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ABSTRACT: Downward surface solar radiation (SSR) is a crucial component of the global energy balance, affecting

temperature and the hydrological cycle profoundly, and it provides crucial information about climate change. Many

studies have examined SSR trends; however, they have often concentrated on specific regions due to limited spatial

coverage of ground-based observation stations. To overcome this spatial limitation, this study performs a spatial in-

terpolation based on a machine learning method, random forest, to interpolate monthly SSR anomalies using a number

of climatic variables (various temperature indices, cloud coverage, etc.), time-point indicators (years and months of

SSR observations), and geographical characteristics of locations (latitude, longitude, etc.). The predictors that provide

the largest explanatory power for interannual variability are diurnal temperature range and cloud coverage. The output

of the spatial interpolation is a 0.58 3 0.58monthly gridded dataset of SSR anomalies with complete land coverage over

the period 1961–2019, which is used afterward in a comprehensive trend analysis for (i) each continent separately and

(ii) the entire globe. The continental-level analysis reveals the major contributors to the global dimming and bright-

ening. In particular, the global dimming before the 1980s is primarily dominated by negative trends in Asia and North

America, whereas Europe and Oceania have been the two largest contributors to the brightening after 1982 and up

until 2019.
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1. Introduction

Surface solar radiation is a crucial climate variable and a

main constituent of the global energy balance, playing an im-

portant role in temperature change and the hydrological cycle

(see, e.g., Budyko 1969; Liepert et al. 2004; Pfeifroth et al. 2018;

Obryk et al. 2018). The positive trend in downward surface

solar radiation since the 1980s in combination with increasing

greenhouse gases leads to an intensification of the land-based

hydrological cycle (Wild et al. 2008; Wild and Liepert 2010;

Wild 2016). Moreover, it has profound impacts on various as-

pects of the society and economy, especially on agriculture. For

example, crop yields could be significantly influenced not only

by increases or decreases in solar radiation through enhancing

or weakening of photosynthesis, but also indirectly by the re-

sulting temperature change from solar radiation variations

(Greenwald et al. 2006; Roderick and Farquhar 2012; Gupta

et al. 2017; Proctor et al. 2018).

To analyze the drivers and economic impacts of climate

change, it is of critical importance to have an understanding of

surface solar radiation (SSR), in terms of its trends, levels, and

variations. Ground-based observations are believed to be the

most reliable long-term data source for solar radiation, and

have been used inmany climate studies tomonitor its evolution

(see, e.g., Wild et al. 2005; Sanchez-Lorenzo et al. 2015, 2017;

Pfeifroth et al. 2018; Parding et al. 2016). Despite their reli-

ability as compared to other sources, one of the main draw-

backs of ground-based measurements is their limited temporal

and spatial coverage. For a start, extensive SSR observations

have a relatively short history of only a few decades; they were

not widely available until the 1960s and have a time-lag effect

due to the time-consuming process of data collecting and ho-

mogenizing. As for spatial coverage, climate stations tend to be

concentrated in regions that can provide the financial and tech-

nical support to maintain the devices. Therefore it is essential to

extrapolate the available observations, in the dimension of both

space and time, thereby enabling amore comprehensive overview

that better represents all areas with continuous time series. The

method that aims to fill gaps in spatial datasets is called spatial

interpolation. Conventional spatial interpolation methods such as

inverse distance weighting, kriging, splines, etc., have seen ex-

tensive applications in various climate processes (see, e.g., Collins

1995; Erxleben et al. 2002; Scudiero et al. 2016). This study con-

tributes to and expands the existing literature by applying a novel

machine learning method to interpolate a station observation

dataset of SSR.

Machine learning methods have seen an increasing number

of applications in spatial interpolation and shown effectiveness

in reproducing and predicting climate variables with high ac-

curacy and low uncertainty (see, e.g., Jiang 2008; Sun et al.

2016; Zhou et al. 2017). Qin et al. (2019) compared the per-

formance of four physically deterministic models with eight
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machine learning models in an application of reproducing data

of photosynthetically active radiation and reported out-

performance of machine learning methods. The existing

literature is mostly focused on simulating regional patterns of

solar radiation; for example, Zhou et al. focused on the

downward solar radiation over the United States whereas Qin

et al. focused on the photosynthetically active radiation over

China. In this study we aim for a comprehensive study of SSR

on a global land scale; therefore, it is essential that the selected

method should be able to cope with a large quantity of data.

Among a wide range of machine learning approaches, random

forest has exceptional advantages in handling a large number of

explanatory variables and in its capacity for processing large

datasets due to its computational efficiency (Firth et al. 2005;

Myoung et al. 2020). The study of Leirvik and Yuan (2021)

compared the performance of random forest with those of

seven other conventional (deterministic) spatial interpolation

methods in an application of predicting global SSR, and

showed a profound advantage of random forest in terms of

prediction accuracy and performance stability.

In this paper, we apply random forest to a global SSR

dataset, the dataset of the Global Energy Balance Archive

TABLE 1. Summary of predictors. All climatic variables in the CRU are on a monthly basis.

Variable category Symbol Definition

Climatic variables cld Monthly average cloud cover (%)

dtr Monthly average diurnal temperature range (8C)
frs No. of days with ground frost in a month

pre Monthly total precipitation data (mm month21)

tmn Monthly average minimum temperature (8C)
tmp Monthly average mean temperature (8C)
tmx Monthly average maximum temperature (8C)
vap Monthly average vapor pressure (hPa)

wet No. of rainy days in a month

Geographical variables lat Latitude of the location

lon Longitude of the location

alt Terrain altitude in m

urban 1 if urban, 0 if rural

Temporal variables year Year of the observation/estimation

mon Month of the observation/estimation

FIG. 1. Flowchart of random forest. The training algorithm of random forest applies the

general technique of bootstrap aggregating to base learners.We start with a datasetDwithN5
328 222 observations and M 5 15 features. The first step is to generate ntree 5 700 random

samples of size N with replacement. That is, each sampleDi, i5 1, . . . , ntree has the same size

as the population, and we call it a base tree learner. We train a regression tree fi(x) on Di for

i5 1, . . . , ntree. Each regression tree takesmtry5 8 (mtry,M) features as predictors, which

could have different members for individual trees. For example, we choose 8 predictors ran-

domly out of the total 15 predictors for D1; another 8 predictors are chosen for D2. The two

groups of predictors for D1 and D2 share some common variables, and they also have some

distinct ones. In this way, variable randomness is added to the model. The final prediction is the

average of predictions of all base learners.
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(GEBA). A total of 15 variables are selected as predictors for

