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Abstract 33 

Seagrasses play a vital role in structuring coastal marine ecosystems, but their 34 

distributional range and genetic diversity have declined rapidly over the past decades. 35 

In order to improve conservation of seagrass species, it is important to predict how 36 

climate change may impact their ranges. Such predictions are typically made with 37 

correlative species distribution models (SDMs), which can estimate a species’ potential 38 

distribution under present and future climatic scenarios given species’ presence data 39 

and climatic predictor variables. However, these models are typically constructed with 40 

species-level data, and thus ignore intraspecific genetic variability, which can give rise to 41 

populations with adaptations to heterogeneous climatic conditions. Here, we explore the 42 

link between intraspecific adaptation and niche differentiation in Thalassia hemprichii, a 43 

seagrass broadly distributed in the tropical Indo-Pacific Ocean and a crucial provider of 44 

habitat for numerous marine species. By retrieving and re-analyzing microsatellite data 45 

published previously, we delimited two distinct phylogeographical lineages within the 46 

nominal species and found an intermediate level of differentiation in their 47 

multidimensional environmental niches, suggesting the possibility for local adaptation. 48 

We then compared projections of the species’ habitat suitability under climate change 49 

scenarios using species-level and lineage-level SDMs. In the Central Tropical Indo-Pacific 50 

region, models for both levels predicted considerable range contraction in the future, 51 

but the lineage-level models predicted more severe habitat loss. Importantly, the two 52 

modelling approaches predicted opposite patterns of habitat change in the Western 53 

Tropical Indo-Pacific region. Our results highlight the necessity of conserving distinct 54 

populations and genetic pools to avoid regional extinction due to climate change and 55 

have important implications for guiding future management of seagrasses. 56 

 57 

Keywords: climate change scenario, genetic lineage, niche conservation, range shift, 58 

species distribution model, Thalassia hemprichii  59 
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Introduction 60 

Marine ecosystems worldwide are experiencing rapid shifts in environmental conditions 61 

due to climate change, the most evident of which is a steady increase in sea surface 62 

temperature (SST) (Cheung et al. 2013). These changes can affect marine organisms in 63 

different ways, such as by altering the structure of trophic webs (e.g., Hyndes et al. 64 

2016), biasing sex ratios in species with temperature-dependent sex determination (e.g., 65 

Miyoshi et al. 2020), and redefining the geographical ranges of species (e.g., Pinsky et al. 66 

2020). In order to guide natural resource management under this changing marine 67 

landscape, it is crucial to make future predictions of suitable habitat for target species as 68 

accurately as possible. 69 

Species distribution models (SDMs), which estimate relationships between species’ 70 

presence data and environmental predictors, have been used extensively to predict 71 

potential changes in species’ distributions under climate change scenarios (Guisan et al. 72 

2017). The majority of SDMs are constructed at the species-level or even higher 73 

taxonomic levels, and this is particularly true for applications to marine species 74 

(Robinson et al. 2011; Robinson et al. 2017; Chefaoui et al. 2018; Jayathilake & Costello 75 

2018; Melo-Merino et al. 2020). One fundamental and critical assumption underlying 76 

species-level SDMs is niche conservatism, which assumes that all populations of a 77 

species have analogous environmental requirements and respond in a similar way to a 78 

changing environment (Guisan et al. 2017; Smith et al. 2019). But this assumption 79 

ignores intraspecific variation, in particular local adaptation and phenotypic plasticity 80 

(Pazzaglia et al. 2021), which are frequently observed especially in broadly distributed 81 

taxa (e.g., Marín-Guirao et al. 2016; Duarte et al. 2018; King et al. 2018; Benito Garzón et 82 

al. 2019; Peterson et al. 2019; Zhang et al. 2020b). 83 

SDMs constructed with data for lineages below the species level can account for 84 

possible local adaptations and therefore can provide more reliable niche estimations 85 
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and habitat suitability projections for species with high intraspecific variation. For 86 

instance, a species-level SDM for the threatened Japanese crayfish Cambaroides 87 

japonicus (De Haan 1841) predicted that this species might lose a large proportion of its 88 

suitable habitat in the future, whereas lineage-level SDMs for the same species predicted 89 

a weaker impact of climate change overall (Zhang et al. 2021). The importance of 90 

taxonomic units (i.e., above and below the species level) in distribution modelling has 91 

recently been recognized (Benito Garzón et al. 2019; Peterson et al. 2019; Smith et al. 92 

2019; Collart et al. 2021), which has resulted in more SDM applications for terrestrial 93 

and freshwater species that consider intra-specific variation (e.g., Ikeda et al. 2017; 94 

Razgour et al. 2019; Zhang et al. 2021). Conversely, relatively few SDM studies have 95 

investigated this issue in the marine realm (but see Assis et al. 2018a; Cacciapaglia & van 96 

Woesik 2018; Lowen et al. 2019).  97 

Seagrasses are one of the most critical habitat engineers of tropical coastal marine 98 

environments. They not only harbor rich marine biodiversity in seagrass meadows, but 99 

also provide a number of ecosystem services, such as primary productivity, habitat 100 

restoration, resources for marine life, and human recreation (Unsworth et al. 2018). 101 

Maintaining these services is key to achieving conservation and economic goals under 102 

global change. Yet, seagrass ecosystems are declining worldwide at an annual rate of 7% 103 

due to multiple natural and human-mediated disturbances (Orth et al. 2006; Waycott et 104 

al. 2009). It is noteworthy that climate change has received considerable attention as a 105 

major factor for the increasing loss of seagrass meadows (Jordà et al. 2012; Thomson et 106 

al. 2015; Repolho et al. 2017; Duarte et al. 2018; Smale et al. 2019). This is particularly 107 

true for the tropical Indo-Pacific bioregion, which supports the most seagrass diversity 108 

and a high diversity of associated flora and fauna (Short et al. 2007) but has suffered 109 

from striking degradation of seagrass coverage (Coles et al. 2011; Rasheed & Unsworth 110 

2011; Grech et al. 2012; Chefaoui et al. 2018; Olsen et al. 2018; Brodie et al. 2020). Given 111 
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the global ecological roles of seagrasses, it is imperative to make accurate forecasts of 112 

their distribution patterns in the face of climate change, but seagrasses are “among the 113 

least-studied groups” (Melo-Merino et al. 2020) with respect to range shift projections. 114 

