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Simple Summary: Wind power can contribute to a necessary reduction in CO2 and other greenhouse
gas emissions. However, wind farm construction and infrastructure might cause other problems, for
example, reducing biodiversity. In parts of their distribution area, eagle owls are scarce and declining,
and not much is known about their tolerance for different kind of disturbances. Here, we investigated
the presence–absence of Eurasian eagle owls (Bubo bubo) in 48 territories in the central part of Norway
before the construction of eight wind farms and power lines started, and shortly after the construction
period. Eagle owls living within 4–5 km away from the disturbance left their territories to a higher
extent than eagle owls living even further away.

Abstract: Wind power is useful for reducing greenhouse gas emissions, but the construction and
operation might have negative effects on biodiversity. The purpose of this study was to investigate
any effects of wind farm and power line construction on territory occupancy in the vulnerable
Eurasian eagle owl. We investigated 48 eagle owl territories before and after the whole construction
period and a short operation period with the use of sound meters. We found that territorial eagle
owls within 4–5 km from the wind farm and power line construction disturbance left their territories
to a significantly higher extent (41% reduction in the number of territories with eagle owls) compared
with the eagle owls in territories further away (23% reduction). The distance from the nest site to
the disturbance was significantly shorter for those territories that were abandoned compared with
territories where the birds stayed. Possible reasons for this decline might be a higher mortality caused
by collisions, desertion and avoidance of wind power areas caused by the noise and disturbance
from their construction. In addition, there are possible indirect effects, for example reductions in
prey species may force eagle owls to abandon their territories. The construction period lasted much
longer than the period with active wind turbines and power lines in this investigation, but we cannot
separate the effects of the two because the investigations were only possible in the eagle owl breeding
season, and the wind turbines were activated shortly after the construction period. Our results
imply that careful investigations are needed to detect the possible occurrence of eagle owls near any
type of construction work. Studies of these territories should strongly influence how and when the
construction work can be carried out, but more investigations are needed to find details about the
influence of distance.

Keywords: anthropogenic disturbance; birds; construction; influence area; territory; tolerance;
turbines; wind energy; wind farm construction

1. Introduction

It is unequivocal that human influence has warmed the Earth’s atmosphere and oceans
more in the last 50 years compared to the last 2000 years, causing many weather and climate
extremes worldwide. Strong reductions in CO2 and other greenhouse gas emissions in
the coming decades are needed [1]. The adverse effects of climate change on biodiversity
are expected. With a global temperature increase of 1.5–2 ◦C, the majority of terrestrial
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species ranges are projected to dramatically shrink [2]. Many bird species have already
experienced declines caused by global warming [3,4].

Wind power is one of several possible mitigation actions to reduce greenhouse gas
emissions [5]. However, much of nature has already been lost, and what remains continues
to decline. Now, only 23% of global land area is classified as wilderness [2]. Land-based
wind farms require huge areas, and this effort to reduce global warming might increase
biodiversity losses. Investigations have shown the negative effects of landscape disturbance
and land use on many bird populations [6–8], including boreal owl (Aegolius funereus) and
northern saw-whet owl (Aegolius acadicus) in Canada [9]. More specifically, the construction
and operation of wind farms negatively impacts birds both by habitat alteration and
disturbance [10], as well as direct mortality [11–14]. The fatality rate due to wind turbines
is relatively high for some owl species compared with some other bird species [15]. Eagle
owl mortality has been associated with both wind turbines [16] and power lines [17–22].

