
Observational Constraints on Southern Ocean Cloud-Phase Feedback 

 

Wall, C. J., Storelvmo, T., Norris, J. R. & Tan, I. 

 

Published in:  Jounral of Climate 

DOI:    10.1175/JCLI-D-21-0812.1 

 

Available online: 19 Jan 2022 

 

Citation: 

Wall, C. J., Storelvmo, T., Norris, J. R. & Tan, I. (2022). Observational Constraints on Southern 

Ocean Cloud-Phase Feedback. Journal of Climate, 35(15), 5087-5102. doi:   10.1175/JCLI-D-21-

0812.1 

 

 

© Copyright 2022 American Meteorological Society (AMS). For permission to reuse any 

portion of this Work, please contact permissions@ametsoc.org. Any use of material in this 

Work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act (17 U.S. 

Code § 107) or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act 

(17 USC § 108) does not require the AMS’s permission. Republication, systematic 

reproduction, posting in electronic form, such as on a website or in a searchable database, or 

other uses of this material, except as exempted by the above statement, requires written 

permission or a license from the AMS. All AMS journals and monograph publications are 

registered with the Copyright Clearance Center (https://www.copyright.com). Additional 

details are provided in the AMS Copyright Policy statement, available on the AMS website 

(https://www.ametsoc.org/PUBSCopyrightPolicy). 

 

 



Observational Constraints on Southern Ocean Cloud-Phase Feedback

CASEY J. WALL,a TRUDE STORELVMO,b,c JOEL R. NORRIS,a AND IVY TANd

a Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
b Department of Geosciences, University of Oslo, Oslo, Norway

c School of Business, Nord University, Bodø, Norway
d Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Canada

(Manuscript received 15 October 2021, in final form 19 January 2022)

ABSTRACT: Shortwave radiative feedbacks from Southern Ocean clouds are a major source of uncertainty in climate
projections. Much of this uncertainty arises from changes in cloud scattering properties and lifetimes that are caused by
changes in cloud thermodynamic phase. Here we use satellite observations to infer the scattering component of the cloud-
phase feedback mechanism and determine its relative importance by comparing it with an estimate of the overall tempera-
ture-driven cloud feedback. The overall feedback is dominated by an optical thinning of low-level clouds. In contrast, the
scattering component of cloud-phase feedback is an order of magnitude smaller and is primarily confined to free-
tropospheric clouds. The small magnitude of this feedback component is a consequence of counteracting changes in albedo
from cloud optical thickening and enhanced forward scattering by cloud particles. These results indicate that shortwave
cloud feedback is likely positive over the Southern Ocean and that changes in cloud scattering properties arising from
phase changes make a small contribution to the overall feedback. The feedback constraints shift the projected 66% confi-
dence range for the global equilibrium temperature response to doubling atmospheric CO2 by about 10.1 K relative to a
recent consensus estimate of cloud feedback.

SIGNIFICANCE STATEMENT: Understanding how clouds respond to global warming is a key challenge of climate
science. One particularly uncertain aspect of the cloud response involves a conversion of ice particles to liquid droplets
in extratropical clouds. Here we use satellite data to infer how cloud-phase conversions affect climate by changing cloud
albedo. We find that ice-to-liquid conversions increase cloud optical thickness and shift the scattering angles of cloud
particles toward the forward direction. These changes in optical properties have offsetting effects on cloud albedo. This
finding provides new insight about how changes in cloud phase affect climate change.

KEYWORDS: Climate sensitivity; Cloud microphysics; Cloud radiative effects; Feedback; Shortwave radiation

1. Introduction

The Southern Ocean is one of the cloudiest places on
Earth. Vast blankets of low clouds cover the region, and
streaks of high clouds form from the continuous churning of
weather systems. Collectively these clouds have large radia-
tive effects that shape global climate (Hwang and Frierson
2013; Kay et al. 2016; Hawcroft et al. 2017).

