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Abstract

This paper investigates the structural breaks in and volatility spillover between Norwegian
and several international indices with ties to Norway. Daily returns from 2000 to 2020 of the
two Norwegian indices OSEBX and OSESX, as well as indices from the US, the UK, Germany,
France, Sweden and Denmark, are analyzed through the use of the CCC-GARCH (Bollerslev,
1990), the DCC-GARCH (Engle, 2002) and the BEKK-GARCH (Engle & Kroner, 1995). By
applying the Iterated Cumulative Sums of Squares (ICSS) algorithm (Inclan & Tiao, 1994)
on the time series data, we detect multiple structural breaks in all aforementioned indices.

From the DCC-GARCH(1,1) we find evidence of a decline in correlation between the Nor-
wegian index OSEBX and other indices during structural breaks. From our results of the
BEKK-GARCH(1,1) model we find evidence of volatility spillover from several international
indices to the Norwegian OSEBX; as well as structural breaks in other indices affecting the
volatility in OSEBX. Most controversial, we find strong evidence that volatility spillover
between OSEBX/FTSE and OSEBX/DAX have a unidirectional relationship from OSEBX
to FTSE/DAX. The occurrence in OSEBX/FTSE can be explained by the oil price depen-
dence on the global economy. The relationship between OSEBX/DAX, however, can not be
explained by the oil price.
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Summary

Denne masteroppgaven utforsker strukturelle brudd i, og volatilitetsoverforing fra og mot det
Norske finansmarkedet. Vi har brukt daglig avkastning fra 2000 til 2020 for de to norske
indeksene OSEBX og OSESX, i tillegg til indekser fra USA, Storbritania, Tyskland, Frankrike,
Sverige og Danmark. Tidsseriene er analysert gjennom bruk av CCC-GARCH (Bollerslev,
1990), DCC-GARCH (Engle, 2002), og BEKK-GARCH (Engle & Kroner, 1995). Ved a
applikere Iterated Cumulative Sums of Squares (ICSS) algoritmen (Inclan & Tiao, 1994) har
vi funnet flere strukturelle brudd i tidsseriene til de nevnte indeksene.

Fra DCC-GARCH modellen finner vi bevis for en nedgang i korrelasjon mellom OSEBX og
andre indekser under strukturelle brudd. Fra resultatene gitt av BEKK-GARCH modellen
finner vi bevis for volatilitetsoverforing fra flere internasjonale indekser til den norske OSEBX
indeksen, i tillegg til at strukturelle brudd i andre indekser pavirker volatiliteten i OSEBX. Det
mest kontroversielle funnet i denne avhandlingen, er et sterkt empirisk bevis for at volatilitets
overforingen mellom OSEBX/FTSE og OSEBX/DAX er et enveis forhold fra OSEBX til
FTSE/DAX. Begrunnelsen for funnet i OSEBX/FTSE kan forklares av oljepris-avhengigheten
i den globale gkonomien, noe som ikke gjelder for OSEBX/DAX.
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1 Introduction

1.1 Background

The dynamic relationships between international financial markets hold interest for investors,
academics, and policymakers. This thesis seeks to investigate the effects of volatility spillover
towards the Norwegian stock market. We consider some of the main indices from Norway’s
largest trading partners - Sweden, Denmark, the US, the UK, France and Germany. In
addition we include a Norwegian index tracking companies with lower market capitalization
to research the domestic spillover between high cap and low cap companies, as well as
the Brent crude oil because of its effect on the Norwegian economy. We have adopted a
BEKK-GARCH(1,1) model, a CCC-GARCH(1,1) model and a DCC-GARCH(1,1) model, to
analyze the volatility spillover between the chosen markets.

The global financial markets essentially consist of complex financial networks, which become
more interconnected during crises (Lai & Hu, 2021). Because major economies such as
the United States and the United Kingdom hold a central position in the global financial
markets, they may spread crisis or volatility to other parts of the network, especially in
high volatility periods. Through the time span between February and March 2020 we saw a
major decrease in the Norwegian stock market, as well as the international stock markets in
general, resulting in a decrease of over 30% for the Oslo Bgrs Benchmark Index (OSEBX).
Engelhardt et.al. (2020) found that the increase in COVID-19 announcements led to higher
volatility in financial markets, and that the market “s reactions depend on the level of trust
in the countries they are analyzed. They found that high trust is related to lower impact
from COVID-19 on the volatility (Engelhardt, Krause, Neukirchen & Posch, 2020). As a
result of the pandemic central banks across the globe were forced to take action, which for
the Norwegian Central bank was to decrease interest rates. The action taken can imply a
structural break if the change goes against the previous changes and trends in interest rate
changes. Structural breaks or shocks in the market as well as the spurious volatility spillover
effect is both statistically significant, and has substantial economic implications in terms of
hedging (Caporin & Malik 2020).

Several studies have investigated volatility spillover in financial markets both within and
between countries, and a significant number of these studies use univariate and multivariate
GARCH-models for investigating the mentioned effect. This thesis will analyze the volatility
and return spillover from Sweden, Denmark, the US, the UK, France and Germany, to
Norway, as well as Norway’s spillover to the aforementioned countries. Through a review of
the existing literature on this topic we did not find any studies including these countries with
a focus on spillover to the Norwegian financial markets, and our thesis will hopefully be part
of filling this gap.



1.2 Problem statement
“How are the Norwegian stock market affected by structural breaks and volatility spillover?”

To answer our research question we intend to use multivariate GARCH-models to explore
the possibility that structural breaks in volatility can cause volatility spillover. We intend to
use CCC- and DCC-GARCH models to explore the significance of time variability in our
time series, and use the BEKK-GARCH to explore the significance of structural breaks and
volatility spillover.

1.3 Hypothesis

The main objective of this thesis is to investigate the effect structural breaks and spillover
effects have on the Norwegian stock index, OSEBX. Whether the structural breaks or volatility
spillover affects the returns of OSEBX or another market in comparison. Norway’s economy
is severely influenced by the countries biggest export, oil (Statistisk sentralbyra [SSB], 2018).
We believe this influence can show itself when investigating the relationship between certain
indices and OSEBX. If we encounter this problem, further analysis is required.

Hy: Structural breaks in one index affect the returns in another index.

Hsy: Spillover effects from one index affect the returns in another indez.



2 Literature review

Volatility in the financial markets have been researched quite extensively from the 1950 s
until today. Markowitz (1952) addressed the issues of diversifying the assets included in a
portfolio to obtain lower volatility overall. Since then, the factors driving volatility as well
as the possibility of volatility transmission or spillover have increased its popularity both in
practice and academically. Morgenstern (1959) was one of the first to research the modeling
of volatility spillover, and in the last 20 years, over 10.000 scientific articles on this theme
have been published in peer-reviewed journals. Naturally, as volatility transmission may be
caused by a crisis, and the world being in a pandemic, the number of articles on this topic
increased in 2020.

In terms of researching volatility spillover, Granger (1969), Granger (1980), was the first
to provide a model by regressing the squared residuals of variables. Hong (2001) further
improved Granger s model with a class of new tests, by including a standardized version
of a weighted sum of squared sample cross-correlations between two squared standardized
residuals. Further, through the use of the extensive model, the researcher found that for
causality in variance, there exists strong simultaneous interactions between the Japanese Yen
and the Deutsche Mark, as the Deutsche Mark volatility caused a change in the Japanese
Yen volatility.

Engle and Susmel (1993) investigated if international stock markets shared the same volatility
process. Using an univariate Autoregressive Conditional Heteroskedasticity model (ARCH-
model) they found that there are groupings of stock markets sharing the same time-varying
volatility. Norway shared the same characteristics as Germany, Belgium and Sweden, resulting
in the possibility of a volatility spillover from one of these countries to the Norwegian market.

Ewing and Malik (2005) explores the asymmetry in the predictability of the volatilities of
large cap stocks vs small cap stocks and how it allows for sudden changes in variance. Taking
advantage of the recent advances in time series econometrics (at the time), they used the ICSS
(iterated calculated sums of squares) algorithm to detect the time periods of sudden change in
volatility of large and small cap stocks. And further use to implement that information in a
Bivariate Generalized Autoregressive Conditional Heteroskedasticity model (GARCH-model),
which are different to the univariate model due to the inclusion of multiple variables. Their
findings indicate that the volatility transmission and spillover effects are reduced if we account
for volatility shifts.

van Dijk, Osborn and Sensier (2005) investigated whether structural breaks affect the
appearance of volatility spillover effects. Demonstrated through the use of Monte Carlo
simulations they found that if breaks are neglected, the causality-in-variance tests will
suffer from severe size distortions. To conclude, the authors found that size problems arise
particularly when their two time series exhibit volatility changes in close temporal proximity,
resulting in an incorrect attribute to the occurrence of an underlying causality. They further
recommend that the causality-in-variance tests should be applied only after pre-testing for
breaks in volatility.

Ewing and Malik (2010) explores how shocks affect the volatility of oil prices over time.



By incorporating endogenously determined structural breaks into a GARCH model they
accurately estimate the volatility persistence in oil prices under structural breaks. They show
that oil shocks have a strong initial impact, but dissipate rather quickly. Their findings
contradicted previous research on the topic. Their research is found useful and important for
hedging decisions and derivative valuation.

Allen, Amram and McAleer (2013) investigates whether there is evidence of volatility spillover
from the Chinese stock market to its trading partners. They use a number of variants
of GARCH to test for constant conditional correlations and spillover in volatility. Their
findings show evidence of volatility spillover across the markets before the financial crisis in
2008. However, after the finance crisis they find little evidence of the presence of spillover in
volatility across the markets compared.

Caporin and Malik (2020) use extensive Monte Carlo simulations and bivariate GARCH
models to test if the effects of spurious volatility transmissions actually are significant.
Through their simulation they find that the spillover effect is statistically significant, and
further that it has substantial economic implications in terms of hedging financial investments
as the breaks in volatility change the average estimated hedge ratios. The researchers further
state that other studies have ignored the frequent occurrence of volatility shifts, and conclude
that their empirical findings may be deficient due to lack of including this.



3 Methodology

In the following chapter the economic theory that will be used in our thesis will be presented.

3.1 Volatility

To obtain a better understanding of the financial markets we have to include two main aspects.
First, we need to understand expected return on the assets included in the market, and
how these returns are dispersed around the mean. Dispersion is the variability around the
central tendency which addresses the riskiness of an asset, also defined as volatility (DeFusco,
McLeavey, Pinto & Runkle, 2015). Typically, the variance and standard deviation are the
most used measurements on volatility by investors. Variance is defined as the average of the
squared deviations around the mean, while standard deviation is the square root of variance
(DeFusco et.al,2015). Second we need to know what factors drive volatility. Aggarwal, Inclan
and Leal (1999) found that global and local events are causing shifts in emerging markets”
volatility. Through extensive research they found that factors such as political, social and
economic events, were the main drivers of shifting volatility. For the sake of our thesis, these
factors may also be a driver with regards to creating breaks or shocks in the market, and will
be further discussed later on.

