and the low energy environment of the deep basin. This is also supported by the quite 

high abundance of the thyasirid bivalves Genaxinus eumyarius and Mendicula ferruginosa (Fig. 

20). These deep-water species are suspension feeders and prefer well oxygenated sediments and 

do not tolerate H2S since they lack symbiotic bacteria in their gills (Dufor, 2005). The bivalve 

Aspalima cristata, which also dominated at the group of stations 1 and 10 (Fig. 20), may indicate 

a more heterogeneous composition of the seafloor sediments since this byssate species attaches 

to larger sediment particles and partly burrows into the sediment, reflecting a semi-infaunal mode 

of life (Oliver and Allen, 1980). This species was also found for the outer stations in the western 

Norwegian fjords studied by Buhl-Mortensen and Hoisaeter (1993). This, might be reflecting a 

high patchiness in sediment composition due to the sediment supply from the fluvial system of 

Tysfjord.  

Regarding the polychaetes, the deepest parts of Tysfjord were dominated by the omnivorous 

(Kucheruk, 1975; 1978) polychaete Paradiopatra fiordica (Fig. 20), which also appeared to 

dominate the deepest parts of Hardangerfjord (Husa et al., 2013). Spiochetopterus typicus, which 

was the most dominant species at stations 1 and 10, was found to dominate the deepest parts of 

Hardangerfjord in 1996 but was mostly eliminated during periods of anoxia, resulting in P. 

fiordica dominated communities years after (Husa et al., 2013). This indicates, nevertheless, that 

S. typicus and P. fiordica most likely characterises the polychaete assemblages in deep basin 

fjords (like in Tysfjord), but that they seem to have different tolerance to oxygen conditions. The 



36 

presence of S. typicus at the deepest basin of Tysfjord indicates that this basin might be well 

flushed year-round.  

The relatively high domination of suspension feeders suggests that the fauna of the deep basin 

of Tysfjord  is potentially exploiting readily available high quality marine organic matter 

transported from off-shore waters into the fjord deep basin and, potentially, also to some extent 

lower amounts of local primary production. The CTD results (Fig. 8) indicate a high entrainment 

of intermediary water above sill depth from the adjacent coastal waters of Vestfjord. Indeed, the 

import and export of carbon is highly influenced by the circulation patterns of the intermediary 

waters above sill depth in deep silled fjords (Burrell, 1988). The community of this basin also 

indicates a rather low turbid environment, since the suspension feeders dominate. The two cluster 

groups from the Drag Channel and the Helland sill (see below) also seem to fall into this 

environmental description. 

4.2.2. The Drag Channel and the Helland sill 

The Drag Channel stations, which were dominated by Thyasira obsoleta, seem to present a 

rather low polluted sediment despite of being close to the main settlement of Drag, where a quarz 

factory is located. This suspension feeder does not tolerate highly enriched environments and 

anoxic conditions (Dufour, 2005). However, the high abundance of the semelid Abra nitida (Fig. 

20) of the adjacent cluster group from the Helland sill, especially in station 20, might be 

suggesting a relative high deposition of organic waste from the surrounding fish farms. This 

species is known to be a surface deposit feeder (Wikander, 1980) and may benefit of such a source 

of organic matter. Kutti et al. (2008) found a high productivity of this deposit feeding bivalves 

close to fish farms in western Norwegian fjords. This hypothetical fish-farm waste, however, does 

not seem to be reflected in the sediment organic matter results (Fig. 9).  

4.2.3. The middle basin 

The high presence of the capitellid Heteromastus filiformis in the middle basin group (Fig. 20) 

suggests, maybe, a disturbed environment. The high abundance of the bivalve Nucula nucleus 

indicates that a high sedimentation rate might prevail in this basin. These highly efficient detritus-

feeding bivalves feed both at the surface and sub-surface of sediments collecting organic matter 

with their long palp proboscis (Morton, 1983). At the same time, they can easily remove mineral 

particles from the mantel, preventing the clogging of their respiratory system (Rhoads, 1974). H. 

filiformis has been reported to be a head-down deep subsurface feeding polychaete being very 

efficient in exploiting the organic matter from the deepest sediments, depositing their pellets at 

the surface which are richer in nutrients than the original sediments and, thus, making them readily 

available for deposit feeders (Holte, 1998) such as N. nucleus. In this cluster group, the 

suspensivore bivalves K. milliaris and G. eumyarius seem to be almost absent, while the still high 
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presence of M. ferruginosa and T. obsoleta suggests that these species might be somehow more 

adapted to high sedimentation. Thyasira cf. rotunda, which was also abundant in the middle basin, 

seems to prefer homogeneous sediments with rather low organic content (Keuning et al., 2011). 

