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Abstract: Nutrient limited conditions are common in natural phytoplankton communities and
are often used to increase the yield of lipids from industrial microalgae cultivations. Here we
studied the effects of bioavailable nitrogen (N) and phosphorus (P) deprivation on the proteome
and transcriptome of the oleaginous marine microalga Nannochloropsis gaditana. Turbidostat cultures
were used to selectively apply either N or P deprivation, controlling for variables including the light
intensity. Global (cell-wide) changes in the proteome were measured using Tandem Mass Tag (TMT)
and LC-MS/MS, whilst gene transcript expression of the same samples was quantified by Illumina
RNA-sequencing. We detected 3423 proteins, where 1543 and 113 proteins showed significant changes
in abundance in N and P treatments, respectively. The analysis includes the global correlation between
proteomic and transcriptomic data, the regulation of subcellular proteomes in different compartments,
gene/protein functional groups, and metabolic pathways. The results show that triacylglycerol (TAG)
accumulation under nitrogen deprivation was associated with substantial downregulation of protein
synthesis and photosynthetic activity. Oil accumulation was also accompanied by a diverse set of
responses including the upregulation of diacylglycerol acyltransferase (DGAT), lipase, and lipid body
associated proteins. Deprivation of phosphorus had comparatively fewer, weaker effects, some of
which were linked to the remodeling of respiratory metabolism.
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1. Introduction

Bioavailable nitrogen and phosphorus are essential macronutrients required by microalgae for
optimal, balanced growth. In the oceans, the effects of nitrogen (N) and phosphorus (P) supply on
phytoplankton physiology and elemental stoichiometry are well recognized [1,2], where nutrient
abundance often controls primary production, community structure, and ultimately the flux of
matter and energy through ecosystems [3,4]. Many species of microalgae also have applications
in biotechnology, where modulating the nutrient supply to intensive cell cultures is a common
technique used to induce the accumulation of triacylglycerol (TAG) and secondary carotenoids [5,6].
Understanding how microalgae respond to changes in nutrient availability, especially the supply of
N and P, is therefore valuable for characterizing their behavior in natural and industrial settings.

Protein accounts for a large share of cellular N, but nitrogen is also a component of nucleic acids
(RNA and DNA) and chlorophyll. Phosphorus is required in lower amounts, but is nevertheless
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embodied in nucleic acids, phospholipids, post-translational modifications (e.g., phosphoproteins),
and ATP [7–9]. Though N and P are often found in the same molecules, the effects of their abundance on
microalgae physiology can be profoundly different. Nitrogen deprivation typically leads to substantial
reductions in growth, protein and chlorophyll content, concomitant with increased neutral lipids,
carbohydrates, or secondary carotenoids, depending on the species. The effects of P- deprivation
are often more subtle, but have been consistently linked to remodeling of the lipid profile [10,11],
where phosphorus-containing lipid classes are substituted for nonphosphorus lipids [9]. The active
remodeling of the microalgae cell under N and P stress implicates the roles of a large number of
regulatory pathways, but we still lack a deep understanding of the molecular mechanisms at work.

Transcriptome-based studies have identified patterns of gene expression during nutrient stress
response and product formation [12,13]. However, eukaryotic microalgae have evolved through
diverse endosymbiotic routes, and different families, genera, and species may respond differently
to similar treatments. Quantitative transcript sequencing can imply that gene expression directly
regulates the abundance of proteins, yet there is often only moderate association between mRNA
and protein expression [14,15]. For example, studies on human cell lines have found low correlation
(R2 = 0.22–0.29) between mRNA and protein measurements [16,17], although stronger relationships
have been reported from mouse cells (R2 = 0.41), bacteria (R2 = 0.47), and yeast (R2 = 0.58) [16,18].
One explanation for this is the variable role of post-transcriptional mechanisms in different organisms
and conditions [15,18,19]. Compared to transcriptomics, then, proteomics should provide more direct
measurement of metabolic activity inside the cell, but such studies in microalgae are relatively few.
Key questions include, how does macronutrient supply reshape the algal proteome, and do proteomic
and transcriptomic methods describe similar metabolic patterns?

The marine eustigmatophyte Nannochloropsis is one of a handful of industrially tractable oleaginous
microalgae. Its ~30 Mbp haploid nuclear genome is compact, containing around ten-and-a-half thousand
protein coding genes, varying slightly amongst the assemblies of different strains [20,21]. Despite
its modest size, the Nannochloropsis genome encodes a disproportionately large number of genes
involved in lipid synthesis, including 11 or more copies of diacylyglycerol acyltransferase-2 (DGAT2),
which performs the terminal step in TAG synthesis via the Kennedy pathway [20,22]. Under adverse
conditions, especially N starvation, Nannochloropsis can accumulate substantial quantities of TAG
in oil bodies, reaching 50% or more of the cell dry mass [23]. Nannochloropsis is also remarkable as
a genus that can synthesize large amounts of the long-chain polyunsaturated fatty-acid C20:5n-3
(eicosapentanoic acid or EPA), which is highly valued in human and animal diets [24,25].

Here we used flat-plate photobioreactors operated as turbidostats to selectively apply nitrogen
and phosphorus deprivation to Nannochloropsis gaditana. The molecular patterns emerging under
N and P deficient conditions were characterized using Tandem Mass Tag (TMT) based quantitative
proteomics and are supported by transcriptome (mRNA) sequencing of the same samples. Our analysis
first examines the global (cell-wide) patterns of protein and transcript abundance, before exploring
the primary effects of N and P starvation on the subcellular proteomes, gene clusters, and metabolic
pathways. Individual pathways and proteins that were either highly impacted, or relevant to
biotechnology applications, are investigated and discussed.

2. Results

2.1. Turbidostat Cultivation Dynamics, Lipids, and Fatty-Acids

Control cultures were maintained in nutrient-replete, steady-state conditions throughout the
experiments with a specific growth rate of 0.55± 0.07 d−1 and a cell density of 2.6± 0.3 g L−1. In nitrogen
(N-) and phosphorus (P-) deprived treatments the growth rates declined, but other variables inside the
bioreactor including the average light intensity, were largely maintained (Figure 1a). In the N- and
P- cultures, either nitrate or phosphate was exhausted within 28 h due to rapid nutrient uptake coupled
with high biomass turnover and dilution with fresh medium (Figure 1a). Nitrate-starved cultures
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showed a gradual increase in cell density toward the end of the experiment, a result of maintaining
constant turbidity whilst the cells experienced chlorosis (loss of pigmentation). The N- cultures
experienced an immediate reduction in growth rate to 0.11 ± 0.02 d−1 at day 3 and 0.05 ± 0.02 d−1 at day
5. In comparison the onset of P- conditions was more dampened with the growth rate 0.49 ± 0.06 d−1

at day 3 and 0.44 ± 0.07 d−1 at day 5. Analysis of fatty-acids showed a substantial increase in TAG
comprised primarily of C16:0 and C16:1 fatty-acids in the N- treatments (Figure 1b). After 5 days in
N- conditions, fatty-acids in TAG comprised 21.4% of the cell dry weight but remained at only 1.0%
and 2.2% of the dry weight in the control (C) and P- treatments, respectively. The long-chain PUFAs
eicosapentanoic acid (EPA, C20:5n-3) and arachidonic acid (ARA, C20:4n-6) were mostly present in
the polar lipids. At day 5 the EPA accounted for 26.5% and ARA for 2.5% of total fatty acids (TFA)
in control cultures. In N- cultures the EPA content was reduced substantially to 6.3% TFA after 5 days,
due to the reduction of polar lipids and the accumulation of fatty acids in TAG.
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Figure 1. (a) Image of the flat-plate photobioreactors operated as turbidostats including measurement 
of pH, temperature, CO2 concentration in the sparging gas, and turbidity. The growth rate (d-1) and 
the cell density (g L−1) are shown with the changes in the dissolved extracellular nitrate (NO3-) and 
phosphate (PO43-) concentrations (mean ± sd, n = 4). (b) Lipid analysis including the fatty-acid profiles 
(left) of polar and neutral lipids (TAG) in control, N-, and P- treatments after 3 and 5 days of the 
experiment, as fatty-acid methyl-esters—FAME (mg/g dry weight). The total FAMEs in control, N-, 
and P- treatments after 3 and 5 days of the experiment (right). Data are the mean ± sd of n = 4 
experimental replicates (except n = 3 for N- treatments at day 5). 