3.1.1 Structural breaks

It is often assumed that coefficients in a model are constant. More sophisticated models allow
parameter estimates over time. Changes in how organizations, individuals or even governments
interactions frequently occur and these interactions may change the correlation structure
between the variables in the model. For example, when COVID-19 caused a lockdown
in Norway, the central bank decided to lower its interest rates, creating repercussions for
both individuals and organizations. We call these changes structural breaks (Bjornland &
Thorsund, 2015). As the structural breaks can cause shifts in estimation parameters, it can
result in misleading estimation results.



Illustration of Structural Break
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Figure 1: Illustration of a structural break

A possible structural break during visible trends is illustrated in Figure 1. We can see
a positive trend in the first period, the structural break, and lastly a negative trend. A
structural break in volatility would be fairly similar to our illustration, however preferably
with a larger dataset or more observations and no negative values for the volatility itself. If
we know exactly when the break occurred we can split the dataset into two time periods, one
before and one after the break. In this simple example it would be to split the dataset into
the first ten observations, and the last ten observations. The problem with this procedure
is that we do not know exactly when the break happens, but it can be answered when a
structural break occurred; we can use statistical testing as well as performing a split of the
dataset.

3.1.2 Volatility transmission/spillover

Volatility is often related to the rate of information flow, and if this comes in clusters it
may result in an exhibit in volatility in asset prices or returns, even if the market adjusts
to the news perfectly (Ross, 1989). Therefore, the study on volatility spillover can help
understand how information is transmitted across assets and markets. If there is an absence
of volatility transmission, it implies that the sources of disturbances are changes in asset or
market fundamentals, and the shock increases the volatility in one asset or market alone. As
for the existence of volatility transmission, it implies that one shock causes an increase in the
volatility for several markets or assets (Hong, 2001).



3.1.3 ICSS-Algorithm

The procedure of an Iterated Cumulative Sums of Squares (ICSS) is used to detect the
number of significant sudden changes in variance in a time series, as well as estimating the
time point and magnitude of each detected sudden change in the variance (Aggarwal et.al.,
1999). The algorithm detects both increases and decreases in the variance, and the results
provide output for which observation in the time series where the breakpoint is detected.
The high volatility characteristics of emerging markets is recognized by frequent, sudden
changes in variance, or breaks. These breaks are often associated with important events in
each country rather than global events, and are therefore also possible to detect in developed
financial markets. The algorithm was initially created by Inclan and Tiao (1994), as they
found that there were series, particularly in the area of finance, that do not follow the usual
assumption of constant variance underlying most models for time series.

3.1.3.1 Centered cumulative sums of squares

The main idea of the ICSS algorithm was to research the variance of a given sequence of
observations retrospectively, so they could use all the information on the series to indicate
the points of variance change. For indicating a single break, let Ck = Y a? be the cumulative
sum of squares of a series of uncorrelated random variables a7 with a mean 0 and variances
o2 t=1,2,..T. Let

Cry k

D=2k
k Ct Ta

kzl,....,T.,WithiDOZDTZO (1)

be the centered and normalized cumulative sum of squares (Inclan & Tiao, 1994). The plot
of Dy against k will oscillate around 0 for series with homogeneous variance. When there is a
sudden change in variance, the plot of D, will exhibit a pattern going out of some specified
boundaries with high probability. These boundaries can be obtained from the asymptotic
distribution of Dy assuming constant variance (Inclan & Tiao, 1994).

3.1.3.2 Multiple changes

Iterated Cumulative Sums of Squares Note that for indicating the possible existence of a
single point of change, the D, function would provide a satisfactory procedure. We however
are interested in indicating several points, which makes the D; function questionable due
to the masking effect. Therefore we have to use the Iterated Cumulative Sums of Squares
over the previous Centered Cumulative Sums of Squares. A solution, also provided by Inclan
and Tiao (1994), is an iterative scheme based on successive application of Dy to pieces of the
series, dividing consecutively after a possible break is found. This procedure proposes to look
for breaks in order to isolate each point systematically. Inclan and Tiao (1994) provides the
following steps for the application of the ICSS algorithm with regards to detecting multiple
changes.

Step 0: Let t; = 1.



Step 1: Calculate Dy(alt; : T]) and let k * (a[t; : T]) be the points at which M AXy|Dy(alt; :
T1))| is obtained, and let

T—t+1

M(ty : T) = max 5

| Di(alty - T1)] (2)
If M(t,:T) > D* consider that there is a changepoint at k x (a[t; : T]) and proceed to Step
2a. The value of D* is D} — p for the desired value of p, usually p = 0.95. If M(t1: T') < D*,
there is no evidence of variance changes in the series, and the algorithm stops.

Step 2a: Let to = k x (a[t; : T]). Evaluate Dy(altl : t2]); that is, the centered cumulative
sum of squares applied only to the beginning of the series up to ty. If M(¢; : t3) > D*, then
we have a new point of change and should repeat Step 2a until M(¢; : t3) < D*. When
this occurs we can say that there is no evidence of breaks in variance in ¢t = ¢y, ..., %5 and,
therefore, the first point of change is ko = 2.

Step 2b: Now do a similar search starting from the first changepoint found in Step 1, toward
the end of the series. Define a new value for ¢;. let

ty =kx*(aft; : T)) +1 (3)

Evaluate Dy(a[l : T]) and repeat Step 2b until M (¢, : T) < D*. Let kjge = t1 — 1.

Step 2c: If kyipst = Kigst, there is just one changepoint. The algorithm stops there. If
Efirst < Kiast, keep both values as possible changepoints and repeat Step 1 and Step 2 on
the middle part of the series, that is, t; = ket + 1 and T = kju. Each time that Steps
2a and 2b are repeated, the result can be one or two more points. Call Ny the number of
changepoints found so far.

Step 3: If there are two or more possible changepoints, make sure they are in increasing order.
Let ¢p be the vector of all the possible changepoints found so far. Define the two extreme
values cpy = 0 and ¢p,11 = T. Check each possible changepoints by calculating

Dy(alepj—1+1:ep;+1]), j=1,..,Nr (4)

If
M(cpj—1+1:cpja) > D (5)

then keep the point; otherwise, eliminate it. Repeat Step 3 until the number of changepoints
does not change and the points found in each new pass are “close” to those on the previous
pass (Inclan & Tiao, 1994).

3.2 Time Series Models

Time series is a sequence of numerical data points in a timely order, that can be used to
explain the past or predict the future (DeFusco et.al 2015). These series of data points
can be used in a variety of fields. For example in economics we are exposed to daily stock
market quotations or unemployment figures. Social scientists follow population series such
as birth rates or school enrollments. An epidemiologist in today’s climate is interested in

8



the number of COVID-19 cases over a time period, and so on (Shumway and Stoffer, 2017).
As an illustration we have included a time series plot of the Oslo Bors Benchmark Index
(OSEBX).

Time series of OSEBX 2000-01-03 / 2020-11-27
—— OSEBX
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Figure 2: Time series of OSEBX prices

Figure 2 shows an annual visualization of the OSEBX prices from 2000 until 2020.

The primary objective of time series analysis is to develop mathematical models that provide
plausible descriptions for sample data (Shumway and Stoffer, 2017). For the case of OSEBX
in Figure 2, a mathematical model could hypothetically describe why the price movement
has had an overall increase.

However, as many results in econometrics and statistics depend on having many observations,
we should not think too much of the sample itself, but instead consider the number of
observations as more important. When analyzing stocks it is preferred to use daily data, or
data with high frequency, to obtain a broader basis of data and conduct a more thorough
analysis (Bjgrnland & Thorsund, 2015).

3.2.1 ARCH/GARCH Models

Working with financial data, such as indices, there are several precautions the scientist must
take into consideration. The Autoregressive Conditional Heteroskedasticity Model takes
issues like volatility clustering/volatility pooling into consideration, that being described as
the phenomenon of large(or small) changes in asset prices to follow large(or small) changes.
The current level of volatility tends to follow the trend of previous periods (Brooks, 2008).
Historically, a simple method of estimating volatility have been widely used. Historical
volatility is computed with the sample standard deviation over a short period of time. This
raises several issues such as the length of period the standard deviation should be sampled
from; too short and it is too noisy, too long and it may not be relevant (Engle, 2004).

9



Volatility itself is risk over a future time period, therefore a forecast is a prediction of future
volatility and a measurement of volatility today. The initial assumption that volatility was
constant (homoskedastic). Engle’s (1982) ARCH and its extensions however was under the
assumption that volatility behaved dynamically (heteroskedastic). It is logically inconsistent
to assume that volatility is constant for any given time (Engle, 2004).

For economic applications, the ARCH model is useful where the underlying forecast variance
may differ over time and is predicted by earlier forecast errors (Engle, 1982). Where portfolios
of financial assets are based on the variance and expected means of the return, any shifts
in asset demand must be connected to changes in the variance and expected means of the
return. Here the use of an exogenous variable to understand the changes in variance is not
appropriate (Engle, 1982). The ARCH is for instance used in Engle (1982) and Engle (1983)
to construct models for the inflation rate in the U.K. and the US, as the inflation tends to
differ over time (Bollerslev, 1986).

Under ARCH, the equation for conditional mean, 1, describes the changes in the dependent
variable over time. The conditional mean equation could take any form the scientist wishes.
One example of a full ARCH model would be (Brooks, 2008):

Y = B+ Poxay + Baxsy + Bakay + uy uy ~ N (0, UtZ) (6)
ol =g+ ayul (7)

Where y; is the equation for the conditional mean and o; is the equation for the conditional
variance.

An extension of the ARCH model, the GARCH (Generalized ARCH) model, was developed
by Bollerslev (1986). Where the ARCH allows the conditional variance to differ over time as
a function of past errors leaving the unconditional variance constant (Bollerslev, 1986); the
GARCH allows the conditional variance to be dependent upon previous own lags (Brooks,
2008). The equation for the conditional variance is then:

Ut2 =g + CE1U?_1 + 50’152_1 (8)

For the univariate GARCH, there is a broad academic understanding that given a correct
model specification and a large enough sample, the GARCH is enabling researchers to conduct
statistical interference with a reasonable amount of confidence (Comte & Liebermann, 2003).

