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Current clinical studies showed distinct therapeutic outcomes, in which CRC patients with
mismatch repair-deficient (dMMR)/microsatellite instability high (MSI-H) seem to be
relatively more “sensitive” in response to anti-programmed death-1 receptor (PD-1)/
programmed death-1 receptor ligand 1 (PD-L1) therapy than those with mismatch repair-
proficient (pMMR)/microsatellite instability-low (MSI-L). The mechanisms by which the
same PD-1/PD-L1 blockades lead to two distinct therapeutic responses in CRC patients
with different MSI statuses remain poorly understood and become a topic of great interest
in both basic research and clinical practice. In this review of the potential mechanisms for
the distinct response to PD-1/PD-L1 blockades between dMMR/MSI-H CRCs and
pMMR/MSI-L CRCs, relevant references were electronically searched and collected
from databases PubMed, MEDLINE, and Google scholar. Sixty-eight articles with full
text and 10 articles by reference-cross search were included for final analysis after
eligibility selection according to the guidelines of PRISMA. Analysis revealed that multiple
factors e.g. tumor mutation burden, immune cell densities and types in the tumor
microenvironment, expression levels of PD-1/PD-L1 and cytokines are potential
determinants of such distinct response to PD-1/PD-L1 blockades in CRC patients with
different MSI statuses which might help clinicians to select candidates for anti-PD-1/PD-
L1 therapy and improve therapeutic response in patients with CRC.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common type of cancers and the second leading cause
of cancer-related death in developed countries. Although numerous attempts have been made to
increase the overall survival rate of CRC patients, the improved prognosis in CRCs is still heavily
dependent on early diagnosis and complete resection of the primary tumor. Unfortunately,
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metastasis is often observed at the time of diagnosis, and curative
surgical resection becomes impossible in these patients. Thus, to
improve the prognosis of metastatic CRC (mCRC) patients, many
researchers have investigated the escape immunosurveillance
mechanisms by which the CRC progresses and metastases
persistently (1–4). A growing body of evidence from various
studies has demonstrated that immune checkpoints are negative
regulators for host anti-tumor immune function and could
significantly suppress the host anti-tumor immune reactivity
(5–7). Therefore, one of the proposed mechanisms for a
tumor’s ability to escape immunosurveillance is by targeting of
immune checkpoint molecules and becomes an important
therapeutic strategy for the treatment of human cancers.
Indeed, recent studies revealed that immune checkpoint
blockades with monoclonal antibodies (mAbs) that target the
programmed cell death receptor 1 (PD-1) and its ligand (PD-L1)
have been widely used in treating human cancers and showing in
an enhanced host anti-tumor immunity and increase survival
rates in a variety of malignancies including melanoma (8), renal
cell carcinoma (9), and non-small cell lung cancer (10). The
therapeutic efficacy of anti-PD-1/PD-L1 mAbs has been
evaluated in patients with solid tumors including mCRC (11–
14). However, unlike the efficacy reported in patients with
melanoma, the therapeutic response of anti-PD-1/PD-L1 mAbs
in patients with mCRC is very different between mismatch
repair-deficient (dMMR)/microsatellite-instability-high (MSI-H)
tumors and mismatch repair-proficient (pMMR)/microsatellite-
instability-low (MSI-L) or microsatellite-stability (MSS)
tumors (11, 15–18). Results of clinical studies or trials showed
that CRC patients with dMMR/MSI-H seem to be relatively
more “sensitive” in response to anti-PD-1/PD-L1 mAbs than
those CRCs with pMMR/MSI-L: dMMR/MSI-H CRCs treated
with anti-PD-1/PD-L1 mAbs exhibit significantly enhanced
sustained clinical responses. However, anti-PD-1/PD-L1
therapies are ineffective in CRC patients with pMMR/MSI-L
(12, 13, 19). The mechanisms leading to distinct therapeutic
outcomes between dMMR/MSI-H CRCs and pMMR/MSI-L
CRCs have been a topic of great clinical interest and studied.