During wind farm construction, strong anthropogenic noise is likely an important
disturbing factor for birds in the surrounding areas [23–27]. Farmland birds decline more
significantly near urban areas compared with rural areas with less anthropogenic impact,
including noise [28]. Owls are, to a large extent, acoustically specialized predators, and
therefore potentially vulnerable to noise. The morphology of eagle owl wings makes it
possible to fly almost silently [29], as an adaptation to finding prey by listening while flying.
Anthropogenic noise was found to reduce the hunting success of northern saw-whet owl
(Aegolius acadius) by 8% for each decibel increase in the noise [30]. Helicopter overflights
caused Mexican spotted owls (Strix occidentalis lucida) to flush when the distance was
less than about 105 m, but there were no effects on reproductive success or the number
of fledglings. Chainsaws were found to be more disturbing to this owl species than
helicopter flights at comparable distances, but there was still no visible negative effect
beyond 105 m [31]. Noise from low-intensity chainsaws operated at an 100 m distance from
roost sites did not elicit a detectable increase in physiological stress levels in California
spotted owls (Strix occidentalis occidentalis), but chronic and intense noise from for example
road construction was not included in the experiment [32].

Human activity increases in remote areas during the period of wind farm construction.
It has been found that Mexican spotted owls leave their roosting site when approached by
hikers, but mostly when the hikers were within 55 m [33]. Breeding females of the Mexican
spotted owl decreased the amount of time spent handling prey and daytime maintenance
during experimental hiking. Therefore, the authors concluded that the cumulative effects
of high levels of short-duration recreational hiking near nests may be detrimental [34].

Very little is known about the effect of human presence on Eurasian eagle owls.
Roosting eagle owls are not especially shy [35–37], and flush distances of 50 m or less
are observed [35]. However, in parts of the area used in the present study, an increase in
the number of hikers within 2 km from the nest site reduced eagle owl breeding perfor-
mance [38]. Eagle owls might be more sensitive to approaching humans in areas where they
have been heavily persecuted than in other areas. High rates of persecution during more
than hundred years is one important factor resulting in declining eagle owl populations in
Norway [18,36,37]. The eagle owl population in Norway is estimated at 451–681 pairs [39],
classified as endangered (EN) on the Norwegian red list [40].

Other investigations of eagle owl found that the number of breeders declined when
the number of hikers and climbers increased in a national park in Croatia, but the number
of pairs investigated was low [41]. In 327 clutches studied for 20 years in Bulgaria, human
activities near the nests were the main reason for nest failures [42]. In the Italian Alps,
territories were located at a lower elevation and closer to intensively cultivated, urbanized
valley floors where there was more prey available, but the eagle owls on the valley floors
suffered a higher anthropogenic-associated mortality [43].

The present study investigates the effects of the noise and other disturbance on eagle
owls in Norway during the construction of both wind farms and power lines, and a
short period with active wind turbines. We investigated areas with eagle owls before the
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disturbance started and in the first breeding season after the wind turbines were activated.
According to the literature introduced above, we expected to (1) find fewer occupied eagle
owl territories after the construction period than before the construction started within
the influence areas compared with reference areas further away from the disturbances. In
addition, (2) we expected a lower breeding performance within the influence area compared
with the reference areas.

2. Materials and Methods
2.1. Study Area

The study area comprises eight wind farms and associated power lines in the central
part of Norway (Figure 1). In 2014–2015, we investigated 70 areas known for having
eagle owls commonly recorded or where eagle owls might have been recorded during
the last decade. This is the pre-disturbance investigation. The home ranges of the ea-
gle owls vary considerably between areas, likely as a response to variable food supply,
sex and season [18,35]. Some individuals might have home ranges of several tens of
km2 [18,35,44–46]. They also hunt outside of the strictly defended area [35]. Therefore,
we started this investigation by defining all areas within 5 km from the wind farms or
power lines as belonging to the influence area (Figure 1), and other areas to be outside the
influence area and used as reference areas. However, in this study, we investigated at which
distance we still observed the negative effects of the constructions. All areas included in
the investigation were close to the coast, and the influence areas and reference areas were
situated in the same region (the wind farm areas and the areas around and between them
in Figure 1) and are therefore comparable.