3.2.2 CCC model Bollerslev

Bollerslev (1990) proposed a model that had time varying conditional variances and covari-
ances, with constant conditional correlation. The Constant Conditional Correlation-GARCH
model is a generalization of the constant conditional correlation-ARCH model by Cecchetti,
Cumby, and Figlewski of 1988 (He & Terasvirta, 2004). The CCC-GARCH is a model in the
class of “Models of conditional variances and correlations.” In this class the covariance matrix,
H,;, can be broken down into D; and R;, which is the conditional standard deviations and a
correlation matrix, respectively. The conditional correlation matrix in the CCC-GARCH is
time invariant, i.e. R; = R.

10



CCC-GARCH can therefore be expressed as:
Ht - DtRDt (9)

where D, is an N x N stochastic diagonal matrix which contains the elements o;;. D, follows
a univariate GARCH process. R is the N x N conditional correlation matrix. It follows that
H, will be positive definite for all t if R is positive definite and conditional variances are well
defined (Bollerslev, 1990).

In our use of the CCC-GARCH model we will use a modified DCC Copula GARCH where
we remove the time-varying properties in the conditional correlation and make it constant. A
copula is a multivariate distribution function whose one-dimensional margins are uniform on
an interval from 0 to 1 (Nelsen, 2007). Due to limitations in selection of packages and lack

of modifiability in said packages in R, we ended up using a modified copula version of the
DCC-GARCH with the time varying aspect set to null.

3.2.3 DCC-GARCH

The Dynamic Conditional Correlation GARCH Model (DCC-GARCH) was introduced by
Engle and Shepard (2001) as an extension to Bollerslev’s (1990) CCC-GARCH model. The
DCC-model is used to capture the degree of volatility correlation changes or spillover between
two or more variables. The DCC- is, as the CCC-model, in the class of “Models of conditional
variances and correlations.” Since the conditional correlation is designed to be dynamic in
the DCC-model, both D; and R; are time varying.

DCC-GARCH is expressed as:
H, = D;R,D, (10)

where Dy is the N x N diagonal matrix of the conditional standard deviation and R; is the N
x N conditional correlation matrix. Engle (2002) states that two requirements have to be
fulfilled when specifying the form of R;:

1. H, has to be positive definite. To ensure that H; is positive definite, R; also has to be
positive definite.

2. The elements of the correlation matrix R; need to be equal or less than one.

To ensure that both requirements in the DCC-model are met, R; can be decomposed to:
R =Q7'QQ ! (11)

Following: B
Qi=(1—a—p3)Q+as1e | + Qi (12)

where o and 3 non-negative scalars which ensures the positive definiteness of )y, and in turn
H, positive definiteness. () is the unconditional covariance matrix of the standardized errors
that can be depicted as Cov[ee] ]

=1 is the inverted N x N diagonal matrix that includes the square root of the diagonal

elements of matrix ().
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This results in the correlation structure of the DCC-GARCH model (Engle, 2002):
P

Q B P Q
Q=01->Ya;=> B)Q+> qicr1e; 1+ Y BiQs; (13)
i=1 Jj=1

i=1 j=1
3.2.4 BEKK model

The BEKK model is an extension to Bollerslev’s (1986) GARCH model by Engle and Kroner
(1995). The BEKK model is under the class of multivariate GARCH models, which means it
involves more than two variables. The BEKK aims to parameterize the multivariate process
to ensure that positive definiteness is happening as well as allowing complicated interactions
among the variables (Engle & Kroner, 1995). For instance, shocks could provide a spillover
effect on another market. Positive definiteness in this case means that the variance-covariance
matrix will have positive digits on the leading diagonal (Brooks, 2008). The variance can
never be negative, and the covariance will always be the same regardless to which of the series
is taken first. This is what positive definiteness ensures from a mathematical standpoint.
Other multivariate GARCH models, such as the VECH, struggle with ensuring that the
covariance matrix always is positive definite (Brooks, 2008). This is why in some cases, such
as from a risk management point of view, the BEKK is superior. One example of a BEKK
model would be:

k i k i
Hy=CoCi+ 35" Ajerier 1A + .5 B Hy 1By, (14)

k=11i=1 k=1i=1

Where H, is the conditional covariance matrix and Cj is the N x N upper triangular matrix.
Positive definiteness is guaranteed in the covariance matrix as long as CyCj is positive
definite. Element A;. of the N x N matrix A reflects the ARCH effect on volatility as well as
indicating the impact of market ¢ volatility on market k. Element B;; of the N x N matrix B
reflects on the GARCH effect of volatility as well as indicating the persistence of volatility
transmission between market i and k (Kumar, 2013). As for our thesis, we plan to run a
bi-variate BEKK-GARCH (1,1). The model can be written as:

/
hll,t h12,t _ |Gt Ciot Ci1t Ci2pt
h21,t h22,t Ca1t Co2t Co1t Co2t

!
2
Q11 Q124 €141 €1¢t—1,€2¢—1| [Q11,t Q124
% , ; (15)

21t Q22| |€2,t—1,€1t—1 €at—1 21t Q22

+[bn,t bm,t]/[bm_l hm_l] lbm bm]

bate baoy| |hori—1 hose—1]| |21 Doy

where hi;, and hgg, represents the variance of change rate of the stock index returns, A9,
represents the covariance of the change rate of two stock index returns. When testing for the
volatility spillover effects from one index to another, the coefficients ais, asy, b12 and by are
tested to be statistically different from zero. If the non-diagonal elements of matrices A and
B are not significantly different from zero, there is no evidence of volatility spillover effects
between the indices (Kumar, 2013).
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3.3 Portfolio theory

According to Markowitz (1952) the process of selecting a portfolio can be divided into
two stages. The first stage starts with observation and research of assets and ends with
impressions about future performances. The second stage starts with those impressions about
future performances and ends with the choice of portfolio. Asset allocation accounts for the
variability in return of a portfolio. That is why the optimal asset allocation is perhaps the
single, most important factor when constructing a portfolio or diversifying wealth (Sharpe,
1992). The trade-off between risk vs return is an important factor when allocating assets.
The ability to adjust underlying weights in a portfolio with the goal of minimizing volatility
and maximizing return.

Markowitz’s (1952) Modern Portfolio Theory (MPT) involves how the risk-averse investor
can create portfolios that optimizes or maximizes expected return based on a set level of
market risk. The MPT argues that investment risk and return should not be interpreted
separately, but rather how the investment affects the total level of portfolio risk and return.
The expected portfolio return is given by:

E(r,) = zn:lw,E(r,) (16)

Where E(r,) is expected portfolio return, w; is the weight of each security in the portfolio,
and the E(r;) is the expected return on the security.

The expected portfolio variance is given by:

=2

=137

w;o; x wios x Cory, . (17)
1

n n

Where 02 is the variance of a portfolio’s expected return for the period, w; and w; is the

weight of assets ¢ and j, 0; and o; is the standard deviation of assets ¢ and j, and the last
part is the correlation between the assets. The equation for portfolio variance and expected
portfolio return does not contain any time varying properties, and therefore no opportunity
of structural breaks.
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4 Data description

The basis of our analysis are time-series data of main indices from two Norwegian indices, as
well as indices from Norway’s largest trading partners. We also included Brent Crude oil as it
is a major part of the Norwegian economy. The OSEBX index is the main representative for
the Norwegian Stock market, representing the largest companies in the Norwegian economy;,

and the OSESX index represents the low market capitalized companies in the same economy.

Both the OSEBX and the OSESX time-series data were gathered from the TITLON database,
with a time span from January 2000 until December 2020. The Standard & Poor 500 (S&P500)
index as an indication of the US Stock Market. As an indication for the UK Stock markets,
we included the Financial Times Stock Exchange 100 (FTSE100) index. Further we included
the DAX and CAC index representing Germany and France respectively, as well as OMX
Copenhagen and OMX Stockholm for Denmark and Sweden. The data from the US, UK,
Germany and France were gathered from Yahoo Finance, and the Swedish and Danish data
were gathered from Nasdaq. All these indices share the same time span as the Norwegian
data, and the common denominator is that the data is in daily observations. We obtained
the data for the Brent Crude oil from Refinitiv.

In the analysis, all price data is converted into daily returns by calculating the difference of
the logarithmic daily closing prices.

Ry = log(Y;/Yi1) (18)

Where R; denotes the return at time t, and Y; denotes the weekly closing price at time t.

Descriptive statistics for our dataset is presented in Table 1. All computations in our thesis
are done using R.

OSEBX OSESX S&P500  FTSE DAX CAC OMX.S OMX.D Brent Oil

Mean 0.03 0.01 0.02 -0.00 0.01 0.00 0.01 0.02
Std.Dev 1.44 1.12 1.26 1.21 1.50 1.46 1.46 1.27
Min -10.48 -11.43 -12.77  -11.51 -13.06  -13.10  -11.17 -11.72

Q1 -0.62 -0.47 -0.46 -0.54 -0.67 -0.66 -0.70 -0.61
Median 0.11 0.11 0.07 0.03 0.08 0.03 0.05 0.07
Q3 0.77 0.63 0.58 0.59 0.74 0.72 0.75 0.70

Max 10.14 5.72 10.96 9.38 10.80 10.59 9.87 9.50
MAD 1.03 0.81 0.77 0.84 1.04 1.03 1.07 0.97
IQR 1.40 1.10 1.04 1.13 1.41 1.38 1.45 1.32

CvV 49.15 79.68 65.57 -508.70  100.21  508.51  178.78 58.43
Skewness -0.69 -1.35 -0.45 -0.29 -0.09 -0.10 -0.05 -0.35
SE.Skewness 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
Kurtosis 7.18 9.10 11.78 8.34 5.82 6.43 4.60 5.58

N.Valid 4668.00 4668.00 4668.00 4668.00 4668.00 4668.00 4668.00 4668.00
Pct.Valid 100.00  100.00 100.00  100.00  100.00  100.00  100.00 100.00

0.00
2.32
-27.98
-1.12
0.08
1.15
19.08
1.68
2.27
5127.85
-0.70
0.04
12.92
4668.00
100.00

Table 1: Descriptive statistics

As shown in Table 1, we see that the Norwegian index OSEBX has had the largest mean
return during the last 20 years with 0.03%, closely followed by the American S&P500 with
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0.02%. We also see that Brent Crude Oil had the largest negative daily return with -27.98%,
in which can be explained by the oil crash in 2014. For all indices, we have a total of 2668
daily observations through 2000 until 2020. Consistent with earlier literature, all return series
show excess kurtosis which indicates that a GARCH model is appropriate to model volatility.
In Figure 3 we illustrate the prices from all indices used in this thesis, normalized to start at
the same value to give a better view of growth.

