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Abstract Phytoplankton spring blooms in temperate and high-latitude shelf seas are commonly associ-
ated with an enhanced particulate organic carbon (POC) export of aggregates from the euphotic zone.
In contrast, a postbloom situation is usually linked to a predominant POC retention, where small cells
(<10 lm) and strong grazing pressure prevail. This study aimed to examine impacts of turbulence, phyto-
plankton, bloom stage, and zooplankton abundance on the sinking particles’ size spectra and POC flux to
improve the understanding of the downward flux mechanisms in the upper 100 m. We deployed sediment
traps, partly modified with gel jars, at four depths along a stratification and phytoplankton bloom gradient
in the Barents Sea, an Arctic shelf sea. The highest POC export (60 m: 923 mg C m22 d21) was found in
deep-mixed, postbloom Atlantic influenced waters, despite the high grazer abundance (12,000 individuals
m23). Particle size spectra indicated that this flux was dominated by particles of 0.05–1.00 mm equivalent
spherical diameter (ESDimage) with a POC:volume ratio matching copepod fecal pellets. Large particles (0.5–
2.8 mm ESDimage) dominated the flux at a stratified, late peak bloom station in Arctic Waters and a stratified,
late bloom situation at the Polar Front, but with lower POC:volume ratio and POC flux (60 m: <823 mg C
m22 d21). Accordingly, a high POC flux at the base of the euphotic zone is not necessarily driven by large
phytoplankton aggregates, but can also occur during a postbloom situation in form of small fecal pellet
fragments with high POC content.

1. Introduction

The export of particulate organic carbon (POC) in temperate and high-latitude shelf seas tends to fluctuate
between (1) a strong carbon export, often associated with e.g., diatom blooms, and (2) a prevailing POC retention
with small cells (<10 lm) and a major carbon recycling through the microbial loop [Wassmann, 1998;
Tamigneaux et al., 1999]. Several studies indicate that a future warming and freshening of these seas will increase
the importance of picoplankton [Li et al., 2009; Mor�an et al., 2010]. These investigations further propose that a
change in community size structure may also alter the export and retention of POC in the water column. It is
therefore important to focus on mechanisms and regulation of the vertical particle flux in contrasting phases, as
this forms the basis for understanding consequences for the biological carbon pump in a future ocean.

An enhanced POC export is typically observed during a phytoplankton bloom [Wassmann, 1998]. A mismatch
of intensely growing autotrophic algae and grazing by herbivore zooplankton causes first an accumulation of
biomass in the euphotic zone, followed by an enhanced vertical POC flux to deeper layers. Phytoplankton can
either sink in form of single cells (e.g., diatom resting spores) or as aggregates, formed by coagulation of sticky
cells [McCave, 1984; Smetacek, 1985; Alldredge, 2001]. Zooplankton like copepods and krill contribute to the
enhanced POC flux by grazing on small organic particles and producing large, fast-sinking fecal pellets
[McCave, 1984; Hamm et al., 2001]. In contrast, a retention dominated system is usually linked to a postbloom
situation [Wassmann, 1998]. Small primary producers and microzooplankton have been identified as central
actors in this system [Gifford et al., 1995; M�ller et al., 2006; Hodal and Kristiansen, 2008]. Due to the high car-
bon overturn, POC is here rather recycled in the pelagic food web than exported to depth.

Though the concept of a fluctuation between an export and retention dominated system is largely
accepted, recent studies indicate that the link ‘‘large particles—export’’ (respectively, ‘‘small particles—
retention’’) may not be representative for all pelagic systems at all times.
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McDonnell and Buesseler [2010] suggested, for example, that small particles (equivalent spherical diameter,
ESD: �0.07–0.12 mm) can have a high sinking velocity, while medium-sized ones (ESD: �0.12–0.50 mm) can
sink slower. Ballasting effects have been suggested to play a major role for the downward flux [e.g., Iversen
et al., 2010]. Further, it has also been put forward that cells of all sizes (even picoplankton) might contribute
to the vertical carbon flux [Richardson and Jackson, 2007]. The present study was therefore designed to
reconsider the link between particles sizes and intensity of the POC flux in the upper 100 m (zone of the
strongest attenuation of sinking organic material) under contrasting hydrographical scenarios, spring bloom
stages and grazer abundances by conducting sampling along a north-south transect in the Barents Sea (BS).

This Arctic shelf sea is surrounded by Norway, Svalbard, Franz Josef Land, and Novaya Zemlya (70–80�N;
15–60�E, Figure 1). It has a mean depth of 230 m and is a well-suited model area with contrasting water
masses. Cold Arctic Water (<0�C, 34.3–34.8 salinity) enters the BS from the northeast, while the inflow of
comparably warm and saline Atlantic Water (>3�C, >35.0 salinity) takes place at the southwestern opening,
resulting in the formation of the Polar Front [Loeng, 1991; Loeng et al., 1997]. Sea ice is locally formed north
of the Polar Front during winter and reaches its maximum extension in March to May. As ice-melting sets in,
the marginal ice zone (MIZ) gradually retreats north and eastward, and the ice-free areas become stratified
by a strong halocline. The resulting shallow mixed layer, the increased irradiance level, and the high nutri-
ent concentrations facilitate phytoplankton blooms in the MIZ, resulting in an enhanced vertical carbon
export before planktonic grazers become abundant [Olli et al., 2002]. Waters in the southwestern BS are per-
manently ice-free. Episodic strong winds from passing Polar Lows cause deep mixing (>30 m) until early
summer [Slagstad and St�le-Hansen, 1991; Ingvaldsen and Loeng, 2009]. This partly counteracts the develop-
ment of the spring bloom, but compared to the MIZ, the ice-free, Atlantic influenced waters have higher
irradiance levels, promoting an early start of the primary production in the southwestern BS [Wassmann
et al., 1991]. A peak bloom situation may thus still facilitate an enhanced POC export in the northern, Arctic
influenced part of the BS, while a retention dominated, postbloom situation with an effective carbon graz-
ing and recycling may already prevail in the southern, Atlantic part.

Sampling along a north-south transect in the BS thus gives insight into contrasting hydrographical situa-
tions and bloom scenarios within a short distance (late peak bloom in stratified waters versus postbloom in
deep-mixed waters). We collected samples at representative stations in the Arctic part, the Polar Front, and
the Atlantic part of the BS to quantify the hydrographical conditions, small-scale water shear, vertical diffu-
sivity, and suspended biomass in the upper 100 m. Also, we determined the particle size spectra of sinking
particles (>0.05 mm equivalent spherical diameter, ESDimage) collected by short-term sediment traps

Figure 1. Sampling localities in the Barents Sea (bathymetry is given in gray shades, see color bar for depths in meters).
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modified with gel jars (30, 40, 60, and 90 m). Based on these results, we addressed the questions (1) how do
turbulence, prevailing phytoplankton taxa, and zooplankton abundance (used as approximation for the
grazing pressure) influence the size spectra of the sinking particles and the vertical POC flux, and (2) if a
high POC flux of material >0.7 lm is always associated with a bloom scenario characterized by large sinking
particles (>0.5 mm) like diatom aggregates, marine snow, or fecal pellets.

