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a b s t r a c t 

The characteristics of panel data namely, inter alia, missing values, cross-sectional dependence, serial correlation, 

small time period bias, omitted variable bias, country-specific fixed-effects, time effects, heterogeneous effects 

and convergence often lead to misspecification, and spurious regression, thus, affecting the consistency and 

robustness of the model. In this regard, a more sophisticated panel estimation technique that accounts for 

the attributes and challenges is worthwhile. The novel panel bootstrap-corrected fixed-effects estimator ( xtbcfe ) 

and heterogeneous dynamics ( panelhetero ) recommended in this study meets almost all the requirements for 

robust and consistent panel estimation with an interface for user modifications. We further demonstrate how 

to use empirical CDF, moments and kernel density estimation to investigate heterogeneous effects. Due to the 

complexities in the application of xtbcfe and panelhetero algorithm, we provide a step-by-step procedure and 

guidelines for the estimation approach. We apply the xtbcfe and panelhetero algorithm for global estimation of 

mortality, disability-adjusted life years and welfare cost from exposure to ambient air pollution. Importantly, 

the xtbcfe algorithm can be applied to any panel data-based studies in social science, environmental science, 

environmental economics, health economics, energy economics, and among others. 

• Procedures useful for data imputation and transforming negative variables for time series, cross-sectional and 

panel data are presented. 
• Contrary to traditional models, we show how a novel approach can be modified and used to examine the 

degree of heterogeneous effects across cross-sectional units of panel data. 
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• We demonstrate how the dynamic panel bootstrap-corrected fixed-effects estimator is useful in estimating 

higher-order panel data models and accounting for challenges such as omitted-variable bias, convergence, 

cross-section dependence and heterogeneous effects. 
• We apply the imputation technique, panelhetero , and xtbcfe algorithms to examine the nexus between ambient 

air pollution and health outcomes. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Specifications table 

Subject Area: Environmental Science, Health Economics, Econometrics 

More specific subject area: Energy, Environmental and Health econometrics 

Method name: Dynamic panel bootstrap-corrected fixed-effects and Heterogeneous dynamics 

Name and reference of original method: Everaert, Gerdie, and Lorenzo Pozzi. "Bootstrap-based bias correction for 

dynamic panels." Journal of Economic Dynamics and Control 31.4 (2007): 

1160-1184. 

Okui, R., Yanagi, T., 2019. Panel data analysis with heterogeneous dynamics. 

Journal of Econometrics . 212, 451-475. 

Resource availability: Data used in this study were extracted from the environmental risk and 

health database of the Organization for Economic Co-operation 

Development [1] . 

Method details 

Data pre-processing 

Pre-processing techniques of unevenly spaced data and negative value are critical in time series

and panel data estimation techniques. For example, first and second generational panel unit root 

tests namely Im-Pesaran-Shin (IPS) [2] , Levin-Lin-Chu (LLC), Harris-Trazvalis (HT), Breitung [3] , cross-

sectionally augmented IPS (CIPS) and cross-section augmented Dickey-Fuller (CADF) require either a 

strongly balanced panel or no missing values (no gaps). While there are several techniques available,

we recommend a unique data imputation algorithm in Orange software that is advantageous in 

retaining the pattern of original data with little or no changes in centring, distribution, dispersion,

minimum and maximum values of the raw data. The imputation method is valid in all missing

mechanisms ranging from missing not at random (MNAR), missing at random (MAR), and missing 

completely at random (MCAR) [4] . The Orange data mining software is an open-source project which

is freely available to download 

1 [5] . It utilizes a drag and drop user interface, which is easy for input-

output type of estimation, hence, beneficial to researchers with limited coding skills. 