Southern Ocean clouds are also susceptible to producing
cloud–climate feedbacks that have global consequences. For
instance, projections from phase 6 of the Coupled Model
Intercomparison Project (CMIP6) predict more positive
Southern Ocean cloud feedback and higher climate sensitivity
than previous assessments (Zelinka et al. 2020). The CMIP6
projections show that Southern Ocean cloud feedback affects

climate sensitivity, but the models have large parametric
uncertainties that cause them to predict a wide range of feed-
back values. Previous observational studies have attempted to
constrain the feedback, but they have yet to reach a consensus
on sign (Ceppi et al. 2016b; Terai et al. 2016; Lutsko et al.
2021). These results indicate that Southern Ocean clouds
exert a potentially powerful but highly uncertain feedback on
global climate change.

One major component of the feedback uncertainty is associ-
ated with changes in cloud thermodynamic phase (Storelvmo
et al. 2015). As the atmosphere warms, some cloud particles that
would have previously been ice will form as liquid instead. These
phase conversions change shortwave (SW) cloud radiative effects
in three primary ways. First, liquid droplets are typically smaller
and more numerous than ice particles, so ice-to-liquid conver-
sions increase cloud optical depth. Second, phase conversions
change the shape of cloud particles, which changes the typical
scattering angles of individual scattering events (Kokhanovsky
2004). Third, ice-to-liquid conversions may reduce precipitation
efficiency, thereby extending cloud lifetimes and increasing
cloud amount (Mitchell et al. 1989; Tsushima et al. 2006;
Mülmenstädt et al. 2021). We refer to these changes in cloud
scattering properties and lifetimes as the scattering and life-
time components of cloud-phase feedback, respectively. Both
are the product of complex interactions among microphysical,
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radiative, and dynamical processes, and thus they are highly
uncertain.

In this study we use satellite observations to constrain the
scattering component of Southern Ocean cloud-phase feed-
back. We focus on this feedback component because model
simulations suggest that it could have a powerful stabilizing
effect on climate (Ceppi et al. 2016a; Tan et al. 2016; Frey and
Kay 2018), but observational evidence for the feedback has
been limited to estimates that do not quantify confidence
intervals or determine its importance relative to the overall
cloud feedback (McCoy et al. 2014b; Tan et al. 2019). Here
we introduce a method to estimate cloud feedback as a func-
tion of cloud-top phase, which facilitates stronger constraints.
We first estimate the cloud-phase scattering feedback and the
overall temperature-driven cloud feedback, and then we
investigate the implications of these feedbacks for climate
sensitivity.

2. Data and methods

a. Observations and model output

We extend a method of cloud-feedback analysis developed
by Zelinka et al. (2012) to decompose SW feedbacks based
on cloud thermodynamic phase. The method is applied to
cloud observations from the Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument on the Aqua satel-
lite (Platnick et al. 2017). MODIS cloud-phase data represent
phase at cloud top, and they have a ∼90% frequency of agree-
ment with cloud-top phase determined by lidar, which is the
most accurate phase retrieval from space. The frequency of
agreement with lidar over the Southern Ocean is similar when
considering single-layer clouds or single- and multilayer
clouds combined (Huang et al. 2016; Marchant et al. 2016).
We analyze MODIS cloud-fraction histograms partitioned by
cloud-top pressure (CTP), optical depth, and phase. MODIS
does not retrieve all of these properties when the solar zenith
angle is larger than 81.48, so the histograms are compiled from
pixels that have solar zenith angle smaller than this value.
Furthermore, the standard liquid- and ice-cloud histograms
have different CTP-optical depth bins, so some adjacent
bins are merged to make the intervals similar. The method
for merging bins is described in Table S1 in the online
supplemental material. All of the MODIS data are provided on
a space–time grid with resolution of 18 latitude, 18 longitude,
and 1 month.

We also use monthly gridded meteorological data and sea-
ice area fraction from the ERA5 (Hersbach et al. 2020).
Three-dimensional temperature, horizontal wind, and vertical
wind fields are linearly interpolated to the MODIS grid and
averaged over pressure intervals that correspond to the
MODIS CTP bins. We also calculate estimated inversion
strength, which represents the inversion at the top of the plan-
etary boundary layer (Wood and Bretherton 2006). The
observations and reanalysis data are analyzed over ocean grid
boxes with monthly sea-ice cover below 1% to avoid biases in
the MODIS data that occur over sea ice (Liu et al. 2010).
We refer to these grid boxes as “ice-free ocean.” Data are

analyzed between the years of 2003 and 2019, and the main
analysis is performed over latitudes of 408–608S. Unless stated
otherwise, all analysis is performed over this latitude range.