2. Materials and Methods

Sampling was conducted on board the ice-enforced R/V ‘‘Helmer Hanssen’’ between 22 and 27 June 2011.
We followed the 30�E longitude in the Barents Sea from north to south and sampled at three drift stations
referred to as M1 (78�N), M2 (77�N), and M4 (75�N) (Figure 1 and Table 1). The stations were chosen as rep-
resentative locations for well-stratified Arctic Water masses (M1), the Polar Front (M2), and deep-mixed
Atlantic waters (M4) based on a northward high resolution CTD transect prior to station work (S. Basedow
et al., unpublished data, 2012).

2.1. Hydrography, Small-Scale Current Shear, and Diffusivity
A standard sampling program on the hydrography was conducted at each of the three stations. Vertical
profiles of temperature and salinity from surface to bottom were measured using a CTD-F (Sea-Bird
911plus). The CTD data were processed and bin averaged to 0.5 m using Sea-Bird’s standard software pack-
age. Sea ice conditions were visually estimated using the scale of the Norwegian Meteorological Institute
(11 categories from ice-free to fast ice) and recorded in the ship log.

Profiles of small-scale current shear and hydrography microstructure were measured with a loosely tethered
turbulence dropsonde MSS-90L, equipped with a pair of PNS06 shear probes [Prandke and Stips, 1998]. The
sets of three profiles were collected approximately every 4 h during each drift station. After processing of
each set, mean profiles cover the depth range from 8 to >100 m. In this paper, the sets of microstructure
profiles, which were taken closest in time to the deployment of each of the sediment traps with gel jars, are
presented (Table 2). The microstructure data were processed as described in Sundfjord et al. [2007], but had
a lower dissipation noise threshold due to use of a longer-bodied profiler and more optimal fall speed. Dissi-
pation e (W kg21), vertical shear rate S (s21), and diffusivity K (m2 s21) were calculated and bin averaged to
0.5 m:

e57:5m @u0=@zð Þ2 (1)

Table 1. Station Identity (Incl. Ice Cover) and Sampling Schedule for Suspended Materiala

Station Position Date Depth (m) Ice Cover
Water

Sampling (UTC) Depth of Water Samples (m)

M1 78.0973�N,
28.1258�E

22 Jun 2011 278 Very open
drift ice (30%)

16:15 1, 5, 10, 20, 30, 31, 40,
50, 60, 90, 120, 200

M2 76.9493�N,
29.7117�E

24 Jun 2011 235 Very open
drift ice (20%)

07:46 1, 5, 10, 20, 30, 40, 44,
50, 60, 90, 120, 200

M4 74.9107�N,
30.0033�E

27 Jun 2011 371 Open water 09:11 1, 5, 10, 20, 30, 40, 45,
50, 60, 90, 120, 200

aWater samples analyzed for particulate organic carbon (POC), total chlorophyll a >0.7 lm (Chl a) and Chl a >10 lm.

Table 2. Sampling Schedule of the Sediment Traps (Partly Modified With Gel Jars, Denoted as ‘‘Gel Trap’’)a and the LOPC Profilesb

Station

Deployment
Trap Array

(Start Time in UTC)

Deployment
Time Trap

Array (d21)

Gel Trap
Sampling

Depths (m)
Exported POC
Analyzed (m)

Exported Chl a
Analyzed (m)

Deployment
Turbulence Dropsonde

(Start in UTC)

Deployment
LOPC (Start Time

in UTC)

Number of
LOPC

Profiles

M1 22 Jun 2011, 15:40 0.22 30, 40, 60, 90 30, 40, 60 30, 40, 60 18:52 14:23 5
M2 24 Jun 2011, 09:00 0.19 30, 40, 60, 90 30, 40, 60 30, 40, 60 10:44 18:19 10
M4 27 Jun 2011, 10:40 0.17 30, 40, 60, 90 30, 40, 60 13:37 13:09 10

aChlorophyll a (Chl a) samples from M4 were lost.
bFor zooplankton biomass determination.
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[Yamazaki and Osborn, 1990], where m is the temperature dependent viscosity of seawater and @u’=@z is
shear resolved at cm scales (with u0 representing horizontal velocity variation and z depth)

S5
ffiffiffiffiffiffiffi
e=m

p
(2)

[Hebert and de Bruyn Kops, 2006], and

K5Ce=N2 (3)

[Osborn, 1980], where N is the Brunt-V€ais€al€a buoyancy frequency and C is the dissipation ratio, which is set
to a typical value of 0.2 [Moum, 1996].

2.2. Suspended Biomass (Chlorophyll a, Dominant Phytoplankton Taxa, POC, PON)
A vertical profile of suspended biomass was collected at each sampling station at 12 depths between surface
and 200 m by Niskin bottles attached to a sampling rosette (Table 1). On board the ship, the sampled water
was gently transferred into carboys and stored cool and dark until filtration within few hours. Size-
fractionated suspended chlorophyll a (Chl a) concentrations were determined from subsamples. Triplicates
(50–200 mL) from each sampling depth were vacuum-filtered on (1) Whatman GF/F filters for the total Chl a
(>0.7 lm) concentration and on (2) Whatman Nucleopore membrane filters (10 lm) for the Chl a size frac-
tion >10 lm. Extraction of Chl a was subsequently conducted in 5 mL methanol for 12 h at room tempera-
ture in darkness before measuring the Chl a concentration using a Turner Design 10-AU fluorometer
(calibrated with Chl a, Sigma C6144) before and after adding two drops of 5% HCl [Holm-Hansen and Rie-
mann, 1978]. A 100 mL subsample of the suspended water sample was fixated with 2% glutaraldehyde lugol
for phytoplankton cell counts. From the Chl a maximum, the most dominant species were determined by
counting at least 400 cells in a 50 mL sedimentation chamber after 25 h of sedimentation [Uterm€ohl, 1931].

Triplicate subsamples (200 mL) were filtered on precombusted Whatman GF/F filters to determine the con-
centration of suspended particulate organic carbon (POC) and nitrogen (PON). We removed larger organ-
isms such as copepods before freezing the filters at 220�C. Within 6 months after the cruise the filters were
exposed to fumes of concentrated HCl for 24 h (removal of inorganic carbon) prior to analysis on a Leeman
Lab CHN Elemental Analyzer [for details see Reigstad et al., 2008].

2.3. Zooplankton Abundance
Distribution and abundance of zooplankton grazers in the water column were assessed by a laser optical
plankton counter (LOPC; Rolls Royce Canada Ltd.) that was mounted on a frame together with a second
CTD-F (CTD: SBE19plusV2, Seabird Inc., F: Wetlabs ECO FL fluorescence sensor). The LOPC was deployed sev-
eral times at each station, and here we present data from the sampling closest in time to the deployment of
the sediment traps (Table 2). At M1 and M4, the LOPC was deployed in close temporal proximity, but at M2
9 h lay between both deployments (Table 2).