SSR, including nine climatic variables (various temperature

indices, cloud cover, frost days, etc.), geographical coordinates

(longitude and latitude), altitude, urbanization, and temporal

indicators that indicate the time point (year and month) of the

observed/simulated SSR record (refer to Table 1 for a detailed

definition of the predictors). In the current study, we focus on

the decadal long-term trends of SSR, which is embedded with

strong seasonal intra-annual variability in the overall varia-

tions. To reduce seasonal variability, we train our model on

SSR anomalies in the dataset, and the model is then applied to

interpolate values at unsampled locations. The result is a 0.58 3
0.58 monthly gridded dataset, conforming with the resolution

and time step of the input Climate Research Unit (CRU)

dataset. The constructed dataset provides SSR estimations

with complete global land coverage and temporal coverage of

59 years (1961–2019). Based on this dataset, remote land areas

such as Africa and Siberia that were rarely investigated before

are made accessible for investigation of their long-term trends.

Trends could vary, or even reverse, during a multidecadal

time period, making it highly important to detect potential

breakpoints over the whole period. In fact, not only do

the long-term trends reach far back in the past of interest,

but it is also of critical importance to identify the most

recent sustainable trends up until now. Particularly, global

SSR experienced a widespread reduction (on the order of 3–

9Wm22 decade21) from the 1950s to the 1980s, followed by

an increase (on the order of 1–4Wm22 decade21), referred

to respectively as global dimming and global brightening

(Liepert and Kukla 1997; Stanhill and Cohen 2001; Stanhill

2005; Wild et al. 2005; Wild 2009; Gilgen et al. 2009; Wild

2012; Pfeifroth et al. 2018). Trend reversals (positive trends)

have been shown in observational studies. A widespread

trend reversal in the SSR records was first reported by Wild

et al. (2005), while previous studies primarily pointed to the

dimming. Regional brightening was documented in areas

including Europe, North America, and Japan (e.g., Liepert

2002; Pinker et al. 2005; Parding et al. 2016; Tanaka et al. 2016).

Aggregated series over a region reveal the overall interannual

variation and trends; however, subregional trends are neu-

tralized, or masked, by the aggregation if they are of opposite

signs, which is often the case on many continents (Romanou

et al. 2007; Pfeifroth et al. 2018). Therefore, the spatial distri-

bution based on global grid boxes at the resolution of 0.58 is
investigated in this study, and the results show significant

spatial diversity.

The paper is organized as follows: section 2 describes the

datasets and methods used in the spatial interpolation, model

performance and trend analyses based on the constructed

dataset are discussed in section 3, and section 4 is a discussion

of the results found in the paper.

2. Datasets and method

a. Method

Random forest (RF) is a decision tree technique for regres-

sion and classification (Breiman 2001). In contrast to conven-

tional decision treemethods, random forest constructs a forest of

decision trees that operates as a predicting ensemble whose

prediction accuracy is higher than that of any individual tree.

Randomness in the RF is the distinctive characteristic that

makes it one of the most powerful and widely used machine

learningmethods in recent applications (see e.g., Sun et al. 2016;

Zhou et al. 2017; Xu et al. 2018).

A flowchart of random forest can be seen in Fig. 1.

Randomness is added to themodel through two steps. First, the

RF uses bootstrapping to generate ntree training sets consisting

of individual decision trees. Note that each decision tree is of

the same size as the population but allows for replacement. The

process is often known as bagging or bootstrapping. A single

decision tree could be sensitive to training samples, as small

changes in the training data could result in fluctuations in the

tree structure. However, through the process of bagging, ran-

dom forest takes the average of a forest of individual trees as

the final prediction. This reduces the model’s sensitivity to

training data and helps to improve performance stability by

reducing variance and avoiding overfitting in the algorithm.

Second, random forest incorporates feature randomness such

that each tree in the forest only corresponds to a random subset

of independent variables. In contrast to conventional decision

trees, all of which are trained on the same group of predictors

and split sequentially at the most separation among observa-

tions, random forest allows variations of predictors among

trees, which enables higher utilization for various combina-

tions of regressors in parallel and therefore more diversity in

tree structure. The parameters that control the two types of

randomness are the number of bootstraps (i.e., the number of

TABLE 2. Number of SSR stations and monthly mean observations

from GEBA in each continent.

Continent Abbra No. of stationsb No. of obsc

South America SA 134 13 362

Oceania OC 76 13 549

Africa AF 234 33 238

North America NrA 214 37 427

Asia AS 312 98 912

Europe EU 516 131 734

Total 1486 328 222

a Abbreviation for continent names.
b Number of stations on the continent.
c Number of monthly observations on the continent.

TABLE 3. Error measures for RF simulations. Units of MAE and

RMSE are W m22.

Continent MAE.ano RMSE.ano R.Squared.ano

Europe 7.90 12.03 0.56

North America 8.37 12.13 0.49

Oceania 9.39 13.60 0.43

Asia 10.48 14.92 0.51

Africa 11.50 15.74 0.34

South America 11.87 16.55 0.59

Global avg 9.92 14.16 0.49
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independent samples used to train the model—ntree) and the

degree of feature randomness (i.e., the number of candidate

independent variables to split at in each node—mtry).

Through a parameter tuning process, the number of bootstraps

is set to 700 and the degree of feature randomness is set to

8 (see Text S2 in the online supplemental material for details).