Figure 1. (a) Image of the flat-plate photobioreactors operated as turbidostats including measurement
of pH, temperature, CO2 concentration in the sparging gas, and turbidity. The growth rate (d−1)
and the cell density (g L−1) are shown with the changes in the dissolved extracellular nitrate (NO3

−)
and phosphate (PO4

3−) concentrations (mean ± sd, n = 4). (b) Lipid analysis including the fatty-acid
profiles (left) of polar and neutral lipids (TAG) in control, N-, and P- treatments after 3 and 5 days of
the experiment, as fatty-acid methyl-esters—FAME (mg/g dry weight). The total FAMEs in control,
N-, and P- treatments after 3 and 5 days of the experiment (right). Data are the mean ± sd of n = 4
experimental replicates (except n = 3 for N- treatments at day 5).
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2.2. Identification and Differential Expression of Proteins and Their Transcripts

In total 3423 proteins were identified across all of the tested conditions. After 3 days of
N- deprivation 1543 of these proteins were significantly differentially regulated, whilst in P- treatments
only 113 proteins were significantly differentially regulated (Figure 2). Transcriptome analysis showed
that after 3 days of N- treatment, 1448 of the 10,496 genes in the B31 genome were differentially
expressed, where 528 transcripts were upregulated and 920 were downregulated. After 5 days of
N- treatment, the number of differentially expressed genes (DEGs) increased to 2371, where 859 were
upregulated and 1512 were downregulated. Phosphorus depletion resulted in far fewer DEGs, where
only 52 genes were upregulated and two were downregulated after 3 days, increasing to a total of
122 DEGs after 5 days. Principal components analysis showed that in the protein dataset there was
distinct clustering of N- samples, but much weaker demarcation between P- and control treatments
(Figure S3). Principal components analysis of the transcriptomic data indicated clear divergence
between each of the treatments after 3 days, strengthening further after 5 days.
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Figure 2. Volcano plots showing the differential expression of proteins and transcripts in the nitrogen
starved (N-) and phosphorus starved (P-) treatments, vs. controls. The x-axis displays the log2 fold
change (L2fc) of protein or transcript expression, where positive values indicate upregulated proteins
and negative values correspond to downregulated proteins. The p-values are presented on -Log10 scale
on the y-axis, and for transcripts these are the adjusted p-values from the DESeq2 methodology. Proteins
determined significantly differently regulated at corrected thresholds p < 0.022 (N-/C treatments)
or p < 0.002 (P-/C treatments) are indicated in the uppermost segment. Proteins differentially expressed
at p < 0.050, but not reaching the adjusted threshold, are indicated in the central segment.

2.3. Correlation between the Nannochloropsis Proteome and Transcriptome

The global patterns in protein and mRNA abundance were examined using three complimentary
approaches. First, the correlation between the log2 fold changes (L2fc) of mRNA transcripts and their
corresponding proteins was performed (Figure 3a). The N-/C treatment yielded moderate correlation
(R2 = 0.25), whilst the correlation in P-/C treatments was much weaker (R2 = 0.08). Our second method
combined data for all observations (C, N-, and P- treatments) together, and a linear mixed-effects
model was used to describe the relationship between mRNA abundance (log (RPKM)) and protein
abundance (log (Mol%)) across all gene/protein accessions (Figure 3b). For comparative purposes,
a conventional Pearson’s R2 of 0.31 was also calculated for the same data, indicating moderate positive
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correlation between transcript and protein abundance. Our third method fitted individual linear
regression models to each gene/protein pair, yielding 2576 regression models. The distribution of
R2 values from these linear models are presented in Figure 3c (upper panel), and for only the subset of
proteins which showed significant differential expression (Figure 3c lower panel). The median R2 for
all accessions was 0.29, but increased substantially to R2 = 0.58, with a shoulder at R2~0.8, when only
the significantly differentially expressed proteins were included. For those significantly differentially
expressed proteins, 79% of the gene/protein correlation slopes were positive, the remaining 21%
were negative (Figure 3d). Together, these three alternative approaches characterize a moderate but
detectible cell-wide association between mRNA and protein expression in these data.
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Figure 3. Global patterns in protein and mRNA abundance in Nannochloropsis gaditana. (a) The L2fc
mRNA abundance vs. the L2fc protein abundance for N- and P- treatments, vs. controls (n = 2578 each).
(b) Protein abundance in log (Mol%) vs. mRNA transcript abundance (RPKM) for all samples.
The regression line was fitted with a linear mixed-effects model with random slopes and random
intercepts fitted for each experimental unit (n = 10). Very low abundance transcripts < 2.0 RPKM were
excluded. (c) Histograms showing the population of R2 values that describe the relationship between
mRNA abundance (RPKM) and protein abundance (normalized TMT reporter ion intensities) for each
gene/protein set. The R2 values are collected from n = 2576 linear regression models fitted separately to
each gene/protein pair from the B31 genome assembly (Figure S5). The upper panel contains all of the
correlations, whilst the lower panel shows only those where the proteins were significantly differently
regulated (n = 1083), as determined by the Benjamini–Hochberg adjusted p-values. (d) The slopes
showing positive or negative correlations for the same 1083 linear regression fits.
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2.4. The Effect of Nitrogen and Phosphorus Stress on Subcellular Proteome Remodeling

To investigate large-scale changes in subcellular proteomes under N- and P- conditions,
we examined the overall fold changes of proteins after grouping them into their respective cellular
locations. For most compartments, N- treatments exhibited greater variance in protein abundance
than P- treatments (Figure 4). Proteins associated with the plastid were mostly downregulated under
nitrogen deprivation, with a median L2fc of −0.42. Proteins localized to the mitochondrion, membranes
and the endoplasmic reticulum (ER) also displayed variation in L2fc, but their median fold changes
each remained around zero (L2fc 0.00, 0.02, and −0.08, respectively). The data indicate that under
N- conditions the plastid proteome shrank, whilst the ER, mitochondrial and membrane proteins were
remodeled but did not substantially change overall size. In P- treatments there were no substantial
shifts in expression of any of the subcellular proteomes, and variation in L2fc was much lower than
those in N- treatments, indicating only limited remodeling.
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Figure 4. The L2fc of proteins localized in different subcellular compartments. Panels represent
N- (n = 4) or P- conditions (n = 2), relative to the control group (n = 4). Annotation of locations was
provided by the UniProtKB database.

2.5. Functional Enrichment Analysis of Differentially Expressed Proteins and Transcripts

To capture the main patterns in gene expression and protein abundance, gene ontology (GO)
and KEGG pathway ontology (KO) terms were examined (Figures 5 and 6). Under N- conditions changes
in the proteome and transcriptome were mostly concordant, where downregulation of proteins and
mRNA transcripts was observed in protein translation processes (GO:0006412), protein-chromophore
linkage (GO:0018298), and light-independent chlorophyll biosynthesis (GO:0036068), together with
photosynthesis (GO:0015979) and its light-dependent (GO:0009765) and light-independent reactions
(GO:0019685). Fewer gene and protein GO categories were significantly upregulated in N- treatments,
but genes and proteins with roles in amine metabolism (GO:0009308), the tricarboxylic acid cycle
(GO:0006099), and nucleotide catabolism (GO:0009166) were increased.
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Figure 6. Changes in metabolic pathways. The most perturbed KEGG (KO:) metabolic pathways in the
proteome and the transcriptome.