During the LOPC samplings, 5–10 vertical profiles from bottom to surface were obtained at each station
(Table 2). The LOPC counts particles flowing through its channel and registers their size and transparency
twice per second [Herman et al., 2004]. Based on the LOPC data, zooplankton abundance was calculated
and binned into 15 m depth intervals as described in Gaardsted et al. [2010] and Basedow et al. [2013]. To
exclude transparent, carnivorous zooplankton such as hydrozoans and chaetognaths, and all possible
aggregates, we limited our analyses to single element particles (SEPs) and more opaque multiple element
particles (MEPs) (attenuation index >0.4) [see Checkley et al., 2008; Basedow et al., 2013] in the size range of
0.63–2.00 mm ESD (equivalent spherical diameter).

At the Polar Front in the Barents Sea, these plankton particles typically consist of Calanus spp. CI-CVI, older
stages of Pseudocalanus spp. and some individuals of Metridia sp. [Basedow et al., 2014, and references
therein].

2.4. Vertical Flux of Chlorophyll a, POC and Particles (0.050–1.139 mm)
A semi-Lagrangian drifting sediment trap array was deployed at the three sampling stations for 4–5 h (Table
2). It was anchored to a free-drifting ice floe at M1 and M2, while it was drifting in the open waters at M4.
Paired sediment traps (outer diameter 72 mm, length 450 mm, KC Denmark) were arranged at sampling
depths of 30, 40, 60, and 90 m to measure the vertical POC and particle flux in the vertical zone of the high-
est attenuation in POC export (below the euphotic zone, Table 3). Following the conceptual idea of
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Lundsgaard et al. [1999] and Ebersbach and Trull [2008], one of the two sediment cylinders at each sampling
trap was used to determine POC and Chl a flux (in the following called ‘‘sediment trap’’). The content of
these traps was transferred into carboys right after recovery and subsampled for Chl a >0.7 lm, Chl a >10
lm, and POC. Samples were treated and analyzed as described above for the suspended water samples.
The other trap cylinder at each sampling depth was equipped with a gel jar, allowing for sampling and anal-
ysis of particle size composition of sinking material (in the following called ‘‘gel trap’’).

Previous to deployment of the trap array in the lower euphotic zone and below it, the gel traps with
Tissue-TecVR gel (Sakura Finetek Europe B.V., Netherlands) were prepared according to procedures devel-
oped by Iversen (M. H. Iversen, personal communication, 2010). Duran glass cups without spout (� 70 mm)
were filled with ca. 5 mm gel and frozen (220�C). These cups, exactly fitting into the trap cylinder, were
placed in the traps right before deployment and covered with GF/F filtered bottom water from the deploy-
ment area to allow gentle defrosting of the water soluble gel. Prefiltered (GF/F) bottom water (without fix-
ation) was also added to the sediment traps to balance the weight of the water filled gel trap. Deployment
time of 4–5 h was chosen to prevent an overload of particles in the gel traps. After recovery, the gel traps
were stored dark and cold for 0.5–2 h to allow particles to sink into the gel. The overstanding water in the
trap cylinder was then gently siphoned out with a silicone hose (� 3 mm) and a 3 mL plastic pipette, but
the last millimeter of water was left on the gel to prevent unintentional removal of particles. Gel jars were
immediately frozen (220�C) for later photography and image analysis ashore. Between January 2012 and
June 2012, the 12 gel jars were defrosted one by one at room temperature and stored in the fridge until
handling within 7 days. A preliminary test showed that storage in the fridge for a few days caused no sig-
nificant decay in particle abundance and size (data not shown). The complete surface of each gel sample
was photographed using a stereo microscope (15X magnification, Zeiss Discovery.V20) with an AxioCam
ERc 5s digital camera (5 megapixels). Due to small changes in gel thickness and different light reflections,
not all images were taken under the exact same light conditions, but a similar illumination was assured.
The resulting 150–200 images (resolution 0.431 pixels/ lm) were combined into 20–25 mosaic image using
the plugin MosaicJ [Th�evenaz and Unser, 2007] in Fiji [Schindelin et al., 2012]. Images were manually
inspected and particles that were included in two mosaics, light reflections, bubbles in the gel, and cope-
pods were removed. In this way, major errors were eliminated, but the amount of particles (1000–13,000
particles per glass jar) made it impossible to inspect every particle for, e.g., overlays with other particles. A
minor bias must therefore be assumed. Image analysis was conducted using 8-bit gray values converted
pictures. The threshold to distinguish particles from the background was determined manually for each
gel jar to correct for the slight differences in the pictures’ brightness. Applying the ‘‘plot profile’’ function
of ImageJ (Figure 2), we determined an intermediate value between the maximum gray value in particles
and the average of the background value by eyeballing and tested then the chosen values on several
images for its ability to distinguish between particle and background noise. Threshold values for all images

Table 3. Hydrophysical and Biological Characterization of the Sampling Stations M1, M2, and M4a

Station ID M1 M2 M4

Water mass Arctic Polar Front Atlantic
PC type Halocline Halocline Thermocline
PC interval (m) 7–23 14–21 35–38
Density across PC (kg m23) 0.96 1.19 0.15
Maximal Brunt-V€ais€al€a frequency N (s21) 0.034 0.054 0.025
Mixing depth (diffusivity >1024 m2 s21) 13.0 m 17.0 m 25.5 m
Euphotic zone (1% light, 430 nm) 65 m 54 m 45 m
Nutricline (�1 lM Nitrat 1 Nitrit) <20 m <30 m <30 m
Chl a max depth (m) 40 44 45
Chl a max concentration (lg L21) 4.38 1.42 1.6
Dominant suspended phytoplankton

taxa at Chl a max (cells L21)
Thalassiosira spp. 265,000 3700
Chaetoceros spp. 156,800 30,500 4050
Phaeocystis pouchetii 107,280 274,000b 1,810,090c

Bloom stage Late peak bloom Late bloom Postbloom

aPC, pycnocline and Chl a max, chlorophyll a maximum.
bAverage colony size 1.3 cells.
cAlmost exclusively single cells.
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were between a gray value of 75
and 100. Based on the threshold
value, the pictures were converted
into binary images and the 2-D area
of all particles extracted. The esti-
mated spherical diameter was then
calculated from the area of each
particle. However, the ESD of par-
ticles extracted from images differs
from the ESD that is estimated by
the LOPC (based on light absorb-
ance), and is more similar to the
occluded diameter that can be
computed for particles counted by
the LOPC [Checkley et al., 2008]. To
stress the difference between the
two estimates, in the following we
call the ESD estimated from images
for ESDimage, in contrast to the ESD
estimated by the LOPC. Since the
abundance of the smallest particles
in the images is underestimated
due to their low spectral reflec-
tance, the lower limit of included
particles was set to 0.05 mm
ESDimage following the methods
described in Jackson et al. [1997,
2005]. Particles within the accepted
size limit were logarithmically
binned according to their ESDimage

(Table 4) [following Jackson and
Checkley, 2011]. An upper limit of the bins was chosen to be

ffiffiffi
23
p
� 1.26 times of the lower bin limit. We

included all particles in the following analysis, since very large particles can—despite being very rare—
contribute considerably to the volume flux. Particle spectra were calculated following Jackson and Burd

[1998] to allow a comparison with
other data. The volume of sinking
particles was, however, computed
using an ellipsoidal volume calcula-
tion, since most of the particles had
this form. The third axis was here
chosen to be equal with the minor
axis of an ellipsis fitted to the 2-D
image the fitting function of
ImageJ. Volume flux was then cal-
culated as the sum of the ellipsoidal
particle volume in each bin, normal-
ized with the sampling time, the
trap cylinder opening and the bin
width (to make the results compa-
rable with other studies) and then
multiplied by the bin mean (Table
4) to make the area under the curve
(Figure 8) proportional to the total
flux.