Once the software has been downloaded and installed, follow the steps depicted in Fig. 1 . Drag and

drop the file to upload the dataset. Select the type of data: numeric, categorical, text, datetime; and

roles of the data: feature, target, meta and skip. Drag and drop the feature statistics and connect the

link back to the file module. Feature statistics helps to examine the characteristics of the uploaded

data. It produces descriptive statistics namely distribution, centre, dispersion, minimum, maximum, 

and total number of missing inputs. At the impute module, select the desired impute function based

on data characteristics. The impute function includes don’t impute (skip imputation of a particular 

variable), average/most frequent, as a distinct value, model-based imputer (using simple tree), random 
1 Freely available to download here: https://buff.ly/2BQucdJ . 

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://buff.ly/2BQucdJ
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Fig. 1. Procedure for missing data imputation in Orange software. 
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Table 1 

Characteristics of data during pre-imputation and post-imputation. 

Data Name Center Dispersion Min. Max. Missing 

Raw Data PM 2.5 29.93 0.61 5.76 103.16 2608 (57%) 

Imputed Data PM 2.5 29.93 0.61 5.76 103.16 0(0%) 

Raw Data TOT_DALY 9.26 0.51 1.72 39.16 0(0%) 

Imputed Data TOT_DALY 9.26 0.51 1.72 39.16 0(0%) 

Raw Data TOT_MOR 309.21 0.63 40.02 1257.4 0(0%) 

Imputed Data TOT_MOR 309.21 0.63 40.02 1257.4 0(0%) 

Raw Data TOT_MOR_V 13959 5.17 4.83 1029848 0(0%) 

Imputed Data TOT_MOR_V 13959 5.17 4.83 1029848 0(0%) 

Raw Data TOT_SC_V 17281.76 4.2 1.47 1580136 268(4%) 

Imputed Data TOT_SC_V 17836.43 4.35 1.47 1580136 0(0%) 

Notes: Raw Data is the original dataset with missing values whereas Imputed Data denotes the output of the imputation 

algorithm. Legend: TOT_MOR is the total mortality from exposure to outdoor PM 2.5 and ozone, TOT_MOR_V denotes premature 

deaths from exposure to outdoor PM 2.5 and ozone, TOT_DALY is the total Disability-Adjusted Life Year from exposure to outdoor 

PM 2.5 and ozone, TOT_SC_V is the total welfare cost of premature deaths from exposure to outdoor PM 2.5 and ozone and PM 

2.5 is the exposure to ambient particulate matter. The Table presented is reproduced from Owusu and Sarkodie [6] . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

values, remove instances with unknown values and custom value. Once the impute function has been

selected and applied, then the feature statistics can be observed and presented in the data Table. The

desired imputed dataset can be saved using the save data module. We test the procedure on ambient

air pollution and health outcomes presented in Table 1 . It can be observed that the characteristics of

both raw and imputed data are relatively equal. 

Researchers often encounter negative values, a challenge prior to the application of data 

transformation. While many scholars tend to use absolute values of negative inputs, such procedure 

is fundamentally wrong and distorts the pattern of the original data. To maintain the pattern

and characteristics of negative dataset, the normalization technique presented in Sarkodie, Adams 

[7] can be applied manually with Microsoft Excel or using OriginPro software. In OriginPro, the

technique can be applied by selecting the column of the negative data. The user goes to the Analysis

module → Mathematics → Normalize columns → Open dialog and chooses the desired normalization 

method. 

Robust and consistent panel estimation 

Most often, data are log-transformed to offer variables a constant variance and control for potential

heteroskedasticity. To ensure robust and consistent panel estimates, we begin by testing for panel unit

root tests. 

Step 1: Without any assumption, we apply two of the first generational unit root tests namely

Breitung and IPS. The tests are important to deal with highly persistent series that may influence

the model estimation and produce spurious and biased statistical inferences. Thus, we investigate the 

stationarity properties of the panel data under the null hypothesis of unit root. We use STATA version

16 software, declare the data as panel and run the test in both level and first difference. For exam ple,

we test the panel unit root of mortality as: xtunitroot breitung lnTOT_MOR and xtunitroot breitung

d.lnTOT_MOR. Other options like trend, lags, demean, kernel, and noconstant can be accounted for. 

Sample results of the first generational panel unit root tests are presented in Table 2 . 