In fact, this basin had the lowest content of organic matter from all three main basins, possibly 

due to a high accumulation rate of inorganic material (Fig. 9). Despite of being deeper than the 

middle basin and having more rivers running directly into it the Tysfjord inner-most basin 

presents coarser sediments (Fig. 9). This could only be explained if the fine size material 

discharged at the inner-most basin is transported to the middle basin along the highly stratified 

surface waters (see salinity CTD profile Fig. 8)). It is quite likely this stratification prevents the 

imminent deposition of the finest material entered in fjordic waters, transporting it over long 

distances with the freshwater plume (Burrell, 1988). Once at the middle basin, the salinity at the 

surface increases and this mixing of river and marine water triggers flocculating processes that 

enhance the settlement of sediment particles (Burrell, 1988). The high-sedimentation tolerant 

community (like Nucula nucleus) found in the middle basin supports the theory of large amounts 

of fine sediment being transported into this basin. The models from SINTEF for the upper 2 m 

layer of Tysfjord suggest a mean annual velocity of around 10 cm/s at the middle and inner-most 

parts flowing towards the mouth of the fjord with highest velocities (up to 20 cm/s) at the Helland 

sill. This means that the water runoff from the rivers of the inner-most part of Hellmofjord could 

flow into the middle basin in only 2 days and could enter the region of the deepest basin of 

Tysfjord in a bit more than 4 days. Therefore, the horizontal distribution and transportation of the 

riverine material discharged into Tysfjord must be highly impacted by this rather fast flow. 

4.2.4. The inner-most basin 

From the cluster analysis, it is clear that the inner-most basin group and the Musken 

sill/shallowest stations where very different from the rest of the fjord and also very heterogenous 

terms of fauna (Fig. 19). The colder temperature at the inner-most basin of about 6.5 observed in 

the CTD results suggests that its water could be retained by the shallow Musken sill, preventing 

the entrainment of warmer Atlantic intermediary water coming from offshore (Fig. 8). The low 

temperatures might be the result of vertical cooling during winter. Therefore, water stagnation 

may be an important factor structuring the fauna inhabiting this basin, which is supported by the 

lowest oxygen concentration found in the fjord (Fig. 8). 

Below sill depth, water can be isolated in the basin of the fjord for a short period of time or 

longer periods. The biochemical consequences of water stagnation in fjord basins can include a 

reduction in dissolved oxygen and hypernutrification of the basin (Inall and Gillibrand, 2010). 

This can lead to anoxic conditions in the sediment interface of the basin. In the most extreme, 

anoxia can lead to defaunation of the seafloor. Values lower than 1-2 mg/L of dissolved oxygen 
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are considered critical, but hypoxic conditions (< 3mg/L) can also cause faunal changes (Diaz and 

Rosenberg, 1995). However, several studies suggest that changes can be induced with even higher 

oxygen concentrations, with values of 2-6 mg/L leading to oxygen deficiency (Wu, 2002; Molvær 

et al., 2007). The inner-most basin of Tysfjord, therefore, falls into this last category, with values 

between 4 and 6 mg/L (Fig. 8). However, oxygen values during late summer may be much lower 

than the ones found for May, leading to potentially anoxic conditions. At the same time, it is 

possible that during winter, when stratification is potentially of lower magnitude, denser water 

flows above the Musken sill and replaces the stagnated water either partially or completely. 

Weather the inner-most basin is subjected to periodic deep-water renewals is something to further 

investigate. No oxygen deficiency has been observed in the deepest basin of Tysfjord (this study; 

Gitmark et al., 2014), indicating good ventilation of the deepest and middle basins all year-round.  

The poor oxygenated inner-most basin of Tysfjord was dominated by Thyasira cf. rotunda 

(Fig. 20). This thyasirid is known to have symbiont bacteria in their gills that helps the species to 

tolerate high amounts of H2S in the environment, being able to occur in sediment almost depleted 

of oxygen (Keuning et al., 2011). The siboglinid polychaete Siboglinum cf. ekmani also could 

tolerate hypoxic conditions with the help of sulphur-oxidizing autotrophic symbiont bacteria in 

their postannular region (Southward et al., 1986). The abundant polychaete Terebellides stroemi 

is also known to tolerate low levels of oxygen (Bremec and Elias, 1999). 