Finally, we use output from 34 CMIP6 global climate mod-
els to represent CO2-forced warming (Table S2). Model simu-
lations are run for 150 years following an abrupt quadrupling
of atmospheric CO2 concentrations relative to preindustrial
values (the abrupt4xCO2 experiment). Like the reanalysis data,
atmospheric temperatures from the model output are interpo-
lated to the MODIS grid and averaged over pressure intervals
that correspond to the MODIS CTP bins. The temperature
response to increasing atmospheric CO2 is calculated by taking
the difference between the abrupt4xCO2 simulation the corre-
sponding parallel preindustrial simulation (the piControl experi-
ment). The response of global-mean near-surface air temperature
is calculated similarly. Only the first ensemble member from each
model is used.

b. Radiative kernels

Cloud-fraction anomalies from each MODIS histogram bin
are converted into top-of-atmosphere SW flux anomalies
using radiative kernels. The kernels represent how much a
unit cloud-fraction change modifies top-of-atmosphere SW
flux with all noncloud factors fixed at climatological values.
We calculate the kernels following the method of Zelinka
et al. (2012), except that we generalize their framework by
calculating separate kernels for liquid and ice clouds. The
method for calculating the kernels involves performing radia-
tive transfer calculations for an overcast cloud with various
combinations of CTP, optical depth, and phase that corre-
spond to the MODIS histogram bins. The liquid- and ice-
cloud kernels are calculated with clouds that are entirely
liquid and entirely ice, respectively. The calculations are per-
formed using the Rapid Radiative Transfer Model for Global
Climate Models (Clough et al. 2005) with the cloud optical
property schemes of Fu (1996) and Hu and Stamnes (1993).
We run the calculations with climatological seasonal cycles of
humidity from ERA5 and surface albedo from Clouds and
the Earth’s Radiant Energy System satellite observations
(Loeb et al. 2018). We also change the mean effective radius
of liquid droplets and ice crystals to 14 and 35 mm, respec-
tively, to match observed values over the Southern Ocean
(McCoy et al. 2014a). Together the cloud histograms and
kernels reproduce observed variations of SW cloud radiative
effects with a bias of ∼5% (appendix A).

Figure 1 shows the spatial and temporal average of the
cloud histograms and radiative kernels over the Southern
Ocean. The kernels have negative values because a larger
cloud fraction increases SW reflection to space. They depend
relatively strongly on optical depth, and they depend weakly
on CTP because of SW absorption by water vapor above
cloud top. For a given CTP–optical depth combination, the
kernels also depend on cloud phase because ice particles typically
backscatter more radiation than liquid droplets (Stackhouse and
Stephens 1991). Changes in any of these cloud properties can
therefore contribute to cloud feedback.
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c. Feedback analysis

We leverage the MODIS histograms and kernels to esti-
mate the component of SW cloud feedback that is directly
caused by atmospheric warming. The analysis therefore does
not include feedbacks from changes in large-scale circulation,
horizontal advection over surface-temperature gradients, esti-
mated inversion strength, or other meteorological factors that
are not directly linked to local air temperature. We focus on
temperature-driven feedbacks because most proposed mecha-
nisms of extratropical cloud feedback are directly caused by
atmospheric warming and because shifts in large-scale circula-
tion are expected to produce a relatively small SW cloud feed-
back over the Southern Ocean (Terai et al. 2019; Ceppi and
Hartmann 2015). Let i represent any bin in the MODIS
liquid- or ice-cloud histogram. For a given location and
calendar month, the SW feedback from clouds in bin i is

FSW,i � ­ci
­Ti

Ki
dTi

dT2m
, (1)

where ci is cloud fraction, Ti is temperature at the location
and pressure level of bin i, Ki is the corresponding element of
the kernel, and T2m is global-mean surface air temperature.
On the right side of Eq. (1), the first term is the cloud
response to local warming, the second term converts the cloud
response into top-of-atmosphere SW flux, and the third term
relates local warming to global-mean surface warming. All

temperature-dependent terms represent the response to an
external climate forcing. The task of quantifying cloud feed-
back thus reduces to estimating these terms.