Animals 2022, 12, x FOR PEER REVIEW 3 of 13 
 

The present study investigates the effects of the noise and other disturbance on eagle 
owls in Norway during the construction of both wind farms and power lines, and a short 
period with active wind turbines. We investigated areas with eagle owls before the dis-
turbance started and in the first breeding season after the wind turbines were activated. 
According to the literature introduced above, we expected to (1) find fewer occupied eagle 
owl territories after the construction period than before the construction started within 
the influence areas compared with reference areas further away from the disturbances. In 
addition, (2) we expected a lower breeding performance within the influence area com-
pared with the reference areas. 

2. Materials and Methods 
2.1. Study Area  

The study area comprises eight wind farms and associated power lines in the central 
part of Norway (Figure 1). In 2014–2015, we investigated 70 areas known for having eagle 
owls commonly recorded or where eagle owls might have been recorded during the last 
decade. This is the pre-disturbance investigation. The home ranges of the eagle owls vary 
considerably between areas, likely as a response to variable food supply, sex and season 
[18,35]. Some individuals might have home ranges of several tens of km2 [18,35,44–46]. 
They also hunt outside of the strictly defended area [35]. Therefore, we started this inves-
tigation by defining all areas within 5 km from the wind farms or power lines as belonging 
to the influence area (Figure 1), and other areas to be outside the influence area and used 
as reference areas. However, in this study, we investigated at which distance we still ob-
served the negative effects of the constructions. All areas included in the investigation 
were close to the coast, and the influence areas and reference areas were situated in the 
same region (the wind farm areas and the areas around and between them in Figure 1) 
and are therefore comparable.  

 Figure 1. The study area with the eight wind farms (blue) with area names (yellow), and the 420 kV
(red) and 132 kV (violet) power lines. The influence area for eagle owls is defined to be up to five
kilometers from these constructions, and reference areas are further away. Nearly no new powerlines
were constructed in Frøya.
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Parts of the study area are mountains without forests and suitable for wind farms,
with steep cliffs that are the preferred breeding ground of the eagle owl. In addition, there
are forests, farmland areas, bogs, lakes and rivers, and some human settlements. Islands
with breeding eagle owls in the study area lack the mammalian predators common on the
mainland, such as the red fox (Vulpes vulpes), Eurasian lynx (Lynx lynx), European badger
(Meles meles) and pine marten (Martes martes). The eagle owl diet analyzed from pellets,
remnants found on and near the nesting cliffs of our study area show a wide variety of prey,
especially various species of birds, mammals and reptilians [47–50]. This is also normal
also in other areas of its breeding range [18].

2.2. Construction Disturbance

The disturbance to eagle owls investigated in the present study are mainly in the
construction period of the wind farms and power lines, both power lines connected to the
wind farms and other new power lines constructed in the same time period. In addition,
the areas have more human activity than before.

The main disturbances in connection with wind farm construction are supposed to
be road construction and the construction of platforms for wind turbines, transport and
installation of the turbines with the use of cranes and large trucks. Disturbance along the
power line network involves clearing a belt free of trees in the power line ride by using
logging machines or chain saws; helicopters are used to transport materials and to install
the electric lines. Normally several rig areas and storage spaces are constructed along the
power lines. Mechanical diggers and dynamite are used in the infrastructure construction.
There were no restrictions in where and when construction work was permitted, except
when eagle owl were detected within about 1 km from the working area. As a result of
our findings in 2014–2015, before the construction period started, a few wind turbines and
roads were moved relative to the original plans to reduce the disturbance of neighboring
eagle owl nests or possible nests.

During the wind farm construction period, there was more human activity than usual
in the remote areas, but this was not quantified. That, together with the construction
disturbance, most likely reduced the preferred habitats for the eagle owls and for some
of the prey species. After the construction period, the wind turbines started to produce
electricity and generated a different but significant type of noise. The disturbance in
the influence areas lasted, therefore, 2–3 years during the construction period and a few
months with active wind turbines and power lines. It was impossible for us to start the
investigations immediately after the construction period because we had to wait until
the first breeding season afterwards. After construction, the power lines might also have
caused mortality by collisions [22].