A range of variables are used as predictors for SSR varia-

tion, including climatic variables that are closely related to

variations of SSR and geographical characteristics of loca-

tions, together with temporal stamps of the records. Table 1

summarizes the symbols and detailed definitions of all pre-

dictors. Overall SSR variability has two profound components:

seasonal variations and interannual long-term variations. In

this study we focus on investigating the latter ones, which are

commonly represented by the linear trends of deseasonalized

SSR series, or SSR anomalies. In other words, for each ob-

servation station, monthly SSR values are subtracted by the

monthly averages over the period during which the station

exists. All predictors are deseasonalized accordingly with re-

spect to the same reference period as given by the available

FIG. 2. Simulated against observed monthly anomalies of SSR. The red line is obtained by regressing simulated

SSR on observed SSR, displayed together with the corresponding equation and R squared (R2 is the coefficient of

determination of the regression).
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SSR data. By using climate anomalies rather than the absolute

magnitudes of the climate observations, the seasonal and lat-

itudinal variabilities are separated from the overall variability,

such that only the long-term variability is fed into the model.

To evaluate the model performance, three error metrics are

calculated: mean absolute error (MAE), root-mean-square

error (RMSE), and R squared (R2). They are given by the

following equations:

MAE5
1

n
�
n

i51

jẑ
i
2 z

i
j , (1)

RMSE5
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where n is the total number of predictions, ẑi are predicted

values for station i, and zi are observed values for station i. No

percentage error measures are used because they tend to be

biased toward very large values if SSR observations are close to

zero, which could be common in winter for high-latitude areas.

b. Datasets

Ground-based all-sky SSR observations were obtained from

the Global Energy Balance Archive (GEBA;Wild et al. 2017).

The GEBA dataset contains monthly SSR values from ap-

proximately 1500 observation stations scattered on all conti-

nents except for Antarctica. Europe accounts for more than

one-third of the worldwide stations (516 out of 1486 global

stations), making it the most extensively and intensively cov-

ered continent by radiation stations (refer to Fig. S1 in the

online supplemental material for a global station distribution

map and Table 2 herein for a summary of the total numbers of

stations and monthly observations on each continent). On the

other hand, taking into account the broad area of South

America and its limited number of observation stations, South

America has the sparsest coverage of observation stations. The

dataset has an unparalleled temporal coverage, which extends

from the early 1950s until 2013.

GEBA collects shortwave irradiance observations directly

from pyranometer measurements, the quality of which could

be affected by a few factors, for instance, the calibration pro-

cedure of pyranometer windows and the random error of single

pyranometer readings. Gilgen et al. (1998) estimated the rel-

ative random error (root-mean-square error divided by mean)

of the downward solar radiation values in GEBA at 5% for a

monthly mean and 2% for a yearly mean. This means that the

measurement errors in GEBA are negligible and it can

therefore be a reliable data source for climate research. This

dataset has been previously examined for temporal homoge-

neity by Sanchez-Lorenzo et al. (2013) and widely used in the

literature since the 1990s (see, e.g., Ohmura and Gilgen 1993;

Arking 1996; Liepert 2002; Nabat et al. 2014; Wang et al. 2014;

Cherian et al. 2014; He et al. 2018).

The climatic variables used as predictors for SSR are avail-

able from the Climate Research Unit time series data version

4.04 (CRU-TS v.4.04; Harris et al. 2020). The CRU dataset

provides high-resolution (0.58 3 0.58) gridded data of monthly

observations for a range of meteorological variables over the

period 1901–2019 (Table 1). The CRU dataset is interpolated

from extensive networks of weather station observations and

homogenized by sophisticated techniques, and the data quality

FIG. 3. Random forest permutation variable importance. All importance values are scaled by

the largest importance. The variables are classified into two groups: the climate variables that

govern the SSR trends (in turquoise) and the static variables (e.g., latitude) andmonth (a proxy

of TOA) that determine the mean climatologies of SSR and have no influence on the trends

(in coral).
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is of a high standard. A 0.58 3 0.58 global altitude map is

available from the U.S. National Geophysical Data Center

(NGDC et al. 1995). The Global Rural–Urban Mapping

Project (GRUMP) dataset V1 (CIESIN 2004) provides a 30

arc-second urban extents grid for all land areas except

Antarctica and parts of the Greenland ice sheet. Each grid is

classified as either rural or urban based on 1995 data. Although

urban extents have changed considerably over time, unfortu-

nately we do not have urban extent data that are updated

continuously. To merge the GRUMPwith the CRU data, each

0.58 3 0.58 grid cell was obtained as the mean of the 3600

GRUMP values contained in the cell.

The training dataset is obtained by collocating the GEBA

stations with corresponding grid boxes in the gridded datasets,

such that for each station in the GEBA, a range of predictor

variables as well as the SSR anomalies are matched by month.

In terms of data quality control, we deleted observations with

abnormally low W m22 SSR values in summer times, which

are clearly measurement errors since SSR should be at high

levels during that time of the year. Moreover, because the RF

uses bootstrapping to generate a large set of independent

samples of training data, the algorithm is specifically de-

signed to be relatively insensitive to sporadic outliers in the

training data.

For the interpolation, all three gridded datasets (CRU,

NGDC, and GRUMP) are merged together and provide the

input variables for the trained RF model. The interpolation

data cover the period 1961–2019, with the end year decided by

the extension of the CRU dataset.

3. Results

a. Estimation and evaluation

A continent-by-continent tenfold cross-validation (CV) was

implemented on the training dataset, such that each continent’s

distinctive characteristics are sufficiently accounted for.

Otherwise, if a global universal model is trained, the trained

model would be biased toward the SSR dynamics of the con-

tinent with the most concentrated observations (i.e., Europe).

Tenfold CV means to partition the training dataset into 10

equal-size subsamples. Of the 10 subsamples, a single sub-

sample is retained as the validation data for testing the model,

and the remaining 9 subsamples are used as the data to train the

model. The cross-validation is repeated 10 times, such that

each of the 10 subsamples is used once as validation data.