Step 2: Panel data estimation are often affected by unobserved and global common shocks, of

which failure to account for it renders the model spurious and misspecified. To account for this

challenge, we adopt the test of cross-section dependence (CD) expounded in Pesaran [8] , Pesaran

[9] . Importantly, the CD test can be applied to unevenly spaced and balanced panel to assess the

average correlation between sampled countries assuming a standard normal distribution. The CD test 

technique is based on the null hypothesis of either weak cross-section dependence or strict cross-

section independence [8 , 9] . For example, we run the pre-estimation CD test algorithm in STATA using:

xtcd lnTOT_MOR . We present the results of the estimated CD test in Table 3 . It can be observed in
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Table 2 

First generational panel unit root tests. 

Variable Breitung IPS 

Level First Difference Level First Difference 

PM 2.5 -39.132 ∗∗∗ -37.890 ∗∗∗ -36.528 ∗∗∗ -50.915 ∗∗∗

TOT_DALY 21.974 -25.140 ∗∗∗ 4.966 -30.589 ∗∗∗

TOT_MOR 21.255 -27.366 ∗∗∗ 8.697 -31.327 ∗∗∗

TOT_MOR_V 32.947 -28.873 ∗∗∗ 22.250 -32.250 ∗∗∗

TOT_SC_V 30.867 -25.738 ∗∗∗ 27.921 -31.840 ∗∗∗

TOT_SC_V_TOT_DALY 22.479 -27.153 ∗∗∗ 18.659 -33.700 ∗∗∗

Notes: ∗∗∗ denotes rejection of the null hypothesis of unit root at 1% significance level. The Table presented is reproduced from 

Owusu and Sarkodie [6] . 

Table 3 

Test for cross-sectional dependence. 

Variable CD-test p-value average joint T mean ρ mean abs( ρ) 

TOT_MOR 5.751 0.0 0 0 28 0.010 0.650 

TOT_MOR_V 231.128 0.0 0 0 28 0.32 0.74 

PM 2.5 2.425 0.015 28 0.0 0 0 0.220 

TOT_DALY 32.001 0.0 0 0 28 0.040 0.650 

TOT_SC_V 405.366 0.0 0 0 28 0.560 0.670 

TOT_SC_V_TOT_DALY 184.500 0.0 0 0 28 0.250 0.590 

Notes: Under the null hypothesis of cross-section independence, CD ~ N(0,1) P-values close to zero indicate data are correlated 

across panel groups. The Table presented is reproduced from Owusu and Sarkodie [6] . 
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able 3 that the null hypothesis is rejected — providing strong evidence of cross-section dependence

cross countries. 

Step 3: We investigate the prospect of heterogeneity across 195 countries due to varying income

roups and differences in economic structure. We utilize four estimation techniques namely modified

ald (MWALD) statistics in a fixed-effect regression, empirical CDF, moments, and kernel density

stimation to examine heterogeneous effects. We apply the MWALD test in two stages: first, run xtreg

nTOT_MOR lnPM25, fe and second, run xttest3 . The MWALD test assumes normality of errors under

he null hypothesis of homoskedasticity [10] . 

We validate MWALD test using modern panel techniques for heterogeneous dynamics ( panelhetero )

xpounded in Okui and Yanagi [11] . It is important to note that the panelhetero algorithm requires a

trongly balanced panel. The panel heterogeneous dynamics ( panelhetero ) is a model-free estimation

echnique that controls for misspecification bias with three methods namely naïve estimation (“naive”)

without bias correction and two bias correction procedures based on split-panel jackknife — namely

alf-panel (“hpj“) and third-order jackknife ("toj") [11] . Thus, the panel heterogeneous dynamics

pproach estimates statistics such as mean, autocovariance and autocorrelation for each country and

alculates empirical cumulative distribution function (CDF), moments and kernel density. We apply

he model-free approach using panelhetero algorithm via these procedures: first, we estimate moments

sing phmoment lnTOT_MOR, method("hpj") boot(200) acov_order(0) acor_order(1) ; second, we estimate

mpirical CDF using phecdf lnTOT_MOR, method("hpj") acov_order(0) acor_order(1) ; and third, we

stimate kernel density using phkd lnPM25, method("hpj") acov_order(0) acor_order(1) . The options in

he panelhetero algorithm can be modified to suit the user’s estimation needs. The moments compute

 statistical attributes when heterogeneity is observed across countries. The sample estimation for

ortality rates using moments is presented in Table 4 . 