The majority (if not all) of SDM studies on seagrasses have been at the species level and 115 

therefore did not incorporate potential intraspecific variation. 116 

The seagrass Thalassia hemprichii (Ehrenberg) Ascherson (Hydrocharitaceae) is a 117 

perennial climax species that is widely distributed in the tropical Indo-Pacific bioregion 118 

(Green & Short 2003), extending from Australia, the peripheral limit of its eastern range 119 

(Hernawan et al. 2017), to East Africa in the West Indian Ocean (Jahnke et al. 2019a). It 120 

reproduces sexually via seeds and asexually via vegetative growth of rhizomes. 121 

Uprooted adult plants can potentially float for months and hence colonize distant areas 122 

(Wu et al. 2016). In addition, this seagrass forms buoyant seeds that remain afloat for 123 

long enough to disperse a few hundreds of kilometers (Lacap et al. 2002). A recent 124 

survey revealed that seedlings can also disperse for over a month due to the 125 

accumulation of oxygen in the body tissue (Wu et al. 2016). Thus, T. hemprichii has 126 

excellent long-distance dispersal potential that may play a significant role in shaping 127 

population genetic structure (Lowe & Allendorf 2010). This species may be particularly 128 

vulnerable to climate change because it exhibits spatial separation of the sexes 129 

(dioecious), reinforced by physiological and morphological differentiation of each sex to 130 

variable microhabitats (Hultine et al. 2016). Recent genetic studies of T. hemprichii 131 

detected genetic lineage divisions in the East and West Indo-Pacific Ocean (Hernawan et 132 

al. 2017; Jahnke et al. 2019a), but we still do not have a clear understanding of the 133 

distribution of lineages across the entire tropical Indo-Pacific region, or whether these 134 

diverged lineages are expected to respond differentially to climate change. 135 

In the present study, we used T. hemprichii as a model to: (i) examine divergence of 136 

genetic lineages in the tropical Indo-Pacific Ocean; (ii) test if phylogeographical lineages 137 
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exist, and if so, quantify niche differentiation between distinct lineages; (iii) predict 138 

climate change impacts on the species’ range with species-level and lineage-level SDMs. 139 

By incorporating potential intraspecific variation, our SDMs can provide more realistic 140 

predictions on how climate change will shift future distributions of a habitat-forming 141 

seagrass, thus generating valuable knowledge for guiding the long-term management of 142 

this species in the tropical Indo-Pacific coast. 143 

 144 

Materials and methods 145 

Datasets and intraspecific genetic clustering 146 

We retrieved and compiled molecular datasets of two recently published regional 147 

studies of T. hemprichii, i.e., 17 populations in the East Indo-Pacific (Hernawan et al. 148 

2017) and 11 populations in the Western Indian Ocean (Jahnke et al. 2019a). We used 149 

twelve microsatellites (i.e., Thh3, Thh15, Thh34, Thh41, TH07, TH34, TH37, TH43, 150 

TH52, TH66, TH73) for population structuring and lineage sorting of 1021 individuals 151 

from 28 populations across the tropical Indo-Pacific (Fig. 1a). We then estimated 152 

pairwise genetic differences among populations using the Cavalli-Sforza and Edwards 153 

chord distance and represented them in a network using the R package IGRAPH (Csardi 154 

& Nepusz 2006) with the addition of a custom script by Johansson et al. (2015). To 155 

visually inspect the relationships within and between the main genetic clusters inferred 156 

by STRUCTURE (Pritchard et al. 2000), we pruned the full network by sequentially 157 

removing edges (i.e., network pairwise links among sampling sites) of decreasing 158 

genetic distance until the point at which the main groups of tightly connected nodes still 159 

remained connected (in order to avoid the split of any large network cluster from the 160 

main network). We estimated the classification of sampling sites within network 161 

communities at each step of the pruning process with the “fastgreedy” community 162 

detection algorithm implemented in IGRAPH (Clauset et al. 2004, Blondel et al. 2008). 163 



7 
 

Network analysis (Fig. 1b), Bayesian-based STRUCTURE (Fig. 1c), and molecular 164 

variation (AMOVA) (Supporting Information Table S1) revealed strong overall genetic 165 

differentiation among two distinct lineages occupying the Tropical Indo-Pacific. Based 166 

on the landscape genetic analysis of Cushman et al. (2014) and the definitions of global 167 

marine ecoregions (Spalding et al. 2007), we classified these two lineages as distinct 168 

genotypes encompassed within two biogeographic regions: the Western Tropical Indo-169 

Pacific (WTIP) and the Central Tropical Indo-Pacific (CTIP). We then used the two 170 

lineages in subsequent ecological niche modelling. 171 

 172 

Distribution data and marine predictors 173 

We collected a total of 62,465 presence records of T. hemprichii from a recently 174 

assembled and cleaned dataset of global marine forests (Assis et al. 2020) and published 175 

literature (see Data availability). In SDM studies, it is critical to correct for sampling bias 176 

and remove clustered records, which may over-represent environmental conditions in 177 

better-surveyed regions (Kramer-Schadt et al. 2013). Therefore, presence records were 178 

filtered by: i) removing duplicated records at the resolution of our environmental 179 

predictors (i.e., keeping only one record per 5 arcmin grid cell); ii) removing records on 180 

land or with distance to land > 370 km (following other SDM studies for coastal species; 181 

e.g., Zhang et al. 2020a), and iii) performing spatial thinning using a distance of 20 km 182 

using the R package spThin (Aiello-Lammens et al. 2015). This distance is a reasonable 183 

approximation of the dispersal potential for this plant traveling via floating propagules 184 

(Lacap et al. 2002), and it can also reduce potential effects of sampling bias while 185 

retaining sufficient numbers of presence records for our analyses. As significant 186 

clustering was present in the data (particularly around Australia), these procedures 187 

removed a large proportion (up to 99%) of the presence data. Ultimately, we kept 519 188 

records for the species-level model (hereafter “species model”, records from the entire 189 
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region), 479 records for the CTIP lineage-level model (hereafter “CTIP model”, records 190 

within CTIP region only), and 26 records for the WTIP lineage-level model (hereafter 191 