2.3. Observing Eagle Owls

We used wildlife acoustic sound meters (SM 2+, SM4 and SM Mini), in 2014–2015,
programmed to continuously record for about seven days in March (February–April),
termed the spring investigation. In 2020–2022, the sound meters were programmed to
record from one hour before sunset to one hour after sunrise for about 14 days, thus
increasing the probability of detecting eagle owls if present. In areas where the eagle owl
was not registered in the spring investigation, we used recorders in the autumn (September),
similarly programmed according to sunset and sunrise as in the spring. Three localities
were investigated in February–March 2022. The autumn investigation is of course not
completed yet, but our experience is that there will be almost no eagle owls registered in the
autumn if they were not present in the breeding season. Different areas were investigated
in different years, and each area was investigated only one year before the disturbance and
one year after the disturbance period.

The recordings were analyzed by the programs Audacity(R) editing software (v. 2.4.2.
Boston, MA, USA) and Kaleidoscope (Pro Analysis Software v. 5.1.9g, Wildlife Acoustics.
Maynard, MA, USA) to find eagle owl sounds, and Raven (Pro v. 1.6, Cornell Lab of
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Ornithology. Ithaca, NY, USA) for studying the details. The song of the eagle owl is
not learned; therefore, it has little variation over time [51]. It is therefore possible to
recognize different males via variations in spectrogram measures if the recordings are
high-quality [52–54]. We used the program Raven to find details in the song of males to
quantify the differences, and thereby concluded if it was the same or a different male in
neighboring areas, treating the areas as one territory if it was the same male.

In addition, we measured the distance from the nest, or the most probable nesting
place, to both the closest wind turbine and the shortest distance to a new power line
constructed after the preliminary investigation. We are not sure whether or not every
area with observations of eagle owls was a breeding territory, but because most areas had
regular observations of eagle owls during the years before this investigation started, we
considered all the areas as territories.

2.4. Statistics

To test hypothesis 1, if the eagle owls changed their presence status in the territory
from 2014–2015 to 2020–2022, we used generalized linear mixed effects model (GLMM)
analysis (IBM Statistics v. 27. Chicago, IL, USA). Alternatives were 1 = abandoned (n = 14);
2 = no change in observation, meaning observed in both periods (n = 23); and 3 = observed
only in the last period, termed reestablished (n = 2). Instead of reestablishment, it is possible
that the eagle owls used the territories in 2014–2015 without being detected, but statistically,
we treated these territories as reestablished. Explanatory variables were: (1) inside or
outside the influence area, varying from 1 to 5 km (values 1 and 2, respectively); (2) distance
between the nest area and the closest wind turbine; and the (3) shortest distance between
the nest area and a new power line. Both distances were measured to the nearest 0.1 km.
Each wind turbine and the powerlines are visible on norgeskart.no, which has a tool for
measuring distances. In addition, (4) we included the island and mainland as explanatory
variables with values 1 and 2, respectively. The observations in the different territories were
not in the same year, and year was therefore included as random factor. The GLMM analysis
was run with a multinomial probability distribution and cumulative logit link function.

In the data exploration for the GLMM analysis with the target variable, if eagle owl
changed their presence in the territory or not from 2014–2015 to 2020–2022, we first used
Spearman rank correlations between the explanatory variables. We used the variables for:
(1) within or outside the influence area, (2) the distance from the nest area to the nearest
wind turbine, and (3) the closest distance to the power line. The correlations were quite
high (rs = 0.6–0.8) and around the suggested maximum limit of 0.7 [55]. The variation
inflation factor (VIF) values were >5.5, which were above most recommendations [56,57].
We therefore run the GLMM analyses with the island, mainland and only one of the other
explanatory variables that were highly correlated separately (distance from nearest wind
turbine, distance to power line, within or outside the influence area) and by varying the
influence area from 1 to 5 km from the nearest turbine or power line. We compared the
different models with Akaike information criteria corrected (AICC), and with ∆AICC > 2
from the best model, the other models were normally rejected [56].