Combining together simulations for all 10 validation subsets

generates a complete out-of-sample simulation (i.e., the data

FIG. 4. Model evaluation for one station in GEBA: station 1188, Locarno-Monti, Switzerland. (a) Monthly SSR

anomaly series for observations (red dashed line), simulations (black dashed line), and interpolations (blue dashed

line), together with their corresponding smoothed series (solid lines) using a 12-month Gaussian kernel. The series

are expressed as anomalies from the 1961–2013 mean. Observation and simulation series exist only for the period

1961–2013; interpolation series extends until 2019 from the random forest model predictions. (b) Scatterplot of

simulated vs observed series. The red line is obtained by regressing simulations on observations. Regression

equation and R2 are shown for the regression line. (c) As in (b), but for the interpolated vs observed series.
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used for validation are not used in training) for each observa-

tion record.

Table 3 shows the error measures of the predicted

monthly SSR anomalies against observations for each continent.

Since this study is focused on evaluating multidecadal trends of

SSR, stations existing for less than 15 years are excluded from

the performance evaluation to alleviate deviations brought by

stations that only existed briefly. The mean absolute errors

vary from7.90Wm22 (Europe) to 11.87Wm22 (SouthAmerica),

with a global average of 9.92Wm22. The model accuracies

revealed from mean absolute errors and from root-mean-

square errors coincide among continents—that is, the conti-

nent associated with the lowest mean absolute error also has

the lowest root-mean-square error, and equivalently so for the

continent with the largest mean absolute error. The R2 range

from the lowest 0.34 (Africa) to the highest 0.59 (South

America), with a global average of 0.49. This indicates that

our RF model on average captures approximately half

of the global SSR interannual variations. The R2 values

are generally in line with MAE and RMSE for continent

evaluation. It is worth noticing that although the bias in-

dicated by MAE and RMSE is large for South America, the

R2 shows that almost 60% of annual variability is captured

by the continental model. The large values of MAE and

RMSE may be due to the spread between predicted and

observed SSR anomalies for SSR anomalies larger than

50Wm22 (Fig. 2).

RF is a data-intensivemachine learning approach that learns

model features solely based on input data and does not rely on

any presumptions about model structure or specifications, the

FIG. 5. Annual anomalies over the period 1961–2019 for each continent and the world. The raw series is shown by

the green dashed line, and the 5-yrmoving average (MA) series is shown by the coral solid line.When the number of

years is less than 5, a partial moving average is used for the available years up until the time point.
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performance of which is highly dependent on input training

data, from perspectives of both quality and quantity. Note that

the RF model was trained for per continent; that is, data

characteristics for each continent affect its performance.

Specifically, possible reasons that lead to the lower RF

performance in South America and Africa include, but are

not limited to, the relatively smaller amount of data avail-

able and/or the lack of homogeneity in the continents’ data.

The scatterplots of simulated against observed anomalies

provide further graphical confirmation of this (Fig. 2). The

continents with better performance show highly clustered

points alongside the regression line, for instance, Europe and

North America (Figs. 2a,b), in contrast to Africa and South

America (Figs. 2e,f), which show more scattered points away

from the regression line.

From the permutation variable importance analysis (Fig. 3),

we see that the most important variable in determining long-

term SSR variability is diurnal temperature range. Cloud

coverage is the second most important variable, followed by

the temperature indices (maximum, average, and minimum

monthly temperature). Note that the temperature indices

and diurnal temperature range could be closely correlated;

however, this does not affect the tree structure of the random

forest given its nonparametric nature, which does not depend

on any functional form and therefore has no problem of

collinearity.

Since we trained the model on SSR anomalies, which are

deseasonalized series and are therefore unaffected by sea-

sonal variability, the seasonal indicator month is unsurpris-

ingly found to be a minor factor influencing SSR long-term

variability. Precipitation affects SSR long-term trends as well,

while vapor pressure and frost days provide little explanatory

power for SSR interannual variability. We categorize these

meteorological variables as trends determining variables. The

other group of variables includes geographical coordinates of

observations (latitude and longitude), months of observa-

tions, altitudes, and urbanization indicators. We name this

group as mean climatology predictors because they decide

average climatic characteristics of locations. Given that the

target variable is SSR anomalies, the mean values are zero for

every location. Not surprisingly, the mean climatology pre-

dictors are less important, if not entirely irrelevant, compared

to the meteorological predictors that govern the SSR long-

term trends.

TABLE 4. Decadal linear trends for annual SSR averaged over individual continents and the global land surfaces. After significant

breakpoints are detected, the linear trend of the continental average time series is estimated by least squares for each segment. The first

row for each continent or the world shows the trend over the whole period; subperiods split by the breakpoints are shown in the following

rows. For instance, the global average trend shows a negative slope of21.15Wm22 decade21 over 1961–2019 and one breakpoint in 1982

is significantly detected. Split by 1982, a negative trend of23.07Wm22 decade21 is reported over the first segment and a positive trend of

10.33Wm22 decade21 is reported over the latter segment 1982–2019.

Continent Segment Slopea Slope std dev t value Pval Pval.symbolb

World 1961–2019 21.152 0.131 28.812 0.000 ***

1961–81 23.068 0.172 217.874 0.000 ***

1982–2019 0.328 0.079 4.164 0.000 ***

Europe 1961–2019 0.466c 0.138 3.383 0.001 **

1961–76 2.791 0.759 3.675 0.002 **
1977–2019 1.169 0.169 6.935 0.000 ***

Africa 1961–2019 20.985 0.112 28.772 0.000 ***

1961–69 1.991 1.175 1.694 0.134

1970–81 23.255 0.695 24.681 0.001 ***

1982–2019 20.221 0.139 21.587 0.121

Asia 1961–2019 21.920 0.215 28.929 0.000 ***
1961–92 25.383 0.231 223.287 0.000 ***