“WTIP model”, records within WTIP region only) (Fig. 1a). 192 

It is important to properly select the extent of the study area used to sample 193 

background records when constructing presence-background SDMs for target species 194 

(Barve et al. 2011; Vale et al. 2014). For coastal marine species, it is common practice to 195 

develop SDMs within the Exclusive Economic Zone (i.e., within 370 km from coast) (e.g., 196 

Lins et al. 2018; Stephenson et al. 2020; Zhang et al. 2020a). Besides, given the 197 

distributional range and records of T. hemprichii from online repositories and literature 198 

(Fig. 1a), we restricted our study to the areas within 370 km of land between 25°E and 199 

180°E, and between 50°S and 40°N. Please note that our study extent includes southern 200 

Australia and New Zealand, where this species does not naturally occur. It is always 201 

challenging to estimate an appropriate study extent for a species (Barve et al. 2011), but 202 

the extent we selected should represent the plausible accessible areas to T. hemprichii 203 

over evolutionary time. We subsetted this main study extent to create separate study 204 

extents for the WTIP and CTIP lineages (Fig. 1a) based on our molecular results (see 205 

details in the Lineage genetic diversity in the Results section). 206 

A number of marine predictors have been demonstrated to influence the 207 

geographical distribution of marine species (Bosch et al. 2018). Based on previous 208 

studies (including the seagrasses; e.g., Jayathilake & Costello 2018; Zhang et al. 2020a), 209 

we initially considered twenty such predictors for modeling, including two geographical 210 

predictors (water depth and distance to land) from the Global Marine Environment 211 

Datasets (http://gmed.auckland.ac.nz; Basher et al. 2018) and eighteen environmental 212 

predictors (including annual mean, maximum, minimum, range, average of the minimum 213 

records per year, and average of the maximum records per year) for SST, sea surface 214 

salinity, and sea surface current velocity from the Bio-ORACLE database v2.1 215 



9 
 

(https://www.bio-oracle.org; Assis et al. 2018b). In SDM studies, highly collinear 216 

predictors can lead to spurious interpretations of variable importance and unexpected 217 

predictions if correlations change in different projection scenarios (Dormann et al. 218 

2013). Hence, we checked collinearity by calculating the pairwise Pearson’s correlation 219 

coefficients (r) among the twenty predictors (Supporting Information Fig. S1) and 220 

selected one among highly correlated predictors (|r| > 0.7) (Dormann et al. 2013) based 221 

on present-day and future data availability, biological importance, and previous findings 222 

on important variables for estimating seagrass distribution (Jayathilake & Costello 223 

2018). In the end, we retained the two geographical predictors and six environmental 224 

predictors: annual mean current velocity, minimum current velocity, annual mean sea 225 

surface salinity, annual range of sea surface salinity, annual mean SST, and annual range 226 

of SST.  227 

To project future habitat suitability of T. hemprichii, we considered four 228 

representative concentration pathway (RCP) scenarios (i.e., RCP 2.6, RCP 4.5, RCP 6.0, 229 

and RCP 8.5), and two time periods (i.e., 2050s: the average for 2040–2050s, and 2100s: 230 

the average for 2090–2100). We obtained the corresponding projections of future 231 

marine environmental layers from the Bio-ORACLE database v2.1. We assumed that the 232 

two geographical predictors would remain unchanged for future projections (Zhang et 233 

al. 2020a). 234 

 235 

Niche differentiation estimation 236 

To estimate whether the two lineages of T. hemprichii occupy different niche spaces, we 237 

characterized their realized niches using Hutchinsonian n-dimensional hypervolumes 238 

(Hutchinson 1957) sensu Blonder et al. (2018). We quantified the realized niches of the 239 

WTIP and CTIP lineages using the eight selected marine predictor variables (see 240 

previous section). In short, we extracted and standardized (i.e., zero means and unit 241 
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variance) marine predictor values associated with the presence records for the two 242 

lineages. We then determined the volumes and shapes of the realized niches with the R 243 

package hypervolume using the Gaussian method (Blonder 2019). We measured the 244 

extent of niche differentiation between the two lineages with the kernel.beta function 245 

(Mammola & Cardoso 2020) in the R package BAT (Cardoso et al. 2015, 2020). Following 246 

Carvalho & Cardoso (2020), niche differentiation between hypervolumes was 247 

partitioned into the following two processes: niche shift (replacement of space between 248 

hypervolumes) and niche contraction/expansion (net difference between 249 

hypervolumes). The niche differentiation index ranges from 0 (niches overlap entirely) 250 

to 1 (niches are fully dissimilar) (Carvalho & Cardoso 2020; Mammola & Cardoso 2020). 251 

In addition, to ascertain whether the realized niches of the two lineages were still 252 

different after considering the environmental space available, we conducted a niche 253 

similarity test (Broennimann et al. 2012) using the R package ecospat (Di Cola et al. 254 

2017). This test compares the empirical realized environmental niche of CTIP with 255 

random niches permuted for WTIP over its available environmental space.  256 

 257 

Species distribution modelling 258 

We built SDMs using Maxent 3.4.4, a presence-background machine learning algorithm 259 

with two main complexity tuning parameters: regularization multiplier, which penalizes 260 

complexity by removing predictors with low predictive ability, and feature class, which 261 

allows for increasing complexity of the model response (Phillips et al. 2017). For each 262 

model (species model, WTIP model, and CTIP model), we randomly generated 10,000 263 

background points within the corresponding study region. As Maxent’s default settings 264 

for the main tuning parameters can result in overfit models (Radosavljevic & Anderson 265 

2014), we used a version of the R package ENMeval under expansion (1.9.0; 266 

https://github.com/jamiemkass/ENMeval) to tune our Maxent models over ranges of 267 
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each parameter and chose models with optimal complexity based on performance 268 

metrics calculated on withheld data (Muscarella et al. 2014). In brief, we considered a 269 

total of 32 candidate models with different combinations of regularization multipliers 270 