Because of the small number of reestablished territories, we ran a nonparametric
Fisher–Freeman–Halton exact Test (FFHET) to test if the decline in the number of active
territories was statistically significant with various influences of distance.

We tested hypothesis 2 with a GLMM analysis using only nests with known breeding
performances for all the seven years from 2015 to 2021, produced fledglings in at least one
of the seven years. The year 2015 was before the actual disturbance started and 2021 was
the year after. The target variable was a breeding performance ranked from 1–6: 1 = eagle
owls were not observed in the territory, 2 = observed in the territory, 3 = eggs were laid,
4 = one chick was produced, 5–6 = one additional point for each additional chick. Chicks
produced is the number of young alive at ringing age during the first 15 days of June, about
three weeks old. Explanatory variables were: (1) islands Hitra and Frøya, values 1 and 2,
respectively; (2) disturbance with value 1 in the years without disturbance, and value 2 in



Animals 2022, 12, 1089 6 of 13

the years with disturbance; (3) distance to the nearest disturbance factor (wind turbine or
power line) in km; and (4) year (during the seven year period, 2015–2021). The GLMM
analysis was conducted with multinomial probability distribution and cumulative logit
link function. The sample size was relatively low in this analysis, but with the selected
limitations, we were sure that the adult birds were living in a territory where reproduction
was possible. No explanatory variables were excluded because the maximum values of
the correlations between the explanatory variables were within the recommended limits
(|rs| < 0.46 and VIF < 2.2). Territory number was a random factor in these analyses.

GLMMs were used because they removed variability in responses that were associated
with random factors rather than the conditions of experimental interest, thus reducing
Type I error rate [58]. GLMM may be the best tool for analyzing non-normal data that
involve random effects [59]. Because of the strong probabilities of negative effects of the
disturbances, statistical tests are one-tailed with an α-level of 0.05.

3. Results

Of the 70 areas investigated in 2014–2015, 22 were excluded from further investi-
gations due to the lack of eagle owl activity in 2014–2015 and earlier registrations were
scarce and/or several years old. In the remaining 48 territories, we registered eagle owls
in 37 territories, and continued to investigate the other 11 territories despite the fact that
no eagle owls were observed in 2014–2015. This is because the potential for reestablish-
ment/detection was expected to be higher here than in the 22 territories that we excluded
according to the earlier history of the locations. In 2 of these 11 areas, eagle owls were
registered in 2020–2022. Therefore, we had 39 eagle owl territories with registrations in at
least one of the two time periods that were included in the analyses.

Before the construction period started, we observed at least one eagle owl in 15 ter-
ritories within the influence area of 5 km from the closest wind turbine or power line
and 22 territories outside the influence area. Of the territories within the influence area,
nine were abandoned. In addition, two territories within the influence area with no eagle
owls detected before the construction period were detected afterwards. We therefore reg-
istered seven fewer territories of the 17 with eagle owls in at least one of the two periods
(41% reduction). Outside the influence area, five of the 22 territories were abandoned,
and there were no reestablished territories (23% reduction). The decline in the number
of active territories was statistically significant both with an influence distance of 5 km
(FFHET value = 7.39, p = 0.008) and with an influence distance of 4 km (FFHET value = 4.97,
p = 0.028). The other tested influence areas from 1 to 3 km did not yield significant results
in the same test (p > 0.15 in all tests).

Abandoned eagle owl nests (n = 14) were significantly closer to the nearest disturbance
source than those that remained (n = 23) (MW U-test: Z = −1.817, n = 37, p = 0.035) (Figure 2).
We found a similar result for the distance from power lines (MW U-test: Z = −1.645, n = 37,
p = 0.050), and the results were not so significant for the distance to the nearest wind turbine
(Z = −1.472, n = 37, p = 0.071). The two areas where eagle owl reestablished were 2.5 and
4.0 km away from the nearest wind turbine, respectively.