We first calculate dTi/dT2m, which represents the magni-
tude and vertical structure of atmospheric warming over the
Southern Ocean relative to global-mean surface warming.
This term is estimated by calculating temperature differences
between the abrupt4xCO2 and piControl experiments of the
CMIP6 models averaged over years 121–150 of the simula-
tions. Values of dTi/dT2m are zonally averaged over ocean for
each combination of latitude, calendar month, and pressure
interval. We calculate dTi/dT2m for each of the 34 climate
models, and we use the multimodel mean as the central esti-
mate for the feedback analysis. The spatial- and annual-mean
values of dTi/dT2m over the Southern Ocean consistently have
maximum values in the free troposphere and smaller values in
the lower stratosphere and near the surface (Fig. 2). Small
stratospheric values are a consequence of larger emissivity
from enhanced CO2 concentrations, and small near-surface
values are a consequence of ocean heat uptake and transport
that result from the overturning circulation of the Southern
Ocean (Hartmann 2016; Armour et al. 2016). These physical
explanations and the consistency among models suggest that
the projections of dTi/dT2m are robust.

The feedback analysis also requires radiative kernels for
diagnosing feedbacks over ocean. Because the mean surface
albedo has little zonal variation over ice-free ocean, we

FIG. 1. Climatology of cloud fraction and SW cloud radiative kernels over the Southern Ocean: (a),(b) ice- and
liquid-cloud fraction, and (c),(d) ice- and liquid-cloud kernels.
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zonally average the kernels over these grid points. The result-
ing zonal-mean kernels are used in the analysis.

The remaining term in the feedback equation is ­ci/­Ti.
This term represents the temperature-driven cloud response
to a climate forcing, but it can be estimated from observed
natural variability assuming that cloud–temperature relation-
ships will not substantially change as the climate evolves. This
assumption neglects the potential dependence of extratropical
cloud feedbacks on the climate state (Bjordal et al. 2020).
However, model projections generally suggest that monthly
cloud–temperature relationships from natural variability accu-
rately predict extratropical cloud feedbacks associated with
anthropogenic climate change, and observed cloud–temperature
relationships are similar in different epochs within the MODIS
record (appendix C; Tselioudis et al. 1998; Gordon and Klein
2014; Terai et al. 2016; Ceppi et al. 2016b). We therefore esti-
mate ­ci/­Ti from observed natural variability.

We first estimate ­ci/­Ti values associated with the com-
bined effect of all feedback mechanisms that are directly
caused by atmospheric warming. We call this the tempera-
ture-mediated cloud feedback, and we estimate the ­ci/­Ti

values by applying multilinear regression to the MODIS cloud
histograms and reanalysis meteorological data over ice-free

ocean. Because of the zonal symmetry of the Southern Ocean,
regression is performed on data from all longitude points
simultaneously. The climatological seasonal cycle is removed
from each latitude–longitude grid box, and data are binned by
latitude and calendar month. For each combination of lati-
tude, calendar month, and histogram bin i, we calculate a
regression model of the form

ci5
∑N
n�1

­ci
­xn

xn 1 �, (2)

where xn are meteorological predictors, ­ci/­xn are regression
coefficients, N is the number of meteorological predictors,
and � is the residual. The meteorological predictors include
temperature and zonal, meridional, and vertical wind averaged
over the pressure interval of bin i. Estimated inversion strength
is also used as a predictor for bins with CTP . 450 hPa. The
term ­ci/­Ti therefore represents the cloud response to local
warming while the monthly wind field and inversion strength
are held constant. On average, the regression model explains
37% of the variance of cloud-induced SW flux anomalies for
boundary layer clouds (CTP . 800 hPa) and 18% of the vari-
ance for tropopause-level clouds (250 , CTP # 350 hPa).
The explained variance for boundary layer clouds is similar to
that of other observational work that uses different meteoro-
logical predictors (Scott et al. 2020). This suggests that the
regression model represents cloud–meteorology relationships
with skill that is similar to other available methods. Ultimately
the ­ci/­Ti values are used to estimate the temperature-
mediated cloud feedback following Eq. (1).