(RM; ranging from 0.5 to 4.0, at 0.5 interval), which penalize complexity more with 271 

higher values, and feature classes (linear, quadratic, hinge), which allow responses with 272 

differing flexibility. Rather than using conventional random cross-validation to judge 273 

model performance, we used a spatial block cross-validation approach, which typically 274 

results in evaluations that better reflect the model’s ability to transfer to non-analog 275 

conditions (Roberts et al. 2017; Valavi et al. 2019). Briefly, each study region was 276 

divided into four spatial blocks containing an equal number of presence records, three 277 

blocks were used for model training and the remaining block for validation, then this 278 

procedure was repeated until every block was used for model validation. As with 279 

previous studies (e.g., Radosavljevic & Anderson 2014; Kass et al. 2020), the optimal 280 

model was selected by sequentially considering a 10% omission rate (i.e., the percentage 281 

of validation presences with habitat suitability predictions lower than that of the 10th 282 

quantile of training predictions), followed by the area under the receiver operating 283 

characteristics curve (AUC) calculated on the validation data (i.e., the model’s ability to 284 

discriminate between presence and background records) to break ties. We acknowledge 285 

that AUC is a poor measure for the absolute performance of presence-background 286 

models (e.g., Jiménez‐Valverde 2012), but nonetheless this metric can be used to make 287 

relative comparisons of candidate models fitted with the same data (Lobo et al. 2008).  288 

Predictive performances of the three best-performing Maxent models were further 289 

assessed using the continuous Boyce index, a reliable evaluation measure of presence-290 

only algorithms (Hirzel et al. 2006). The continuous Boyce index ranges from –1 to 1, 291 

where positive values suggest that model predictions match well with the presence data, 292 

and negative values suggest a poor match (Hirzel et al. 2006). Variable importance for 293 
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each model was determined using permutation importance calculated by Maxent. For 294 

this method, presence and background data values for each predictor variable in turn 295 

were randomly permuted and training AUC recalculated—a large drop in AUC indicates 296 

higher importance (Phillips 2017). In addition, we estimated the marginal response 297 

curves of important predictors (i.e., curves representing habitat suitability along a range 298 

of the values of one predictor variable while keeping the other predictors constant). We 299 

converted continuous habitat suitability predictions for T. hemprichii to binary values 300 

using the same 10% omission thresholds that we used for model evaluation 301 

(Radosavljevic & Anderson 2014). We then transformed the binary habitat suitability 302 

projections to the Lambert Cylindrical Equal Area projection at a resolution of 10 km 303 

and calculated areas of potential distribution (Zhang et al. 2020a).  304 

It is of great importance to consider species dispersal ability into SDMs when 305 

estimating climate change impacts (Araújo et al. 2006; Guisan et al. 2017). Given species’ 306 

trans-regional movements across barriers in marine environments (Robinson et al. 307 

2011; Pearman et al. 2020) and the relatively high dispersal ability of T. hemprichii 308 

(Lacap et al. 2002), we estimated range size change under an unlimited dispersal 309 

scenario, which assumes that species have unrestricted dispersal ability and can 310 

disperse to any suitable area (Araújo et al. 2006; Zhang et al. 2020c). Range size change 311 

was calculated as follows: 312 

range size change = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

×100%,  313 

where negative and positive values represent range contraction and expansion, 314 

respectively. 315 

We used the optimal species- and lineage-level models to make projections of future 316 

potential distribution based on the different RCP scenarios for the two future time 317 

periods. Making projections using SDMs into novel environmental space (i.e., outside the 318 

range of training data) results in some degree of extrapolations, which should be 319 
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quantified to determine levels of uncertainty (Elith et al. 2010). Therefore, we measured 320 

the similarity between present-day and future environmental conditions using 321 

multivariate environmental similarity surfaces (MESS) (Elith et al. 2010). In practice, we 322 

calculated the MESS with the R package rmaxent (Baumgartner & Wilson 2021) for each 323 

model using the top three most important predictors via permutation importance: 324 

positive MESS values indicate conditions more similar to the training data, while 325 

negative values indicate conditions more different (i.e., novel). 326 

 327 

Results 328 

Lineage genetic diversity 329 

We found significant genetic divergence between the populations of T. hemprichii in the 330 

Western Tropical Indo-Pacific and Central Tropical Indo-Pacific regions. The genetic 331 

data for the two lineages that we used for this analysis originated from disparate 332 

sources, and we found some minor discrepancies (see Data availability) between the 333 

two datasets after carefully inspecting the calibrated fragment lengths of the 334 

microsatellites (Hernawan et al. 2017; Jahnke et al. 2019a). Regardless, even after 335 

deleting a few microsatellites (e.g., Thh41, TH07 and TH37), two genetic lineages in T. 336 

hemprichii remained significantly diverged (i.e., CTIP and WTIP) across the Tropical 337 

Indo-Pacific (Fig. 1b, 1c). Genetic variation among lineages accounted for 43.42% of the 338 

total genetic variation (ФCT = 0.43, p < 0.0001; Supporting Information Table S1). Very 339 

limited genetic admixture was observed between the CTIP and WTIP lineages. The CTIP 340 

lineage harbored strikingly rich genetic diversity, with three times more alleles and 341 

allelic richness, and eight times fewer private alleles than the WTIP lineage (Supporting 342 

Information Table S2). 343 

 344 

Niche differentiation between hypervolumes 345 
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The size of the realized niche of the CTIP lineage was one order of magnitude greater 346 

than that of the WTIP lineage (CTIP lineage: 17295.6; WTIP lineage: 2273.2) (Fig. 2). 347 

Niche differentiation between the two hypervolumes (0.97) was mainly due to variation 348 

in niche size (0.79), whereas niche shift contributed only marginally (0.18). Difference in 349 

realized niches was easily distinguished via water depth and distance to land, with the 350 

WTIP lineage selecting a narrow range of water depth and distance to land (Fig. 2). The 351 

two lineages also exhibited niche differentiation with respect to annual mean sea surface 352 

salinity. In addition, the CTIP lineage niche was broader with respect to annual mean 353 

SST and annual range SST, whereas that of the WTIP lineage was broader for annual 354 

mean current velocity, minimum current velocity, and annual range of sea surface 355 

salinity (Fig. 2). Niche differentiation between the two hypervolumes was also high 356 

(0.86) when we considered only marine environmental predictors (i.e., excluding water 357 

depth and distance to land) (Supporting Information Fig. S2). Regarding the niche 358 

similarity analysis, after 1000 iterations the resulting p-values were above 0.05 for both 359 

overlap metrics available in the ecospat package (0.10 for Schoener’s D and 0.07 for 360 