In P- treatments, over-represented GO terms for proteomic and transcriptomic data were
less concordant. The downregulation of proteins involved in translation (GO:0006412), protein
stabilization (GO:0050821), D-ribose catabolic process (GO:0019303), and carbohydrate transport
(GO:0008643), together with the upregulation of tricarboxylic acid cycle (GO:0006099) and glycolytic
process (GO:0006096), was not echoed by the transcriptome (Figure 5). After 5 days of phosphorus
starvation, gene expression associated with tRNA (GO:0006418) and rRNA processing (GO:0006364)
were also lowered, together with reductions in ribosome biogenesis (GO:0042254), ribosome assembly
(GO:0000028), protein refolding (GO:0042026), and amino-acid biosynthesis (GO:0008652). Transcripts
associated with amine metabolism (GO:0009308) were also downregulated after 5 days of P deprivation,
contrasting with the upregulation of the same group during N deprivation. Upregulated gene clusters
in P- treatments included increases in phosphate-ion transport (GO:0006817) and increases in transcripts
associated with lipid catabolism (GO:0016042), ATP synthesis (GO:0015986, GO:0042773), and oxidative
phosphorylation (GO:0006119).

In nitrogen-starved cells, KEGG pathways related to photosynthesis (KO:00195) and ribosomes
(KO:03010) were downregulated in both proteomic and transcriptomic data. (Figure 6). Under
P- conditions proteins in the KEGG pathways glycolysis/gluconeogenesis (KO:00010), the TCA cycle
(KO:00020), and oxidative phosphorylation (KO:00190) were upregulated. However, these increases
in respiration-associated protein groups were not mirrored by the transcriptome. Instead, after
5 days transcriptome data indicated downregulation of several pathways linked to lysine biosynthesis
(KO:00300) and aminoacyl-tRNA biosynthesis (KO:00970), implying reduced translation activity under
protracted P-deprivation.

2.6. Translation, Nitrogen Acquisition, and Metabolism

Under N- conditions, 12 of the 30 most downregulated proteins were ribosomal (Table 1), mostly
30S and 50S that are plastid-associated. The L2fc of all ribosomal proteins were examined, and we
found that both plastidic ribosomes and ribosomal proteins of eukaryotic origin (40S and 60S) were
downregulated after 3 days of N- conditions (Figure S6). In P- treatments the expression of ribosomal
proteins and their transcripts was not substantially changed. Both nitrate and nitrite reductase were
among the most downregulated proteins in the N- treatments, highlighting the reduced investments in
N acquisition from the extracellular environment.
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Table 1. The 30 proteins with largest fold increase and 30 proteins with the largest fold decrease in
the N- treatments (n = 4), relative to the controls (n = 4). Proteins annotated as “uncharacterized”
were omitted and the p-values are from permutation tests. The suffix string of the Accession Number
“9STRA” or “NANGC” refers to the B31 or CCMP526 N. gaditana reference proteomes, respectively.

Rank Identified Proteins Accession
Number kDa L2fc p-Value

Upregulated
1 Lipid droplet surface protein W7TWF7_9STRA 18 1.93 0.0001
2 Amine oxidase W7TFN3_9STRA 75 1.38 0.0001
3 Methylenetetrahydrofolate dehydrogenase W7T6I6_9STRA 39 1.3 0.0001
4 Acid sphingomyelinase-like phosphodiesterase 3b W7TQ09_9STRA 76 1.3 0.001
5 EF-Hand 1, calcium-binding site W7TRW6_9STRA 64 1.11 0.0001
6 Lipase family protein W7TUB0_9STRA 54 1.06 0.0001
7 Two component regulator propeller domain-containing protein K8Z0G9_NANGC 27 1.03 0.001
8 Lipocalin protein W7TQX7_9STRA 29 1.02 0.00021
9 Ammonium transporter W7U477_9STRA 58 1 0.0001
10 Carbonic anhydrase, alpha-class W7T0A1_9STRA 37 0.9 0.028
11 Cathepsin a W7TYE0_9STRA 60 0.87 0.0001
12 Nadp-dependent glyceraldehyde-3-phosphate dehydrogenase W7U8W3_9STRA 66 0.86 0.0001
13 Cluster of Sodium hydrogen exchanger 8 W7TNK5_9STRA 72 0.86 0.0001
14 Light harvesting complex protein K8YPR7_NANGC 19 0.85 0.0001
15 Subfamily member 9 W7TPA4_9STRA 41 0.82 0.028
16 Plasma membrane ATPase K8YQB4_NANGC 107 0.77 0.0001
17 Manganese lipoxygenase W7TYD4_9STRA 73 0.77 0.0001
18 Quinoprotein amine dehydrogenase, beta chain W7TI92_9STRA 66 0.77 0.0001
19 4-hydroxyphenylpyruvate dioxygenase W7TNB7_9STRA 50 0.77 0.001
20 Malate cytoplasmic isoform 2 W7TPM0_9STRA 37 0.76 0.0001
21 Cluster of Violaxanthin de-epoxidase K8YTT8_NANGC 35 0.75 0.019
22 Had-superfamily subfamily iia hydrolase W7U270_9STRA 43 0.74 0.0001
23 Glutaryl-mitochondrial W7TTQ4_9STRA 48 0.74 0.0001
24 Pyruvate dehydrogenase W7TN62_9STRA 55 0.74 0.0001
25 Myotubularin-related protein 2 W7TSB4_9STRA 109 0.74 0.004
26 Cdgsh iron sulfur domain-containing protein 1 W7TPN8_9STRA 23 0.72 0.001
27 Arachidonate 5-lipoxygenase K8Z8I5_NANGC 60 0.71 0.0001
28 Cluster of Purple acid phosphatase W7TLQ2_9STRA 56 0.71 0.0001
29 Cluster of Expulsion defective family member (Exp-2) K8YVZ3_NANGC 62 0.71 0.049
30 V-type proton ATPase subunit F W7TU11_9STRA 13 0.7 0.0001

Downregulated
30 Cytochrome p450 W7UBA8_9STRA 70 −0.77 0.0001
29 30s ribosomal protein s15 W7TEF2_9STRA 34 −0.77 0.0001
28 RNA binding s1 domain protein W7U882_9STRA 45 −0.77 0.0001
27 Cluster of Solute carrier family 35 member b1 W7TCR9_9STRA 43 −0.77 0.7
26 Cytochrome P450 enzyme I2CNY8_NANGC 67 −0.78 0.001
25 Heat shock protein DNAJ, cysteine-rich domain protein W7TJ91_9STRA 13 −0.78 0.001
24 Geranylgeranyl reductase W7THD6_9STRA 57 −0.79 0.0001
23 Coproporphyrinogen iii oxidase chloroplast W7TZ92_9STRA 46 −0.79 0.0001
22 50S ribosomal protein L18, chloroplastic K9ZX62_9STRA 12 −0.8 0.0001
21 50S ribosomal protein L19 K9ZV73_9STRA 14 −0.81 0.0001
20 30S ribosomal protein S9, chloroplastic A0A023PLK7_9STRA 15 −0.82 0.0001
19 30S ribosomal protein S2, chloroplastic K9ZWC8_9STRA 29 −0.83 0.0001
18 Nitrite reductase W7T0E9_9STRA 46 −0.85 0.0001
17 30S ribosomal protein S8, chloroplastic K9ZV68_9STRA 15 −0.86 0.0001
16 Cluster of H+-transporting ATPase K8YQ29_NANGC 152 −0.87 0.0001
15 30S ribosomal protein S12, chloroplastic K9ZVC5_9STRA 14 −0.88 0.0001
14 50S ribosomal protein L36, chloroplastic K9ZXS5_9STRA 4 −0.88 0.001
13 Magnesium chelatase ATPase subunit I K9ZV21_9STRA 47 −0.9 0.0001
12 50S ribosomal protein L16, chloroplastic K9ZWF3_9STRA 16 −0.9 0.0001
11 Ribosomal protein s21 W7TSY1_9STRA 14 −0.9 0.003
10 Cluster of Mfs transporter W7U968_9STRA 66 −0.93 0.14
9 30S ribosomal protein S17, chloroplastic K9ZVE6_9STRA 10 −0.94 0.0001
8 30S ribosomal protein S20, chloroplastic K9ZX69_9STRA 11 −0.94 0.0001
7 Delta 5 fatty acid desaturase K8YSX2_NANGC 54 −0.95 0.0001
6 30S ribosomal protein S18, chloroplastic K9ZV97_9STRA 8 −0.97 0.0001
5 Nitrate reductase W7TAR6_9STRA 70 −1.08 0.0001
4 Ferredoxin nitrite reductase K8YST4_NANGC 40 −1.13 0.0001
3 Light-independent protochlorophyllide reductase subunit N K9ZV79_9STRA 50 −1.15 0.0001
2 Light-independent protochlorophyllide reductase iron-sulfur ATP-binding protein K9ZV32_9STRA 32 −1.34 0.0001
1 NAD(P)H nitrate reductase K8YSU6_NANGC 63 −1.48 0.0001