Therefore, this manuscript reviews the current understanding
of the potential mechanisms leading to a distinct therapeutic
response to anti-PD-1/PD-L1 mAbs between dMMR/MSI-H
CRCs and pMMR/MSI-L CRCs.
Abbreviations: APC, antigen-presenting cells; PRISMA, Preferred reporting items
for systematic reviews and meta-analyses; CAMK1D, the calcium/calmodulin-
dependent protein kinase 1D; CRC, colorectal cancer; CTL, cytotoxic T
lymphocyte; CTLA4, cytotoxic T-lymphocyte associated protein 4; dMMR,
mismatch repair-deficient; IDO, indolamine 2′3′-dioxygenase; IFN-g,
interferon-g; IL. Interleukin; mAb, monoclonal antibody; mCRC, metastatic
CRC; MDSCs, myeloid-derived suppressor cells; MHC, major histocompatibility
complex; MSI-H, microsatellite-instability-high; MSI-L, microsatellite-instability-
low; NK, natural killer; ORR, the objective response rate; OS, overall survival; PD-
1, programmed death-1 receptor; PD-L1, programmed death-1 receptor ligand;
PFS, progression-free survival; pMMR, mismatch repair-proficient; TGF-b,
transforming growth factor-b; TIL, tumor infiltrating lymphocyte; TIME, tumor
immune microenvironment; TMB, tumor mutational burden; TNF-a, tumor
necrosis factor-a; Treg, regulatory T cell.
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SEARCH STRATEGY AND SELECTION
CRITERIA

Literature Search Strategy
Relevant electronic literature search was conducted in academic
databases PubMed, MEDLINE and Google scholar by the author
using the search terms “anti-PD-1”, “anti-PD-L1”, “immune
checkpoint inhibitor”, “response”, “predicators”, “colorectal
cancer”, “metastasis”, “dMMR”, “pMMR” and “MSI” from
inception to September 2020. Of 270 abstracts hit, sixty-eight
articles with full text were included for final analysis according to
the guidelines of Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) (see Figure 1). Ten
articles selected from reference lists of appropriate papers as an
additional literature source were included.

Inclusion and Exclusion Criteria
The following selection criteria were used: (1) articles published in
English; (2) full-text available; (3) studies or trials conducted in
human CRCs; (4) relevant mechanistic studies conducted in mice;
(5) articles only published as abstract or non-full text publications
(case reports, editorials, letters to editors, or meeting abstracts)
were excluded; (six) studies were rejected if they lacked sufficient
information to study anti-PD-1/PD-L1 therapies in CRC.

The following information was extracted: year of publication;
country of origin; study design; journal; study population size;
and mean age of patients. A meta-analysis was not carried out
because of the heterogeneity, differences in metrics and settings
in the included publications.
A BRIEF OVERVIEW OF THE ROLE OF
PD-1/PD-L1 IN THE ESCAPE
IMMUNOSURVEILLANCE OF CRC

PD-1 is an inhibitory coreceptor that is highly expressed on the cell
surfaceof various typesof immunecells suchasTandB lymphocytes
and natural killer (NK) cells (20, 21). In the tumor
microenvironment, PD-1 is also expressed in tumor-infiltrating
lymphocytes (TILs) and participates in the modulation of host
anti-tumor immune response (20). The modulation effect of PD-
1/PD-L1 on immune reactivity has been well documented by
intensive studies. Physiology, the binding of PD-1 with its ligand
PD-L1 leads to an inhibitory efficiency of T cell activation and
suppression of cytokine productions, i.e., interferon-g (IFN-g),
tumor necrosis factor-a (TNF-a) and interleukin (IL)-2 from
immune cells (22). These effects hamper the overreaction of
immune response and help to maintain immune homeostasis. In
the tumormicroenvironment, PD-L1 is expressed on the tumor cell
surface and the binding of PD-1 expressed by TILs may lead to the
functional inactivation of TILs and loss of their ability to kill tumor
cells that result in immune resistance in patients with tumors (23,
24). Therefore, the PD-1/PD-L1 pathway has been recognized as a
negative modulator of immune response by restricting the function
of TILs in the tumor immune microenvironment (TIME), and
inhibition of the PD-1/PD-L1 pathway by administration of mAbs
March 2021 | Volume 11 | Article 573547

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cui Responses to PD-1/PD-L1 Blockades in Colorectal Cancer
can reactivate the function of cytotoxic T lymphocytes (CTLs) and
their ability to attack tumor cells (25).