The sample estimation for mortality rates and ambient air pollution using empirical CDF technique

re depicted in Figs. 2–4 . 

Similarly, the kernel density estimation for mortality rates and ambient air pollution are presented

n Figs. 5 –7 . We observe from all the three panel heterogeneous dynamics techniques that the

stimates are with the 95% confidence interval, hence, confirm the presence of heterogeneous effects

cross countries. 
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Table 4 

Moments estimation for Mortality rates ( lnTOT_MOR ). 

Parameters Estimate S.E Low 

∗ High ∗∗

Mean of Mean 5.539 0.042 5.470 5.621 

Mean of Autocovariance 0.040 0.004 0.031 0.046 

Mean of Autocorrelation 1.036 0.014 1.010 1.062 

Variance of Mean 0.373 0.031 0.319 0.435 

Variance of Autocovariance 0.002 0.0 0 0 0.0 0 0 0.002 

Variance of Autocorrelation -0.011 0.005 -0.020 -0.001 

Correlation between Mean and Autocovariance -0.278 0.095 -0.469 -0.088 

Correlation between Mean and Autocorrelation -0.361 0.131 -0.599 -0.123 

Correlation between Autocovariance and Autocorrelation 0.447 0.062 0.336 0.573 

Notes: ∗ , ∗∗ denotes 95 % Confidence Intervals for Moments based on bootstrapping across cross-sectional units; S.E represents 

Standard Errors of the estimates based on bootstrapping across cross-sectional units. 

Fig. 2. Empirical CDF Estimation for Mean (a) Mortality (b) Ambient Air Pollution. 
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Fig. 3. Empirical CDF Estimation for Variance (a) Mortality (b) Ambient Air Pollution. 
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Step 4: With the presence of strong evidence of cross-section dependence, we re-examine the

anel unit root using second generational panel unit root tests useful in heterogeneous panel with

trong correlation across countries. We utilize CIPS and CADF panel unit root tests under the null

ypothesis of homogeneous non-stationary for CIPS [12] and non-stationary series for CADF [2] . To

est for CIPS, we run xtcips lnTOT_MOR, maxlags(2) bglags(1) and pescadf lnTOT_MOR, lags(1) at level

or CADF test. The empirical results of the second generational panel unit root tests are presented in

able 5 , which validate the results of first generational panel unit root tests. 

Step 5: We test for panel cointegration using Westerlund estimation technique as xtcointtest

esterlund lnTOT_MOR lnPM25 . 

Step 6: Contrary to the numerous panel estimation techniques available and used in the extant

iterature [13–16] , we utilize the novel dynamic panel bootstrap-corrected fixed-effects estimator to

onstruct mortality-DALYs-PM 2.5 models with lagged dependent explanatory variables. In contrast

o traditional panel techniques that require only large time dimension ( T ) for model estimations to

e asymptomatically binding, the bootstrap-corrected fixed-effects — least squares dummy variable

stimator corrects the small T bias in panel dynamic models [17 , 18] using a simplified algorithm
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Fig. 4. Empirical CDF Estimation for Autocorrelation of order 1 (a) Mortality (b) Ambient Air Pollution. 

Table 5 

Second generational panel unit root tests. 