The reduced plastid proteome and diminished photosynthetic capacity associated with
N starvation led us to hypothesize that enzymes involved with protein/amino-acid catabolism, nitrogen
recycling, and recovery could be upregulated. Consistent with increases in amine metabolic processes
(GO:0009308, Figure 5), an amine oxidase (W7TFN3_9STRA) was the second-most upregulated protein
under N- conditions with an L2fc of +1.38 (Table 1). In P- treatments, the same protein was significantly
downregulated (L2fc −0.32, p < 0.001). Further searching through the proteome revealed an additional
six proteins annotated as amine oxidases, and of these a further two were significantly upregulated
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under N- conditions (Table S5). Additional proteins associated with amine metabolism were also
significantly upregulated in N- treatments, including an amine dehydrogenase (W7TI92_9STRA) with
an L2fc of +0.77.

2.7. Tricarboxylic Acid (TCA) Cycle, Glycolytic Processes, and Oxidative Phosphorylation

Evidence from Figures 4–6 indicated that remodeling of mitochondrial or respiratory activity
took place under both N- and P- conditions. To establish which proteins and transcripts were
differentially expressed, and how regulatory activity potentially differed under N- and P- conditions,
the L2fc of respiratory-associated proteins were examined together with their transcripts (Figure 7).
In N- conditions, most proteins and transcripts associated with the TCA cycle were upregulated,
but those associated with glycolytic processes were both up- and downregulated. Two glycolytic
enzymes, glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerate kinase included multiple
copies that were not coregulated with one another, with different accessions showing divergent
patterns of regulation (e.g., W7U208_9STRA vs. W7T2R0_9STRA). In P- conditions, most TCA cycle
and glycolytic proteins and transcripts were weakly upregulated.
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2.8. Fatty-Acid and Acyl-CoA Metabolism

An Acetyl-CoA carboxylase protein (I2CQP5_NANGC) was significantly upregulated during
P-starvation (L2fc +0.12, p < 0.001), but significantly downregulated under N- conditions (L2fc −0.50,
p < 0.001). Two proteins annotated as Acyl CoA synthetase were identified, but only one long-chain
Acyl-CoA synthetase (LACS, W7TGG5_9STRA) was significantly upregulated under N- conditions
(L2fc +0.36, p < 0.001).

2.9. Polyunsaturated Fatty Acid (PUFA) Metabolism

The primary route to medium and long-chain polyunsaturated fatty-acid biosynthesis in microalgae
is via a series of steps involving desaturase and elongase enzymes. A ∆5 desaturase (K8YSX2_NANGC)
was amongst the most downregulated proteins in N- treatments (Table 1). Six other desaturase enzymes
were also significantly downregulated during N- conditions (Table S6), including a ∆12ω-6 desaturase
(K8YR13_NANGC) and a glycerolipidω-3 desaturase (I2CR09_NANGC), with L2fc of −0.37 and −0.53
respectively (p ≤ 0.005). Under P- conditions the abundance of the same ∆5, ∆12, and glycerolipid
desaturases did not significantly change.

2.10. Proteins Associated with TAG Biosynthesis and Storage in Oil Bodies

The most upregulated protein in N- treatments with an L2fc of +1.93 (p < 0.001) was a lipid
droplet surface protein (W7TWF7_9STRA), which is concordant with the substantial increases in
TAG observed in the same samples (Table 1, Figure 1). Although the N. gaditana genome is reported
to encode 11 copies of DGAT2, only one diacylglycerol acyltransferase (DGAT) family protein
(W7U9S5_9STRA) was identified. This protein was significantly upregulated under N- conditions
(L2fc +0.30, p = 0.004), but not under P- conditions (L2fc −0.14, p = 0.420). In comparison, the transcript
data quantified the expression of eight different genes annotated as DGAT or DGAT2, where three were
significantly upregulated under N- conditions and two were significantly downregulated (Table S7).
Further upstream in lipid biosynthesis, Lysophosphatidylglycerol acyltransferase (LPAT) catalyzes
the conversion of lysophosphatidic acid to phosphatidic acid. We identified a single LPAT protein
(K8YP17_NANGC), that did not respond significantly in either N- or P- conditions.

2.11. Glycerolipid and Phospholipid Biosynthesis

A single protein annotated as monogalactosyldiacylglycerol synthase (MGDG synthase,
W7TN13_9STRA) was not significantly differently expressed in either N- or P- conditions (L2fc < 0.07,
p > 0.130). A choline/ethanolamine kinase family protein (K8YV04_NANGC) was significantly
upregulated (L2fc +0.28, p = 0.001) in P- conditions, but was not significantly changed in N- conditions
(L2fc +0.13, p = 0.072). The proteomics data also identified a Udp-sulfoquinovose synthase
(W7TMH8_9STRA) that was significantly downregulated in N- conditions (L2fc −0.2, p < 0.001),
but significantly upregulated in P- conditions (L2fc +0.24, p < 0.001). In P- conditions an Acid
sphingomyelinase-like phosphodiesterase 3b (W7TQ09_9STRA) was amongst the most upregulated
proteins with an L2fc of 0.68 (p = 0.011) (Table 2).
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Table 2. The 30 proteins with largest fold increase and 30 proteins with the largest fold decrease in
P- treatments (n = 2), relative to the controls (n = 4). Proteins annotated as “uncharacterized” were
omitted and the p-values are from permutation tests. The suffix string of the Accession Number
“9STRA” or “NANGC” refers to the B31 or CCMP526 N. gaditana reference proteomes, respectively.

Rank Identified Proteins Accession
Number kDa L2fc p-Value

Upregulated
1 Sse2p W7TMT9_9STRA 32 0.96 0.04
2 Acid sphingomyelinase-like phosphodiesterase 3b W7TQ09_9STRA 76 0.68 0.011
3 Cluster of Calcium binding protein 39 W7T646_9STRA 51 0.61 0.59
4 Snf7 family protein W7U1R3_9STRA 22 0.53 0.026
5 Ddi1p W7U1J9_9STRA 41 0.52 0.97
6 Nad-dependent deacetylase W7TT51_9STRA 38 0.48 0.004
7 Elongation of fatty acids protein W7TSM8_9STRA 36 0.48 0.06
8 Lysyl-tRNA synthetase W7TMK7_9STRA 20 0.45 0.13
9 Aminoglycoside phosphotransferase W7TK75_9STRA 37 0.43 0.2