Figure 2. Binary pictures were produced after determining the gray value threshold
between particle and background by the plot profile function of ImageJ. (a) Detail
image from one gel jar with a krill fecal pellet. (b) Gray values along the yellow line
(image (a)), starting at the lower left side, ending at the upper right side.

Table 4. Particle Bin Sizes Used in the Analyses and Particle Size Classification

Bin Bin Mean ESDimage
a Classification

1 0.057 Small Particles
2 0.071
3 0.090

4 0.113 Medium-Sized Particles
5 0.142
6 0.180
7 0.226
8 0.285
9 0.359
10 0.452

11 0.570 Large Particles
12 0.718
13 0.904
14 1.139

15 1.435 Very Large (Rare) Particles
16 1.808
17 2.279
18 2.870

aESD, equivalent spherical diameter in millimeter.
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Volume flux (used in the POC flux: volume flux ratio, Figure 9) was in contrast computed as the total ellipsoi-
dal volume per bin, normalized for deployment time and sediment trap cylinder opening.

3. Results

3.1. Hydrography, Small-Scale Shear Rate, and Diffusivity Profiles
The three sampling stations in the Barents Sea (BS) differed in terms of hydrography, shear rate distribution,
and vertical mixing. Very open drift ice (around 30% coverage, Table 1) was encountered at M1, the north-
ernmost station. Water temperature was <0�C throughout the upper 100 m (Figure 3), and the well-mixed
surface meltwater layer (upper 5 m, salinity �32.9) was separated by a staircase-like halocline (7–23 m) from
intermediate salinity water of Arctic origin (salinity 34.0–34.4 between 25 and 100 m, Figure 3). We will
therefore refer to the subsurface water masses at M1 as ‘‘Arctic Water.’’ Shear rate at 8–100 m was <2.8 s21

(Figure 4a), which has been described to be the threshold fragmenting the majority of diatom aggregates
[Alldredge et al., 1990]. Vertical diffusivity (K) was enhanced in the uppermost 13.0 m compared to the typi-
cal background values in deeper layers (for station intercomparison we delimited the ‘‘background diffusiv-
ity’’ to <1024 m2 s21) (Figure 4b and Table 3). In the following, this zone is referred to as mixing layer, since
it is actively mixed by turbulence [Brainerd and Gregg, 1995].

Station M2 was located in the central BS and also characterized by very open drift ice (20% coverage,
Table 1). Water temperature was below 0�C in the uppermost 60 m, but increasing to 2�C at 90 m (Figure
3). A melt water layer (salinity 32.6) in the upper 15 m was separated by a strong halocline between 15 and
20 m (Table 3) from the deeper slightly warmer, intermediate saline water of Atlantic origin (salinity 35.0 at
100 m). This layering is typically observed in the Polar Front, and this station will be referred to accordingly
in the following. Shear rate exceeded 2.8 s21 above 11 m (Figure 4a), the mixing layer depth was found in
the uppermost 17.0 m characterized by a K >1024 m2 s21 (Figure 4b and Table 3).

At the southernmost station, M4 no seasonal sea ice was found. Water temperature was 5.4�C in the uppermost
35 m, but decreased to�3.0�C below. Salinity was very stable (35.1) down to 100 m and the station was there-
fore only weakly stratified, primarily by a thermocline at 35–40 m (Figure 3 and Table 3). This station was
strongly influenced by Atlantic Water throughout the water column and showed a beginning summer

Figure 3. Hydrographical situation at the sampling station at (left) M1, (center) M2, and (right) M4.
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stratification due to warming of the
upper water layers. It is therefore
referred to as ‘‘Atlantic station’’ [Loeng,
1991]. Shear rate was >2.8 s21 in the
12 m top layer (Figure 4a), while the
actively mixing layer with K> 1024

m2 s21 reached down to 25.5 m (Fig-
ure 4b and Table 3).

3.2. Suspended Chlorophyll a,
Phytoplankton Community, POC,
and POC:PON Ratio
Different stages of the phytoplank-
ton spring bloom were encountered
at the three stations.

At M1 in Arctic Water, we found a
distinct chlorophyll a maximum (Chl
a max, 4.38 lg Chl a L21, Figure 5)
at 40 m. It was dominated by large
phytoplankton cells (>10 lm,
mainly diatom genera Thalassiosira
and Chaetoceros, Table 3). Single
cells or small colonies (4–5 cells) of

the flagellate Phaeocystis pouchetii (�5 lm diameter) were, however, also present (Table 3). The suspended
particulate organic carbon (POC) followed the depth distribution of Chl a and peaked at 40 m (494 mg C
m23, Figure 5). This suggests that the POC consisted to a great extent of autotrophic cells. The POC:PON
ratio of 8.2 (atomic ratio, a:a, average of the upper 40 m) is higher than the Redfield ratio of 6.6 and points
toward partly regenerated organic material above the Chl a max. Values of >17 at 90 m are too high to indi-
cate degraded marine material [Andreassen et al., 1996]. Instead, resuspended or terrestrial material from ice

Figure 4. (a) Shear rate and (b) diffusivity in the upper 100 m at station M1 (blue,
line), M2 (red, dashed), and M4 (black, stippled).

Figure 5. Suspended particulate organic carbon (POC, orange), suspended chlorophyll a (Chl a, green) and abundance of larger phyto-
plankton cells (Chl a >10 lm in % of total Chl a, black) in the upper 90 m at the sampling stations (left) M1, (center) M2, and (right) M4.
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melting or vertical advection must be assumed. Taking into account the nutricline at <20 m (Table 3), the
depth of the subsurface Chl a max and its concentration as well as the dominance of large diatoms, we clas-
sified this station to be in a late peak bloom stage (Table 3).

At station M2 in the Polar Front, the Chl a max was located slightly deeper and less distinct than at M2 (44 m:
1.42 lg L21, Figure 5). Single cells and few small colonies (up to eight cells) of P. pouchetii dominated and
large cells made up only 20–50% of the autotrophic biomass. The concentration of suspended POC peaked at
30 m (318 mg C m23, Figure 5). A POC:PON ratio of 8.6 (a:a average of the uppermost 44 m) indicated a similar
degradation of organic material down to the Chl a maximum at M2 compared to M1. Due to the deeper nutri-
cline (<30 m), a subsurface Chl a max at 44 m with lower concentration and a higher abundance of small
cells, M2 was suggested to be in a later bloom stage than M1. Since spring bloom diatoms were still present
(Table 3), M2 was categorized as ‘‘late bloom’’, though the situation in the Polar Front was highly patchy and
dynamic as indicated by variability of the Chl a depth distribution and the fluorescence measurements taken
with the CTD-F, mounted on the same frame as the LOPC (S. Basedow, unpublished data, 2012).