We also estimate the component of the temperature-medi-
ated feedback that arises from changes in low-cloud optical
depth. We define low clouds by CTP . 600 hPa, and we use
the method of Scott et al. (2020) to decompose anomalies in
low-cloud fraction into a component associated with anoma-
lous cloud amount and a component associated with anoma-
lous shifts in the distribution of optical depth, phase, and
CTP. Let L represent the total low-cloud fraction and c*j rep-
resent the cloud-fraction anomaly in histogram bin j that is
associated with shifts in the optical depth–phase–CTP distri-
bution. Values of c*j are determined by

c*j � c′j 2 L′ cj
L

,

where j runs over all histogram bins with CTP . 600 hPa,
overbars indicate values from the climatological seasonal
cycle, and primes indicate monthly anomalies. We regress c*j
on monthly anomalies of the meteorological predictors to
estimate the associated SW feedback. This feedback compo-
nent is dominated by shifts in optical depth, so we henceforth
call it the low-cloud optical depth feedback.

The values of ­ci/­Ti associated with the scattering compo-
nent of cloud-phase feedback are estimated from a different
procedure. We calculate these terms separately for each com-
bination of latitude, calendar month, and CTP bin so that
phase conversions happen between clouds at the same latitude
and pressure level. For a given CTP bin, the total liquid-cloud

FIG. 2. Ratio of atmospheric warming over the Southern Ocean
to global-mean surface warming from CMIP6 projections forced by
a quadrupling of atmospheric CO2 concentrations (dTi/dT2m). The
plot shows spatial- and annual-mean values of dTi/dT2m over the
Southern Ocean. Black dots show the multimodel mean, and gray
bars show the intermodel range.
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fraction Cliq and the total ice-cloud fraction Cice are calculated
by summing cloud fraction over the optical depth dimension
of the histogram. The proportion of clouds that are liquid is
determined by

Pliq5
Cliq

Cliq 1 Cice
:

We calculate Pliq for all data points that satisfy the given
latitude–month–CTP combination, and we remove the clima-
tological seasonal cycle from each latitude–longitude grid
box. Monthly anomalies of Pliq are then regressed on monthly
anomalies of the meteorological predictors to calculate ­Pliq/­T,
where T is temperature in the CTP interval. Regression is per-
formed on data from all longitude points simultaneously.
Changes in Cliq and Cice with warming are then determined by

­Cliq

­T
� ­Pliq

­T
Cliq 1 Cice
〈 〉

,

­Cice

­T
�2

­Pliq

­T
Cliq 1 Cice
〈 〉

,

where angle brackets indicate values from the climatologi-
cal seasonal cycle that are zonally averaged over ice-free
ocean. The values of ­Cliq/­T and ­Cice/­T are equal and
opposite, so they represent a phase conversion with fixed
overall cloud fraction. These values are distributed among
the optical depth bins in proportion to the climatological
distributions:

­cliq,k
­T

� ­Cliq

­T

cliq,k〈 〉
Cliq
〈 〉 ,

­cice,l
­T

� ­Cice

­T

cice,l〈 〉
Cice〈 〉 ,

where cliq,k and cice,l are the liquid- and ice-cloud fractions in
optical depth bins k and l of the given CTP interval, respec-
tively. By distributing cloud fraction this way, we are assum-
ing that for any joint latitude–month–CTP bin, all ice clouds
in the bin have the same probability of undergoing a phase
conversion. Ultimately ­cliq,k/­T and ­cice,l/­T are used to esti-
mate the cloud-phase scattering feedback following Eq. (1).
An example of this procedure is presented in the online
supplemental material.

The cloud-phase scattering feedback is also decomposed
into contributions from changes in different optical proper-
ties. The total cloud-phase scattering feedback for a given lati-
tude, month, and CTP bin is

FSW;phase� dT
dT2m

∑9
l�1

­cice,l
­T

Kice,l 1
∑9
k�1

­cliq,k
­T

Kliq,k

( )
,

where Kice and Kliq are the ice- and liquid-cloud kernels and
the sums are performed over the optical depth dimension.
Let K̂ liq represent the liquid-cloud kernel evaluated on the
ice-cloud optical depth bins. The feedback can then be
expressed as

FSW;phase � dT
dT2m

∑9
l�1

­cice,l
­T

Kice,l 2 K̂ liq,l

( )[ ]

1
dT
dT2m

∑9
l�1

­cice,l
­T

K̂ liq,l 1
∑9
k�1

­cliq,k
­T

Kliq,k

( )[ ]
:

The first term in square brackets depends on the difference
between the liquid- and ice-cloud kernels. This term repre-
sents the fact that converting ice to liquid without changing
cloud optical depth will produce a feedback by changing the
scattering angles of cloud particles and the relative impor-
tance of scattering and absorption. These optical properties
are represented by the asymmetry parameter and single-
scattering albedo, respectively. The second term in square
brackets depends on the sum of ­cice,l/­T and ­cliq,k/­T
weighted by the liquid-cloud kernels. Since ­cice,l/­T and
­cliq,k/­T have opposite sign and sum to zero when adding
over all optical depth bins, this term represents the feedback
from changes in the overall optical depth distribution that are
caused by phase conversions.

All of the main feedback analysis is performed over ice-
free ocean between 408 and 608S. In some cases we perform
additional calculations over different latitude ranges to facili-
tate comparisons with previous studies. These cases are
explicitly identified in the text. Feedbacks are first calculated
separately for each combination of latitude and calendar
month. To ensure adequate sampling of the cloud histograms,
we require that each grid box has at least 500 valid MODIS
pixels. This condition is not satisfied poleward of 568S in June
and poleward of 598S in July because of large solar zenith
angles. In these cases, regression slopes are taken from the
same latitude and the closest calendar month with sufficient
data. If two months are equally close, then the average of
their regression slopes is used. After these substitutions are
made, the resulting feedback values are averaged over the
seasonal cycle and latitude, weighting by the area of ice-free
ocean. Feedback uncertainty is represented by 95% confi-
dence intervals that account for uncertainty in observed
cloud-temperature regression slopes, uncertainty in the cloud
microphysical properties that are assumed when calculating
the kernels, and intermodel spread in projections of dTi/dT2m

(appendix B).

3. Southern Ocean cloud feedback

We next investigate the relative importance of the cloud-
phase scattering feedback by comparing it with the overall
temperature-mediated cloud feedback over the Southern
Ocean. Figure 3 shows the feedback components as a function
of CTP, optical depth, and phase. The temperature-mediated
feedback includes a vertical dipole pattern from rising upper-
tropospheric ice clouds (Fig. 3a). This is qualitatively consis-
tent with established energetic constraints: The average depth
of the troposphere is limited to levels with appreciable clear-
sky radiative cooling, which is constrained to temperatures
warmer than ∼220 K by the nature of emission at wavelengths
in the water-vapor rotation band (Hartmann and Larson
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2002; Thompson et al. 2017; Jeevanjee and Fueglistaler 2020).
Thus, as the atmosphere warms and isotherms rise, the high-
est ice clouds rise as well. A second dipole pattern shows that
the top of low-level liquid clouds sinks as the atmosphere
warms (Fig. 3b). This cloud response has been detected in
other satellite and field observations, but the physical cause is
not fully understood (Huang et al. 2016; Mace et al. 2021b).
One possible explanation is that a warmer, more emissive free
troposphere reduces cloud-top radiative cooling. This weakens
turbulence and reduces the vertical development of boundary
layer clouds (Eastman and Wood 2018).

In contrast to the temperature-mediated feedback, the
cloud-phase scattering feedback has a strikingly different pat-
tern (Figs. 3c,d). Throughout the troposphere the ice-cloud
feedback is positive and the liquid-cloud feedback is negative,
indicating an ice-to-liquid conversion. The feedback magni-
tude maximizes in the middle troposphere, where ice and liq-
uid clouds both occur (Figs. 1a,b). It is not obvious from Fig. 3
how much the cloud-phase scattering feedback contributes to
the total temperature-mediated feedback, but it is clear that
other feedback mechanisms contribute as well.