Normalized Index Price Development 2000-12-11/2020-11-25
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Figure 3: Normalized price development

Figure 3 illustrates the normalized price development of the indices included in this thesis.
By dividing all observations on the first observation in the time series for each index, we see
the growth instead of price movement. The reason for this is that when only using price
movements, some indices are illustrated in the bottom of the plot, making it difficult to see.
We see from Table 1 that OSEBX had the largest mean return during the time period of 2000
to 2020, however the Brent Crude oil had the largest overall price in early 2008. Illustrated
in Figure 4 is the returns of all indices and the Brent Crude oil given.
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Figure 4: Return series
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Figure 4 illustrates the return series from OSEBX, OSESX, S&P500, FTSE, DAX, CAC,
OMX Stockholm, OMX Copenhagen and Brent Crude oil. We see from the figure that there

is similarities with regards to highs and lows in terms of return.
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4.1 Data specific details

The time period is from 2000/12/12 to 2020/11/27. This period is chosen to include both the
financial crisis in 2007 as well as the more recent crash in oil prices in 2014. From acquiring
time series from different dates in 2000, we removed some of the observations, getting a
complete dataset with the same amount of daily data for all indices ranging from december
12th 2000 until november 27th 2020. For some time series, models converged only partially,
resulting in testing with weekly series in an attempt to implement these models further. The
latter part will be discussed further in the respective chapter of the BEKK-GARCH model.

To partially explain the volatility spillover and structural breaks, we included the Brent
Crude oil as a time series of its own due to Norway being an oil-dependent country.
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5 Analysis and results

This chapter will present all statistical analysis done in our thesis. As the previous chapter
shows, we have applied a set of GARCH-models suitable for volatility spillover modeling.
The analysis will follow a natural build-up towards the concluding results of our CCC- and
DCC-GARCH, as well as the BEKK-GARCH model.

5.1 CCC-GARCH and DCC-GARCH

Before running the CCC-GARCH(1,1) on our dataset, several precautions have to be accounted
for. A test for dynamic correlation in our data was made in order to see if the DCC-
GARCH(1,1) was preferred over the CCC-GARCH(1,1). We used the function DCCtest in
the package rmgarch (Ghalanos, 2019) in R version 4.0.3 to test the dataset for dynamic
correlation between the indices. A p-value in the test below 5% is received, indicating an
absence of constant correlation and the dataset is thus more suitable for use in the DCC-
GARCH model compared to the CCC-GARCH model. The dataset was implemented in the
CCC-GARCH as a precaution, but the model fails to provide any significant results. The
main focus of this part of the analysis will thus be on the DCC-GARCH model, since our
dataset consisted of dynamic correlation.

5.1.1 DCC-GARCH

The DCC-GARCH (1,1) model is used to explore the cooperative movements of the correlation
of two sets of data. In our case, OSEBX and several of Norways trading partners. The
optimal parameters for the first set of indices is shown in Table 2.

OSEBX/OSESX OSEBX/SP500 OSEBX/FTSE
1 Estimate Pr(>[t|) Estimate Pr(>[t|) Estimate Pr(>1t])
2 [AJmu 0.000780 0.000000 0.000742 0.000000 0.000137 0.000000
3 [Alomega 0.000003 0.009328 0.000003 0.009913 0.000003 0.010154
4 [A]alphal 0.116635 0.000000 0.117449 0.000000 0.118766 0.000000
5 [A]betal 0.866693 0.000000 0.865070 0.000000 0.863846 0.000000
6 [B]mu 0.000918 0.000000 0.000589 0.000000 0.000290 0.014206
7 [Blomega 0.000007 0.000000  0.000002 0.073455  0.000002 0.158261
8 [Blalphal 0.179307 0.000000 0.125953 0.000000 0.117474 0.000003
9 [B]betal 0.770319 0.000000 0.859879 0.000000 0.868973 0.000000
10 [Joint]dccal 0.046343 0.000000 0.008584 0.000628  0.035208 0.000000
11 [Joint]decbl  0.904684 0.000000  0.989790 0.000000 0.952357 0.000000

Table 2: DCC results (1)

As mentioned earlier, when deciding whether a DCC is a good fit we first have to look towards
the coefficients of alphal and betal for each index to check the assumption of GARCH(1,1)
joint significance. Note that the output from the models gives the greek letters u,w, a, 5.
The p-values of each indices oy and ; estimate is significant below 5%. This indicates that
the GARCH(1,1) joint significance of oy and [; makes sense in each scenario of Table 2.
We also see that oy + 57 < 1 which means that the time series data is considered to be
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stationary. While oy measures the short term impact volatility, the betal coefficient measures
the lingering effect of structural breaks on the conditional correlations. The closer the 3,
coefficient is to 1, the slower volatility decays. This results in a longer impact of volatility
after structural breaks. From Table 2 we see that in the first set of indices OSEBX and
FTSE have the lowest rate of volatility dissipation after a structural break, due to the S,
coefficient being moderately close to 1. The [joint]dccay and [joint]dec(; coefficients are
used to evaluate DCC as an assumption. All [joint]dcca; and [joint]decy coefficients of
Table 2 are significant below 5% and the combined estimate of [joint]dcca; and [joint|dccfy
is below zero. With this information in mind the DCC-GARCH(1,1) models in Table 2 are
proven to capture the correlation effects between the indices. All fitted models in Table 2 are
therefore accepted.

OSEBX/DAX OSEBX/CAC
1 Estimate Pr(>|t|]) Estimate Pr(>t|)
2 [Almu 0.000756 0.000000 0.000744 0.000000
3 [A]omega 0.000003 0.008616 0.000003 0.009459
4 [A]alphal 0.116468 0.000000 0.115861 0.000000
5 [A]betal 0.866843 0.000000 0.867635 0.000000
6 [B]mu 0.000635 0.000065 0.000475 0.001556
7  [Blomega 0.000003 0.095214  0.000003 0.156970
8 [Blalphal 0.094125 0.000000 0.108505 0.000004
9 [B]betal 0.894523 0.000000 0.880660 0.000000
10 [Joint]dccal 0.024385 0.000001  0.034984 0.000000
11 [Joint]decbl  0.971064 0.000000 0.951429 0.000000

Table 3: DCC results (2)

As for the fit of the next set of indices in Table 3; we see that oy and 51 in both models are
significant below 5%. [A]ay and [A]S;, and [B]ay and [B]f; are combined below 1 in both
models. This indicates that the data is deemed stationary. From [B]f; in OSEBX/DAX and
OSEBX/CAC we see that the foreign indices have a lower rate of volatility dissipation after
structural breaks compared to OSEBX in both models. The [Joint]dccay and [Joint]dec,
for both models are significant and combined below 1, which ensures positive unconditional
variances. The fitted models in Table 3 are proven to capture the correlation and are thus
accepted. The [Joint|dccay and [Joint]decfy for both models are significant and combined
below 1, which ensures positive unconditional variances. The fitted models in Table 3 are
proven to capture the correlation and are thus accepted. The remaining DCC-models of
OSEBX/OMX Copenhagen and OSEBX/OMX Stockholm are also accepted under the same
criteria and can be found in Appendix A.

5.1.2 Rolling correlation of volatilities of DCC

To capture the correlation of volatilities of OSEBX and its trading partners over the past
periods, the correlation of the residuals of the fitted DCC-models is presented for a portion
of the indices in Figure 5.
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90 days rolling correlation
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Figure 5: 90 days rolling correlation

The general impression from Figure 5 is that the correlation between OSEBX and its trading
partners has heavily fluctuated over the past 20 years. With a three month rolling window
most indices fluctuate between 0.20 (bottom) and 0,8 (peak). The 3 month rolling correlation
between the indices have never been negative over the 20 year period, OSEBX/SP500 being
the closest to zero with a low of 0.004. This tells us that OSEBX, generally speaking, follows
the trends of other indices. We see a period of declining correlation in the financial crisis from
2008-2009 in most cases with S&P500 being the most visible from Figure 5. The correlation
of OSEBX and its trading partners have a slight upwards trend from 2000 to 2012 and a
slight downwards trend from 2012 to 2020. The remaining graphs for correlation of volatility
can be found in Appendix A.

5.2 ICSS

Through the application of the Iterated Cumulative Sums of Squares (ICSS) algorithm
presented by Inclan and Tiao (1994), we present the number of structural breaks in OSEBX,
OSESX, S&P500, FTSE, DAX, CAC, OMX Stockholm and OMX Copenhagen, both for
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daily and weekly data. Previous literature has shown that the ICSS algorithm tends to
overstate the number of breaks, and it has been pointed out that the algorithm’s behavior is
questionable under the presence of conditional heteroskedasticity (Fernandez, 2020). This
problem has been solved by filtering the return series through a GARCH (1,1) model, followed
by applying the ICSS algorithm to the standardized residuals (Bachmann & Dubois, 2002).
For each index we will illustrate the breakpoints using figures, in which we have used the
aforementioned method of filtering. The time periods of each break for all indices can be
viewed in the Appendix B.

5.2.1 Norway

5.2.1.1 OSEBX Through the use of the ICSS algorithm, we find 26 structural breaks in
the OSEBX index through the last 20 years. Averaging 1.3 breaks per year, the number of
breaks seems to be too high to associate with the term “structural breaks” as they appear on
a regular basis instead of large global or domestic events. The number of structural breaks
quite drastically differ with regards to using daily or weekly data. The results from using
weekly data provides us with 4 breaks in total, averaging 0.2 breaks per year during a 20
year period. An interesting finding is that the ICSS algorithm did not detect any structural
breaks from either the oil price crash in 2014, nor the COVID-19 crisis in 2020 compared to
the daily data.

Daily vs Weekly breaks for OSEBX
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Figure 6: Structural breaks in OSEBX

[lustrated in Figure 6 above we see the volatility of OSEBX from 2000 until 2020, with the
breaks illustrated in red vertical lines. An important remark is that for the weekly data, the
ICSS algorithm detects a structural break around observation 350 and not at 1000, as both
observations have relatively high spikes in volatility. We see from the figure that the increase
in volatility at observation 1000 is higher than the one at 350, which initially should result in
a break location here.

21



5.2.1.2 OSESX From the OSESX index we find there to be a total of 15 breaks in the
daily time series. With an average of 0.75 breaks per year through 20 years, it seems to be
quite too many also here. Comparing the OSESX and OSEBX index, a large proportion of
all breaks are found to be in the same time period, which makes sense as both indexes are a
representation of the Norwegian financial market. From the weekly data on OSESX we did
not locate any structural breaks as indicated in the Figure 7. Through twenty years of weekly
data, or 1040 observations, we see several substantial changes in the volatility and based on
the OSEBX index there should be structural breaks here as they are highly correlated.

Daily vs Weekly breaks for OSESX
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Figure 7: Structural breaks in OSESX

[lustrated in Figure 7 above we see the daily and weekly volatility for OSESX, and the
structural breaks found through the ICSS algorithm.