In addition to anti-PD-1/PD-L1 mAbs, blockades of other
immune checkpoint factors such as cytotoxic T-lymphocyte
associated protein 4 (CTLA4) mAbs have been shown to
induce significantly enhanced T cell proliferation and IL-2
production (26, 27) and decreased density of regulatory T cells
(Tregs) in the TIME (27, 28), which relates to an improved
prognosis in patients with tumors (7). Taken together, current
available scientific evidence suggests that the immune checkpoint
PD-1/PD-L1 pathway plays a critical role in the process of
immunoediting and tumor progression and metastasis (29).
Pharmacologically, PD-1/PD-L1 pathway signals can be easily
targeted. Recent immunotherapeutic strategies based on mAb
targeting of immune checkpoint molecules such as PD-1 and its
ligand PD-L1 and CTLA4 have shown a promising therapeutic
response that leads to increase the functional activation of
immune cells and enhanced host anti-tumor immune response
in patients with tumors such as malignant melanoma (8, 25),
renal cell cancer (30), lung cancer (30) and CRC (7).

DISTINCT THERAPEUTIC EFFICACY OF
ANTI-PD-1/PD-L1 mAbs BETWEEN
PATIENTS WITH dMMR/MSI-H CRC AND
PATIENTS WITH pMMR/MSI-L OR MSS
CRC

According to its etiology, CRCs can be divided into sporadic,
familial, or hereditary (30). Approximately 70–75% of CRCs are
Frontiers in Oncology | www.frontiersin.org 3
sporadic CRCs and become the main type of CRCs in the clinic.
Clinical studies demonstrated that dMMR/MSI-H status is
observed in approximately 15–20% of sporadic CRCs (31, 32);
higher immune cell infiltration and better prognosis are more
frequently reported in dMMR/MSI-H tumors than pMMR/MSI-L
tumors (33). The therapeutic efficacy of anti-PD-1 and anti-PD-
L1 mAbs in patients with CRCs has been recently evaluated. A
distinct therapeutic efficacy of anti-PD-1/PD-L1 mAbs between
dMMR/MSI-H tumors and pMMR/MSI-L tumors was
demonstrated in numerous clinical studies (15, 16, 30, 34–41).
Overman et al. (36) investigated the efficacy and safety of
nivolumab (an anti-PD1 mAb) combined with ipilimumab
(anti-CTLA-4 mAb, another immune checkpoint inhibitor) in
patients with MSI-H mCRC vs. non-MSI-H mCRC. They
reported that nivolumab as a single bioagent or in combination
with ipilimumab could result in 31% disease control in mCRC
patients with MSI-H and 10% disease control in patients with
MSS mCRC (36). Interestingly, their results revealed that a high
tumor mutational burden (TMB) in mCRC may predict a better
response, and nivolumab in combination with ipilimumab is a
promising new therapeutic strategy for dMMR/MSI-H mCRC
(36). Le et al. (42) also reported similar findings in CRC patients
with different MSI statuses. The immune-related objective
response rate (ORR) and the immune-related progression-free
survival (PFS) rate to anti-PD-1 mAbs at primary endpoints of
the study (20 weeks) were remarkedly higher in dMMR CRCs
than that in pMMR CRC. Taken together, current studies with
anti-PD-1 mAbs suggested that the therapeutic efficacy is
generally unencouraging and response rates in patients with
pMMR/MSI-L mCRC were seen only rarely. Thus, the dMMR
FIGURE 1 | Prisma flow chart for the search of the literatures.
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status is an important factor in influencing therapeutic response
of anti-PD-1 mAbs in treating patients with CRCs (43). Several
reviews have summarized the distinct therapeutic response of
anti-PD-1/PD-L1 mAbs in CRC patients with different MSI
statuses; readers can refer to these articles.