1993–2019 20.643 0.165 23.908 0.001 ***

Oceania 1961–2019 0.339 0.327 1.039 0.303

1961–72 21.440 2.660 20.542 0.600

1973–2019 1.718 0.395 4.353 0.000 ***

North America 1961–2019 20.826 0.150 25.521 0.000 ***

1961–77 25.068 0.483 210.496 0.000 ***
1978–2019 0.249 0.121 2.051 0.047 *

South America 1961–2019 21.529 0.199 27.685 0.000 ***

1961–2003 22.919 0.243 212.003 0.000 ***

2004–19 20.756 0.594 21.272 0.224

a Slope unit: W m22 decade21.
b Significance symbol representation: *** indicates p , 0.001, ** for p , 0.01, * for p # 0.05, � for p # 0.1, and no symbol if p . 0.1.
c The linear trend is smaller than in both segments due to the large jump in 1976 (refer to Fig. 5b).
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b. Interpolated SSR dataset trend analysis

The tenfold cross-validation shows the RF model’s ca-

pability in out-of-sample estimation of SSR. To make use of

the SSR information in the GEBA dataset exhaustively, all

available SSR observations (instead of 9 out of 10 subsam-

ples used in the tenfold CV) are used to train the RF model

per continent. The trained RF models are then applied to

the interpolation data. The result of the interpolation is a

0.58 3 0.58 gridded monthly SSR dataset over the period

1961–2019 with complete coverage of global land areas. The

resolution and the time span are determined by the input

climatic variables from the CRU datasets. Note that the

GEBA (training) dataset only has a substantial amount of

SSR anomalies until 2013. By extending the prediction pe-

riod up until 2019, we assume the prediction relationship

between SSR and the predictors remains the same both

prior to and after 2013.

A station in the GEBA dataset (station 1188) is given as an

example to illustrate the interpolation procedure. The station

is located at Locarno-Monti (46.178N, 8.788E), Switzerland,
and is one of the longest-standing radiation stations in

Europe. We started with observations (shown by the red lines

in Fig. 4a) from the GEBA dataset. A tenfold CV was im-

plemented on the data for Europe and thereby generating

out-of-sample estimations corresponding to the observation

records. The estimation series are shown by the black lines.

Then all available data on Europe were used to train an RF

model that was later used in the interpolation for each grid

box in Europe. By extracting the values in the grid box in

which station 1188 is located, interpolation series are ob-

tained (shown by the blue lines). We see that the interpola-

tion series approximate the observations more precisely

than the simulations. This is because the interpolation is

an in-sample forecast that uses 10% more data than the

simulations that are based on the tenfold CV. By comparing

the blue lines with the red lines, we see that the interpolation

series are able to capture the observed SSR variation with

reasonable accuracy, indicating the robustness of theRFmodel

and thecreliability of the generated interpolation series.

Figures 4b and 4c show scatterplots for simulations against

observations and interpolations against observations, respec-

tively. The scatterplot for interpolations has more concen-

trated points alongside the regression line and has a larger

value of R2 (0.71 vs 0.56 for Fig. 4c vs Fig. 4b). The improve-

ment of the interpolation precision demonstrates the reliability

of using the random forest model to predict long-term SSR

variability.

1) TREND OVERVIEW OF THE ENTIRE PERIOD

Annual anomalies for global land areas and each continent

are shown in Fig. 5. To account for the areas of grid boxes re-

ducing with increasing latitude, the global/continental average

SSR are calculated as the weighted averages of values for all grid

boxes in the defined areas, weighted by the cosine of latitudes.

The global average SSR exhibits rapid dimming trends from

1961 until the mid-1980s, followed by a moderate reversal. Asia

andNorthAmericamanifest highly similar trends with the world

average trends, reaching the lowest level around the late 1980s or

early 1990s, then a mild reversal occurs and the continents enter

into brightening periods. Oceania exhibited significant dimming

trends until the mid-1970s; between then and the early 2000s,

SSR stagnates and shows no clear trends. Entering into the

twenty-first century, profound brightening occurs. Significant

dimming is observed in South America until the early 2000s.

Africa experienced a short period of brightening from 1960 to

1970, and profound dimming trends followed until 1990, after

which SSR is stable and shows no obvious trends. Europe shows

overall generally brightening trends over thewhole period 1961–

2019, except for a short decline between 1975 and 1980.

Significant brightening has been observed from the 1980s up

until now. From the continental average trends and global av-

erage trends, we observe that except for Europe, all continents

experienced a relatively long (more than 10 years) dimming

period. Asia and North America are the two largest contributors

to the global dimming trends, while Europe and Oceania are

important drivers of the brightening trends.

Although the global trend reversal takes place in the mid-

1980s, each continent shows different breakpoints in terms of

trend reversal. The fact that continents show strikingly different

features with respect to their historical trends makes it of interest

to detect structural changes in the long-term SSR trends for each

continent separately. Breakpoints were detected based on mov-

ing sums (MOSUMS) of recursive and least squares residuals for

annual mean values, which, despite losing monthly temporal

details, enables an investigation of interannual variation and time

series segments (Forkel et al. 2013). Time series segment and

structural change detection is widely used in climate research

(see, e.g., Cró and Martins 2017; Adedoyin et al. 2020; Vu et al.

2019). Readers are referred toHolben (1986) andBai andPerron

(1998, 2003) for detailed implementation of the algorithm.

Any breakpoints with theMann-Kendall trend test significant

at 5% are identified and trends for the separated segments are

FIG. 6. Decadal trend raster estimated on the global average SSR

anomalies series shown in Fig. 5a. The y axis denotes the start

years, and the x axis denotes the end years of the periods consid-

ered in the calculation of the trends. The minimum trend length is

10 years.
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reported in Table 4. Asia and North America, with decadal

linear trends of25.38 and25.07Wm22 decade21, respectively,

are the two largest contributors to the global dimming, whereas

the global brightening is mostly attributed to the increasing

trends in Europe and Oceania. Focusing on the latest trends

after the breakpoints, most continents show significant positive

trends (Europe, Oceania, and North America) or nonsignificant

negative trends (Africa and SouthAmerica). The only continent

with significant negative trends in recent periods is Asia.