The Chl a concentration at M4 was similar to M2, and peaked at 45 m (1.59 lg L21, Figure 5). The phytoplank-
ton community however consisted almost exclusively of P. pouchetii single cells (Table 3). The suspended POC
showed a relatively constant concentration of �300 mg C m23 down to 45 m, before dropping to 120–
130 mg C m23. An POC:PON a:a ratio of 7.7 (average down to 45 m) indicates less degraded organic material
above the Chl a max, than at deeper layers (POC:PON >11.7 at �60 m) and the other sampling stations. M4
was in terms of nutricline depth (above 30 m), Chl a max depth, POC concentration, and POC:PON rather simi-
lar to M2, but the observed deep-mixing made a biological characterization difficult. Since, however, very few
diatoms were observed, the dominant species P. pouchetii was accompanied by unidentified flagellates, lower
fluorescence values were found, and the zooplankton community was at a later stage (C. Svensen, personal
communication, 2012) compared to M1 and M2 (Figure 6), we considered M4 to be in a postbloom stage.

3.3. Zooplankton Abundance and Vertical Distribution
Throughout the LOPC sampling at the three stations, we observed a large temporal variability in the vertical
zooplankton distribution (S. Basedow, unpublished data, 2012). Here we present data from the LOPC pro-
files carried out closest in time to the deployment of the sediment traps (Table 2). We limited the profiles to
the upper 105 m, to convey the situation in zooplankton abundance and distribution that could have influ-
enced the POC and particle flux into the sediment traps by grazing. Lowest abundances of zooplankton
were observed at the Arctic station M1, intermediate abundances at the M2 in the Polar Front, and very
high abundances of up to 12,000 individuals m23 at the Atlantic station M4 (Figure 6). At all stations, graz-
ing zooplankton (0.63–2 mm ESD) was distributed relatively evenly in the upper 105 m. No relationship
between the depth of the Chl a maximum (Figure 5) or the fluorescence maximum (Figure 6) and the verti-
cal distribution of zooplankton could be observed.

3.4. Vertical Flux of Chlorophyll a, POC, and the POC:PON Ratio of Sinking Material
The Chl a and POC flux as well as the atomic (a:a) ratio POC:PON of sinking material was determined from
the sediment traps. At M1, we measured a downward flux of �3.4 mg Chl a m22 d21 at both 30 and 40 m,
and a lower flux at 60 m (1.99 mg Chl a m22 d21, Table 5). Similarly to the Chl a flux, more POC was sinking

Figure 6. Zooplankton abundance (0.63–2.00 mm ESD, gray bars) in the upper 100 m at (left) M1, (center) M2, and (right) M4, obtained from 5 to 10 profiles of a laser optical plankton
counter, and fluorescence depth profile (green line) from a CTD-F, vertically deployed together.
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out at 30 and 40 m (856.2 and 813.8 mg C m22 d21, respectively) compared to 60 m (628.7 mg C m22 d21,
Table 5) at M1. The POC:PON ratio was comparable at all three depths (9.1–9.5, Table 5), indicating the out-
sinking of degraded marine material. At M2 less Chl a sank out compared to M1 (0.98–1.89 mg Chl a m22

d21, Table 5), though the downward POC flux with a peak at 40 m (832.2 mg C m22 d21, Table 5) was simi-
lar at both stations. Also, the POC:PON ratio was in the same range (8.7–9.5) at M1 and M2. In contrast, a
much higher POC flux was observed at the deep-mixed Atlantic station M4. The POC flux for M4 at 30 and
40 m was more than twice as high as at the other stations (1431 and 1847 mg C m22 d21, Table 5). The flux
at 60 m was, however, <30% greater at M4 than at M1 and M2. The POC:PON ratio of 6.2–7.5 was consistent
with the Redfield ratio of 6.6, suggesting a downward flux of relatively fresh and high quality organic mate-
rial relative to the more northern stations.

3.5. Numbers and Size-Spectra of Exported Particles
A qualitative assessment of the gel jars indicates that composition of sinking particles differed at M1, M2, and
M4 (exemplified by mosaic images from 60 m, Figure 7). Based on the image analyses, we conclude small par-
ticles were most important for the vertical flux at the Atlantic station (average over all depths 0.091 mm ESD-

image, Table 5). At M2 in the Polar Front the size of sinking particles was on average largest (ESD 0.115 mm,
Table 5). At both stations, the size increased with depth. Particles from the Arctic station were of intermediate
size (ESD 0.104 mm, Table 5), and though they became larger between 30 and 40 m, size decreased down to
90 m. Adding all depth, the number of exported particles was lowest at M2 (167 3 106 particles), intermediate
at M4 (450 3 106 particles), and highest at M1 (533 3 106 particles). Also, small particles (0.05–0.1 mm ESDimage,
Table 4) were at all sampling depths more abundant than large ones (0.50–1.14 mm ESDimage, Figure 8).

The highest number of particles per sampling depth was found in the gel jar deployed at 40 m at station
M4 (2.61 3 106 particles m22 d21). Small and medium-sized particles were more abundant at 40 m than
30 m at this station, but their numbers decreased again at 60 m. Large and extralarge particles were rare
(1–4 particles per gel jar) at these three depths, but large particles were more frequently observed at 90 m
(Figure 8e). In the gel jar deployed at 30 m at M1, we found the second highest number of particles (2.25 3

106 particles m22 d21). At this station, small and medium-sized particles (0.05–0.50 mm ESDimage, Table 4)
became less abundant with depth (Figure 8a), while large particles (0.50–1.14 mm ESDimage, Table 4) were
most abundant at 40 and 60 m (Figure 8a). At M2, we found fewest particles at 30 m while most were
observed at 40 m (Figure 8c).

The volume of exported particles is reflected by the area under the curve in the volume flux spectra (Figures
8b, 8d, and 8f). All spectra demonstrate that small particles contributed little to the volume export at the
three sampling stations, despite their high abundance. In contrast, large and extralarge particles explained
most of the downward volume flux. The highest volume fluxes were found at 40 m at M1 and M2 (Figures
8b and 8d). Due to the low magnification (15X) in the image analysis, only a semiquantitative particle identi-
fication was achievable, but a higher magnification would have enhanced the problem of choosing the level of

Table 5. Downward Fluxes of Chl a and POCa, the POC:PON (Atomic Ratio) of the Exported Material, Average Particle Size of Sinking Particles, and Semiquantitative Abundance of the
Most Abundant Particles Types Found in Gel Jars Deployed at M1, M2, and M4b

Depth (m)
Chl a

(mg m22 d21)
POC 6 SD

(mg C m22 d21) POC:PON 6 SD
Average Size

(ESDimage, mm)
Diatom

Colonies
FP (Krill)

(103 m22 d21)
FP

(Copepod) Other Copepods

M1 30 3.36 856.2 6 67.5 9.2 6 0.4 0.094 11 7 * 1 *
40 3.39 813.8 6 29.9 9.5 6 0.1 0.113 11 23 1 *
60 1.99 628.7 6 24.9 9.1 6 0.6 0.107 1 28 1 *
90 0.104 1 17 11