5.2.2 The United States of America

For the Standard & Poor 500 (S&P500) index we located 24 breaks during the last twenty
years, averaging 1.2 breaks per year. Through the years we see breaks located during both the
financial crisis in 2007, the oil price crash in 2014 and the latest COVID-19 pandemic. The
number of breaks located seems too high, as there are structural breaks located in seemingly
low volatility periods. Compared to the daily time series, we found only 4 structural breaks
in the weekly series. Through our literature review we found that Caporin & Malik (2020)
found only 8 structural breaks in the S&P500 index. They were, however, using a modified
ICSS-algorithm which are beyond the purpose of this thesis as of which we are using the
standard algorithm.
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Daily vs Weekly breaks for SP500
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Figure 8: Structural breaks for SP500

Mlustrated in Figure 8 above, we have plotted the volatility of S&P 500 from 2000 to 2020,
with the structural breaks found from the ICSS algorithm in vertical red lines.

5.2.3 The United Kingdom

For the UK and the FTSE100 index, we find 22 breaks in the daily time series. Here we also
see structural breaks captured in the major global happenings during the last twenty years in
the financial crisis, COVID-19 etc.. With an average of 1.1 structural breaks per year, we
located less breaks in the FTSE100 index than both Norwegian indices and the US S&P 500.
In the weekly time series we located 5 structural breaks.

Daily vs Weekly breaks for FTSE
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Figure 9: Structural breaks for FTSE
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In Figure 9 we have illustrated the volatility of FTSE100 in both daily and weekly observations,
with the structural breaks located from the ICSS algorithm indicated in red vertical lines.
5.2.4 Germany

In the German DAX index we located 19 structural breaks in the daily observations, averaging
0.95 breaks per year. Again, the ICSS algorithm has located breaks in the major global
events, but also in relatively low volatility periods. In the weekly time series we located 4
structural breaks, however we did not locate any in the latter COVID-19 pandemic.

Daily vs Weekly breaks for DAX
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Figure 10: Structural breaks for DAX

In Figure 10, the volatility of the German DAX index is illustrated both in daily and weekly
observations, with the structural breaks located in the ICSS algorithm indicated in red
vertical lines.

5.2.5 France

For the French CAC100 index we located 23 breaks averaging 1.15 structural breaks per year.
As illustrated in the plot below, the structural breaks for the daily time series fits the spikes
of volatility in the CAC index well. In the weekly time series we located 4 structural breaks,
seemingly the same number as the previous indices.
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Daily vs Weekly breaks for CAC
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Figure 11: Structural breaks for CAC

[llustrated in Figure 11 above, we see the daily and weekly volatility time series of the
CAC100 index, with the structural breaks found from the ICSS algorithm indicated in red
vertical lines.

5.2.6 Sweden

From the Swedish OMX index we found 20 structural breaks during the period 2000 to 2020,
averaging 1 structural break per year. For the weekly time series we located 3 structural
breaks. For the weekly series, illustrated in Figure 12 below, the ICSS algorithm seems to
not have captured any large global happenings through the last twenty years.

Daily vs Weekly breaks for OMX Stockholm
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Figure 12: Structural breaks for OMX Stockholm
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In Figure 12 we have illustrated the volatility of the Swedish OMX index in both daily and
weekly observations, with the structural breaks found from the ICSS algorithm given in red
vertical lines.

5.2.7 Denmark

From the Danish OMX index, the ICSS algorithm located 21 structural breaks for the daily
time series, and 4 breaks for the weekly series. With an average of 1.05 structural breaks per
year in the daily time series, it seems like the breaks follow the global happenings. Illustrated
in Figure 13 below we see the daily and weekly observations for the Danish OMX index.

Daily vs Weekly breaks for OMX Copenhagen
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Figure 13: Structural breaks for OMX Copenhagen

[lustrated in Figure 13 we see the daily and weekly observations of volatility in the Danish
OMX index, with the structural breaks found from the ICSS algorithm given in red vertical
lines.
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5.3 BEKK-GARCH (1,1)

Table 4 summarizes the first set of estimation results of the bivariate BEKK-GARCH model.
Due to the fact we estimate the effects of structural breaks and spillovers in OSEBX with 7
other indices, we had to restrict our tables to make them more comprehensible. We see from
Table 4 the presence of ARCH- and GARCH-effects since the estimated diagonal elements of
All, A22, B11 and B22 are all highly significant below the threshold of 5%. This in return
shows that the conditional variance of OSEBX and the stock indices in Table 4 are affected
by their previous breaks and volatility spillover. The estimate of the coefficient A11 and A22
shows the indices ability to present shock persistence. For example, an estimate in A11 of
0.233 in OSEBX/OSESX implies that 23.3% of the effects of a structural break persists the
next day. The estimate of the coefficient B11 and B22 shows the indices ability to present
volatility persistence. For example, an estimate in B11 of 0.975 in OSEBX/OSESX implies
that 97.5% of the volatility spillover effect persists the next day.

OSEBX/OSESX OSEBX/SP500 OSEBX/FTSE

1 Estimate Pr(>1t]) Estimate Pr(>|t]) Estimate Pr(>1t])

2 mul 0.001027162 4.5541e-13 ***  0.000853592 4.1149e-09 ***  0.000646234 6.4618e-06 ***

3 mu2  0.000928741 7.1942¢-14 ***  0.000712105 6.8973¢-10 ***  0.000204259 0.0832206 .

4 A011 0.002848085 < 2.2e-16 ***  0.002850062 1.3349e-12 ***  0.002854520 < 2.2e-16 ***

5 A021 0.003392419 < 2.2e-16 ***  0.001168384 6.6288¢-09 ***  0.001922625 < 2.2e-16 *F*

6 A022 0.001339275 < 2.2e-16 **¥*  (0.002238432 < 2.2e-16 *** 0.001669102 < 2.2e-16 ***

7 A1l 0.232834255 < 2.2e-16 ***  0.307511339 < 2.2e-16 *** 0.282139783 < 2.2e-16 ***

8 A21  0.006616033 0.763174 0.048358314 0.00029455 ***  0.038467972 0.0254244 *

9 Al12  0.180294587 1.8702¢-10 ***  (-)0.039112262  0.06186676 . 0.055495069 0.0129042 *
10 A22  0.452136264 < 2.2e-16 *¥**  0.308461047 < 2.2e-16 *** 0.306124820 < 2.2e-16 ***
11 Bl11 0.974817628 < 2.2e-16 *F* - 0.922827994 < 2.2e-16 *** 0.934553153 < 2.2e-16 ***
12 B21  0.019890013 0.048139 * (-)0.013162162  0.09766431 . (-)0.015134957  0.0538158 .
13 BI12 (-)0.106074980 1.2381e-09 ***  0.012688184 0.24921463 (-)0.027231911  0.0036685 **
14 B22  0.806708581 < 2.2e-16 ***  (0.916133826 < 2.2e-16 *F* 0.918260159 < 2.2e-16 *H*

Table 4: BEKK results (1)

As for the cross-market effects of structural breaks and spillover effects between OSEBX and
other indices are estimated in the off-diagonal elements of matrices A and B, i.e. A21, A12,
B21 and B12. As with the diagonal elements of the matrices, the coefficient of A considers the
effects of structural breaks and the coefficient of B considers the effects of volatility spillover.
The off-diagonal elements of A21 and A12 show the ability for structural break transmission
between the indices. The off-diagonal elements of B21 and B12 show the ability for volatility
transmission between the indices. As our thesis mostly consists of exploring the effects of
shock and volatility between OSEBX and seven other indices; we will look deeper into the
off-diagonal elements of OSEBX and the other indices.

5.3.1 OSEBX/OSESX

The results from OSEBX/OSESX indicate evidence of a uni-directional relationship regarding
the transmission of structural breaks. This means that the transmission of volatility during
structural breaks between the indices only goes one way, from A to B, but not B to A. We
can see from Table 4 that A12 is significant below the threshold of 5%, while element A21
is not significant. This tells us that structural breaks originating in OSEBX will affect the
volatility in OSESX. This is as mentioned a uni-directional relationship, which in return
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means that we can not find evidence of this happening in reverse, e.g., shocks in OSESX
affecting the volatility in OSEBX. As for the coefficients of B21 and B12 we see evidence of
a bi-directional relationship regarding transmission effects of volatility spillover due to B21
and B12 both being significant to the threshold of 5%. We do however see a higher level of
significance to B12 which indicates that the transmission from OSEBX to OSESX is stronger.
As an example, to visualize the effects of B21 and B12 we see that the estimates have a value
of 0.0199 and (-)0.1061, respectively. This implies that 1% increase in returns of OSEBX
transmits 10.61% of volatility to OSESX. From OSESX to OSEBX we see a 1% increase in
returns resulting in a volatility spillover of 1.99%.

5.3.2 OSEBX /S&P500

Furthermore, the results from OSEBX/S&P500 indicate evidence of a uni-directional rela-
tionship regarding transmission of volatility to another index when a structural break is
occurring in the originating index. We see from Table 4 that A21 is highly significant and
A12 is not significant to 5%. Regarding the transmission effects of volatility spillover, we see
a no relationship from S&P500 to OSEBX or in reverse, since B21 and B12 are not significant
to 5%. This means that there is no clear evidence of volatility spillover between OSEBX and
S&P500.

5.3.3 OSEBX /FTSE

The results from OSEBX/FTSE indicate evidence of a bi-directional relationship in both
regarding structural breaks and volatility spillover. We see from the coefficients A21, A12 and
B12 that all are significant to the threshold of 5%. This in return shows that we have evidence
that a shock originating in either OSEBX or FTSE will affect the volatility in the other
index. This also shows that we have evidence of volatility spillover happening from OSEBX
to FTSE. From A21 and A12 we see however that the relationship is marginally stronger
from OSEBX to FTSE. From B21 and B12 we see that the relationship is unidirectional from
OSEBX to FTSE. We find these results puzzling since FTSE is one of the largest indices
in the world and OSEBX is smaller in comparison. We can see from the Table that the
percentage of volatility transmitted is higher from FTSE to OSEBX in each off-diagonal
matrix, but due to the lower p-value in both instances the relationship itself is considered
stronger. The reasoning for this occurrence is the oil price, and its effect on macroeconomic
conditions in general and Norway in particular. We explore this in detail in chapter 5.3.7.
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OSEBX/DAX OSEBX/CAC

1 Estimate Pr(>[t]) Estimate Pr(>[t])

2 mul 0.000805415 5.8075e-09 ***  0.000695812 4.0011e-07 ***
3 mu2 0.000676557 6.6122e-06 ***  0.000297427 0.0365763 *
4 A011 0.002847890 < 2.2e-16 ***  0.002848038 < 2.2e-16 ¥
5 A021 0.001973875 < 2.2e-16 ***  0.002073254 < 2.2e-16 FHF*
6 A022 0.002237877 < 2.2e-16 ***  0.002039670 < 2.2e-16 ¥
7 All  0.333710077 < 2.2e-16 ***  (0.358406540 < 2.2e-16 ¥
8 A21  0.044541010 0.037754 * 0.071080875 0.0014823 **
9 Al12  0.032102560 0.122320 0.013982228 0.5259046

10 A22  0.299725405 < 2.2e-16 ***  0.325752913 < 2.2e-16 FHF*
11 B11  0.918410156 < 2.2e-16 ***  0.911478076 < 2.2e-16 ¥
12 B21 (-)0.006638155 0.581316 (-)0.022645071  0.0483728 *
13 B12  (-)0.017810120 0.034052 * (-)0.009387993  0.3625270

14 B22  0.923106737 < 2.2e-16 ***  0.918811126 < 2.2e-16 ¥

Table 5: BEKK results (2)

The next set of indices is in Table 5. Here we see a strong presence of GARCH- and ARCH-
effects due to all diagonal elements (A11, A22, B11 and B22) being significant at the 5%
significance level. This means all indices in Table 5 are affected by their previous shocks and
its own lingering volatility.