Nevertheless, the negative trends inAsia have been significantly

alleviated from25.38 to20.63Wm22 decade21 since 1993. It is

worth noting that aside from Africa, which has two breakpoints

(1969 and 1981), only one breakpoint is detected for each con-

tinent. In what follows, this paper will investigate in more detail

the periods after the latest detected breakpoints for each

continent.

Given the large variability of SSR, the linear trends could be

significantly affected by a different choice of start and end time.

To avoid this bias, a running-trend estimation was implemented

on the annual global average series for all possible segments

equal to or longer than 10 years. The global decadal trend raster

(Fig. 6) corroborates the annual anomaly series (Fig. 5a). The

most negative trends are found between 1970 and 1980 (refer-

ring to start points and thereafter in the description of trend

rasters), in contrast to themost positive trends between 1995 and

2000.After entering into the twenty-first century, the trends fade

away. The continental running-trend rasters (Fig. 7) show that

Europe is mostly dominated by positive long-term trends.

Significant negative trends are observed in Asia from 1961 to

1980, which is followed by a cluster of positive trends from 1985

to 1990. The most recent SSR data show slightly negative trends

in Asia. North America experiences a transition from dimming

FIG. 7. As in Fig. 6, but showing decadal trend rasters for continents.
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to brightening around 1990. South America shows mainly dim-

ming trends, with a cluster of brightening trends from 1995 to

2000. SSR trends in Oceania are highly volatile and show a lack

of stability; no prevalent signs are observed.

The results shed light on how SSR trends evolve over time.

However, because the data are aggregated over areas, either

globally or continentally, opposite trends cancel each other out

when calculating the area averages, resulting in less distinct trends

overall. Therefore, the regional distribution of trends with 0.58 3
0.58 resolution has also been investigated. In what follows, decadal
trends of annual and seasonal SSR, both on a global and conti-

nental scale, are discussed based on their respective latest detected

breakpoints as starting points. Furthermore, the spatial distribu-

tion of the trends is visualized in annual and seasonal maps.

2) LATEST SUSTAINABLE TREND

Based on the structural breaks in trends, the latest sustain-

able trends (i.e., the period after the latest detected break-

points until 2019) for the globe and for each continent are

inspected in this section. Their spatial and seasonal patterns are

presented as trend maps for each season and the entire year.

Seasons are defined as follows: winter [December–February

(DJF)], spring [March–May (MAM)], summer [June–August

(JJA)], and autumn [September–November (SON)]. Seasonal

trends after the detected breakpoints for the globe and each

continent are reported in Table 5, which will be elaborated in

the following sections.

(i) World

The global brightening starts from 1982 and continues on-

ward, at a moderate rate of 10.33Wm22 decade21, only about

one-tenth of the dimming rate before (23.07Wm22 decade21).

Note that the worldwide trend reversal point in 1982 is detected

based on the worldwide annual SSR anomalies. Although the

global average SSR has shown a positive trend since 1982, on a

regional level significant dimming is observed in certain regions,

particularly in the eastern United States, South Asia, and the

Pacific island countries (Fig. 8a). Africa shows dimming-

neutral trends in general, with slight brightening observed

in eastern and northern Africa. On the other hand, wide-

spread brightening is observed in Europe, northern Asia,

Oceania, and South America. North America shows a blend

of dimming and brightening trends. Coastal areas in the

United States show negative trends, whereas the inland United

TABLE 5.Decadal linear trends for seasonal average SSR averaged over individual continents and the global land surfaces over the periods

from the respective latest detected breakpoints until 2019.

Continent Seasons Slopea Slope std dev t value Pval Pval.symbolb

World (1982–) DJF 0.060 0.108 0.558 0.580

MAM 0.520 0.133 3.909 0.000 ***

JJA 0.431 0.130 3.323 0.002 **

SON 0.232 0.110 2.118 0.041 *

Europe (1977–) DJF 20.166 0.142 21.168 0.249

MAM 1.743 0.356 4.898 0.000 ***

JJA 2.535 0.405 6.256 0.000 ***

SON 0.587 0.261 2.247 0.030 *

Africa (1982–) DJF 20.156 0.274 20.571 0.571

MAM 0.002 0.207 0.008 0.993

JJA 20.576 0.214 22.688 0.011 *

SON 20.267 0.207 21.291 0.205

Asia (1993–) DJF 20.648 0.252 22.568 0.017 *

MAM 20.454 0.304 21.492 0.148

JJA 20.465 0.321 21.447 0.160

JJA 20.465 0.321 21.447 0.160

Oceania (1973–) DJF 1.351 0.734 1.841 0.072 �
MAM 1.388 0.719 1.930 0.060 �
JJA 1.508 0.623 2.421 0.020 *

SON 2.329 0.591 3.943 0.000 ***

North America (1978–) DJF 0.057 0.202 0.282 0.780

MAM 0.553 0.198 2.795 0.008 **
JJA 0.214 0.195 1.100 0.278

SON 0.163 0.223 0.729 0.470

South America (2004–) DJF 20.040 0.856 20.046 0.964

MAM 21.166 0.811 21.438 0.172

JJA 20.813 0.871 20.933 0.366

SON 21.138 0.843 21.350 0.198

a Slope unit: W m22 decade21.
b Significance symbol representation: refer to Table 4.
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States shows positive trends. Canada and Greenland show

generally widespread positive trends of SSR.

The seasonal maps show that Northern Hemispheric

spring and summer demonstrate the largest trend variability

(Figs. 8c,d); that is, both the strongest positive and negative

trends are observed during these periods. On the other hand,

Northern Hemispheric winter shows modest trends; both

positive and negative trends are diminished as expected due

to the lower absolute SSR values in Northern Hemispheric

winter in the extratropics. Note that the decadal trends are

squeezed into a range of 27 to 7Wm22 decade21, which

means that any extreme values falling out of the range

are assigned as27Wm22 decade21 if a value is smaller than

27Wm22 decade21, and 7Wm22 decade21 if a value is larger

than 7Wm22 decade21.1 It is also noteworthy that dimming

trends are observed throughout the year in India, with the

most negative trends observed in autumn. In the Southern

Hemisphere the strongest trends are observed in the winter

(JJA) and spring (SON), showing widespread positive trends

in South America and Oceania.