None of the GLMM analyses testing hypothesis 1 were statistically significant. An
influence distance of 4 km gave the best model, as judged from AICC values, and all the
other variables achieved a value of ∆AICC > 2 compared with the best model.

The data to test hypothesis 2 were from only 11 nests on Hitra and Frøya, investigated
yearly in the period 2015–2021, and with production of young for at least one of the
years. A GLMM analysis with the breeding performance (values 1–6) as the target variable
was statistically significantly higher inside than outside an influence distance of 3 km
(coefficient = 2.244 ± 1.15, t = 1.953, p = 0.028). The other explanatory variables—year,
island and disturbance or no disturbance for each year—were far from being statistically
significant. However, this strange result that contrasted with our hypothesis was caused
by a higher breeding performance within the influence area of 3 km already before the
disturbance started, and the breeding performance did not change, neither in the influence
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areas nor in the reference areas when the disturbance started (Figure 3). The use of distance
to the disturbance as an explanatory variable instead of influence area had a far-from-
significant effect, as well as with other influence areas than 3 km.

Animals 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 
Figure 2. Mean distance (km) ± 2 SE between the central places of eagle owl territories or nest sites 
that were abandoned (n = 14) or no change in occupation (n = 23) and distance to closest disturbance 
(wind turbine or power line). The change is a comparison of territory occupancy before the con-
struction of the wind farms and power lines started compared with the similar investigation shortly 
after the construction was finished. 

None of the GLMM analyses testing hypothesis 1 were statistically significant. An 
influence distance of 4 km gave the best model, as judged from AICC values, and all the 
other variables achieved a value of ∆AICC > 2 compared with the best model. 

The data to test hypothesis 2 were from only 11 nests on Hitra and Frøya, investigated 
yearly in the period 2015–2021, and with production of young for at least one of the years. 
A GLMM analysis with the breeding performance (values 1–6) as the target variable was 
statistically significantly higher inside than outside an influence distance of 3 km (coeffi-
cient = 2.244 ± 1.15, t = 1.953, p = 0.028). The other explanatory variables—year, island and 
disturbance or no disturbance for each year—were far from being statistically significant. 
However, this strange result that contrasted with our hypothesis was caused by a higher 
breeding performance within the influence area of 3 km already before the disturbance 
started, and the breeding performance did not change, neither in the influence areas nor 
in the reference areas when the disturbance started (Figure 3). The use of distance to the 
disturbance as an explanatory variable instead of influence area had a far-from-significant 
effect, as well as with other influence areas than 3 km. 

 
Figure 3. Breeding performance (score 1–6, see text) ± 2 SE for the 11 nests on Hitra and Frøya with 
at least one year with the production of young in the time period 2015–2021. The nests were within 

Figure 2. Mean distance (km) ± 2 SE between the central places of eagle owl territories or nest
sites that were abandoned (n = 14) or no change in occupation (n = 23) and distance to closest
disturbance (wind turbine or power line). The change is a comparison of territory occupancy before
the construction of the wind farms and power lines started compared with the similar investigation
shortly after the construction was finished.
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Figure 3. Breeding performance (score 1–6, see text) ± 2 SE for the 11 nests on Hitra and Frøya with
at least one year with the production of young in the time period 2015–2021. The nests were within
or outside an influenced area of 3 km from the closest wind turbine or power line before and after the
disturbance started (n = 3 nests), or in reference areas further away (n = 8 nests).

4. Discussion

The present investigation focuses on the immediate response of territorial eagle owls
to disturbances from the full construction period of wind farms and power lines, and a
short period with active wind turbines and power lines. We found that territorial birds
within 5 km from the disturbance left their territories to a significantly higher extent (41%)
compared with the eagle owls in territories further away (23%). In addition, the distance
from the nest site or the central part of the territory to the disturbance was significantly
shorter for those territories that were abandoned compared with territories where the birds
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stayed. Our findings of the detrimental effects are in accordance with our prediction 1, and
with other investigations on how eagle owls react on human disturbance [38,42,60].