In addition to anti-PD-1 mAbs, the therapeutic efficacy of
anti-PD-L1 mAbs in mCRCs is also being evaluated. Brahmer
et al. assessed the efficacy of an anti-human PD-L1 mAb in a
cohort of more than 200 solid tumors that included 18 CRC
patients. The results showed that none response was seen in
patients with CRC (44). Furthermore, unlike its therapeutic
efficacy demonstrated in other types of solid tumors such as
advanced non-small cell lung cancer (45) and metastatic
urothelial cancer (46), the response rate of atezolizumab
(a humanized anti-PD-L1 mAb) in MSS CRCs is not
encouraging (47). The therapeutic analysis of the combination
of cobimetinib (a MEK protein kinase mAb) with atezolizumab
in 23 patients with mCRC suggests that the response rate was
very low in CRC patients with pMMR/MSI-L (47).

For details, readers can refer to published literatures; several
reviews have summarized such distinct therapeutic response of
anti-PD-1/PD-L1 mAbs between dMMR/MSI-H CRCs and
pMMR/MSI-L CRCs (7, 15, 16, 18, 48–51). Further studies or
trials should focus on how to improve therapeutic response rate
of anti-PD-1/PD-L1 mAbs in patients with pMMR/MSI-L CRCs.
THE POSSIBLE MECHANISMS LEADING
TO A DISTINCT THERAPEUTIC EFFICACY
OF ANTI-PD-1/PD-L1 mAbs BETWEEN
dMMR/MSI-H CRCs AND pMMR/MSI-L
CRCs

Clinical studies and trials have shown that patients with dMMR/
MSI-H CRC and pMMR/MSI-L or MSS CRC respond
inconsistently to anti-PD-1/PD-L1 mAbs, which is associated
with differences in the components of TIME. Indeed, it has been
shown that multiple factors existed in the TIME, including
immune cell phenotypes, cytokine networks, and immune
checkpoints, differ between dMMR/MSI-H CRCs and pMMR/
MSI-L CRCs (12, 15, 52–57) (see summarization in Table 1).

Studies have revealed that TMB in dMMR/MSI-H CRCs is
significantly higher than that in pMMR/MSI-L CRCs (48, 67–
69), and an increased amount of TMB in dMMR/MSI-H
tumours can result in a 20-time higher rate of mutation and a
stronger immune response than pMMR/MSI-L tumours (52, 53,
58), which are reflected in the very different composition and
function of immune infiltrates in the TIME (70–73). Therefore,
TMB appears to be an important biomarker for patients with
dMMR/MSI-H CRC in response to anti-PD-1 therapy (68, 74–
77). Schrock et al. reported that TMB was strongly associated
with objective response and favorable progression-free survival,
by univariate (P < 0.001) and multivariate analysis in MSI-H
mCRC patients treated with anti-PD-1/PD-L1 mAbs (68). Fotios
Loupakis et al. reported that higher TMB and increased number
of TILs in patients with dMMR/MSI-H CRCs were likely related
Frontiers in Oncology | www.frontiersin.org 4
to a better response to therapies of checkpoint inhibitors (78).
Consequently, numerous studies demonstrated that increased
densities of infiltrating immune cells i.e. TH9 subset may
possibly contribute to the improved therapeutic response of
dMMR/MSI-H CRCs to anti-PD-1/PD-L1 mAb treatment
(59, 78–80). Zhang et al. (54) have immunohistochemically
shown that the TIME of dMMR/MSI-H CRCs differs from
that of pMMR/MSI-L CRCs. The density of PD-1 positive TILs
was higher in CRC patients with dMMR/MSI-H than those
with pMMR/MSI-L. The positive rate of PD-L1 on immune
cells in the TIME also differed between dMMR/MSI-H
CRCs and pMMR/MSI-L CRCs. In addition, the level of
immunosuppressive factor indoleamine 2,3 dioxygenase (IDO)
expression was greater in CRC patients with dMMR/MSI-H
CRCs than those with pMMR/MSI-L (65, 66).