10 Pyruvate decarboxylase K8YS66_NANGC 62 0.41 0.0001
11 Splicing arginine serine-rich 19 W7T8W4_9STRA 34 0.41 0.0001
12 Ribosomal protein K8Z5W4_NANGC 33 0.39 0.067
13 Cluster of Trypsin family K8Z6K0_NANGC 65 0.38 0.36
14 Cluster of Methylthioribose kinase W7TVE0_9STRA 94 0.37 0.98
15 Ferredoxin K8YW46_NANGC 12 0.36 0.055
16 Otu-like cysteine type protease W7TUL0_9STRA 102 0.36 0.15
17 Protein-tyrosine low molecular weight K8YTE7_NANGC 16 0.35 0.00023
18 Threonine aldolase W7TQZ9_9STRA 47 0.35 0.012
19 Protein phosphatase W7TA28_9STRA 48 0.35 0.2
20 Pre-mRNA-processing factor 17 K8Z4U6_NANGC 86 0.34 0.0001
21 Beta-ketoacyl-thiolase W7SYP3_9STRA 8 0.34 0.022
22 Ethylmalonic encephalopathy 1 K8Z7T8_NANGC 47 0.33 0.0001
23 Soluble pyridine nucleotide transhydrogenase W7T7X5_9STRA 17 0.32 0.14
24 Ring-finger-containing e3 ubiquitin W7UAK3_9STRA 76 0.32 0.25
25 Glycerol kinase W7U0M7_9STRA 24 0.3 0.072
26 Ig family protein W7T9Y3_9STRA 60 0.3 0.082
27 Cluster of Mfs transporter W7U968_9STRA 66 0.3 0.89
28 Mitochondrial tricarboxylate carrier family W7TKI7_9STRA 36 0.29 0.009
29 Cdgsh iron sulfur domain-containing protein 1 W7TPN8_9STRA 23 0.29 0.025
30 NAD(P)-binding domain protein W7TM45_9STRA 40 0.29 0.032

Downregulated
30 Vacuolar protein-sorting-associated protein 36 W7TG31_9STRA 49 −0.44 0.34
29 Exocyst complex W7U8I8_9STRA 115 −0.45 0.009
28 Methyltransferase type 11 W7U3Q9_9STRA 34 −0.45 0.027
27 RNA binding protein W7TAT7_9STRA 20 −0.47 0.29
26 Light harvesting complex protein K8YPR7_NANGC 19 −0.5 0.007
25 Diaminopimelate decarboxylase W7TNX0_9STRA 56 −0.5 0.04
24 DNA polymerase subunit Cdc27 W7TMW3_9STRA 62 −0.51 0.013
23 Tubulin-tyrosine ligase-like protein W7TWY1_9STRA 79 −0.51 0.024
22 Translocase of inner mitochondrial membrane 50-like protein K8YTV0_NANGC 43 −0.51 0.13
21 Cluster of Protease do-like 9 W7TU24_9STRA 69 −0.52 0.61
20 TatA-like sec-independent protein translocator subunit W7T3A7_9STRA 22 −0.54 0.001
19 Photosystem II reaction center protein H K9ZXQ7_9STRA 7 −0.54 0.084
18 Cyclic nucleotide-binding protein W7TMP7_9STRA 25 −0.56 0.002
17 Ubiquilin I2CQX3_NANGC 47 −0.6 0.07
16 Ribokinase W7TXK5_9STRA 34 −0.62 0.21
15 Ankyrin W7TWU3_9STRA 48 −0.63 0.068
14 Soluble nsf attachment protein receptor W7TW41_9STRA 32 −0.66 0.27
13 Elongation of fatty acids protein W7U1Y8_9STRA 37 −0.67 0.098
12 Anamorsin homolog W7TKP2_9STRA 30 −0.67 0.19
11 Adenylate kinase K8ZCS9_NANGC 19 −0.68 0.1
10 Mitochondrial carrier domain protein W7TRC0_9STRA 50 −0.68 0.13
9 Set domain protein W7TKH2_9STRA 119 −0.73 0.75
8 ATP-dependent RNA helicase DDX23/PRP28 K8YWH1_NANGC 91 −0.77 0.13
7 Pentatricopeptide repeat-containing protein W7TSL2_9STRA 138 −0.81 0.24
6 Fgd6 protein K8Z5M8_NANGC 33 −0.84 0.26
5 Polypyrimidine tract binding protein I2CQY0_NANGC 35 −0.96 0.01
4 Major facilitator superfamily W7UAL7_9STRA 66 −0.99 0.21
3 U3 small nucleolar RNA-associated W7UBP4_9STRA 207 −1.1 0.049
2 Phytanoyl-dioxygenase W7T3Z1_9STRA 24 −1.2 0.047
1 DNA damage-binding protein 1a I2CQY4_NANGC 41 −1.45 0.14
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2.12. Lipase Activity and Lipid Catabolism

In P- conditions a single lipase (W7TUB0_9STRA) was significantly downregulated (L2fc −0.32,
p = 0.001). The same accession was substantially upregulated under N- conditions (L2fc +1.06,
p < 0.001), in addition to the significant upregulation of five other lipase family proteins, including two
lysophospholipases (Table S8).

2.13. Polyketide Synthase, Fatty Acid Synthase, and Lipoxygenase Expression

Six proteins annotated as polyketide synthases (PKS) were detected in the proteomics data,
but none responded significantly in either the nitrogen-starved or phosphorus-starved treatments
(Table S9). A single fatty acid synthase (FAS1) domain protein (W7TBQ5_9STRA) was significantly
downregulated in nitrogen-starved conditions (L2fc −0.47, p < 0.001) but not phosphorus-starved
conditions (L2fc−0.10, p = 0.091). An Arachidonate 5-lipoxygenase (K8Z8I5_NANGC) was also amongst
the most upregulated proteins with an L2fc of +0.71 (Table 1), whilst a manganese lipoxygenase protein
(W7TYD4_9STRA) was also significantly upregulated under N- conditions, providing evidence for the
upregulation of oxylipin pathways during nitrogen starvation.

3. Discussion

The 3423 proteins identified in this study represent a third of the gene models in the N. gaditana
genome [20,21] providing deep profiling of the Nannochloropsis proteome. The data also offers the
opportunity to compare the expression of proteins with their mRNA transcripts.

3.1. Global Correlation of Nannochloropsis Protein and Transcript Expression

Integrating different ‘omics datasets is a challenge but offers the chance to ask valuable questions.
On one hand, transcriptome sequencing provides high-throughput measurements of global responses to
physiological stress and has been widely adopted. Nevertheless, the abundance and activity of proteins
in cells, which ultimately determines the phenotype, is regulated by numerous mechanisms beyond
mRNA expression alone [18]. Our proteomic and transcriptomic data presented here are concordant
with studies on other organisms, where generally only weak-moderate associations have been observed
at the whole-cell level. Whether the unexplained residual variation is due to post-transcriptional
mechanisms or to methodological sensitivity, is not always clear [15].

Correlating the L2fc (Figure 3a) is a straightforward method of associating transcript and protein
data that relies only on relative changes in expression. Here N starvation produced a stronger
correlation than P starvation, likely due to larger changes in protein and transcript abundance
under N stress. However, our additional correlation methods help to provide a more complete
picture. In Figure 3b we used measures of protein and transcript abundance, rather than their
relative fold changes, and obtained an R2 = 0.31. This value is comparable to observations in
the model plant Arabidopsis thaliana (R2 = 0.27–0.46) and bacteria (R2 = 0.20–0.47), but lower than
yeasts (R2 = 0.34–0.87) [16]. When individual linear models were fitted separately to data from
each protein/transcript, we were able to show the heterogeneity of correlations across different
genes (Figure 3c). Proteins that were significantly differentially expressed often exhibited higher
correlation with their transcripts, providing support for the role of effect-size in determining the
strength of gene–protein correlations. Nevertheless, a proportion of significantly regulated proteins
remained only weakly correlated with their transcripts. Like other eukaryotes, microalgae employ
a multitude of post-transcriptional systems, but to what extent ncRNAs, splicing, post-translational
modifications, and protein turnover [19,26–29] impact transcript/protein/metabolome relations in
oleaginous microalgae, is not yet very clear. The effect of N, but not P deprivation, on reducing ribosomal
protein abundance illustrates that ribosome density varies with certain stress responses, representing
a further layer of regulation between transcription and translation. Lastly, the dynamic nature of
gene–protein regulatory circuits may be a critical variable [30]. Our turbidostat cultures controlled
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for the light intensity, but during the experimental treatments the cultures remained non-steady-state
systems, where there may be overshoot in the transcriptional control of protein abundance [30,31].
Future studies can address this aspect by using alternative bioreactor control strategies.