Variable CIPS a PESCADF b 

Level First Difference Level First Difference 

PM 2.5 -4.533 ∗∗∗ -6.071 ∗∗∗ -15.390 ∗∗∗ -34.090 ∗∗∗

TOT_DALY -1.551 -3.366 ∗∗∗ 1.872 -11.245 ∗∗∗

TOT_MOR -1.387 -3.420 ∗∗∗ 4.752 -13.206 ∗∗∗

TOT_MOR_V -1.508 3.243 ∗∗∗ 2.228 -2.741 ∗∗∗

TOT_SC_V -1.112 -3.915 ∗∗∗ 27.921 -4.504 ∗∗∗

TOT_SC_V_TOT_DALY -1.861 -4.236 ∗∗∗ 1.336 -7.357 ∗∗∗

Notes: a H 0 (homogeneous non-stationary): bi = 0 for all I whereas b the null hypothesis 

assumes all series are non-stationary in a heterogeneous panel with cross-sectional 

dependence. The Table presented is reproduced from Owusu and Sarkodie [6] . 
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Fig. 5. Kernel Density Estimation for Mean (a) Mortality (b) Ambient Air Pollution. 

i  

i  

e  

c  

h

 

c

 

W

d  

c  

c  

u  

2  

y

ntroduced in Everaert and Pozzi [19] . Thus, the bootstrap-corrected fixed-effects estimator is useful

n estimating higher-order panel data models that contradict the standard error structure, a situation

ncountered in this study. Using the suitable resampling option in the dynamic panel estimator,

hallenges such as, inter alia , omitted-variable bias, convergence, cross-section dependence and

eteroskedasticity that undermine the analytical error correction procedures are controlled. 

For briefness, the generic representation of dynamic panel estimation models based on bootstrap-

orrected fixed-effects is expressed as [6 , 20] : 

y i,t = γ ∗ y i,t−1 + β ∗ x i,t + μi + ε i,t , (1)

here y i, t represents dependent variables, x i, t denotes strongly exogenous independent variables, γ
enotes the autoregressive coefficient of lagged dependent variable, β represents estimated vector

oefficients of regressors, μi denotes unobserved heterogeneity or uncorrelated and exogeneous

ountry-specific fixed-effects with zero mean and greater than zero variance, and ɛ i, t denotes

nobserved and uncorrelated white noise across countries i = 1 , . . . , N and time dimension t =
 , . . . , T . γ is assumed to be less than 1 ( γ < 1) to achieve a dynamic stable relationship between

 i, t and x i, t . 
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Fig. 6. Kernel Density Estimation for Variance (a) Mortality (b) Ambient Air Pollution. 

 

 

 

To control for heterogeneous effects, we modify the model specification to include resampling 

of error terms using randomized temporal heteroskedasticity scheme with analytical heterogeneous 

initialization. This implies that the algorithm resamples the entire time period, with subsequent 

resampling of error terms within the specified time periods ( t = 1, …, 28 ). Our sampling method

used has characteristics of multivariate normal distribution and initial conditions consisting of cross- 

sectional specific means and variance-covariance matrices [20] . We run the bootstrap-corrected fixed- 

effects estimator ( xtbcfe ) using xtbcfe lnTOT_MOR lnPM25, bciters(2500) res(thet_r) ini(ahe) lags(1) 

infer(inf_ci) infit(10 0 0) te . The estimation procedure, resampling, inferences, scheme and initialization

and post-estimation can be modified to suit the needs of the user. The sample parameter estimates of

ambient air pollution and health outcomes using dynamic panel bootstrap-corrected fixed-effects are 

presented in Table 6 . 

Model validation 

To make unbiased statistical inferences while preserving the dynamic panel structure of the 

estimated models, we utilized the nonparametric bootstrap option of the simulation to resample 

the original data series and subsequently apply the bootstrapping bias-correction to the estimated 
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Fig. 7. Kernel Density Estimation for Autocorrelation of order 1 (a) Mortality (b) Ambient Air Pollution. 

Table 6 

Parameter estimates of ambient air pollution and health outcomes using dynamic panel bootstrap-corrected fixed-effects. 