PD-L1 is the ligand for PD-1 and plays an important negative
regulatory effect by binding PD-1, resulting in the restricting of
anti-tumor function of T lymphocytes (81, 82). Liu et al. (43)
demonstrated that dMMR/MSI-H CRCs more frequently
exhibited higher populations of TILs and PD-L1-positive cells
than pMMR/MSI-L CRCs. Furthermore, PD-L1 expression in
patients with CRC was associated with clinicopathologic and
molecular features and a worse outcome in CRC patients with
dMMR/MSI-H than those with pMMR/MSI-L (83). PD-L1
expression was closely related to dMMR/MSI-H status in
patients with CRC. Taube et al. reported that PD-L1
expression was identified in 42.4% of dMMR/MSI-H CRCs
with TILs and only 18.0% pMMR/MSI-L CRCs with TILs
(43). They also found that tumor PD-L1 expression reflected
an immune-active microenvironment, while it did so
in association with other immunosuppressive molecules,
including PD-1 and PD-L2, it was the single factor most
closely correlated with response to anti-PD-1 mAbs in patients
with melanoma, non-small cell lung carcinoma, renal cell
carcinoma, CRC, or castration-resistant prostate cancer (57).
Liu et al. (84) immunohistochemically examined the cellular
localization of PD-L1 in 73 dMMR CRCs and 56 pMMR CRCs
respectively. They found that the expression of PD-L1 was
TABLE 1 | Difference of tumor immune microenvironment (TIME) between
dMMR/MSI-H CRCs and pMMR/MSI-L CRCs.

Components (reference ID) dMMR/MSI-H vs. pMMR/MSI-L

TIL (43) >
Effector-memory T cells (58) >
TH1 cells (58) >
Macrophage (59) >
DC (59) >
Foxp3 low non-suppressive Tregs (60) >
PD1/PD-L1 expression (58, 61, 62) >
CTLA4 expression (5) >
IFN-g expression (25, 63, 64) >
IDO (65, 66) >
March 2
CTLA4, Cytotoxic T-lymphocyte-associated antigen 4, DC, dendritic cell; IDO, indolamine
2′3′-dioxygenase; IFN-g, interferon-g; PD-1, programmed death-1 receptor; PD-1L,
programmed death-1 receptor ligand; MSI-H, microsatellite-instability-high; MSI-L,
microsatellite-instability-low; dMMR, mismatch repair-deficient; pMMR, mismatch
repair-proficient; TIL, tumor infiltrating lymphocyte; Treg, regulatory T cell.
021 | Volume 11 | Article 573547

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Cui Responses to PD-1/PD-L1 Blockades in Colorectal Cancer
primarily observed in tumor infiltrating immune cells,
particularly in immune cells at the site of invasive front with
tumor–stroma-interface. The population level of immune cell
positive for PD-L1 staining was significantly higher in dMMR
tumors than in pMMR tumors (84). Both Gatalica and Inaguma
have confirmed a similar result in CRC patients with different
MSI statuses (61, 62). dMMR/MSI-H CRC patients with a higher
PD-L1 level had a deeper functional suppression of TILs than
those pMMR/MSI-L CRC patients with a lower PD-L1 level, and
blocking PD-1/PD-L1 might relieve such suppression and
reactivate the function of TILs (61, 62). Therefore, PD-L1
expression in diverse solid tumors might stratify patients in
terms of response to anti-PD-1/PD-L1 immunotherapy and
sensitivity to anti-PD-1/anti-PD-L1 mAbs (85), and PD-L1
expression was related to intrinsic and adaptive immune
resistance in cancer patients receiving immunotherapy (86).
Analysis of TCGA data has also revealed that the mRNA
expression levels of both PD-L1 and PD-L2 were significantly
upregulated in dMMR/MSI-H CRCs compared with pMMR/
MSI-L CRCs (87). Indeed, clinical studies identified that mCRC
patients with higher PD-L1 expression in CRC cells might had a
higher response rate than those patients with lower PD-L1
expression in CRC cells (42, 88), which was also supported by
a meta-analysis of PD-L1 expression in patients with melanoma
and lung and genitourinary cancers (89). However, Le Flahec
et al.’s (90) immunohistochemistry compared PD-L1 expression
in whole tumor specimens and tissue microarray slides between
dMMR/MSI-H CRCs and pMMR/MSI-L CRCs. They reported
no significant difference in PD-L1 expression levels between
dMMR and pMMR CRCs. Thus, they concluded that the value
of PD-L1 in explaining the different therapeutic response rate
between dMMR CRCs and pMMR CRCs remains unclear, and
further studies are required.