H. filiformis in this basin might be exploiting big particles of refractory material (Levinton 

1989) deposited from the adjacent rivers, making it readily available for the surface deposit feeder 

T. stroemi, which collects detritus with its long tentacles (Fauchald and Jumars 1979). H. 

filiformis seems to cope well with a poor-nutrient food source with large amounts of indigestible 

and inorganic material (like lignin rich material) due to a low-cost energetic feeding mechanism 

(Taghon, 1989; in Neira and Höpner, 1994). The high amounts of plant detritus (leaves and pieces 

of wood) found in the samples of this basin supports this theory. At the same time, sinking kelp 

from the surrounding coast should not be discarded as potential high C/N carbon source for 

benthic fauna (Renaud et al., 2015). Especially, this basin has a quite long coastline in comparison 

with the narrow surface area of the basin itself (Fig. 2), which could have accumulated POM of 

sinking kelp detritus.  The highly motile burrower polychaete Lumbrineris mixochaeta, which 

was also abundant in this basin, seems to be mainly carnivorous. However, some species of 

lumbrinerids have been reported to feed on plant fragments or detritus (Fauchald and Jumars, 

1979). Weather in this case this species also feeds on the refractory material accumulated in this 

basin is an open question. 

The inner-most basin benthic fauna composition seems, therefore, to be influenced by oxygen 

deficiency and relatively high amounts of rather refractory material in the sediments. This reflects 
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that the sill depth of a basin can play an important role determining the conditions of the deeper 

water and consequently the fauna living in it. 

4.2.5. The Musken sill and shallowest stations 

The cluster group of the Musken sill and the two inner-most stations of Tysfjord were highly 

dominated by the spionid Prionospio cirrifera (Fig. 20). The distribution of this polychaete in 

Northern Norway seems to vary significantly with depth with high abundances recorded at 100 

m depth in Ranafjord (Helland et al., 1994). The burrowing anemone Edwardsia spp. is reported 

to occur in association with spionid and maldanid polychaetes in Antarctic waters (Williams, 

1981). It is known that the genus Edwardsia predates on relatively large prey like polychaetes, 

gastropods and even small benthic crustaceans (Oliver et al., 1982). It could be a possibility that 

this anemone feeds on the spionid worms abundant in these stations. This genus of anthozoa is 

also known for inhabiting brackish waters and is reported to be tolerant to low salinities (Shick, 

1991). These stations may still have relatively high amounts of plant/kelp particulate organic 

matter, and the omnivorous sub-surface deposit feeder (Fauchalds and Jumars, 1979) amphinomid 

Paramphinome jeffreysii may be also utilizing this food source together with H. filiformis.  

Some ophiurid species were also abundant in these last stations and in the Helland Sill and 

Drag Channel cluster groups (Fig. 20). Although Larsen (1997) observed a lower number of 

echinoderms in fjords when comparing to adjacent shelf areas, the shallowest parts of Tysfjord 

showed high abundances of this phylum. O. cf. carnea has a depth range of 40–2857 m (Simirnov 

et al., 2014) which means that potentially this species could also be found at the deepest stations 

of Tysfjord. However, the only ophiurid found in stations deeper than 400 m was Amphilepis 

norvegica (Fig. 16),, a species commonly found at the deep regions of the Skagerrak (Petersen 

1915). This species, however, was also quite frequent at the shallower stations around the Helland 

sill. Maybe O. cf. carnea has a different preference for sediment composition, preferring coarser 

sediments, while A. norvegica might prefer a wide range of mud content in the sediments. 

 

5. Conclusions 

The present study showed that Tysfjord is inhabitat by a benthic fauna characteristic of deep 

fjords, like the deepest fjords of Norway, Sognefjord and Hardangerfjord. Although depth may 

be an important factor structuring the benthic community of the fjord, it seems to do it in a 

secondary plane. In fact, the taxonomic diversity and species composition of soft-bottom 

communities in Tysfjord seem to be mainly determined by the oxygen conditions of the water and 

the distribution of organic matter in the seafloor sediments. While the oxygen content might be 

ultimately controlled by the sill depth, organic matter content depends on the carbon import from 
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off-shore waters into the fjord, the riverine supply of plant material, kelp from the shore line 

and/or local primary production. The stratification in the upper layer of the water-column might 

play an important role in the distribution of the sediments along Tysfjord, especially at the middle 

basin, where turbidity levels could be high. In this basin, only organisms tolerant to this condition 

may prevail, excluding the more suspension feeding types. Measurements of turbidity with the 

CTD or measurements with sediment traps could elucidate this theory.  

However, each basin in Tysfjord is inhabited by different benthic communities, reflecting the 

prevailing environmental conditions in the basins. Since the organic matter seems to play an 

important role in the fjord benthos, care should be taken in monitoring possible organic 

enrichment from the fish farms and other potential anthropogenic sources. An additional input of 

organic waste products released by these facilities could modify this environmental driver, having 

a potential impact in the functioning and ecology of the soft-bottom communities of Tysfjord.  
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