M2 30 0.98 748.6 6 37.5 8.7 6 0.4 0.111 * 9 * 1 *
40 1.89 832.2 6 32.5 9.1 6 0.4 0.114 1 21 1 *
60 1.36 823.8 6 54.7 9.5 6 0.2 0.117 * 19 1 1 1

90 0.119 * 26 1 1 *
M4 30 1431.0 6 108.7 7.0 6 0.3 0.083 * * 1 1

40 1847.4 6 169.7 6.2 6 0.3 0.086 * 0 11 11 11

60 927.2 6 99.6 7.5 6 0.6 0.091 * 11 11 11

90 0.104 1 36 * 11 *

aPOC and PON concentration at 90 m are lacking.
bESD, equivalent spherical diameter in millimeter; FP, fecal pellets; 11, many; 1, few; *, present; dominant particle group for each depth in bold. The category ‘‘other’’ holds sinking

particles which could not be clearly classified (detritus, different phytoplankton and zooplankton). The category ‘‘copepods’’ gives the number of copepods found per gel jar (maxi-
mum 60 individuals per gel jar in M4, 40 m).
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focus in the gel. Accordingly, we can state that mainly diatom colonies were exported at 30 and 40 m at station
M1, while krill and copepod fecal pellets dominated at 60 and 90 m (Table 5). Krill pellets fragments were enum-
erated (23–93 per gel jar, corresponding with up to 7–27 3 103 pellet fragments m22 d21, Table 5). Since krill
pellets are filiform, without defined tips and easily break apart [Wexels Riser et al., 2007], the fragments vary in
size. They can therefore not be used as defined fecal pellet units corresponding to a defined volume flux.

The low particle abundance at 30 m at M2 resulted also in a low volume flux. It was difficult to identify the
small and medium-sized particles exported here, consisting mainly of fecal pellets and fine detritus (Table
5). At the other sampling depths at M2 large krill fecal pellets and diatom colonies dominated.

Gel jars deployed at M4 (30, 40, and 60 m) contained mainly small unidentifiable particles, assumingly detri-
tus, as well as several benthic larvae. In addition, we found a remarkably high number of copepods (up to
60 individuals) in the 40 and 60 m gel jar (Table 5). Since only 1–2 individuals were found per glass jar at
most other sampling depths, and individuals fallen into the gel were not able to continue grazing due to
the high gel viscosity, we do not regard the short-term sediment traps with gel jar we used as generally
more attractive to copepods. Small unidentified particles and krill fecal pellets dominated in the 90 m jar at
M4 (36 3 103 pellets m22 d21, Table 5).

Figure 7. Qualitative support for the observations at station (a) M1, (b) M2, and (c) M4. Note that copepods and nauplii (in M4) were
removed before the image analysis was conducted.
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4. Discussion

In the present study, we investigated the vertical fluxes and characteristics of sinking particles in the central
Barents Sea (BS) along a north-south transect from Arctic Water, crossing the Polar Front, to Atlantic Water.
Along this track, we expected to meet contrasting situations with respect to hydrography, small-scale turbu-
lence, vertical mixing, phytoplankton spring bloom stage, zooplankton abundance, and vertical export rates
of particulate organic carbon (POC). We anticipated that there would be a (late) peak spring bloom and a
high POC flux at station M1 in the stratified Arctic Water, an ‘‘intermediate stage’’ spring bloom and POC
flux at M2 in the Polar Front, and strong POC retention in the Atlantic deep-mixed, postbloom waters at M4.
Surprisingly, the POC export at 60 m was �30% higher at M4 in Atlantic Water compared to the flux at sta-
tion M1 in Arctic Water (930 versus 630 mg C m22 d21) even if large and extralarge sinking particles (0.5–
2.8 mm equivalent spherical diameter, ESDimage, Table 4) were extremely rare down to 60 m at M4.

To explore the impact of physical and biological processes on the size spectra of sinking particles and the
POC flux, we evaluate the role of small-scale turbulence, phytoplankton and zooplankton abundance on the
particle size spectra and then discuss if a high POC flux is always associated with large sinking particles
(>0.5 mm ESDimage) like diatom aggregates, marine snow, and krill fecal pellets.

4.1. Influence of Small-Scale Shear Rate and Diffusivity on the Particle Size Spectra and the POC Flux
Small-scale shear rates in the range of 0.02–13.11 s21 were calculated for the upper 100 m at the three sampling
stations (Figure 4a) and the maximum rates computed in our study somewhat exceeded previously reported
shear rates for the inner ocean and estuaries (1027210 s21) [Ki�rboe et al., 1990, and citations therein].

An enhanced shear rate is commonly assumed to facilitate the coagulation of particles into larger, usually
faster sinking aggregates by increasing the collision rate of suspended particles [McCave, 1984; Jackson, 1990].

Figure 8. (Left) Number size spectra and (right) computed volume flux spectrum of particles collected in the gel traps at 30, 40, 60, and 90 m (top: M1, middle: M2, bottom: M4). Note
that the broken y axis in the right column.
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However, the shear rate in the uppermost 11–12 m of station M2 and M4 was >2.8 s21 (corresponding to an
energy dissipation rate >0.001 m2 s23) exceeded a threshold, which has been suggested to fragment the
majority of diatom aggregates [Alldredge et al., 1990]. This indicates that particle aggregation was not pro-
moted in the surface layer at M2 and M4. At the deeper chlorophyll a maximum (Chl a max) depths, the shear
rates were however �0.035 s21 at all three sampling stations, resulting in a theoretical particle maximum size
of �5 mm ESDimage [Jackson, 1990]. Particles in all deployed gel traps had ESDimage <3.2 mm, and were well
below this upper theoretical size limit.

We conclude that shear rates at station M1 at all depths were in a range facilitating formation of larger par-
ticles. Diatoms, which are known to excrete a natural ‘‘glue’’ for particle formation [Alldredge, 2001], were
also abundant here (Table 3) and may have promoted particle aggregation further. In contrast, the forma-
tion of larger particles may have been limited by the high shear rate in the uppermost 10 m at M2 and M4.
This is however not assumed to have a strong effect on particle aggregation, since the Chl a max, the zone
of highest biomass, particle abundance and accordingly particle aggregation, was located well below this
layer of high shear rate (Figure 4a and Table 3).

The vertical diffusivity (K) indicates a mixing layer of 13.0, 17.0 m, and 25.5 m at M1, M2, and M4, respec-
tively. This means that enhanced, surface-driven vertical mixing reached considerably deeper (>10 m) at
the sampling station in Atlantic Water compared to the stations in Arctic Water or the Polar Front. A deeper
mixing at M4 may enhance the sinking speed, with consequently reduced exposure time for degradation
processes to take place [Svensen et al., 2012], and can help explain the high POC flux and the presence of
rather fresh material down to 60 m at this station (Table 5, POC:PON ratio of exported material of 6.2–7.5
compared to the Redfield ratio of 6.6).