Estimation Mortality Premature DALYs Welfare Cost Mortality Mortality 

| γ | < 1 0.310 ∗∗∗

[0.036] 

0.274 ∗∗∗

[0.034] 

0.315 ∗∗∗

[0.030] 

0.211 ∗∗

[0.085] 

0.841 ∗∗∗

[0.028] 

0.831 ∗∗∗

[0.028] 

DALYs — — — — 0.147 ∗∗∗

[0.026] 

0.108 ∗∗∗

[0.024] 

Welfare Cost — — — — 0.004 ∗∗∗

[0.001] 

-0.012 ∗∗∗

[0.004] 

Welfare Cost × DALYs — — — — — 0.008 ∗∗∗

[0.002] 

PM 2.5 0.001 ∗∗∗

[0.0 0 0] 

0.001 ∗∗∗

[0.0 0 0] 

0.001 ∗∗∗

[0.0 0 0] 

0.048 ∗∗∗

[0.014] 

0.005 ∗∗∗

[0.001] 

0.005 ∗∗∗

[0.001] 

1992 — — — 0.073 

[0.061] 

0.004 ∗∗

[0.002] 

0.004 ∗∗

[0.002] 

( continued on next page ) 
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Table 6 ( continued ) 

Estimation Mortality Premature DALYs Welfare Cost Mortality Mortality 

1993 0.0 0 0 

[0.002] 

0.0 0 0 

[0.002] 

0.0 0 0 

[0.002] 

-0.012 

[0.065] 

0.007 ∗∗∗

[0.002] 

0.007 ∗∗∗

[0.002] 

1994 -0.008 ∗∗∗

[0.002] 

-0.009 ∗∗∗

[0.002] 

-0.007 ∗∗∗

[0.002] 

0.003 

[0.075] 

0.0 0 0 

[0.002] 

0.001 

[0.002] 

1995 -0.010 ∗∗∗

[0.002] 

-0.011 ∗∗∗

[0.002] 

-0.010 ∗∗∗

[0.002] 

0.078 

[0.062] 

-0.002 

[0.002] 

-0.001 

[0.002] 

1996 -0.001 

[0.002] 

-0.002 

[0.002] 

-0.0 0 0 

[0.002] 

0.169 ∗∗

[0.079] 

0.005 ∗∗

[0.002] 

0.006 ∗∗∗

[0.002] 

1997 -0.006 ∗∗∗

[0.002] 

-0.006 ∗∗∗

[0.002] 

-0.003 

[0.002] 

0.066 

[0.067] 

0.005 ∗

[0.003] 

0.006 ∗∗

[0.003] 

1998 -0.008 ∗∗∗

[0.002] 

-0.008 ∗∗∗

[0.002] 

-0.006 ∗∗

[0.003] 

0.171 ∗∗

[0.073] 

0.003 

[0.002] 

0.004 ∗

[0.002] 

1999 -0.012 ∗∗∗

[0.002] 

-0.013 ∗∗∗

[0.002] 

-0.010 ∗∗∗

[0.002] 

0.154 ∗

[0.090] 

0.0 0 0 

[0.003] 

0.001 

[0.003] 

20 0 0 -0.017 ∗∗∗

[0.002] 

-0.018 ∗∗∗

[0.002] 

-0.015 ∗∗∗

[0.003] 

0.148 ∗∗

[0.066] 

-0.005 ∗

[0.003] 

-0.004 

[0.003] 

2001 -0.005 ∗∗

[0.002] 

-0.006 ∗∗∗

[0.002] 

-0.003 

[0.002] 

0.279 ∗∗∗

[0.083] 

0.004 

[0.003] 

0.005 ∗

[0.003] 

2002 -0.005 ∗∗

[0.002] 

-0.006 ∗∗∗

[0.002] 

-0.005 ∗∗

[0.002] 

0.225 ∗∗

[0.106] 

0.008 ∗∗∗

[0.003] 

0.009 ∗∗∗

[0.003] 

2003 -0.008 ∗∗∗

[0.002] 

-0.009 ∗∗∗

[0.002] 

-0.007 ∗∗∗

[0.002] 

0.211 ∗∗∗

[0.070] 

0.007 ∗∗

[0.003] 