3.2. N and P Deprivation Remodels Organelle Proteomes and Energy Metabolism

Eukaryotic cells are highly compartmentalized and the size, spatial arrangement, and contacting of
subcellular compartments is re-optimized under stress conditions. In our data the dampened onset of
P- stress contrasted with the rapid reduction in growth and changes in protein/gene expression observed
in N- conditions. These differences can be reconciled by the way phosphorus is utilized inside the cell.
Under nutrient-replete conditions luxury phosphorus uptake takes place and cells can accumulate
excess reserves of intracellular phosphorus which acts as a short-term buffer during P- conditions [32].
Secondarily, certain classes of phosphorus-containing compounds can be functionally replaced by
phosphorus-free alternatives (see Section 3.3), which reduces the impact of P- conditions on metabolism.

Our analysis showed that the plastid proteome was downregulated under N- conditions,
consistent with the nitrogen-starved phenotypes (chlorosis and reduced polar lipid content) and the
downregulation of mRNAs and proteins associated with photosynthesis. Despite the reduced
photosynthetic capacity, mitochondrial proteins remained on average at comparable abundance to the
control treatments, but there was evidence of reorganization, The changes in TCA cycle and glycolytic
proteins under N- and, weakly, under P- conditions, highlights the active role played by respiratory
processes during macronutrient stress. Previous research has indicated increased expression of
glycolytic enzymes including glyceraldehyde-3-P dehydrogenase during N- conditions [33]. Our data
indicates that these proteins, which are present in multiple copies, can show opposing patterns of
regulation and therefore more information e.g., on cellular localization and targeting is required before
their roles can be fully understood. In plants, phosphate deprivation is associated with regulation
of alternative pathways in glycolysis and oxidative phosphorylation [34], and evidence from the
proteome of the diatom Phaeodactylum [35] also indicates upregulation of TCA cycle activity under
N-limited conditions. As mitochondrial activity is central to pathways in energy metabolism and
amino acid cycling, alternative configurations of the mitoproteome play a central role in acclimation
to protracted macronutrient deficits and further research is needed on mitochondrial metabolic flux
under nutrient stress.

3.3. Lipid Metabolism and Remodeling

The regulation of lipid metabolism in oleaginous microalgae has been the subject of substantial
scientific and commercial attention, yet the underlying mechanisms are still not completely resolved [36].
Transcriptome sequencing studies have shown that the genes involved in lipid biosynthesis are actively
regulated during nutrient-induced stress [12], yet attempts to increase oil yields by overexpression of
key genes have yielded mixed results [37], indicating that lipid biosynthetic enzymes are not necessarily
rate-limiting. In Nannochloropsis, nitrogen starvation is primarily associated with TAG production and
lipid storage in oil droplets, but surprisingly our GO and KEGG enrichment analysis (Figures 5 and 6)
did not prioritize lipid-related protein or gene families during oil accumulation. However, several
lipid-related proteins were strongly upregulated under N starvation, including a lipid droplet surface
protein (LDSP) with the highest fold change in the whole dataset. Similar proteins have been
characterized from Nannochloropsis oceanica, Chlamydomonas, and Phaeodactylum [38,39]. These proteins
play a structural role in oil bodies, and so their abundance scales with neutral lipid accumulation [39].

The N. gaditana genome is reported to encode 11 DGAT2 genes, but we were only able to distinguish
one diacylglycerol acyltransferase protein, although the expression of eight different DGAT2 genes
were counted in the transcript data. The upregulation of DGAT under N- stress, but not under P- stress,
indicates a regulatory role in TAG accumulation, and the same accession (corresponding to gene
Naga_100006g86) also responds to changing light conditions in this species [40]. We identified a single
LPAT protein that was unresponsive to either N- or P- conditions. However, several LPAT orthologs
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are present in the Nannochloropsis genome and their subcellular localization and functional role is not
shared equally among them [36]. The protein Acetyl-CoA carboxylase, which drives lipid biosynthesis
in the plastid [41], was downregulated under N-deprived conditions indicating reduced de-novo fatty
acyl chain biosynthesis.

Macronutrient deprivation not only induces accumulation of TAG, but the remodeling
of membrane (polar) lipids. Nitrogen deprivation especially induces the degradation of
plastidic glycerolipids, especially phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG),
and digalactosyldiacylglycerol (DGDG) that that contain the majority of the EPA [42]. The fate of PUFAs
under nutrient stress has important consequences for the lipid and fatty acid composition of the cell,
and different processes including de-novo PUFA synthesis, translocation, and degradation/oxidation
of fatty acids together contribute to the overall lipid profile. Recent evidence indicates that limited
de-novo synthesis of LC-PUFAs does occur during nutrient deprivation [43], but the degradation
of polar lipids and the translocation of PUFAs into TAG are significant processes that can affect the
nutritional properties of microalgae. We found that PUFA biosynthesis was strongly downregulated in
N- conditions, with major reductions in desaturase activity. In Nannochloropsis, ∆5 desaturase activity is
associated with ARA and EPA biosynthesis [23], and together the proteomic data and fatty-acid profiles
indicate that de-novo LC-PUFA biosynthesis probably plays only a minor role in lipid composition
under N starvation.

Lipid-class remodeling has been associated with phosphorus starvation, where specific classes of
P-containing membrane lipids are substituted with nonphospholipids [10]. Phospholipid remodeling
in plants and microalgae involves acyltransferase and phospholipase activity [44]. Whilst various
proteins annotated as phospholipases were identified in our data, none were significantly upregulated
under P- conditions. Instead, increased lipase activity was a signature of oil-accumulating cells
under N- starvation. However, we found that a choline/ethanolamine kinase was upregulated
under P- conditions, which could indicate attempts to maintain phospholipid (phosphatidylcholine,
PC and phosphatidylethanolamine, PE) production in these conditions. We also identified
a Udp-sulfoquinovose synthase protein that was significantly downregulated in N- conditions,
but significantly upregulated in P- treatments. This enzyme is associated with the synthesis of
sulfoquinovosyldiacylglycerol (SQDG), a thylakoid lipid that can potentially replace and compensate
for loss of phospholipids, especially PG, during phosphorus-scarce conditions [11].

An interesting feature of our data was the upregulation of two putative lipoxygenase (LOX) proteins
under N- stress. Lipoxygenases provide the enzymatic route to oxylipin production where PUFAs,
primarily C18 and C20 series, are converted to various oxidized lipid derivatives [45]. Oxylipins have
roles in cell signaling and stress response and, although LOX activity has not been widely investigated
in different microalgae species, oxylipin production has been measured in Nannochloropsis [46],
and hydroxylated EPA was abundant in the metabolome of the diatom Phaeodactylum tricornitum under
similar experimental conditions [35].