Taken together, PD-1 expression observed on the increased
populations of immune cells in dMMR/MSI-H CRCs may act as
a modulatory factor for the immune response. The use of
anti-PD-1 mAbs blocks the expression of PD-1 on tumor cells
and TILs and could further reactivate other types of immune
cells and finally enhances host anti-tumor immune response
in patients with dMMR/MSI-H CRC. Therefore, the response
rate to anti-PD-1 and anti-PD-L1 mAbs in patients with
dMMR/MSI-H CRC is higher than that in patients with
pMMR/MSI-L mCRC.

Different levels of cytokines produced by both immune cells
and tumor cells in the tumor microenvironment may also
contribute to a distinct therapeutic response between dMMR/
MSI-H CRCs and pMMR/MSI-L CRCs. For example, IFN-g
produced by activated T lymphocytes is an important modulator
of PD-L1 expression, and it can significantly upregulate PD-L1
expression in both tumor cells and immune cells in the TIME
(69, 86). Studies have shown that responders had elevated
expression levels of IFN-g and IFN-g-inducible genes prior
anti-PD-L1 mAb treatment in patients with melanoma or renal
cell carcinoma (25, 63, 64). However, its role in influencing the
response rate to anti-PD-1/PD-L1 mAb therapy in patients with
dMMR/MSI-H CRC needs further investigation.
Frontiers in Oncology | www.frontiersin.org 5
Finally, host anti-tumor immunity is regulated by a complex
immune cellular network in patents with CRC (1, 3, 70, 91–93).
For instance, a number of recent studies have reported that diverse
TH subsets TH9, TH17 and TH22 and their main cytokines such
as IL-9, IL-17 and IL-22 participate in the modulation of immune
response in patients with CRC (91). Immune scores between
dMMR/MSI-H CRCs and pMMR/MSI-L or MSS CRCs were
also very different (94, 95) in which, populations of CD3-positive
and CD4-positive TILs in tissue microarray samples collected from
the tumor center and invasive front were significantly higher in
CRC patients with dMMR/MSI-H than those with pMMR/MSI-L
(94). The phenotypes of infiltrating immune cells were also
different between dMMR/MSI-H and pMMR/MSI-L CRCs (95).
In addition to the infiltration of lymphocytes, many other cellular
components of the CRC TIME might be different (96). For
example, local immunosuppressive cells, including Tregs and
myeloid-derived suppressor cells (MDSCs), were ordinarily
observed in the CRC TIME (97, 98). Le Gouvello et al. reported
remarkable increased levels of Foxp3-positive Tregs and IL-17 in
CRC patients with pMMR/MSI-L (99). These cells might be
involved in the determination of anti-PD-1 therapeutic efficacy
in patients with CRC. One study conducted in the human
hepatoma cell lines showed that Tregs potentially inhibited IFN-g
secretion and the cytotoxicity of CD8-positive T cells (100).
Moreover, Bauer K et al. (101) reported that the existence of
Tregs greatly influenced the frequency of effector T cells in
response to specific MSI-H-related frameshift peptides in CRC.
Dyck and colleagues (102) reported that high PD-1 expression
correlated with increased tumor-infiltrating Tregs, and reduced
effector T cells and blocking PD-1 might effectively enhance
antitumor immunity. Zhang et al. (103) have further shown
that PD-1 mAbs could reverse Treg suppression. Toor et al.
(21) demonstrated that Tregs might hamper the response to
immune checkpoint blockade (anti-PD-1 mAb) in patients with
CRC, and the administration of an anti-PD-1 mAb in mice could
significantly decrease tumor-infiltrating Tregs and increase TILs
in the CRC TIME (104). Interestingly, a higher expression of
FoxP3 (a marker of Tregs) has been demonstrated in patients
with pMMR/MSI-L CRC than in those with dMMR/MSI-H CRC,
indicating a deeper degree of immunosuppression in these
patients. As a result, a higher proportion of Tregs is associated
with a poor prognosis for immunotherapy, and the rate of
therapeutic response to anti-PD-1 mAbs might be lower in
patients with pMMR than that in patients with dMMR.
Therefore, eliciting an enhanced response to anti-PD-1/PD-L1
mAbs in patients with pMMR/MSI-L CRC may require
combined therapeutics with other anti-immunosuppressive,
antiangiogenic or anti-immune checkpoint bioagents (42, 105).