0.008 ∗∗∗

[0.003] 

2004 -0.016 ∗∗∗

[0.002] 

-0.016 ∗∗∗

[0.002] 

-0.013 ∗∗∗

[0.002] 

0.303 ∗∗∗

[0.105] 

0.001 

[0.003] 

0.002 

[0.003] 

2005 -0.011 ∗∗∗

[0.002] 

-0.012 ∗∗∗

[0.002] 

-0.009 ∗∗∗

[0.002] 

0.469 ∗∗∗

[0.099] 

0.002 

[0.003] 

0.004 

[0.003] 

2006 -0.004 ∗

[0.002] 

-0.005 ∗∗

[0.002] 

-0.0 0 0 

[0.002] 

0.445 ∗∗∗

[0.105] 

0.009 ∗∗∗

[0.003] 

0.011 ∗∗∗

[0.003] 

2007 -0.006 ∗∗∗

[0.002] 

-0.007 ∗∗∗

[0.002] 

-0.003 

[0.002] 

0.448 ∗∗∗

[0.099] 

0.010 ∗∗∗

[0.003] 

0.012 ∗∗∗

[0.003] 

2008 -0.009 ∗∗∗

[0.002] 

-0.010 ∗∗∗

[0.002] 

-0.007 ∗∗∗

[0.002] 

0.510 ∗∗∗

[0.128] 

0.008 ∗∗

[0.004] 

0.009 ∗∗∗

[0.003] 

2009 -0.010 ∗∗∗

[0.002] 

-0.011 ∗∗∗

[0.002] 

-0.008 ∗∗∗

[0.004] 

0.422 ∗∗∗

[0.124] 

0.007 ∗∗

[0.004] 

0.009 ∗∗

[0.004] 

2010 -0.012 ∗∗∗

[0.002] 

-0.013 ∗∗∗

[0.003] 

-0.011 ∗∗∗

[0.002] 

0.534 ∗∗∗

[0.097] 

0.006 ∗

[0.004] 

0.008 ∗∗

[0.004] 

2011 0.005 ∗

[0.003] 

0.003 

[0.003] 

-0.006 ∗∗

[0.003] 

0.533 ∗∗∗

[0.111] 

0.021 ∗∗∗

[0.004] 

0.022 ∗∗∗

[0.004] 

2012 -0.026 ∗∗∗

[0.003] 

-0.027 ∗∗∗

[0.003] 

-0.025 ∗∗∗

[0.004] 

0.521 ∗∗∗

[0.138] 

0.0 0 0 

[0.005] 

0.002 

[0.005] 

2013 -0.015 ∗∗∗

[0.003] 

-0.017 ∗∗∗

[0.003] 

-0.014 ∗∗∗

[0.003] 

0.568 ∗∗∗

[0.104] 

0.003 

[0.004] 

0.005 

[0.004] 

2014 -0.018 ∗∗∗

[0.003] 

-0.021 ∗∗∗

[0.003] 

-0.017 ∗∗∗

[0.003] 

0.650 ∗∗∗

[0.140] 

0.002 

[0.004] 

0.004 ∗∗∗

[0.004] 

2015 0.031 ∗∗∗

[0.006] 

0.028 ∗∗∗

[0.006] 

0.031 ∗∗∗

[0.006] 

0.619 ∗∗∗

[0.107] 

0.044 ∗∗∗

[0.006] 

0.046 

[0.006] 

2016 -0.041 ∗∗∗

[0.004] 

-0.042 ∗∗∗

[0.004] 

-0.041 ∗∗∗

[0.004] 

0.747 ∗∗∗

[0.125] 

-0.003 

[0.004] 

0.0 0 0 ∗∗∗

[0.004] 

2017 0.012 ∗∗∗

[0.003] 

0.008 ∗∗∗

[0.002] 

0.012 ∗∗∗

[0.002] 

0.652 ∗∗∗

[0.111] 

0.028 ∗∗∗

[0.004] 

0.030 

[0.004] 