Warren’s I; Supporting Information Fig. S3). This demonstrates that the environmental 361 

niche occupied by WTIP is less similar to the niche occupied by CTIP when compared to 362 

random permutations over the full environmental space of WTIP. 363 

 364 

Model performance 365 

The tuning parameter settings with optimal complexity for the species-level and lineage-366 

level models ranged from relatively simple to complex. The optimal species-level model 367 

was the most complex (hinge features and 0.5 RM), while those for the lineage-level 368 

models were simpler (CTIP: linear/quadratic/hinge features and 2.5 RM; WTIP: 369 

linear/quadratic features and 0.5 RM) (Table 1). The average 10% omission rate was 370 

considerably lower for the WTIP lineage-level model (3.57%) than for the other models 371 
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(CTIP: 26.69%; species: 17.93%, Table 1) — as this was lower than the expectation of 372 

average 10% omission for the metric, it indicates that the optimal settings results in 373 

models that may over-predict to some extent for WTIP. Although omission rate was used 374 

primarily for model selection, the average validation AUC scores used to break ties were 375 

very high for all optimal models (Table 1); we think this is due to the fact that a majority 376 

of presence data are in near-shore waters (Fig. 1a), which likely inflated the model’s 377 

ability to discriminate between these presences and background records in deeper 378 

water. In addition, all three optimal models had relatively high continuous Boyce index 379 

scores (over 0.90; Table 1), indicating that final model predictions matched the presence 380 

data well. The eight predictors had different levels of importance in the three models, 381 

but water depth and distance to land consistently played important roles (Table 2). In 382 

particular, these two predictors accounted for more than 95% of permutation 383 

importance in the WTIP model (Table 2). For the CTIP and species models, annual mean 384 

SST also had a high permutation importance (~29% and ~24%, respectively) (Table 2). 385 

Response curves for water depth and distance to land suggest that shallow coastal 386 

waters are more suitable for T. hemprichii (Supporting Information Fig. S4, Table S3). 387 

 388 

Present-day habitat suitability projections 389 

Under present-day conditions, species and lineage models projected similar but not 390 

identical habitat suitability patterns, with a large part of the East African coast and the 391 

Pacific region as suitable habitat for this species (Fig. 3). Compared with the species 392 

model, the CTIP model predicted more southern distribution in Australia (Fig. 3c, 3d). In 393 

particular, the CTIP model predicted suitable conditions in the Spencer Gulf, Southern 394 

Australia, where the species does not naturally occur (Fig. 3a, 3c). The species model did 395 

not capture this pattern (Fig. 3b, 3d). Moreover, the WTIP model identified more 396 

suitable habitat in the Red Sea than the species-level model (Fig. 3c, 3d). Overall, 397 
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species- and lineage-level models predicted comparable suitable areas for T. hemprichii 398 

in the WTIP region (species model: 302,800 square km; WTIP model: 315,000 square 399 

km), while the species model predicted broader suitable area for the CTIP region 400 

(species model: 1,873,800 square km; CTIP model: 1,757,900 square km). 401 

 402 

Climate change impacts on habitat suitability 403 

Species- and lineage-level models resulted in different future habitat suitability 404 

projections in the CTIP region, with the lineage-level model resulting in predictions of 405 

more loss of suitable areas (Table 3, Fig. 4). Both species- and lineage-level models 406 

predict considerable future loss of suitable area in the CTIP region, especially on the 407 

Sunda Shelf (i.e., Indonesia and Malaysia) (Table 3, Fig. 4). Compared with the species 408 

model, the CTIP model projected more extensive range loss under all climatic scenarios 409 

(Table 3). Interestingly, both models predicted that the species will shift slightly 410 

southwards in Australia.  411 

Species-level and lineage-level models predicted different impacts of climate change 412 

on habitat suitability for T. hemprichii in the WTIP region (Table 3). The WTIP model 413 

predicted range expansion (except under the RCP 2.6 scenario for the 2050s), whereas 414 

the species model consistently indicated range contraction (Table 3). Overall, both 415 

species- and lineage-level models predicted that future climate change marginally 416 

affects habitat suitability in the WTIP region and that changes in range size were mostly 417 

< 15%, with the exception of a higher value (~24%) for the species model in the 2100s 418 

for the RCP 8.5 scenario (Table 3). The WTIP model predicted that habitat suitability of 419 

T. hemprichii in the WTIP region will remain stable in the future, while the species model 420 

predicted range contraction in the Red Sea and expansion in southern Madagascar and 421 

South Africa (Fig. 4). 422 
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Both species and CTIP models consistently showed that MESS values in the Sunda 423 

Shelf were slightly negative, which demonstrates small differences in climatic conditions 424 

between the present-day and future scenarios for this region (Supporting Information 425 

Fig. S5). For the WTIP region, the lineage and species model showed high environmental 426 

similarity except slight environmental dissimilarity in the Red Sea between present-day 427 

and future scenarios (Supporting Information Fig. S5). These results indicate a low 428 

degree of extrapolation in our model predictions. 429 

 430 

Discussion 431 

This study identified two diverged genetic lineages (WTIP and CTIP) in the seagrass T. 432 

hemprichii across the tropical Indo-Pacific. The observed niche differentiation between 433 

the two lineages suggests a violation of the niche conservatism assumption for species-434 

level SDMs, and our lineage-level predictions of present and future range importantly 435 

avoid this assumption. Despite differences between the habitat suitability predictions of 436 

the lineage-level and species-level SDMs, they consistently predict that the CTIP lineage 437 

is at greater risk of range contraction in the future. Although genetic or genomic data 438 

that can be used to construct lineage-level SDMs are not always available, our study 439 

emphasizes how incorporating information about phylogeographical structure when 440 

modelling the impacts of climate change provides more realistic predictions to better 441 

understand future range shifts (Smith et al. 2019; Zhang et al. 2021).  442 

 443 

Critical marine predictor variables for seagrasses 444 

Both the lineage-level and species-level SDMs showed that distance to land, water depth, 445 

and annual mean SST represent the most essential factors in explaining the 446 

distributional patterns of T. hemprichii. The importance of these three predictors has 447 

been emphasized in previous studies of Thalassia species (e.g., Duarte 1991; Lapointe et 448 
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al. 1994; Fourqurean & Zieman 2002; Zhang et al. 2014) and other seagrasses (e.g., 449 