4.2. Flux of Autotrophic Biomass in Form of Small and Large Particles
The concentrations of suspended Chl a at the deep chlorophyll maximum were highest in the late peak

bloom situation at M1 and lowest during the late bloom station at M2 (Figure 5 and Table 3). This may contra-

dict our bloom classification into M1 ‘‘late peak bloom,’’ M2 ‘‘late bloom,’’ M4 ‘‘postbloom’’ at the first sight, but

frequent LOPC deployments at M2 indicated a high short-time variability in the relative pigment distribution

fluorescence measurements especially in the Polar Front. During six deployments at station M2 (within 30 h),

the fluorescence peak changed from >500 to <100 (relative units) (S. Basedow, unpublished data, 2012). A

direct comparison between Niskin-bottle based Chl a concentrations and the closest in time fluorescence

from LOPC profiling was therefore not feasible (Figures 5 and 6, linear regression, R2 5 0.2–0.3). Instead, this

reflects the previously reported strong spatial variability in the Polar Front [Våge, 2010], and indicates the

importance of including not only Chl a concentrations, but also hydrography, euphotic depth, nutricline, and

the zooplankton composition in the bloom stage characterization as it was done in the present study.

At the Arctic Water station M1, we found a high number of particles <0.05 mm ESDimage in the 30 m gel trap.
These particles were not included in the image analysis due to underestimation concerns for particles this
small (see section 2) and we could not identify them visually in the jars. The high Chl a export at this sam-
pling depth at M1 (Table 5) however suggests the export of autotrophs. Thalassiosira single cells (10–50 lm
diameter) [Hasle and Syvertsen, 1997] or short chains were highly abundant in the sediment traps deployed
for 24 h during the present cruise (M. Reigstad et al., unpublished data, 2012) and it is likely that this genus
was also abundant in the gel jars. Diatoms and their resting spores have previously been described to sink
with velocities of >10 m d21 [Smayda, 1970] and they represented one of the most abundant particle groups
in gel traps deployed along the Antarctic Peninsula [McDonnell and Buesseler, 2010]. Despite the unquestion-
able importance of large particles in the downward mass transport, we argue accordingly that it is important
to keep in mind that also particles <0.05 mm ESDimage do sink and can contribute to the vertical export,
especially if their density is high enough or if the particles are ballasted [Iversen et al., 2010].

In terms of mass flux, sinking diatom aggregates are much more important than single cells. They form an
important vehicle of POC export and they were highly abundant in the gel jar deployed at 40 m at M1 (Table 5).
The genera Chaetoceros and Thalassiosira dominated the suspended phytoplankton sample taken at this station
(Table 3) and were also found in the 24 h deployed sediment traps (M. Reigstad et al., unpublished data, 2012).
We suggest accordingly that they contributed to aggregate formation at M1, especially since some species in
these genera are known to have potentially sticky cells or produce adhesive extracellular substances [Ki�rboe
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and Hansen, 1993; Hansen and Ki�rboe, 1997], the natural ‘‘glue’’ in aggregate formation [Alldredge, 2001]. How-
ever, even if the particle spectra from M1 indicate a shift from many small particles at 30 m (0.05–0.1 mm ESD-

image) to a majority of particles >0.9 mm ESDimage at 40 m, our data cannot confirm that this was solely due to
aggregate formation. Also cell growth and increasing length of chains may have contributed to enhanced parti-
cle size.

Phaeocystis pouchetii single cells (5 lm) and small colonies clearly dominated the Chl a max at station M4 (45 m:
>1.8 3 106 suspended cells L21). This cell number exceeded the total phytoplankton cell abundance at the other
stations by more than one order of magnitude. Based on the high cell number, a substantial cell collision rate and
a potentially high aggregate formation may have been anticipated. Conversely, P. pouchetii has been shown to
have low stickiness [Passow and Wassmann, 1994] and cell counts from the sediment traps deployed for 24 h dur-
ing the present cruise (M. Reigstad et al., unpublished data, 2012), indicate that mainly single cells or small colo-
nies were sinking out at 60 m. This may contradict previous results that cells<5 lm ESD are too small to sink
[Legendre and Rivkin, 2002]. However, at M4, we also observed vertical mixing down to 35–38 m (Table 3), and
assumed that this mixing enhanced the vertical transport of P. pouchetii cells down to the mixed depth. As phyto-
plankton grows mainly in the illuminated upper water layers, deep mixing can contribute to the distribution of
biomass also deeper layers (with initially lower cell concentrations) and may then result in a greater contribution
of phytoplankton cells to the higher carbon flux. Olli et al. [2002] and Reigstad and Wassmann [2007] described
this previously, when P. pouchetii single cells were exported in substantial amounts (60–200 mg C m22 d21) to
>90 m.

4.3. Potential Impact of Zooplankton on the Particle Size Spectrum
Zooplankton can influence the size spectrum of sinking particles and the vertical POC flux in various ways:
They can (1) generally reduce the number of particles due to grazing, (2) contribute to the formation of
larger particles (fecal pellets) by repackaging small food particles into fecal pellets, and (3) modify the parti-
cle size spectra toward smaller particles due to fragmentation of both fecal pellets and aggregates [Wexels
Riser et al., 2007]. Data from the LOPC indicate that abundances of grazers in the size range of 0.63–
2.00 mm ESD (different stages of Calanus spp.) reached up to 12,000 individuals m23 at M4 in Atlantic Water
(Figure 6). We can therefore assume that the effect of zooplankton was strongest at M4.

The combined approach of particle size spectra (Figure 8) and the semiquantitative analysis of the material
in the gel jars (Table 5) also showed that copepod fecal pellets (FP) were frequently sinking out at 40 and
60 m at M4 (Table 5 and Figure 8f: particles 0.10–0.35 mm ESDimage in the volume flux spectra match Cala-
nus spp. FP sizes [Wexels Riser et al., 2002]). This indicates that the comparable low Chl a concentrations at
M4 with a prevailing phytoplankton community of <10 lm (Figure 5) could sustain a considerable zoo-
plankton population with a high FP production that provided an important vehicle for vertical carbon flux
in this postbloom situation. The great amount of unidentifiable detritus at M4 may also origin from FP, but
being modified to smaller particles through fragmentation. The copepod species, Calanus finmarchicus,
abundant at M4 (C. Svensen, personal communication, 2012) has been shown to impact the particle size
spectra through unintended fragmentation of FP while feeding [Svensen et al., 2012].

In addition, krill pellets fragments were abundant at most sampling depths at M1 and M2, as well as 90 m
at M4 (Table 5), matching previous findings from the region [Wexels Riser et al., 2002] and confirming, that
krill pellets form, besides diatom aggregates and copepod pellets, an important pathway of downward car-
bon flux. Since krill pellets however easily break apart when being produced, the number of pellets and pel-
let fragments does not give a good approximation to the actual biomass sinking out.

Grazing has been described to take place associated with thin layers of enhanced particle abundance [M€oller
et al., 2012], often formed at strong density gradients [Alldredge et al., 2002; Prairie et al., 2013]. Prior to the sam-
pling, we therefore assumed that a strong vertical gradient in particle size spectra resulting from thin layer distri-
bution of grazers, modifying the particle composition, would be detected by the high vertical resolution of
sediment traps. Our LOPC data did however indicate a rather even zooplankton distribution in the upper 90 m
at all three stations, neither associated with a density gradient or layers of high autotrophic biomass, which
could serve as preferred feeding sites (Figure 6). Neither did we see a strong vertical shift in particle size spectra.
Furthermore, no evidence for a synchronized diurnal vertical migration (DVM) could be identified during the
sampling period (S. Basedow, unpublished data, 2012), supporting previous observations from the Arctic
summer with 24 h of day light [Blachowiak-Samolyk et al., 2006; Wexels Riser et al., 2007]. The particle modifica-
tion by zooplankton therefore seemed to take place over a wide vertical zone, and this distribution could be
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expected to increase the attenuation and reduce vertical flux. Still, the POC flux was high at 60 m on the M4
station.