The decline in eagle owl populations near the construction areas of wind farms and
power lines might have three main explanations. Firstly, the increased mortality of eagle
owls may have been caused by power lines and wind turbines. It is known by telemetry
investigations that eagle owls fly more than 20 m above the ground 25% of the time [45],
and that they can fly upwind like raptors high up in the air [18,61]. It is therefore reasonable
that they are judged to be vulnerable to becoming killed by wind turbines [62], and eagle
owls have been killed by wind turbines in several European countries [16]. It is also well-
known that many eagle owls are killed by power lines [17–22]. Secondly, the desertion and
avoidance of wind power areas by eagle owls caused by the noise and disturbance from
the constructions. Several publications show the negative effects of noise and disturbances
on bird populations (see Introduction). Thirdly, the possible indirect effects are that prey
species of the eagle owl might die or leave the area, and that the eagle owl also leaves
because less prey is available. Unfortunately, we do not know whether the abundance of
prey was affected by the construction. Others have shown a positive correlation between
the amount of prey and eagle owl population density [18,63]. The availability of prey is
an important factor determining the density of breeding eagle owls, and it is unlikely that
the shortage of nest sites limits its breeding density because of their flexibility in choice
of nest sites [18]. Nest sites seem to be frequently available in the rocky environments
that the eagle owls use as nesting sites in our investigation areas. Eagle owls might skip
breeding in years with low food availability [64,65], and there is a positive relationship
between territory occupancy and habitat quality [66]. Food availability is among the most
important factors influencing fluctuations in eagle owl populations [18], and the occupation
rate of eagle owl territories is found to be positively correlated with food availability and
negatively correlated with mortality risk [67].

If one pair of eagle owl leaves the territory, there will be more space and less competi-
tion for the others. Inter-individual effects contribute to shaping space use and movement
patterns in eagle owls [68]. Eagle owls seem to have considerable individual consistency in
their movements with the repeated use of similar routes within their fixed home range, but
might significantly change this route pattern between years, even if the same territory is oc-
cupied [69]. If a neighboring pair leaves their territory, remaining pairs can exploit a larger
area without the restrictions caused by neighbors, and thereby breed equally or even more
successfully. It is therefore possible that the negative effects of wind farm constructions
might be easier to detect in the number of occupied territories than in breeding performance.
This might be the reason why we did not find any negative effects on breeding performance
after the constructions started compared with before, the opposite to our prediction.

We found that the breeding performance seemed to be better within the influence area
of 3 km compared with the reference areas further away from the disturbances. However,
this difference was present before the constructions started, and it did not change after the
constructions started (Figure 3). The difference might be because eagle owls mostly hunt in
open areas [37,70] in the same type of landscape used to construct wind farms. There were
also few nests within the influence area of 3 km (n = 3) that could cause bias in the data.
There were no statistically significant differences in breeding performance when we used
distances of 4 or 5 km as the influence area, and we found no support for hypothesis 2.

There might be a time lag in population declines after disturbances if the eagle owls
leave their territories after the most important prey species become less numerous. Eagle
owls have a strong nest site fidelity [37], and the same breeding cliff in the middle part of
Norway has been used for nearly 4000 years [47].

It is important to note that the disturbances in the present paper were in established
eagle owl territories with little other human activity before the construction started. If there
are appropriate nesting sites and a good food supply, the eagle owl can adapt to living
closer to humans [43], and eagle owls can even breed in large cities [18]. This is also known
in other eagle owl species, such as the Mackinder’s eagle owl (Bubo capensis mackinderi)
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in Africa [71], and the rock eagle owl (Bubo bengalensis) in India, which breeds in higher
densities in highly human-altered landscapes that are richer in larger prey, such as rodents
and birds [72].