4. Materials and Methods

4.1. Cultivation

Nannochloropsis gaditana (CCMP 526, National Center for Marine Algae and Microbiota,
East Boothbay, ME, USA) was cultivated in 400 mL flat plate photobiorectors (Algaemist-S,
Wageningen UR, The Netherlands) using f/2 medium (Guillard and Ryther, 1962). The nutrient
concentrations were increased proportionally to support high cell density, equivalent to 3.0 g L−1

NaNO3. Cultures were maintained as turbidostats (constant optical density) by automatically adding
fresh medium and collecting the overflowing broth. Turbidostat cultures provide a high level of
experimental control by eliminating variables such as changes in internal irradiance that typically occur
in batch or flask cultures. The temperature (25.0 ± 0.2 ◦C) was maintained by internal heating/external
cooling modules and a constant irradiance of 350 µmol m−2 s−1 was provided by warm-white light
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emitting diodes. These conditions ensured high cell density and rapid biomass turnover. Before
experimental treatments the cultures were maintained for several days, where they reached a constant
growth/dilution rate. Control (C) treatments were subsequently maintained at the same steady-state,
whilst nitrogen (N-) and phosphorus (P-) stress treatments were selectively applied by omitting
either nitrate or phosphate from the feed medium. The high biomass turnover ensured cells in
stress treatments were subjected to a rapid, natural depletion of either N or P. Since there were two
photobioreactor units, the cultivation sequence was designed to avoid treatment bias (Table S1), and in
total there were n = 4 independent replicate cultures for C, N-, and P- conditions. Conditions inside
the photobioreactors were recorded by a program written in Python v2.7, running on a Raspberry Pi
single-board computer (Raspberry Pi foundation, UK). The maximum duration of our experiment was
5 days, by which time growth in N- treatments had nearly ceased and the limit of turbidity control was
reached. Based on the cultivation data in Figure 1 we selected day 3 for proteomics and transcriptomics
analysis, because it represented the mid-point in the onset of stress conditions, allowing sufficient time
to detect metabolic and molecular changes in the cells.

4.2. Sample Collection

Samples for proteomic and transcriptomic analysis were each collected into 2.0 mL tubes. Cells
were immediately pelleted by centrifugation (5000 rcf, 2 min) and quenched in liquid nitrogen,
then stored at −80 ◦C. Samples for metabolite analysis were collected in 2.0 mL tubes and additionally
desalted by washing with isotonic ammonium formate, then stored at −20 ◦C. The sample supernatant
was retained for analysis of nitrate and phosphate. The sample time points selected for molecular
characterization are shown in Table 3. Our experiment comprised 12 turbidostat cultivations, but only
10 TMT labels were available for proteomic analysis. Thus, control and N- proteome treatments each
have four biological replicates, whilst P- treatments have two replicates for the proteome. Statistical
analysis accounted for the degrees of freedom and multiple comparisons.

Table 3. Summary of the experimental samples used for proteomic and transcriptomic analysis.
The “No. Cultivations” is the total number of replicate turbidostat cultures available for each treatment.
Ten proteome samples were obtained after 3 days of C, N-, or P- treatment. Twelve RNA samples were
obtained after both 3 and 5 days and are repeated measurements from the same experimental units.

Day 3 Day 5

Treatment No. Cultivations Protein Transcript Protein Transcript

Control (C) 4 4 4 − 4
Nitrogen (N-) 4 4 4 − 4

Phosphorus (P-) 4 2 4 − 4
Total 12 10 12 − 12

4.3. Lipid Analysis

Polar and neutral lipids were separated by solid phase extraction and the fatty acids were
analyzed with a Gas Chromatograph and Flame Ionization Detector (GC-FID). Approximately 8 mg
lyophilized samples were weighed with a precision balance (Mettler Toledo, Columbus, OH, USA,
MX5) and transferred into 2.0 mL tubes containing 300 µL of 0.1 mm glass beads. Cell disruption was
performed by adding 1.0 mL chloroform:methanol (2:2.5) spiked with C15:0 TAG (tripentadecanoin)
internal standard, before bead-milling. The homogenate was transferred to a 10 mL glass tube with
the addition of another 3.0 mL chloroform:methanol. Phase separation was used to recover the
chloroform fraction, which was then dried under a stream of N2 to recover total lipids. Polar and
neutral lipid extracts were then prepared using solid-phase columns (Waters Sep-Pak 6cc/1g silica)
and derivatized to fatty-acid methyl-esters (FAMEs) by adding 3.0 mL of 12% H2SO4 in methanol,
then heating at 70 ◦C for 3 h. FAMEs were separated and quantitated using a Scion 436 GC-FID
(Bruker, USA) fitted with a splitless injector and a 30 m CP-WAX column (Agilent Technologies, USA).
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Supelco 37-component standards (Sigma-Aldrich, Oslo, Norway) were used for identification and
quantitation of the FAMEs with five-point calibrations. Blanks were included throughout extraction
and derivatization, to eliminate trace background peaks.

4.4. Nutrient Analysis

The concentration of nitrate in the broth was measured with standard colorimetric reagents using
a miniaturized microplate method and NADH:nitrate reductase [25]. The absorbance was measured at
540 nm with a Tecan Sunrise microplate reader. Seven-point calibrations were included in each plate
(R2 > 0.995). Phosphate was analyzed with the ammonium molybdate/ascorbic acid method, and the
absorbance was measured at 650 nm with a 1.0 cm cell.

4.5. Proteomics

Protein was extracted by resuspending cell pellets in 1.0 mL of extraction buffer (phosphate
buffered saline +0.03% Triton X-100 + protease inhibitor cocktail) on ice, and homogenized briefly
with a bead mill (Precellys, Bertin Instruments, Montigny-le-Bretonneux, France, 0.1 mm glass beads,
6500 rpm, 15 s). The suspension was centrifuged (20,000 rcf, 15 min, 4 ◦C) and the supernatant
transferred to new tubes. Proteins were then precipitated by adding five volumes of ice-cold acetone,
followed by centrifugation (20,000 rcf, 15 min, 4 ◦C). The supernatant was removed, and the protein
pellets were allowed to air dry for 2 min at room temperature. Protein pellets were suspended in
Laemlli buffer and the protein concentration of each sample was measured in duplicate with a BCA
protein assay kit (Microplate BCA™ Protein Assay Kit—Reducing Agent Compatible, Thermo Scientific,
Waltham, MA, USA). A seven-point calibration was used (R2 > 0.999) and samples were blank-corrected
using the sample buffer (Figure S1). A standardized 95.1 µg of protein from each sample was loaded to
an SDS-PAGE gel and trapped for analysis.

Analysis and database searching was performed by University of York metabolomics and
proteomics facility (York, UK) using 10-plex Tandem Mass Tags (Thermo Scientific, TMT10plex™). In-gel
tryptic digestion was performed after reduction with dithioerythritol and S-carbamidomethylation
with iodoacetamide. Digests were incubated overnight at 37 ◦C, then peptides were extracted with
50% aqueous acetonitrile containing 0.1% trifluoroacetic acid, before drying in a vacuum concentrator
and reconstituting in aqueous 0.1% trifluoroacetic acid. Peptides were buffer exchanged into aqueous
50 mM triethylammonium bicarbonate using Strata C18-E cartridges before TMT labelling (Table S2
for label-sample assignments). Labelled samples were combined together, loaded onto a conditioned
reversed-phase C18 spin column (Pierce) and subject to centrifugation at 5000 rcf for 2 min before
washing with 300 µL of LC-MS grade water. Peptides were eluted from columns into eight fractions
using increasing concentrations of acetonitrile in aqueous triethylamine. Fractions were dried in
a vacuum concentrator before reconstituting in aqueous 0.1% trifluoroacetic acid. Fractions were
analyzed over 4 h acquisitions with elution from a 50 cm C18 EasyNano PepMap nanocapillary column
using an UltiMate 3000 RSLCnano HPLC system (Thermo) interfaced with an Orbitrap Fusion hybrid
mass spectrometer (Thermo). Positive ESI-MS, MS2 and MS3 spectra were acquired with multi-notch
synchronous precursor selection using Xcalibur software (version 4.0, Thermo). Mascot Daemon
(version 2.5.1, Matrix Science) was used to search against the Nannochloropsis gaditana subset of the
UniProt database. To maximize the number of identified proteins, the search was conducted on a
database containing concatenated data from the B31 and CCMP526 proteomes (15,363 sequences;
5,747,225 residues). The Mascot 0.dat result file was imported into Scaffold Q+ (version 4.7.5, Proteome
Software) and a second search run against the same database using X!Tandem. Protein identifications
were filtered to require a maximum protein and peptide false discovery rate of 3% [47] with a
minimum of two unique peptide identifications per protein. Protein probabilities were assigned by
the Protein Prophet algorithm [48]. Relative quantitation of protein abundance was calculated from
the TMT reporter ion intensities using Scaffold Q+. TMT isotope correction factors were applied
according to the manufacturer. Differentially expressed proteins were determined by applying
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Permutation Tests with significance levels (p-values) adjusted with the Benjamini–Hochberg method.
TMT labelling provides sensitive measurements of differential expression of individual proteins in
multiplexed samples. However, the effect of peptide length and composition means that the reporter
ion responses across different proteins are only semi-quantitative estimates of abundance, i.e., different
peptides/proteins have different response factors. To more accurately estimate protein quantities,
the “protein abundance in multiplexed samples” (PAMUS) method [49] was applied, which is based
on the empirical linear relationship between the protein abundance index (PAI) and the logarithm of
absolute protein abundance [50]. The exponentially modified PAI (emPAI) for each protein was first
obtained from Scaffold Q+ to estimate the relative amount of each protein in the multiplexed sample.
Then for each protein, the TMT reporter ion intensities were used to quantify the proportion of emPAI
attributed to each individual sample/label. The abundance of the proteins in the individual samples
was then expressed in Mol% [50]. The location of mature proteins in the cell was annotated based
on the “Subcellular location” field of the UniProtKB database (www.uniprot.org). Complete mass
spectrometry data sets are open-access and available to download from MassIVE (MSV000085294)
and ProteomeXchange (PXD018605) (doi:10.25345/C5GQ50).