(ii) Europe

Recent long-term trends in Europe show an increase of

average SSR at the rate of 1.17 Wm22 decade21 starting

from the breakpoint in 1977 and up until recently

(Table 4). At a seasonal scale, except for winter, all the

other seasons show significant positive average trends,

with summer having the strongest rate at 2.54Wm22 decade21

(Table 5).

The spatial distribution of annual mean SSR shows a

widespread increase with the most positive area located in

the central European domain (CED) (Fig. 9a), defined as

land areas from 458 to 558N and from 108W to 358E, namely

Germany, southern Poland, Slovakia, and Ukraine. The

mean annual trend for the CED is 2.18Wm22 decade21,

which is about 1.01Wm22 decade21 higher than the annual

trend for the entire continent. In fact, a larger difference

FIG. 8. Linear trends of the annual and seasonal average SSR over the globe during the period 1982–2019 (after the

breakpoint in 1981).Thevalues are estimated for each0.58 3 0.58 grid andexpressedasWm22 decade21. (a)Decadal trends

for annual average SSR. (b)–(e) Decadal trends for individual seasons. The seasons are defined as Northern Hemispheric

spring (MAM), summer (JJA), autumn (SON), and winter (DJF, dated according to the year of January and February).

1 As we will see in the forthcoming result (Fig. 15), the largest

concentration of the trends falls within [24, 4] W m22, i.e., the

upper and lower 1.5 standard deviations from the mean, making it

reasonable to visualize values in a truncated range of [27,

7]Wm22 decade21 in order to better see the small absolute values.
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of 2.35Wm22 decade21 (4.59 vs 2.24Wm22 decade21 for

decadal trends over CED and the whole European land area,

respectively) is observed if only summer (JJA) is considered.

The spatial pattern is in agreement with Sanchez-Lorenzo et al.

(2017), who reported higher rates of annual and seasonal SSR

for theCEDas compared to the entire continent. In particular, they

documented a 1.0Wm22 decade21 higher rate for the CED as

compared to the whole continent for the annual series over the

period 1983–2010, in contrast to a larger difference of 2.2Wm22

decade21 for the summer counterpart. It is worth noting that in

summer, the trends in theMediterraneanarea are actually negative,

in contrast to the general positive trends for the rest of the conti-

nent. In particular, the Mediterranean area shows negative trends

throughout the year except during spring. The negative trends are

also reported in Sanchez-Lorenzo et al. (2017). Furthermore, our

study shows no significant European-average trends in winter;

however, at a regional level, the CED shows slightly negative

trends, and the positive trends observed in Spain and France are

also noteworthy. The continuous increase in the winter series in

Spain is also reported by Sanchez-Lorenzo et al. (2013).

(iii) Africa

Our results show that Africa has exhibited widespread dim-

ming trends in SSR since the breakpoint in 1982 at a moderate

rate of 20.22Wm22 decade21 (Table 4; Fig. 5c). However, the

rate is statistically insignificant. Central eastern and north-

ern Africa show weak brightening trends, while southern

Africa shows slightly dimming trends. The results are in line

with Gilgen et al. (1998, 2009), who also reported negative

decadal trends of SSR in southern Africa based on direct

observations.

On a seasonal basis, significant negative trends are found in the

NorthernHemispheric summer (JJA) at20.58Wm22 decade21,

which is confirmed by the predominantly dimming trends

for the grid boxes in Africa.(Figs. 10b–e; Table 5). The

other seasons demonstrate no significant continental av-

erage trends. However, for certain subregions, significant

trends exist. For instance, central eastern Africa shows

primarily brightening throughout the year, and southern

Africa shows widespread negative trends for all seasons

except for spring (SON).

(iv) Asia

Large spatial variability is observed in Asia, and we see

both dimming and brightening. Continental average SSR

shows statistically significant negative trends for annual SSR

at20.64Wm22 decade21 after the breakpoint in 1993 (Table 4).

Significant dimming is observed in the Middle East (e.g., Saudi

FIG. 9. Linear trends of the annual and seasonal average SSR in Europe during 1977–2019. Unit:

W m22 decade21.
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Arabia andYemen) and SouthAsia (India, Pakistan, etc.). India

shows persistent dimming throughout the year, with the most

negative trends observed in summer. Significant positive trends

are observed in central Russia, Japan, North Korea, South

Korea, southwestern China, etc. (Fig. 5a).

On a continental scale, the most negative trends take place

in autumn, with a value of 20.96Wm22 decade21; winter

shows a weaker negative trend at 20.65Wm22 decade21

(Table 5). Negative trends are also observed in spring and

summer; however, these are statistically insignificant. The

nonsignificant trends corroborate the findings of Yang et al.

(2018), who indicated that the trend reversal, or jump, in the

early 1990s in China reported by previous studies is falsely

exaggerated because of instrument and operational changes.

A series of procedures were performed by Yang et al. to

obtain a homogenized series; based on these, they concluded

FIG. 10. Linear trends of the annual and seasonal average SSR in Africa during 1982–2019. Unit: Wm22 decade21.
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that no significant trends are found in China over the period

1990–2016. Moreover, the interpolated dataset of the current

paper to some extent mitigates the jump reported in the

original observations by Moseid et al. (2020). In southeastern

China, trends vary greatly from season to season. More spe-

cifically, significant negative trends are observed in autumn

and winter, and substantial positive trends in spring and

summer (Figs. 11b–e).

(v) Oceania

Caution needs to be taken for users to interpret the historic

SSR trends in Oceania prior to 1988; the original data for

Australia have been artificially detrended, as themeteorological

service there was concerned that the instruments were drifting

(Wild et al. 2005). Therefore, the trends prior to 1988, especially

the period from 1975 to 1980, might be flatter than they are

supposed to be in reality (Fig. 5e).