In the present study, the nestling production we used was the number of young in the
first half of June, when they were old enough to be ringed. Eagle owls in Norway suffered
a high mortality rate that gradually declined during their first three years [73]. There
might be several reasons for this high early mortality [18], and similar mortality patterns
were found in other owl species [74] as well as in other bird species [75–77]. It is therefore
uncertain how the results would be if we could follow the young for a longer period.

A lowered density in eagle owls might reduce the need for vocalizing among the
remaining individuals, thus reducing the probability of being detected by passive auditory
surveys such as sound meters [78]. Our experience in more than ten remote territories in
our investigated area is that the territorial birds were detected by the use of sound recorders
in all years. The eagle owls are not singing only to defend their territories, but also have
intra-pair contact sounds uttered by both males and females [18].

There are many other possible threats to eagle owls [18], including pesticides, pollu-
tion [79,80], and mobbing corvids [37,38]. We believe that there should be no differences in
the probability that eagle owls will leave their territories because of these factors; therefore,
we assume that many changes in territory occupancy inside and outside the influence area
can be described as wind farm and power line constructions.

To our knowledge, no other study exists that shows the importance of the distance
to various kinds of disturbances from eagle owl nests. However, there is some advice
given by researchers to protect the eagle owl from disturbances, e.g., all building of houses
and other disturbances should be at least 1 km from the nest site [81,82]. We found the
highest impact of the disturbances on eagle owls when we used 4–5 km as the influence
area. Fewer territories were within a 1–3 km distance from the closest wind turbine or
power line, which gave a low statistical precision. However, more research is still needed
to quantify the magnitude of human-related eagle owl mortality and its effects on the
populations [18]. For the more effective conservation of eagle owls during different types
of constructions, it might be interesting to know the disturbance contributions from each
factor. In a wind farm and power line construction, that can be achieved by increasing
human presence before the construction period starts to the same level that is expected
during construction, then continue with the construction period, and thereafter activate the
wind turbines. Before and after each step, the effects on eagle owls and prey abundance
should be investigated during their breeding seasons. To be successful, there should be
no delay in the effects of the different disturbance factors. The construction disturbance
in our investigated area is finished, but the disturbance from rotating wind turbines and
their sounds might also deter the eagle owls or their prey, which can be investigated in the
ongoing study of these territories.

This is the first published survey in Norway that has investigated the short-term effects
of establishing wind farms in or nearby the territories of eagle owls. The construction
activities in the present study were performed throughout the year, including during the
eagle owl breeding period, and were similar for the short period with active wind turbines.
The eagle owls are stationary in the breeding area and were therefore continuously exposed
to the disturbances for quite a long period. Despite not being very shy, at all times, the
early breeding stages represent the most sensitive and fragile period for the eagle owl.
If the female is disturbed at the nest during incubation or shortly after hatching, she
might abandon the nest [18]. A conservation recommendation learned from the present
investigation is that it should be investigated if an eagle owl is present in a construction
area before the constructions start, and any eagle owl territories should affect how and
when the construction can be carried out.
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5. Conclusions

The effects of disturbance from the whole wind farm and power line construction
period and a short period with active wind turbines were measured in 39 territories with
eagle owls present before and/or after disturbances. More territories were abandoned
within an influence area of 4–5 km compared with reference areas that were further away.
Testing to discover if the influence area was shorter yielded no significant results, probably
because there were few territories within the influence areas with shorter distances from
the disturbances. The mean distance from the disturbances was shorter in the abandoned
territories compared with the territories where eagle owls were observed both before
and after the disturbance period. These results show that the eagle owl is vulnerable to
anthropogenic disturbance in areas with little prior disturbance. This investigation is a
contribution to a field with a lack of knowledge, and more investigations are needed to
ensure a better conservation of this threatened bird species, and especially to find the real
influence distance for different kind of disturbances.
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