4.4. Linking the Downward Flux of POC and Particles >0.05 mm ESDimage

The POC fluxes measured during the present study (30–90 m: 630–1850 mg C m22 d21) match previously
reported values from the upper 200 m of the central BS during spring (<2000 mg C m22 d21) [Olli et al.,
2002; Reigstad et al., 2008]. It was however unexpected that the POC flux in the 4–5 h deployed traps of the
present study (60 m: 628–927 mg C m22 d21) exceeded the export measured in the subsequently deployed
24 h sediment traps (60 m: 208–322 mg C m22 d21) (M. Reigstad et al., unpublished data, 2012). Lampitt
et al. [1993] reported a strong diurnal variability in the marine snow abundance, and suggested variation in
the diel production and export to cause it. An analogous reason may have contributed to the variability in
the POC flux in our results. Despite no DVM was observed, there may be diurnal variability in feeding activ-
ity influencing the flux. Juul-Pedersen et al. [2006] stated that a deployment time of 6 or 24 h did not change
the results of the measured carbon flux significantly in a Greenlandic fjord. Since the 24 h deployments of
the traps used in the present study have previously been calibrated through comparison with thorium-
based flux measurements in the Barents Sea and found good [Coppola et al., 2002], we suggest further
investigation of the potential diurnal flux variability.

The deployment of the gel jars revealed that a high particle number flux (up to 109 particles m22 d21

mm21) takes place in the Arctic, Polar Front, and Atlantic part of the BS. These fluxes exceed the number of
particles found in studies conducted in the Southern Ocean by up to 3 orders of magnitude [Ebersbach and
Trull, 2008; McDonnell and Buesseler, 2010; Ebersbach et al., 2011]. In addition particles <0.05 mm ESDimage

were highly abundant in our gel traps deployed in the BS, while Ebersbach and Trull [2008] excluded par-
ticles <0.15 mm ESD since they were infrequently observed. These results may hint toward major
differences in particle flux in the two ecosystems [present study: uppermost 90 m on productive Arctic shelf,
Ebersbach and Trull, 2008; Ebersbach et al., 2011: 100–439 m in the open Southern Ocean off Kerguelen
Island and Tasmania], the sampling period [present study: early European summer, Ebersbach and Trull,
2008; Ebersbach et al., 2011: late Austral summer] methodological differences like gel type [present study:
Tissue tec gelVR , Ebersbach and Trull, 2008; Ebersbach et al., 2011: acrylamide], trap aspect ratio [present
study: 6.4, Ebersbach and Trull, 2008; Ebersbach et al., 2011: 5], or a combination of different factors.

Previous to our study, we anticipated a higher POC export at the late peak bloom station M1 in Arctic Water
compared to the late bloom at M2 in the Polar Front and the postbloom at M4 in Atlantic Water. A high sus-
pended biomass of diatoms during the (late) peak bloom (M1) was expected to result in an enhanced

export of large aggregates, while the post-
bloom scenario (M4) was supposed to
have a high carbon turn over and a pre-
vailing POC retention [Wassmann, 1998].
However, our results indicate a higher
POC flux in the well-mixed Atlantic part
compared to the Arctic part or the Polar
Front. High flux combined with weak
stratification has previously been
described from this area during spring
and summer [Olli et al., 2002; Reigstad
et al., 2008]. It was surprising to find this
high POC export combined with the, on
average, smallest particles at M4 (Table 5).
Large and extralarge particles were here
very rare compared to M1 and M2. How-
ever, when a POC: volume ratio is calcu-
lated from all sampling depths (Figure 9),
it becomes obvious, that sinking particles
at M4 had a higher POC: volume content
than particles at M1 and at most depths at
M2. The ratios calculated for M4 are

Figure 9. Average POC:volume ratio of the particles found in the gel traps.
Note: No POC samples were available for 90 m and sample M2, 30 m con-
tained very few particles, which makes the result probably biased.
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comparable with fecal pellet car-
bon: volume ratios, and suggest
the downward flux was of cope-
pod fecal pellet origin (Table 6).
Those from M1 and 40 and 60 m
samples from M2 correspond in
contrast to the carbon:volume
ratios described for diatom aggre-
gates [Alldredge, 1998].

Since these signals are also in agreement with the semiquantitative observations from the gel jars, we sug-
gest that the high abundance of copepods and their repackaging of material into fecal pellets played a
major role in enhancing the flux at station M4 compared to M1 and M2, despite that the fecal material was
partly fragmented, probably resulting in reduced sinking rates.

5. Conclusion

Enhanced POC export is often linked to a late (peak) bloom situation and strong downward flux of large, fast-
sinking particles like phytoplankton aggregates, marine snow, and zooplankton fecal pellets [Riebesell, 1991; All-
dredge, 2001]. The results from the sediment traps (partly modified with gel jars) deployed in the Arctic influ-
enced part of the Barents Sea (BS) confirm this (POC, 60 m: 629 mg C m22 d21). However, our study also
indicate that an even higher vertical POC export (60 m: 927 mg C m22 d21) took place in at the deep-mixed,
postbloom sampling station in the Atlantic influenced part of the BS. Here many small and medium-sized par-
ticles (0.05–0.5 mm ESDimage) were observed down to 60 m, while larger ones were rare. Coagulation into larger
particles appeared to play a minor role in this case, due to the low stickiness of the most abundant phytoplank-
ton taxon Phaeocystis pouchetii, but the producing fast-sinking fecal pellets obviously enhanced the vertical
transport substantially, despite a high degree of fragmentation, resulting in a small average particle size.

We argue accordingly that the general concept of associating large, fast-sinking particles of phytoplankton
origin with an export dominated system during the late peak bloom or late bloom phase contrasting small,
slow-sinking particles with a postbloom retention dominated system, is not valid at all instances: we
observed that an enhanced POC export can not only take place in form of diatom aggregates during the
late bloom, but also in a deeper mixed, postbloom situation dominated by Phaeocystis pouchetii. This sce-
nario co-occurred with a substantial zooplankton community. The flux was mainly characterized by small
and medium-sized particles (0.05–0.5 mm ESDimage), and the POC:volume ratio matched fecal pellets. Zoo-
plankton modification is therefore a likely driver of this high flux.

By including not only the POC flux, but also the size of sinking particles, the obtained, highly variable POC:-
volume ratio may help identifying the source and mechanisms driving the downward flux of organic mate-
rial. Understanding the mechanisms and attenuation of flux better, and including this into ecosystem- and
carbon flux models, will improve predictions of future vertical carbon flux resulting from changing climate
and the resulting pelagic ecosystem, where both the phytoplankton and zooplankton communities may
change.
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