Since northern Oceania (north of 188S) has very few ob-

servation stations, the continental model has a bias when

predicting SSR trends for the northern fringes. Therefore, we

use a global model trained on worldwide observations to

simulate SSR in Oceania. The latest sustainable SSR annual

mean trend for Oceania is 1.72Wm22 decade21 starting from

1973, which is the strongest among all continents (Table 4;

Fig. 5e). The continent shows a high extent of homogeneity

(Fig. 12). In particular, unanimous positive annual average

trends are observed in Australia, with the western coast be-

ing more positive than the eastern coast. New Zealand

shows a tendency of slightly negative trends. The seasonal

maps show highly consistent positive trends; specifically, all

FIG. 11. Linear trends of the annual and seasonal average SSR in Asia during 1994–2019. Unit: W m22 decade21.
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seasons show statistically significant positive continental

average trends. The strongest continental average trend is

found in spring (SON) at 2.33Wm22 decade21 and the

weakest continental average trend is found in summer (DJF)

at 1.35Wm22 decade21 (Table 5).

(vi) North America

North America has highly diverging trends; similar to Asia,

both positive and negative trends are observed over the period

1978–2019, resulting in overall weak positive continental av-

erage trends at 0.25Wm22 decade21 (Table 5; Fig. 5f). Slightly

negative trends are observed in the eastern United States

throughout the year, while the central United States shows

positive trends (Fig. 13). Similar patterns were also reported by

Gilgen et al. (2009), who include brightening in the central

United States and dimming in the eastern United States.

Moreover, our results of decadal trends are in line with the

findings of Gilgen et al. (2009), who reported trend reversals

for several observation sites in the United States. Canada

shows widespread brightening for annual SSR; the most posi-

tive trends are observed in spring, whereas winter shows

prevalent neutral trends. Mexico shows primarily positive

trends of SSR throughout the year.

(vii) South America

South America shows strikingly bipolar trends within the

continent after the breakpoint in 2004; both highly negative

and positive trends coexist (Fig. 14). Significant positive

trends are observed in the northern fringes, while drastically

negative trends are observed in the southern areas (208 to
408S). Because the two opposite trend signs neutralize each

other, the continental average SSR shows only slightly neg-

ative yet statistically insignificant trends (Table 4; Fig. 5g).

On a seasonal basis, northern South America shows persis-

tently positive trends, with the strongest trends observed in

summer (DJF) and autumn (MAM). Conversely, the southern

areas show persistent negative trends of SSR, with the stron-

gest trends found in autumn (MAM) and spring (SON). Since

FIG. 12. Linear trends of the annual and seasonal average SSR in Oceania during 1973–2019. Unit:

W m22 decade21.
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trends of drastic contrast coexists within the continent, conti-

nental average SSR shows no significant trends for all seasons

(Table 5).

4. Discussion

This study interpolates a ground-based solar radiation

observation dataset and constructs a dataset with complete

global land coverage at high resolution covering nearly six

decades. This enables a temporal and spatial trend analysis at

the continental and the regional level, making it possible to

obtain a comprehensive quantification of the long-term

trends for the data-scarce continents (e.g., Africa and South

America). Rather than relying principally on qualitative

graphic visualization, a structural breakpoint detection al-

gorithm based on moving sums (MOSUMS test) is applied

and provides quantitative identification of any structural

changes in the long-term SSR anomalies. The results show

that the global dimming–brightening transition takes place

around 1982 on a global average level, which is in line with

existing literature based on station observations. The two di-

vided segments show a decrease over 1961–81 and an increase

over 1982–2019 at 23.07 and 10.33Wm22 decade21, respec-

tively. We further examined SSR trends on a continental scale.

We found that the largest contributors to the global dimming are

Asia and North America, while the two most important drivers

for global brightening are Europe and Oceania.

To obtain an overviewof the distribution of decadal trends for

grid boxes within each continent, Fig. 15 shows box plots for

annual trends as well as for seasonal trends for all grid boxes per

continent. A longer box and a longer distance between whiskers

indicate larger variability and more heterogeneity among grid

FIG. 13. Linear trends of the annual and seasonal average SSR in North America during 1978–2019. Unit:

W m22 decade21.
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FIG. 14. Linear trends of the annual and seasonal average SSR in South America during 2004–19. Unit:

W m22 decade21.
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boxes on a continent. We observe that most boxes are generally

symmetric, meaning the distribution is approximately normal.

The box plots also indicate that South America and Asia show

large variability, which can be concluded from their wider ranges

between the upper and lower whiskers. Summer SSR in Europe

also shows large variability. On a seasonal basis, the largest

variability generally occurs in summer, and the smallest in

winter. The decadal variability for individual seasons varies

greatly among the continents.

The variable importance analysis shows that the long-term

variability of SSR is largely explained by diurnal temperature

range, cloud coverage, andother temperature indices.Moreover,

maximum temperature provides the most explanation among

maximum, average, and minimummonthly temperature. This is

reasonable as daily maximum temperature is largely driven by

the solar insolation, while the minimum temperature (at night

when the sun is absent) is more driven by the greenhouse ca-

pacity of the atmosphere. Meteorological variables are the most

important predictors for decadal variations of SSR.On the other

hand, geographical variables (e.g., coordinates, altitude) con-

tribute little to SSR predictions.

This study provides an observation-based dataset of SSR

anomalies with complete spatial and temporal coverage. It

completes the global surface solar radiation trend analysis by

offering the possibility to analyze continents that have rarely been

examined previously. The quantification of long-term trends is of

significant importance to solar energy deployment (Müller et al.
2014). Last but not least, this study has the potential to be used for

comparison with climate model simulations. It could serve as a

benchmark reference for the evaluation and calibration of global

or regional climate models. Other potential applications could be

climate change monitoring and a strengthened understanding of

its closely related atmospheric or hydrological processes, such as

temperature changes and aerosol dispersion.
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interquartile range. Continent panels are aligned in ascending order by the median of annual SSR trends from the left to the right, together

with the world plot at the right. Seasonal (DJF, MAM, JJA, SON) and annual (ANN) trends are shown for each continent.
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