Baumstark et al. 2016; Jayathilake & Costello 2018). Further, water depth and distance 450 

to land play significant roles in other efforts to map seagrass using WorldView-2 451 

satellite imagery (Baumstark et al. 2016). Water depth correlates with the amount of 452 

sunlight irradiance that seagrasses receive underwater and with the rate of respiration 453 

of rhizomes and shoot density, thereby constraining the extension of seagrass meadows 454 

and primary productivity to shallower areas (Duarte 1991). SST affects the 455 

photosynthesis, growth, and mortality of seagrass, as demonstrated by field 456 

measurements and experimental manipulations of T. hemprichii (Collier & Waycott 457 

2014; Pedersen et al. 2016; Rasmusson et al. 2020). In general, the total nitrogen and 458 

phosphorus concentrations of the water column decrease with increasing distance from 459 

land, despite a gradient of decreasing P limitation but increasing N limitation (Lapointe 460 

et al. 1994). Nutrient inputs thus interact with changing temperatures to produce 461 

impacts on seagrass shoot densities, areal production rates, and biomass (Lapointe et al. 462 

1994; Yamakita et al. 2011). The predominant roles of the two geographical predictors 463 

and the negligible roles of marine environmental predictors in the WTIP lineage-level 464 

model (Table 2) may partially explain the marginal impacts of climate change predicted 465 

for this region.  466 

Due to data availability, we used marine predictors at a spatial resolution of 5 467 

arcmin (about 9.2 km at the equator). Within each grid cell, predictors such as 468 

temperature and salinity might be homogeneous, but water depth can vary 469 

considerably. Seagrasses mainly inhabit shallow waters (Duarte 1991) and it would be 470 

reasonable to define study extent using water depth. We found that when limiting the 471 

study region using water depth, our main conclusions regarding range size change still 472 

held, but the predictive ability of the SDMs decreased (Supporting Information Tables 473 

S4-S5). Given the limitations of the water depth layer and the decreased model 474 
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performance, we decided to delineate the study region using distance to land. To 475 

increase the reliability of marine SDMs, future efforts should be made to develop more 476 

high-resolution marine predictors. 477 

 478 

Incorporating intraspecific variation into SDMs for seagrasses 479 

Seagrasses provide vital ecological services in marine ecosystems and SDMs have been 480 

applied to this taxonomic group for multiple purposes (see reviews by Robinson et al. 481 

2011; Robinson et al. 2017; Melo-Merino et al. 2020). Nonetheless, all previously 482 

reported SDMs on seagrasses were built at the species level and thus have not 483 

considered possible intraspecific variation. For instance, Chefaoui et al. (2018) 484 

developed species-level SDMs for two seagrasses (Posidonia oceanica and Cymodocea 485 

nodosa) in the Mediterranean Sea and predicted that the two species are likely to 486 

experience dramatic habitat loss in the future. We fully agree that species-level SDMs 487 

are by definition informative, but given the high prevalence of intraspecific variation in 488 

marine macrophytes (e.g., King et al. 2018), and the significance of intraspecific 489 

variation in SDMs (Benito Garzón et al. 2019; Smith et al. 2019; Zhang et al. 2021; Collart 490 

et al. 2021), incorporating intraspecific genetic variation into forecasts of seagrass 491 

distribution should result in more realistic scenarios of the potential consequences of 492 

climate change, providing that adaptive intraspecific variation can be distinguished from 493 

clonal variation for seagrass populations under changing conditions. 494 

The importance of taxonomic resolution in SDMs has been addressed in several 495 

terrestrial and freshwater species, but much more sparsely for marine species (see 496 

review by Smith et al. 2019; Collart et al. 2021). Species-level SDMs that disregard 497 

existing intraspecific variation can either over- or under-estimate climate change impact 498 

on distributional change. For instance, species-level models for the lodgepole pine Pinus 499 

contorta consistently predicted more extreme habitat loss than subspecies-level models 500 
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(Oney et al. 2013). As another example, although a species-level model for the reef-501 

building coral Porites lobata predicted over 5% habitat expansion, when modelling this 502 

species as five genetically isolated subpopulations the prediction was ca. 50% habitat 503 

loss (Cacciapaglia & van Woesik 2018). In the present study, the species model 504 

consistently predicted low impacts of climate change in the CTIP region in comparison 505 

to the lineage model (e.g., the habitat loss vs. stability in the Sunda Shelf in Fig. 4c vs. Fig. 506 

4d). As for the WTIP region, we found the opposite pattern. Here, the lineage model 507 

predicted stable future habitats in the southern Red Sea (Fig. 4c), whereas the species 508 

model predicted habitat loss, including to the north of Mauritius (Fig. 4d). In addition, 509 

both species and lineage models predict a southward range expansion in the southern 510 

CTIP, but only the species model clearly predicts this in the WTIP. Southern expansion is 511 

likely correlated with future temperature increases in areas which are now too cold 512 

(Supporting Information Fig. S6). We should note that MESS values in the equatorial 513 

regions were slightly negative, which indicates novel future environmental conditions. 514 

This is due in part to higher future SST values for this region than those used by the 515 

present-day SDM (Supporting Information Fig. S7)—thus, SDM projections in this region 516 

should be associated with more uncertainty.  517 

It could be hypothesized that the difference between the future projections for the 518 

two lineages can be attributed to the large difference in sample size (479 records for 519 

CTIP and 26 records for WTIP). This effect should be minimal because i) compared with 520 

other algorithms, Maxent is less sensitive to sample size and has better performance for 521 

small sample sizes (e.g., Hernandez et al. 2006; Wisz et al. 2008); ii) models for both 522 

lineages had similarly high predictive abilities when using cross-validation with spatial 523 

partitioning, which results in lower performance metrics for overfit models than 524 

conventional random partitioning (Roberts et al. 2017). Further, as the range of WTIP is 525 

much larger than that of CTIP, it is reasonable that less occurrence data would be 526 