Thus, accumulating evidence suggests that multiple factors
are involved in the lack of sensitivity to anti-PD1/PD-L1 mAb
therapy seen in patients with pMMR/MSI-L or MSS tumours
(see Figure 2). The above possible mechanisms might provide
useful information for future improvements. For example, the
host immune response to TMB was very different between
patients with dMMR/MSI-H CRC and those with pMMR/MSI-L
CRC (76, 94), and a single anti-PD-1/PD-L1 mAbs could not
March 2021 | Volume 11 | Article 573547
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block all the regulatory pathways/signals. Recent studies revealed
that the calcium/calmodulin-dependent protein kinase 1D
(CAMK1D) and the m6A demethylase Alkbh5 may regulate
the tumor cells refractory to anti-PD-L1 treatment (106, 107).
However, the difference of the CAMK1D and m6A demethylase
Alkbh5 expressions between dMMR/MSI-H and pMMR/MSI-L
CRCs has not been well studied so far. Furthermore, a recent
study suggested that transcriptional factor STAT was involved in
the response to anti-PD-1 in patients with MSS CRCs (108).
Finally, it is important to state that not all dMMR/MSI-H CRCs
respond to immunotherapy. Combinations of anti-PD-1/PD-L1
mAbs with other anti-tumor agents may improve the therapeutic
efficacy in patients with CRCs (69). Trials of atezolizumab in
combination with both bevacizumab and cobimetinib mAbs
have opened the way for combination strategies, which could
extend the indication for immune checkpoint inhibitors to
pMMR mCRC. Similarly, the combination of nivolumab and
ipilimumab mAbs in dMMR/MSI-H mCRC patients has shown
an encouraging clinical outcome (36).
TRANSLATIONAL SIGNIFICANCE OF
MECHANISMS LEADING TO DISTINCT
OUTCOMES BETWEEN dMMR/MSI-H
CRCs AND pMMR/MSI-L CRCs

Accumulative evidence has suggested that multiple factors such
as TMB, expression levels of PD-1/PD-L1 and cytokines and
Frontiers in Oncology | www.frontiersin.org 6
immune infiltrates are involved in the mechanisms of distinct
response to anti-PD-1/PD-L1 mAbs between dMMR/MSI-H
CRCs and pMMR/MSI-L CRCs. The discovery of potential
mechanisms leading to distinct therapeutic outcomes of anti-
PD-1/PD-L1 therapy seen between dMMR/MSI-H CRCs and
pMMR/MSI-L CRCs might have an important translational
significance (55, 109).