5.3.4 OSEBX/DAX

As for the results regarding OSEBX/DAX, we see evidence of a unidirectional relationship
regarding the effects of structural breaks. The p-value of A21 is significant to 5%, while the
p-value of A12 is not. This signalizes that structural breaks occurring in DAX affects the
volatility in OSEBX. From the coefficients of B21 and B12 we see a unidirectional relationship
regarding volatility spillover. B12 is significant to 5%, while B21 is not. This means that
there is evidence of volatility spillover from OSEBX to DAX occurring in our dataset. This
in line with the results from OSEBX/FTSE puzzles us and will be addressed in chapter 5.3.7.

5.3.5 OSEBX/CAC

Regarding the results from OSEBX/CAC we encounter evidence of a unidirectional rela-
tionship in the effects of structural breaks. A21 is significant to the threshold of 5%, while
A12 is not significant. This means structural breaks in CAC affect the volatility in OSEBX,
but not in reverse. In the off-diagonal elements of B21 and B12 we also see evidence on a
unidirectional relationship between the indices. B21 is significant and B12 is not significant.
This means volatility spillover is occurring from CAC to OSEBX and not the other way.

29



OSEBX/OMX.S OMX.C

1 Estimate Pr(>|t]) Estimate Pr(>[t])

2 mul 0.000818153 4.1587e-09 ***  0.01013033 0.00176616 **
3 mu2 0.000626997 4.4393e-05 ***  0.01028961 0.00101801 **
4 AO011 0.002848337 0.00028291 *** 0.01201810 0.05662947 .
5 A021 0.002064996 < 2.2e-16 *** 0.01626835 0.30023561

6 A022 0.002124405 0.21640496 0.01516651 0.21191958

7 A1l 0.365188841 4.7518e-14 ***  0.29658607 0.01884573 *
8 A21  0.076619755 0.11939170 0.00942289 0.93843016

9 Al2 0.003462951 0.90979404 0.16769187 0.43524692
10 A22  0.313707702 0.00435128 **  0.40212473 0.01327690 *
11 B11  0.909218771 < 2.2e-16 *** 0.99999900 < 2.2e-16 ***
12 B21 (-)0.024850284 0.62206582 0.11869805 0.31876267
13 BI12 (-)0.005394107 0.54981728 (-)0.16707874  0.30981557
14 B22  0.923331006 < 2.2e-16 *** 0.70193006 0.00010198 ***

Table 6: BEKK results (3)

The last set of indices is shown in Table 6. There is evidence of GARCH and ARCH effects
on the diagonal elements of A11, A22, B11 and B22. However this evidence is significantly
less strong than the previous sets of indices. This can be an indication of a bad fit to the
model.

5.3.6 OSEBX/OMX Stockholm & OSEBX/OMX Copenhagen

The results from both indices are the same where we see no evidence of a relationship
regarding effects from either structural breaks or volatility spillover between the scandinavian
indices and OSEBX. A21, A12, B21 and B12 all fail to be significant to the threshold of
5%. We believe this to be the result of a bad model fit or converging-problems in the
BEKK-GARCH(1,1) because of the similarity of the datasets.

5.3.7 The FTSE and DAX conundrum

One explanation to the results from the BEKK estimated from OSEBX/FTSE and OS-
EBX/DAX could be anchored in the price of oil. As mentioned earlier Norway’s economy is
heavily influenced by the oil price. So in an attempt to explain the results from OSEBX/FTSE
we would also run BEKK models on OSEBX and Brent Oil, FTSE and Brent Oil, and DAX
and Brent Oil.

In Table 7 we see the results from the BEKK models on OSEBX, FTSE and DAX compared
with the spot price of oil. We see strong evidence of GARCH and ARCH effects as the
diagonal estimates are all significant to the threshold of 5% (A11, A22, B11 and B22).
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OSEBX/BRENT FTSE/BRENT DAX/BRENT

1 Estimate Pr(>1t]) Estimate Pr(>[t]) Estimater Pr(>1t|)

2 mul  0.000849019 5.9253e-09 ***  0.000849019 5.9253e-09 ***  0.000628834 3.2282e-05 ***
3 mu2  0.000599359 0.02061871 * 0.000599359 0.02061871 * 0.000473774 0.0599536 .

4 A011 0.002867320 < 2.2e-16 *** 0.002867320 < 2.2e-16 *** 0.002981991 < 2.2e-16 ***
5 A021 0.001619049 2.1654e-05 ***  0.001619049 2.1654e-05 ***  0.001008946 0.0078688 **
6 A022 0.004312594 1.8474e-13 ***  (0.004312594 1.8474e-13 ***  (0.004484250 < 2.2e-16 **¥*
7 All  0.330958626 < 2.2¢-16 ***  0.330958626 < 2.2e-16 *** 0.342200118 < 2.2e-16 ***
8 A21  0.117781595 2.4532e-05 ***  0.117781595 2.4532e-05 ***  0.033069793 0.1418271

9 Al2  (-)0.023225230 0.00582457 ***  (-)0.023225230  0.00582457 ***  0.014843443 0.0927820 .
10 A22  0.241630043 < 2.2e-16 *** 0.241630043 < 2.2e-16 *** 0.311287019 < 2.2e-16 ***
11 B11  0.914709705 < 2.2e-16 *** (0.914709705 < 2.2e-16 *** 0.914322822 < 2.2e-16 ***
12 B21 (-)0.047405557 0.00033841 ***  (-)0.047405557  0.00033841 *** (-)0.018013289 0.1070681
13 BI12 0.006972905 0.05037575. 0.006972905 0.05037575 . (-)0.002634665 0.4928694
14 B22 0.944371392 < 2.2e-16 *** 0.944371392 < 2.2e-16 *** 0.928352490 < 2.2e-16 ***

Table 7: BEKK results (4)

As for the off-diagonal elements we see evidence of a bidirectional relationship in the effects
of structural breaks in OSEBX/BRENT, FTSE/BRENT, but not in DAX/BRENT. A21 and
A12 are both significant in OSEBX/Brent and FTSE/BRENT, which results in evidence that
structural breaks in the spot price of oil affects OSEBX. A21 and A12 are not significant in
DAX/Brent. This means that we can not find any evidence that structural breaks in DAX or
Brent affect the volatility in each other. As for B21 and B12 we see a unidirectional relationship
in the models of OSEBX/Brent and FTSE/Brent from Brent to OSEBX/FTSE. This results
in evidence that volatility spillover occurs from Brent to OSEBX or FTSE. Although this is
probably not the singular reason for our results in the BEKK of OSEBX/FTSE, we believe
this could be a logical reason for our surprising results from that model. This is in line
with Malik and Hammoudeh (2007) where they found similar results regarding to volatility
spillover and the transfer of structural breaks. They investigated other oil dependent countries
in the middle east. They found that the oil price shocks transmitted volatility to stock indices
in Kuwait, Saudi Arabia and Bahrain. Interestingly in the case of Saudi Arabia they observed
a significant volatility spillover from the national index to the oil price. We failed to find any
results like Saudi Arabia in our research. From DAX/Brent however, neither B21 or B12
is significant. This means that we can not find any evidence in daily data that DAX and
Brent affect each other with regards to structural breaks or volatility spillover. This means
that there are other forces affecting OSEBX and DAX which may affect the results from the
BEKK-model in Table 5. It is worth a mention that in weekly data we can see a relationship
between DAX and Brent in both off-diagonal matrices, but we are certain that the oil price
is not the singular reason for this occurrence.

5.3.8 BEKK on weekly data

All previous BEKK models are all run on daily data. To avoid the non-synchronous trading
problem, all BEKK models were also computed on weekly data. From the BEKK models on
weekly data we encountered problems with the models for OSEBX and the scandinavian indices
(OSESX, OMX Stockholm and OMX Copenhagen). These failed to converge resulting in
incomplete data. As for the rest, the results were similar. The findings from OSEBX/S&P500
gave us similar results regarding the relationship between the indices. As for OSEBX
and FTSE/DAX/CAC we saw an increase of significance in influence from OSEBX in both

31



structural breaks and volatility spillover. OSEBX/FTSE now has a unidirectional relationship
in both off-diagonal elements from OSEBX to FTSE. OSEBX/DAX and OSEBX/CAC now
have a bi-directional relationship on both off-diagonal elements. A possible explanation to
this can be the influence the spot price of oil has on the european economy. All BEKK-models
on weekly data can be found in the appendix.

5.4 Economic implications

Estimating volatility spillover across markets has serious economic consequences regarding
optimal portfolio allocation (Kroner & Ng, 1998), risk management (Christoffersen, 2009)
and dynamic hedging (Haigh & Holt, 2002). An analysis of all the economic implications is
beyond the purpose of this paper, but should at least be discussed. Demonstrated by Haigh
and Holt (2002), a bivariate GARCH model that accounts for volatility spillover between
spot and futures markets results in a better hedging strategy compared to a GARCH model
that ignores these effects. Through the research of Lien and Yang (2010), Caporin and
Malik (2020) state that daily currency risk can be better hedged with currency futures when
controlling for unconditional variance breaks using a bivariate GARCH model. Caporin and
Malik (2020) also find that more variance in hedge ratios results in an substantial increase in
portfolio rebalancing costs due to traders having to make more adjustments. With regards to
the findings in this thesis, investors with positions in Britain, Germany, France and Norway,
should be aware of the spillover effects with regards to hedging for volatility spillover.
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6 Limitations

There are advantages of applying lower frequency data with weekly versus daily data, as it
avoids the non-synchronous trading problem. The trading hours are almost the same within
the Scandinavian region, but partially overlapping with the US market. Therefore, higher
frequency data might generate the asymmetric information sharing issue (Ng, 2000, Baele,
2002, Skintzi & Refenes, 2004, Christiansen, 2007, etc.). The structural breaks from the
ICSS algorithm seems to include a large portion of noise in the time-series, providing us
more breaks than the actual case in the daily dataset. In the weekly set we find a shortage
of breaks, which are to be considered a flaw of the algorithm. Comparing the 24 structural
breaks we detect in S&P500, Caporin and Malik (2020) locate only 8 breaks in approximately
the same time span. An explanation of this is that Caporin and Malik used a modified ICSS
algorithm, and due to this not being the main goal of our thesis we applied an unmodified
version.