4.6. Transcriptomics

Total RNA was extracted from cell pellets by adding 1.0 mL QIAzol (Qiagen) followed by lysis
with a bead-beater (Precellys, Bertin Instruments, Montigny-le-Bretonneux, France, 0.1 mm glass
beads, 6500 rpm, 15 s). After adding 0.2 mL chloroform, the sample was centrifuged (20,000 rcf,
15 min, 4 ◦C) and the aqueous supernatant was added directly to RNA Clean and Concentrator
columns (Zymo Research, Irvine, CA, USA) and prepared according to the manufacturer instructions.
The cleaned RNA was eluted from the columns using molecular grade water and quality and quantity
checked using a 2200 TapeStation instrument (Agilent Genomics, Santa Clara, CA, USA) and Nanodrop
Spectrophotometer (Thermo Fisher Scientific). Libraries were prepared using Poly(A) selection to
enrich for mRNA and a NEBNext Ultra Directional RNA Library Prep kit for Illumina (New England
Biolabs Inc., Ipswich, MA, USA) according the manufacturer protocols. Barcoded sample libraries
were pooled in equal amount and sequenced on an Illumina NextSeq 500 platform using High Output
Kit v2. A total of 443 million 150 bp paired-end reads were obtained and archived at NCBI web portal
under Bioproject PRJNA589063.

The quality of reads was assessed with FastQC (Babraham Bioinformatics, Cambridge, UK)
and gentle adapter and quality trimming (Q > 20, L > 50) was applied using cutadapt v1.13 [51].
The annotated reference genomes of N. gaditana were downloaded for strains CCMP526 (assembly
ASM24072v1) and B31 (assembly NagaB31_1.0) and assessed. Although we used strain CCMP526 in
our study (verified genetically, Figure S2), the more recent reference genome for strain B31 provided
more unique mapped reads in our data (for reference comparisons see Table S3). Our analysis
therefore uses reads that were aligned to the B31 reference genome using the splice-aware aligner
STAR 2.5.3a [52], with the annotation aware option. The PCR duplication rate was assessed using the
Bioconductor package “dupRADAR” [53] in R v. 3.3.3 and was found to be low (<0.1%). Counts of
reads for gene-level quantification were extracted using “featureCounts” [54] supplied with annotation
information and strands of reads. Raw counts were imported into the Bioconductor package “DESeq2”
v 1.14.1 [55] and differential expression analysis was performed with independent filtering enabled
and alpha = 0.05. Genes that had an FDR p-adjusted value < 0.05 and L2fc > 1.0 (fold change of > 2)
were chosen as the differentially expressed genes. Taking into account our design (four replicates in
each group and fold change > 2.0) we reached more than 90% statistical power to detect differentially
expressed genes [56].

4.7. Gene Ontology and KEGG Pathway Gene Set Enrichment Analysis

Gene ontology (GO) terms were obtained from the UniProtKB database (http://www.uniprot.org).
Annotation of genes for KEGG Orthology (KO) numbers was performed using GhostKOALA [57].

www.uniprot.org
http://www.uniprot.org
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Gene ontology and KEGG pathway enrichment analyses were performed for both transcriptome and
proteome data sets. Gene set enrichment analysis implemented in Babelomics 5.0 suite [58], was used
to detect GO functional sets of genes and proteins significantly affected by nutrient deprivation.
The logistic model using the L2fc of all genes or proteins was employed with significance cut-off

FDR-adjusted p-value of 0.01. GOs with log-odds ratio (LOR) <0.0 were taken to be over-represented for
downregulated genes/proteins, and LOR > 0.0 were over-represented for upregulated genes/proteins.
The gene set approach was also used to identify the most perturbed KEGG pathways with unidirectional
changes of gene and protein expression. The analysis was performed using the Bioconductor package
GAGE 2.24 [59] with L2fc values as per gene statistics, q < 0.05 and only pathways with more than five
annotated KO numbers. GO enrichment analysis was performed separately for up- and downregulated
genes using classic Fisher’s exact test in R package topGO v2.26 [60] with FDR correction at 0.05 and
pruning the GO hierarchy from terms which have less than five annotated genes. To identify the most
perturbated KEGG pathways with unidirectional or bidirectional changes of gene expression the gene
set approach was used. The analysis was performed using the Bioconductor package GAGE 2.24 [59]
with L2fc values as per gene statistics and only pathways with more than five annotated KO numbers.

4.8. Data Analysis

The protein and transcript data were associated together using their unique ID (gene, UniProt)
numbers. Data was analyzed using the R programming language, and the package “nlme” [61],
was used to fit a linear mixed-effects model (Figure 3b, Table S4, Figure S4). The mixed-model
fixed effects were (log RPKM~log Mol%) with the random effects formula (~1 + logMol%|replicate)
following nlme notation, where “log RPKM” is the natural logarithm of transcript counts in units
RPKM and “log Mol%” is the natural logarithm of protein abundance in Mol%. The “replicate” term is
the individual turbidostat cultivation (n = 10). Correlation coefficients, summary statistics, and linear
regression models were implemented in base R.

5. Conclusions

This study provides new insights into global protein and gene expression in the oleaginous
microalga Nannochloropsis gaditana. Both proteomic and transcript sequencing methods each tended to
capture the major patterns in expression, but at the whole-cell level protein and transcript associations
were characteristically noisy. In Nannochloropsis macronutrient stress is associated with lipid remodeling
and oleaginous phenotypes, but lipid metabolic processes were not highly enriched in our GO and
KEGG analyses. We did however find major changes in several lipid-related proteins, including
increased expression of DGAT and lipid body proteins under N-starved conditions. Pathways in lipid
remodeling, fatty-acid oxidation and signaling could be prioritized for future studies, as these are key
processes that determine the fate of valuable long-chain polyunsaturated fatty acids. Adjustments
in respiratory/mitochondrial activity featured in our data, with shifts in TCA cycle activity and
glycolytic processes providing metabolic compensation under stress. The active reshaping of organelle
(compartment) proteomes and the control of inter-organelle metabolic flux are therefore important
research areas. Finally, our data raises the topic of post-transcriptional mechanisms, which may in part
explain the observed patterns of gene/protein/metabolite correlations.
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