21 
 

necessary to properly characterize the occupied environments for CTIP. However, SDMs 527 

were developed in this study without considering species physiological information and 528 

traits related to dispersal and resilience to climate change, and such considerations in a 529 

mechanistic SDM could result in different future projections from what we observed. 530 

Further studies involving both field investigations and associated data updates and 531 

methodological developments for models [e.g., developing ensembles of small models 532 

(Breiner et al. 2018) or changing the study extent] would further improve our 533 

predictions for climate change impacts on T. hemprichii in the Tropical Indo-Pacific. 534 

 535 

Intraspecific variation and local adaptation in seagrass 536 

Differences in response to thermal changes related to intraspecific variation, whether 537 

eco-physiological or evolutionary, are well-documented in seagrasses (King et al. 2018). 538 

This variation, partly based on phenotypic plasticity or local adaptation, ultimately 539 

might permit seagrasses to acclimatize and adapt to changes in climate (Duarte et al. 540 

2018). The marine predictor variables that played a predominant role in our SDMs (e.g., 541 

annual mean SST and water depth) could be responsible for both long- and short-term 542 

local adaptation of T. hemprichii to a changing climate (King et al. 2018; Jahnke et al. 543 

2019b). In support of this, common-garden experiments have revealed a clear local 544 

adaptation to increased temperatures in Zostera marina (Franssen et al. 2011; 2014), 545 

and to a depth gradient in Posidonia oceanica (Marín-Guirao et al. 2016; Jahnke et al. 546 

2019b). Further, parallel adaptation of Z. marina to thermal clines along the American 547 

and European coasts was demonstrated using a space-for-time substitution design and 548 

gene expression profiling (Jueterbock et al. 2016). Such adaptive local differentiation 549 

induced by divergent environmental forces (e.g., light, depth and temperature) has led to 550 

structured populations and lineages in seagrasses at various spatial scales (Dattolo et al. 551 
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2014; Jueterbock et al. 2016; Jahnke et al. 2019b), suggesting that adaptation to local 552 

conditions is a key mechanism for seagrasses to face global climate change. 553 

Although we identified high genetic differentiation between the WTIP and CTIP 554 

lineages (Supporting Information Table S2), which may represent an extreme case of 555 

intraspecific genetic divergence, we were not able to ascertain the adaptive components 556 

of divergence across a common landscape within the tropical Indo-Pacific. In T. 557 

hemprichii, natural selection imposed by environmental heterogeneity might have 558 

resulted in the evolution of locally adapted populations with considerable variation in 559 

productivity, growth rate and competitive interactions (Martins & Bandeira 2001; Lyimo 560 

et al. 2006; Larkum et al. 2018). Low genetic difference between lineages with 561 

associated environments that are very different is likely the result of admixture between 562 

geographically distant populations over evolutionary time, resulting in the species 563 

having a wide range and a broad fundamental niche. In this case, lineage-level SDMs 564 

would not be appropriate and a full-species SDM should be used because the 565 

populations are distant spatially but not genetically. 566 

Future studies should focus on distinguishing neutral genetic differentiation from 567 

local adaptation using reciprocal transplant trials (e.g., common gardens and 568 

provenance trials; see Joyce & Rehfeldt 2013; Ralph et al. 2018). Also, it is most 569 

important to mechanistically assess the sub-lethal susceptibility of T. hemprichii to 570 

thermal stress, including the effects of heat and hypoxia on photosynthesis, respiration, 571 

and primary productivity (Pedersen et al. 2016; Rasmusson et al. 2020), before the 572 

strongest impacts of future climate change are sustained. Intraspecific genetic diversity 573 

across populations can increase a species’ adaptive capacity and result in cascading 574 

effects to the entire ecosystem (Evans et al. 2017). It is thus important to identify the 575 

most temperature-tolerant genotypes from the WTIP and CTIP lineages, perhaps by 576 

manipulating temperature to quantify the performance of individual genotypes of T. 577 
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hemprichii across thermal gradients. It is also essential to clarify whether genotype 578 

complementarity or dominance enhance the adaptive capacity in a population (Hughes 579 

& Stachowicz 2011). 580 

 581 

Conservation implications 582 

The challenge of designing effective actions for seagrass conservation in the Indo-Pacific 583 

exists in the gap between science, policy, and practice (Fortes 2018). In this study, the 584 

separation in geographic distribution and high niche differentiation between the CTIP 585 

and WTIP lineages suggest that T. hemprichii populations may be locally adapted (Merilä 586 

& Hendry 2014). For species with significant intraspecific genetic diversity, it is crucial 587 

to help maintain the species’ potential for adaptive responses to climate change by 588 

conserving this diversity (D’Amen et al. 2013). In particular, lineage differentiation can 589 

be explained by recruitment rate (Lyimo et al. 2006; Sherman et al. 2018), nutrient 590 

resorption (Martins & Bandeira 2001), dispersal barriers (Melroy et al. 2017), and 591 

evolutionary history from the origin center to the distributional margins (Mukai 1993). 592 

Dramatic future habitat loss in the CTIP was predicted by both the species- and lineage-593 

level models (Fig. 4), stressing the urgency to develop monitoring programs to rescue 594 

evolutionary and/or ecologically important units in T. hemprichii, particularly the 595 

populations and gene pools that have persisted through past long-term climate change 596 

because of local adaptation (Bell 2017; Hernawan et al. 2017). Furthermore, the 597 

recognition of high niche differentiation between the WTIP and CTIP lineages may help 598 

to establish coherent principles and regulating practices by which the different areas 599 

that T. hemprichii inhabits can be protected efficiently. 600 

The biomass, abundance, and productivity of seagrasses are highly correlated with 601 

both habitat suitability (Martins & Bandeira 2001; Saunders et al. 2013) and epiphytic 602 

species biodiversity (Lyimo et al. 2008). Optimizing productivity of T. hemprichii in a 603 
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given site or population can help to increase associated community diversity (Eklöf et al. 604 

2006; Lyimo et al. 2008). Thus, it is necessary to explore how community diversity and 605 

structure correlate with the genetic composition and structure of the foundational 606 

species T. hemprichii. Such research can help validate the results of SDMs in this study 607 

and quantify the relationship between T. hemprichii and its relevant community 608 

components (Ikeda et al. 2017). Since populations in each of the CTIP and WTIP lineages 609 

are locally adapted, policymakers and stakeholders are encouraged to use local seed 610 

sources of T. hemprichii to ensure management strategies for successful restoration and 611 

conservation purposes. To this end, mechanistic studies underlying thermal adaptation 612 

by linking ecology to genetics should be done to better understand how T. hemprichii 613 

will adapt to climate change (Duarte et al. 2018; Hu et al. 2020). 614 
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Tables 1010 