The recent paper from McAleer (2009) focus on the caveats of the DCC-GARCH(1,1) model.
The paper analyzes the widely used DCC-model and criticizes the terms of algebraic existence,
mathematical regularity conditions and asymptotic properties of consistency of the Dynamic
Conditional Correlation Model. McAleer further persists that the DCC-model should be
avoided at all costs and only be used with extreme caution in empirical practice (McAleer,
2009). If we could start all over again we would have considered the use of another model,
but since the DCC-GARCH(1,1) model is widely used in the academic community, we stand
by our results from our use of the DCC model.
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7 Conclusion

The initial purpose of this thesis has been to investigate the structural breaks and volatility
spillover from surrounding financial markets affects the Norwegian financial market with the
OSEBX index in specific. In total we construct three different multivariate GARCH-models
to explore the effects of structural breaks and volatility spillover to and from the Norwegian
market. To locate the specific dates of each structural break we apply the ICSS-algorithm by
Inclan and Tiao (1994).

From the ICSS-algorithm we find several breaks on each time series. We do, however, find that
the algorithm works better for daily observations than for weekly observations. Even though
some of the findings in daily data are to be considered noise in the series, the algorithm does
not detect breaks in clear changes in volatility.

From conducting an analysis of the correlation of our dataset, we find strong evidence for time
variability in the conditional correlation. Our intention was to use the CCC-GARCH(1,1)
model by Bollerslev (1994), however, due to the dynamic nature of the conditional correlation,
the DCC-GARCH(1,1) model by Engle (2002) was a better fit for our dataset. From the
DCC-GARCH (1,1) we find that in periods of structural breaks, the correlation between
the indices has a tendency to decline. This is most notable during the financial crisis of
2008-2009.

From the BEKK-GARCH (1,1) model by Engle and Kroner (1995) we find strong evidence
that structural breaks and volatility spillover affects the volatility to and from OSEBX. The
majority of indices have a stronger effect on the volatility to OSEBX, but interestingly we
found evidence of the relationship being reversed when exploring OSEBX and FTSE. Here we
see an indication of structural breaks and spillover affecting the returns in FTSE. We also find
evidence of a unidirectional relationship of volatility spillover from OSEBX to DAX. Through
more thorough analysis we find that in the instance of OSEBX and FTSE this was due to
the Norwegian economy’s strong dependence on oil, as well as its effect on macroeconomic
conditions in general. As for the instance of OSEBX and DAX, although it can be explained
to an extent in weekly data, we can not explain the volatility spillover from OSEBX to DAX
in daily data.
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Appendix

Appendix A

OSEBX/OMX.S OMX.C
1 Estimate Pr(>|t|]) Estimate Pr(>[t|)
2 [A]Jmu 0.000771 0.000000 0.000790 0.000000
3 [AJomega 0.000003 0.011219 0.000003 0.008658
4 [Alalphal 0.116348 0.000000 0.114389  0.000000
5 [A]betal 0.866588 0.000000 0.868140  0.000000
6 [B]mu 0.000567 0.000244  0.000699 0.000003
7 [Blomega 0.000002 0.475991 0.000005 0.002899
8 [Blalphal 0.091102 0.009383 0.103188 0.000000
9 [B]betal 0.902144 0.000000 0.859745  0.000000
10 [Joint]dccal 0.035144 0.000000 0.040868  0.000000
11 [Joint]deebl  0.953720 0.000000 0.928816  0.000000
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Table 8: DCC results (3)
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Figure 14: Structural breaks for OMX Copenhagen
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Appendix B

Series Break points Time period
1 OSEBX 26.00 Jan 4, 2000 - May 30, 2000
2 May 31, 2000 - Sep 12, 2001
3 Sep 13, 2001 - Nov 21, 2001
4 Nov 22, 2001 - Jun 07, 2002
5 Jun 08, 2002 - Jun 25, 2003
6 Jun 26, 2003 - May 2, 2005
7 May 3, 2005 - Nov 23,2005
8 Nov 24, 2005 - May 15, 2006
9 May 16, 2006 - Jul 31, 2006
10 Aug 1, 2006 - Aug 9, 2007
11 Sep 10, 2007 - Sep 15, 2008
12 Oct 16, 2008 - Dec 23, 2008
13 Dec 24, 2008 - Jul 20, 2009
14 Jul 21, 2009 - May 5, 2010
15 May 6, 2010 - Sep 8, 2010
16 Sep 9, 2010 - Aug 4, 2011
17 Aug 5, 2011 - Dec 28, 2011
18 Dec 29, 2011 - Nov 2, 2012
19 Nov 3, 2012 - Oct 2, 2014
20 Oct 3, 2014 - Jan 27, 2015
21 Jan 27, 2015 - Aug 24, 2015
22 Aug 25, 2015 - Jul 29, 2016
23 Jul 30, 2016 - Oct 11, 2018
24 Oct 12, 2018 - Jan 24, 2019
25 Jan 25, 2019 - Feb 24, 2020
26 Feb 25, 2020 - May 7, 2020

Table 9: Break periods for OSEBX
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Series Break points

Time period

1 OSESX 17.00

CO 1 O U = W N

11
12
13
14
15
16
17

Jan 4, 2000 - May 4, 2000
May 5, 2000 - May 12, 2000
May 13, 2000 - Oct 6, 2005
Oct 7, 2005 - Jul 4, 2006
Jul 5, 2006 - Sep 9, 2008
Sep 10,, 2008 - Nov 26, 2008
Nov 27, 2008 - Jul 21, 2009
Jul 22, 2009 - May 4, 2010
May 5, 2010 - Jul 19, 2010
Jul 20, 2010 - Aug 2, 2011
Aug 3, 2011 - Jul 5, 2012
Jul 6, 2012 - Aug 19, 2015
Aug 20, 2015 - Jul 19, 2016
Jul 20, 2016 - Oct 11, 2018
Oct 12, 2018 - Jan 16, 2019
Jan 17, 2019 - Feb 24, 2020
Feb 25, 2020 - Apr 22, 2020

Table 10: Break periods for OSESX
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Series Break points

Time period

1 S&P 500 24.00

0 3 O U i~ W N

11
12
13
14
15
16
17
18
19
20
21
22
23
24

Jan 4, 2000 - Apr 23, 2001
Apr 24, 2001 - Jun 3, 2002
Jun 3, 2002 - Oct 3, 2002
Oct 4, 2002 - Aug 29, 2003
Aug 30, 2003 - Jul 2, 2007
Jul 3, 2007 - Jun 19, 2008
Jun 20, 2008 - Sep 19, 2008
Sep 20, 2009 - Jan 15, 2009
Jan 16, 2009 - Apr 22, 2009
Apr 23, 2009 - Jan 15, 2010
Jan 16, 2010 - May 25, 2010
May 26, 2010 - Apr 6, 2011
Apr 7, 2011 - Sep 9, 2011
Sep 10, 2011 - Mar 13, 2015
Mar 14, 2015 - Apr 30, 2015
May 1, 2015 - Oct 2, 2015
Oct 3, 2015 - Jun 9, 2016
Jun 10, 2016 - Aug 4, 2017
Aug 4, 2017 - Oct 25, 2017
Oct 26, 2017 - Apr 5, 2018
Apr 6, 2018 - Jul 23, 2018
Jul 24, 2018 - Aug 2, 2019
Aug 3, 2019 - Sep 24, 2019
Sep 25, 2019 - Dec 4, 2019

Table 11: Break periods for SP500
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Series  Break points

Time period

FTSE 22.00

CO 1O Ul W N

DO DO DD = = b
N — O O© 00 3O Uik W H—=O©

Jan 4, 2000 - Jul 24, 2001
Jul 25, 2001 - Oct 2, 2001
Oct 3, 2001 - Apr 18, 2002
Apr 19, 2002 - Aug 22, 2002
Aug 23, 2002 - Feb 27, 2003
Feb 28, 2003 - Dec 10, 2003
Dec 11, 2003 - Nov 14, 2005
Nov 15, 2005 - Feb 22, 2006
Feb 23, 2006 - Jan 23, 2007
Jan 24, 2007 - Mar 3, 2008
Mar 4, 2008 - Jun 6, 2008
Jun 7, 2008 - Oct 27, 2008
Oct 28, 2008 - Feb 2, 2010
Feb 3, 2010 - Dec 15, 2010
Dec 16, 2010 - May 10, 2011
May 11, 2011 - Nov 20, 2012
Nov 21, 2012 - Jan 21, 2014
Jan 22, 2014 - Nov 27, 2014
Nov 28, 2014 - Oct 20, 2015
Oct 21, 2015 - Apr 27, 2017
Apr 27, 2017 - Apr 26, 2019
Apr 27, 2019 - Jul 8, 2019

Table 12: Break periods for FTSE
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Series Break points

Time period

CAC 23.00

0 3 O U i~ W N+

DO DD DD DD = = = = e R e
W OO0 UTixWwNhEF—E OO

Jan 4, 2000 - Apr 16, 2002
Apr 17, 2002 - Sep 11, 2002
Sep 11, 2002 - Mar 4, 2003
Mar 5, 2003 - Sep 4, 2003
Sep 5, 2003 - Jul 29, 2004
Jul 30, 2004 - Jan 10, 2006
Jan 11, 2006 - Apr 19, 2006
Apr 19, 2006 - Mar 16, 2007
Mar 17, 2007 - May 9, 2008
May 10, 2008 - Aug 7, 2008
Aug 8, 2008 - Dec 30, 2008
Dec 31, 2008 - Nov 27, 2009
Nov 28, 2009 - Jan 15, 2010
Jan 16, 2010 - Apr 20, 2010
Apr 21, 2010 - Mar 1, 2011
Mar 2, 2011 - Aug 2, 2011
Aug 3, 2011 - Jan 31, 2013
Feb 1, 2013 - Apr 7, 2014
Apr 8, 2014 - Dec 18, 2014
Dec 19, 2014 - Jan 29, 2016
Jan 30, 2016 - Mar 19, 2018
Mar 20, 2018 - Aug 26, 2019
Aug 27, 2019 - Oct 10, 2019