Firstly, the study of potential mechanisms leading to a distinct
therapeutic efficacy of PD-1/PD-L1 inhibitors seen between
dMMR/MSI-H and pMMR/MSI-L CRCs might help clinicians
to select candidates for anti-PD-1/PD-L1 therapy. Anti-PD-1/
PD-L1 therapy is an expensive biotherapeutic. Treating cost
studies have revealed that treating with immune checkpoint
inhibitors may averagely cost $1 million per patient (110). By
analyzing relative factors, clinicians can identify candidates
(CRC patients) who will benefit from anti-PD-1/PD-L1
therapy. For example, studies have reported that mCRC
patients with higher PD-L1 expression might have a higher
response rate than those patients with lower PD-L1 expression
(42, 88). Furthermore, it may help clinicians to select reliable
biomarker in the evaluation of anti-PD-1/PD-L1 therapeutic
response in patients with CRC. Clinicians can measure the
expression level of PD-L1 in tumor cells and immune cells
examined by diverse techniques i.e. immunohistochemistry
and in situ hybridization, and in whole tissue specimens
measured by real-time PCR to provide important predicating
information of response prior treatments. To improve and
optimize the efficacy of anti-immune checkpoint therapies, a
combination of anti-PD-1/PD-L mAbs with other anti-tumor
bioagents probably being the most relevant strategy (36, 111,
112). For instance, several studies showed that IFN-g can
significantly upregulate PD-L1 expression in both tumor cells
and immune cells (69, 86, 113). This finding raises an interesting
possibility that whether combination biotherapy of anti-PD-1/
PD-L1 mAbs with IFN-g can induce an enhanced response rate
in patients with CRC should be tested. Moreover, an improved
therapeutic efficacy has been demonstrated in cancer-favoring
oncolytic vaccinia virus combined with anti-PD-1 in treating
mouse CRC (106). Cai et al. (114) reported an upregulated effect
of angiogenesis inhibitor apatinib on the expression of PD-1 at
mRNA and protein levels but a downregulated effect on IFN-g
secretion from T cells in various colon cancer cells. The
combination of apatinib with anti-PD-1 antibody could result
in a better efficacy in a syngeneic mouse model (CT-26 cells in
Balb/c) than single-drug treatment. More recently, Knudson
et al. showed that IL-15 super-agonist N-803 plus anti-PD-L1
mAb could reduce MC38-CEA (colon cancer cell) tumor burden
and increased survival rate as compared to N-803 and anti-PD-
L1 monotherapies in MC38-CEA colon tumor-bearing mice
(115). An enhanced therapeutic effect of F8-IL2 (an antibody-
IL2 fusion protein) bombinated with anti-PD-1, anti-PD-L1 and
anti-CTLA-4 antibodies was observed in immunocompetent
mice bearing CT26 tumours (116). These studies may provide
a rationale for the combination of anti-PD-1 antibody with other
anti-tumor agents for CRC treatment in the clinic. Finally, as the
mechanisms responsible for distinct responses to PD-1/PD-L1
FIGURE 2 | Schematic summary of multiple factors involving in the anti-PD1/
PD-L1 therapeutic response in patients with CRC. Current evidence has
suggested that multiple factors e.g. tumor mutational burden (TMB), IFN-g
level, populations and phenotypes of immune cells and other factors (e.g.
immunosuppressive factors IDO) were involved in the regulation of anti-PD1/
PD-L1 therapeutic response in patients with CRC.
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mAbs in patients with CRC are elucidated, how to convert a
‘nonimmunogenic’ CRC into an ‘immunogenic’ CRC becomes a
critical important issue (18, 117). Wang et al. recently
investigated the efficacy of fruquintinib (a novel anti-vascular
endothelial growth factor receptor tyrosine kinase inhibitor) plus
anti-PD-1 mAb for MSS CRC in a murine syngeneic model of
CT26 cells and verified that cotreatment significantly inhibited
tumor growth and promoted survival time for tumor-bearing
mice compared with the single drug alone (105).
CONCLUDING REMARKS

Division of mCRCs into dMMR/MSI-H and pMMR/MSI-L
subsets yields a distinct therapeutic response to anti-PD-1/PD-
L1 immunotherapies, in which dMMR/MSI-H CRCs seem to be
relatively more “sensitive” in response to anti-PD-1/PD-L1
mAbs than those CRCs with pMMR/MSI-L. The possible
mechanisms leading to such distinct outcomes may relate to
multiple factors e.g. TMB, TILs, and immunosuppressive cells,
the expression level of PD-L1 and the complex cytokine network
Frontiers in Oncology | www.frontiersin.org 7
in the CRC microenvironment (see Figure 3). Future studies
should discover strategies that determine how to convert a ‘non-
immunogenic’ CRC into an ‘immunogenic’ CRC and improve
the therapeutic response rate to anti-PD-1/PD-L1 mAbs in
patients with pMMR/MSI-L mCRC and the optimal strategy
for identifying CRC patients who will benefit from anti-PD-1/
PD-L1 mAb therapy prior treatments in the clinic.
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