Table 1. Maxent parameters, performance metrics on spatially withheld data (validation 1011 

AUC and omission rate) and the full dataset (continuous Boyce index), and 10th 1012 

percentile presence thresholds of the two lineage-level models and the species-level 1013 

model. Validation AUC and 10% omission rate results are expressed as means ± 1014 

standard deviation across spatial partitions. 1015 

Model RM1 
Feature 

class2 

Average 

validation 

AUC 

Average 10% 

omission rate 

(%) 

10% 

omission 

threshold 

Continuous 

Boyce index 

WTIP3 0.5 LQ 0.99(± 0.01) 3.57(± 7.14) 0.12 0.92 

CTIP4 2.5 LQH 0.96(± 0.03) 26.69(± 37.42) 0.37 0.99 

Species 0.5 H 0.96(± 0.02) 17.93(± 17.62) 0.30 0.99 
1RM: regularization multiplier. 1016 

2Feature Class: L (linear), Q (quadratic), and H (hinge) were considered. 1017 

3WTIP: the Western Tropical Indo-Pacific lineage-level model 1018 

4CTIP: the Central Tropical Indo-Pacific lineage-level model 1019 
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Table 2. Permutation importance (%) of marine predictors in each Maxent model. 1021 

Values in bold showed important predictors. 1022 

Predictors WTIP1 CTIP2 Species  

Water depth [m] 14.10 51.05 46.91 

Distance to land [km] 81.87 11.58 9.30 

Minimum current velocity [m/s] 0.46 0.00 0.03 

Annual mean current velocity [m/s] 0.15 0.04 0.27 

Annual mean sea surface salinity [PSS] 0.80 2.49 1.92 

Annual range of sea surface salinity [PSS] 0.93 4.96 13.38 

Annual mean sea surface temperature [°C] 0.83 28.68 23.47 

Annual range of sea surface temperature [°C] 0.87 1.20 4.73 
1WTIP: Western Tropical Indo-Pacific lineage-level model 1023 

2CTIP: Central Tropical Indo-Pacific lineage-level model 1024 
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Table 3. Range size change (%) of Thalassia hemprichii under future climate scenarios. 1027 

Values in parentheses indicate range size change predicted by the species-level model. 1028 

RCP1 
WTIP2 CTIP3 

2050s 2100s 2050s 2100s 

RCP 2.6 –0.2 (–2.5) 4.4 (–3.8) –40.6 (–29.3) –34.5 (–27.8) 

RCP 4.5 1.3 (–6.3) 4.2 (–6.3) –49.7 (–26.1) –55.7 (–26.4) 

RCP 6.0 3.4 (–0.4) 7.5 (–15.0) –43.8 (–30.3) –63.7 (–23.2) 

RCP 8.5 4.0 (–10.9) 13.2 (–23.7) –53.7 (–27.4) –72.1 (–25.8) 
1RCP: representative concentration pathway. 1029 

2WTIP: Western Tropical Indo-Pacific lineage-level model 1030 

3CTIP: Central Tropical Indo-Pacific lineage-level model 1031 
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Figure Legends 1034 

Figure 1.  (a) Map of study regions and presence records used in this study. Blue and 1035 

red points represent sample collection locations for molecular analyses in the Western 1036 

Tropical Indo-Pacific (WTIP) and the Central Tropical Indo-Pacific (CTIP). Gray crosses 1037 

show presence records used for the species distribution models. (b) Network of 1038 

microsatellite genetic differentiation (Cavalli-Sforza and Edwards chord distances). The 1039 

topology results from pruning the network for pairwise genetic distances <0.534. The 1040 

smallest chord distance (0.499) between the WTIP and CTIP lineages is shown. (c) 1041 

Genetic lineage division over space based on STRUCTURE clustering (k = 2). Population 1042 

abbreviations are the same as in Hernawan et al. (2017) and Jahnke et al. (2019a), and 1043 

their classification to network analysis is in agreement with that of STRUCTURE (Fig. 1044 

1c). 1045 

Figure 2. The realized niches for the two lineages of Thalassia hemprichii quantified via 1046 

eight-dimensional hypervolumes. The axes represent unitless values as the predictors 1047 

were standardized before analyses. Circles with white rims indicate hypervolume 1048 

centroids. Boundaries and shapes of hypervolumes were delineated by 10,000 points 1049 

randomly sampled within each hypervolume. The photograph depicts T. hemprichii. 1050 

Figure 3. Present-day continuous (a, b) and binary (c, d) habitat suitability predictions 1051 

for Thalassia hemprichii by lineage-level (a, c) and species-level (b, d) Maxent models. 1052 

Dashed lines represent the equator. To improve the legibility of the binary predictions, 1053 

we increased the pixel size by downscaling the spatial resolution to 30 arcmin. High-1054 

resolution predictions can be downloaded from Dryad 1055 

(https://doi.org/10.5061/dryad.vhhmgqnsh). 1056 

Figure 4. Changes in continuous (a, b) and binary (c, d) habitat suitability for Thalassia 1057 

hemprichii projected by lineage-level (a, c) and species-level (b, d) Maxent models under 1058 

the RCP 8.5 scenario in the 2050s. Dashed lines indicate the equator. The category 1059 

“stable” represents areas predicted to be suitable under both present-day and future 1060 

climatic conditions, “loss” indicates areas predicted to be suitable under present-day 1061 

conditions but unsuitable in the future, and “gain” indicates areas predicted to be 1062 

unsuitable under present-day conditions but suitable in the future. To improve the 1063 

legibility of the binary predictions, we increased the pixel size by downscaling the 1064 

spatial resolution to 30 arcmin. High-resolution predictions can be downloaded from 1065 

Dryad (https://doi.org/10.5061/dryad.vhhmgqnsh). 1066 
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 1067 

Supporting Information 1068 

Additional supporting information can be found online in the Supporting Information 1069 

section at the end of the article. 1070 
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