Table 13: Break periods for DAX
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Series Break points

Time period

DAX 19.00

0 3 O U= W N

Jan 4, 2000 - Jul 31, 2001
Aug 1, 2001 - Oct 16, 2001
Oct 17, 2001 - May 8, 2002
May 9, 2002 - Mar 6, 2003
Mar 7, 2003 - Mar10, 2004
Mar 11, 2004 - Jan 10, 2006
Jan 11, 2006 - Sep 10, 2007
Sep 11, 2007 - May 29, 2008
May 30, 2008 - Aug 12, 2008
Aug 13, 2008 - Jan 8, 2009
Jan 9, 2009 - Mar 8, 2010
Mar 9, 2010 - Mar 10, 2011
Mar 11, 2011 - Jul 29, 2011
Jul 30, 2011 - Apr 23, 2012
Apr 24, 2012 - May 8, 2014
May 9, 2014 - Feb 9, 2016
Feb 10, 2016 - Aug 2, 2017

Aug 3, 2017 - Aug 7, 2019
Aug 8, 2019 - Nov 22, 2019

Table 14: Break periods for CAC

Series

Break points

Time period

1 OMX Stockholm

O O UL i Wi

11
12
13
14
15
16
17
18
19
20

20.00 Jan 4, 2000 - Aug 17, 2000

Aug 18, 2000 - Apr 4, 2003
Apr 5, 2003 - Aug 9, 2004
Aug 10, 2004 - Jul 5, 2006
Jul 6, 2006 - Jun 29, 2007
Jun 30, 2007 - Aug 4, 2008
Aug 5, 2008 - Nov 7, 2008
Nov 8, 2008 - Mar 25, 2009
Mar 26, 2009 - Jul 27, 2009
Jul 28, 2009 - Mar 10, 2010
Mar 11, 2010 - Jul 19, 2010
Jul 20, 2010 - Jun 1, 2011
Jun 2, 2011 - Oct 20, 2011
Oct 21, 2011 - Jul 24, 2012
Jul 25, 2012 - Jul 25, 2014
Jul 26, 2014 - Jun 10, 2015
Jun 11, 2015 - May 26, 2016
May 27, 2016 - Nov 13, 2017
Nov 14, 2017 - Nov 19, 2019
Nov 20, 2019 - Mar 16, 2020

Table 15: Break periods for OMX Stockholm
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Series Break points

Time period

1 OMX Copenhagen 21.00

Jan 4, 2000 - Jun 10, 2002
Jun 11, 2002 - Nov 5, 2002
Nov 6, 2002 - May 12, 2004
May 13, 2004 - Sep 29, 2005
Sep 30, 2005 - Jul 7, 2006
Jul 8, 2006 - Jul 23, 2007
Jul 24, 2007 - Sep 2, 2008
Sep 3, 2008 - Nov 25, 2008
Nov 26, 2008 - Jun 8, 2009
Jun 8, 2009 - Mar 22, 2010
Mar 23, 2010 - Aug 6, 2010
Aug 7, 2010 - Jun 27, 2011
Jun 28, 2011 - Oct 10, 2011
Oct 11, 2011 - Jun 29, 2012
Jun 30, 2012 - Aug 26, 2014
Aug 27, 2014 - Jul 9, 2015
Jul 10, 2015 - Feb 5, 2016
Feb 6, 2016 - Oct 12, 2016
Oct 13, 2016 - Dec 13, 2017
Dec 14, 2017 - Jan 3, 2020
Jan 4, 2020 - Mar 2, 2020

Table 16: Break periods for OMX Copenhagen

Series Break points

Time period

1 Brent Crude oil 14.00
2
3
4
5
6
7
8

9
10
11
12
13
14

Dec 11, 2000 - Feb 19, 2001
Feb 20, 2001 - Aug 20, 2001
Aug 21, 2001 - Jan 30, 2002
Jan 31, 2002 - Feb 8, 2005
Feb 9, 2005 - Jan 15, 2008
Jan 16, 2008 - Aug 1, 2008
Aug 2, 2008 - Feb 16, 2009
Feb 17, 2009 - Jan 14, 2011
Jan 15, 2011 - Sep 9, 2013
Sep 10, 2013 - Jul 27, 2015
Jul 28, 2015 - Apr 10, 2017
Apr 11, 2017 - Jun 20, 2018
Jun 21, 2018 - Aug 23, 2018
Aug 24, 2018 - Oct 4, 2018

Table 17: Break periods for Brent Crude Oil
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Appendix C

OSEBX/OSESX OSEBX/SP500 OSEBX/FTSE

1 Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>1t|)

2 mul  0.000757826 0.013372 * 0.001354001 4.8368e-06 *** 0.001109977 0.00014690 ***
3 mu2 0.002078158 1.0658e-14 *** (.000130479 0.6186607 0.000455071 0.062722795 .
4 A011 0.002655093 < 2.2e-16 ***  0.003603573 1.7319¢e-14 ***  (.003040039 6.5243e-11 ***
5 A021 0.001683377 NA 0.001210184 0.0027790 **  0.002174536 1.4984e-09 ***
6 A022 0.001224696 NA 0.002055652 6.6781e-07 ***  0.001560008 4.0738e-07 ***
7 All  0.335897576 4.4409e-16 ***  0.436545243 < 2.2e-16 ***  (0.304413870 1.1819e-09 ***
8 A21 0.102176234 < 2.2e-16 ***  0.176712421 8.3552e-07 ***  0.052386436 0.23149685

9 Al2  (-)0.043040697 0.413168 (-)0.037055544  0.5706462 0.226515773 1.4147e-05 ***
10 A22  0.019621330 NA 0.294119141 8.8383e-12 ***  (.421351828 < 2.2e-16 ***
11 B11  0.898041960 < 2.2e-16 ***  0.865562596 < 2.2e-16 ***  0.920835916 < 2.2e-16 ***
12 B21 (-)0.025088321 NA (-)0.057402677  0.0063838 ** (-)0.015697032  0.51985739
13 B12  0.039637961 NA (-)0.009411851  0.7366106 (-)0.104507014  0.00011997 ***
14 B22  0.987779398 NA 0.916062064 < 2.2e-16 ***  (0.871810563 < 2.2e-16 *¥**

Table 18: Bekk results (5)

OSEBX/DAX OSEBX/CAC
1 Estimate Pr(>t]) Estimate Pr(>[t])
2 mul 0.001125600 0.00014833 *** 0.001190234 5.6364e-05 ***
3 mu2 0.000208661 0.53090192 0.000453733 0.174349
4 A011 0.003578595 < 2.2e-16 *** 0.003556290 < 2.2e-16 ***
5 A021 0.002385496 1.1771e-11 ***  0.002971404 8.7999e-10 ***
6 A022 0.002151739 4.7151e-12 ***  0.002003059 1.2531e-09 ***
7 All  0.357117565 < 2.2e-16 *** 0.389355395 7.5415e-12 ***
8 A21  0.067226346 0.06996878 . 0.127419179 0.041206 *
9 Al2 0.138963600 0.00011096 ***  0.109218702 0.019913 *
10 A22  0.325954403 < 2.2e-16 *** 0.319967086 4.3521e-14 ***
11 Bl11 0.866906289 < 2.2e-16 *** 0.872222544 < 2.2e-16 ***
12 B21 (-)0.044522618  0.03634960 * (-)0.061679469 0.021663 *
13 B12  (-)0.039112308 0.00381421 **  (-)0.046354375 0.029712 *
14 B22  0.926933712 < 2.2e-16 *F* 0.915791627 < 2.2e-16 ***

Table 19: Bekk results (6)
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OSEBX/OMX.S OSEBX/OMX.C
1 Estimate Pr(>|t|) Estimate Pr(>1t|)
2 mul NA NA 0.001476064 1.3585e-05 ***
3 mu2 NA NA 0.000885616 0.00487989 **
4 A011 NA NA 0.003432224 1.6353¢-05 ***
5 A021 NA NA 0.001564779 0.00030973 ***
6 A022 NA NA 0.001823754 5.3784e-07 ***
7 All  NA NA 0.333310930 0.03090576 *
8 A21 NA NA 0.093958177 0.31644121
9 Al2 NA NA 0.107035873 0.49684631
10 A22 NA NA 0.206603209 0.01260595 *
11 Bl11 NA NA 0.878844495 < 2.2e-16 ¥
12 B21 NA NA (-)0.029409373 0.44669552
13 Bl12 NA NA (-)0.016961333 0.65838067
14 B22 NA NA 0.957054588 < 2.2e-16 ***
Table 20: Bekk results (7)
OSEBX/Brent FTSE/Brent DAX/Brent
1 Estimate Pr(>[t]) Estimate Pr(>|t|) Estimate Pr(>[t])
2 mul 0.001406976 2.7210e-06 ***  0.000540952 0.0322040 * 0.000264945 0.430234
3 mu2 0.001157419 0.03063993 * 0.001048413 0.0471939 * 0.001119190 0.036970 *
4 A011 0.003106563 <2.22e-16 ***  (0.002234016 1.3523e-13 ***  (0.002811894 2.8616e-09 ***
5 A021 0.002266679 0.00510588 **  0.002416363 0.0085388 ** 0.001354847 0.082429 .
6 A022 0.003897829 2.0488e-06 ***  0.003969334 1.3249e-05 ***  0.004078765 1.5253e-06 ***
7 All  0.440534937 <2.22e-16 ***  (.378134625 <2.22¢-16 ***  (0.339386928 <2.22¢-16 ***
8 A21  0.233692563 2.4415e-06 ***  0.280575054 1.1657e-07 ***  0.173799725 2.1590e-05 ***
9 Al2 (-)0.025767222 0.13104950 (-) 0.013486133 0.3887025 0.015185335 0.515128
10 A22  0.255459861 <2.22e-16 ***  (.270356528 5.0626e-14 ***  (0.315756823 <2.22e-16 ***
11 Bl11  0.874175784 <2.22e-16 ***  (0.908109566 <2.22e-16 ***  (0.918727413 <2.22e-16 ***
12 B21  (-)0.091762903 0.00044013 *** () 0.093218466 0.0017256 ** (-) 0.052633369 0.036750 *
13 B12  (-)0.004176609 0.66301206 (-) 0.007894308  0.03239597 (-) 0.007568953 0.499641
14 B22  0.933696877 <2.22e-16 ***  (0.924144511 <2.22e-16 ***  0.924572247 <2.22¢-16 ***

Table 21: Bekk results (8)
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