Convergence YES YES YES YES YES YES 

MWALD test ( Prob > chi 2 ) ‡ 0.0 0 0 ∗∗∗ 0.0 0 0 ∗∗∗ 0.0 0 0 ∗∗∗ 0.0 0 0 ∗∗∗ 0.0 0 0 ∗∗∗ 0.0 0 0 ∗∗∗

Notes: [.] denotes Bootstrapped standard errors, Bootstrap 95% (percentile-based) confidence intervals and Inference performed 

with non-parametric bootstrap; γ represents the lagged dependent variable; ∗∗∗ , ∗∗ , ∗ denote statistical significance at 1, 5, and 

10% levels. 
a,b,c denote Mortality ~ f (Ambient air pollution), Mortality ~ f (DALYs, welfare cost and ambient air pollution) and Mortality ~

f (DALYs, welfare cost, ambient air pollution and interaction between DALYs and welfare cost). ‡ denotes the modified Wald test 

used as a post-estimation technique to examine groupwise heteroskedasticity under the null hypothesis, H 0 : σ (i) 
2 = σ 2 for 

all i. Legend: DALY is the average total Disability-Adjusted Life Years from exposure to PM 2.5 and ozone, MWALD means the 

modified Wald statistics, and Prob > chi 2 is the probability of Chi-squared test. The Table presented is reproduced from Owusu 

and Sarkodie [6] . 
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Fig. 8. Post-estimation bootstrap-stimulated distribution of autoregressive (AR) coefficients and their sum for the: (a) 

relationship between mortality and PM 2.5 (b) relationship between premature deaths and PM 2.5 (c) relationship between 

DALYs and PM 2.5 (d) relationship between welfare cost of premature deaths from exposure to PM 2.5 and ozone and PM 2.5 

(e) relationship between mortality versus PM 2.5 , DALYs, and the welfare cost of premature deaths from exposure to PM 2.5 and 

ozone (f) relationship between mortality versus PM 2.5 , DALYs, the welfare cost of premature deaths from exposure to PM 2.5 and 

ozone, and the interactive effective of DALYs and welfare cost of premature deaths from exposure to PM 2.5 and ozone. Figure 

presented is reproduced from Owusu and Sarkodie [6] . 

fi  

p  

T  

r  

s

xed-effects of each constructed samples [20] . We validate the estimated parameters using the

ost-estimation bootstrap-stimulated distribution of autoregressive (AR) coefficients and their sum.

his can be estimated by modifying the model specification as: xtbcfe lnTOT_MOR lnPM25, bciters(2500)

es(thet_r) ini(ahe) lags(1) infer(inf_ci) infit(10 0 0) te dist(all) . Sample post-estimation bootstrap-

timulated distribution of autoregressive (AR) coefficients is presented in Fig. 8 . 
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Conclusion 

With regards to the growing complexities of panel data modelling, we provide a step-by-step

process and guideline for estimating dynamic panel models using the novel dynamic panel bootstrap- 

corrected fixed-effects estimator ( xtbcfe ). It is important to note that xtbcfe algorithm cannot compute

statistical inferences without achieving convergence, hence, affect the robustness and consistency 

of estimated parameters. Three key components namely number of iterations ( infit ), convergence 

criterion ( crit ) and number of samples for bootstrapping ( bciters ) affect the computation time of

xtbcfe algorithm. Additionally, we provided guidelines on data imputation of unevenly spaced dataset 

and steps to apply the normalization technique to negative inputs before data transformation. 

We demonstrated how to estimate a model-free panel heterogeneous dynamics ( panelhetero ) that 

control for misspecification using empirical CDF, moments, and kernel density estimation. Finally, we 

applied the guidelines to examine the empirical data on ambient air pollution and health outcomes.

The estimated parameters confirmed ambient air pollution attributed mortality, Disability-Adjusted 

Life Years, and welfare cost. We note that the recommended pre-processing and panel estimation

techniques can be applied in several disciplines such as, inter alia , social sciences, energy, health,

environmental and resource economics. 
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