The temperature-mediated and cloud-phase feedbacks can
be compared more clearly by summing the components over
the CTP dimension to remove dipole signals from vertical
shifts in clouds. The prevailing signal of the temperature-
mediated feedback for low-level clouds (CTP . 600 hPa) is a
dipole pattern along the optical depth dimension that shows

an optical thinning of liquid cloud (Figs. 4a,b). Previous work
suggests that this positive low-cloud optical depth feedback
could be a consequence of reduced cloud-top radiative cool-
ing, more frequent decoupling of clouds from the surface
mixed layer, or more efficient drying from cloud-top entrain-
ment (Terai et al. 2019; Mace et al. 2021b). Our results do not
speak to the physical cause, but they do show that the cumula-
tive effect of positive feedback mechanisms outweighs that of
negative feedback mechanisms, including enhanced condensa-
tion in cloud updrafts and cloud-phase changes (Betts and
Harshvardhan 1987; Lutsko and Cronin 2018). Indeed, the
scattering component of cloud-phase feedback is negligible
for low clouds because ice-topped clouds rarely occur at this
level (Figs. 4d,e; see also Fig. 1).

The feedback from non-low clouds (CTP # 600 hPa) has
different characteristics. The temperature-mediated feed-
back includes an ice-to-liquid conversion, and the cloud-phase
scattering feedback has the same sign but larger magnitude
(Fig. 4). This difference in magnitude may be associated with
non-low clouds shifting upward as the atmosphere warms
(Fig. 3a). As clouds shift upward they experience less warming
and therefore a reduced ice-to-liquid conversion compared to
what would occur if they were to remain at fixed altitudes.
The estimate of the cloud-phase scattering feedback repre-
sents phase conversions with fixed cloud altitudes, while the
estimate of the temperature-mediated feedback includes the
effect of upward shifts in clouds. Despite this difference,

FIG. 3. Southern Ocean SW cloud feedback as a function of cloud-top pressure (CTP), optical depth, and phase:
(a),(b) temperature-mediated feedback, and (c),(d) cloud-phase scattering feedback.
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the results consistently show that the cloud-phase scattering
feedback is primarily confined to free-tropospheric clouds.

We next sum the feedback components over the optical
depth dimension to determine the total feedback. Low clouds
exert a significant positive temperature-mediated feedback
that mostly arises from liquid clouds, and non-low clouds
exert counteracting ice and liquid feedbacks that sum to a
near-zero value (Fig. 4c). The low-cloud component is largest,
and thus the total feedback is positive (Fig. 5a). Low clouds
dominate the mean cloud albedo over the Southern Ocean, so
it is perhaps not surprising that they dominate the temperature-
mediated feedback as well (Haynes et al. 2011; Bodas-Salcedo
et al. 2016). In contrast, the cloud-phase scattering feedback
is mostly limited to non-low clouds, and it consists of ice and
liquid components that cancel very closely (Figs. 4f and 5a).
The total temperature-mediated feedback summed over
all CTP–optical depth–phase components is significantly
positive (0.66 6 0.32 W m22 K21) and is an order of magni-
tude larger than the total cloud-phase scattering feedback
(20.02 6 0.05 W m22 K21). Thus, changes in cloud scatter-
ing properties arising from phase changes make a small con-
tribution to the overall temperature-driven cloud feedback.

The smallness of the cloud-phase scattering feedback is sur-
prising given that some modeling studies have reported much
larger values (Ceppi et al. 2016a; Tan et al. 2016; Frey and
Kay 2018). To interpret this result, we decompose the feed-
back into contributions from changes in 1) optical depth t;
2) single-scattering albedo ṽ, which represents the relative
importance of scattering and absorption; and 3) the asymme-
try parameter g, which embodies the scattering angles of
cloud particles. The decomposition reveals that phase changes

cause a negative optical depth feedback (Fig. 5b). This is con-
sistent with the expectation that ice-to-liquid conversions result
in smaller but more numerous cloud particles, which increases
the particle surface-area-to-volume ratio and hence the bulk
optical depth. The decomposition also reveals an offsetting posi-
tive feedback from changes in the asymmetry parameter and
single-scattering albedo. Ice and liquid particles absorb about
the same fraction of incident broadband SW radiation (Petty
2006), so this feedback component is dominated by changes in
scattering angles. For instance, in our main radiative kernels, the
asymmetry parameter for visible radiation is about 0.80 for ice
clouds and 0.87 for liquid clouds (Fu 1996; Hu and Stamnes
1993). Thus, when cloud particles scatter visible radiation in
single scattering events, ice particles typically scatter about 90%
of the radiant energy in the forward hemisphere, while liquid
droplets scatter about 93% of the energy forward (Sagan and
Pollack 1967). Converting ice to liquid therefore enhances for-
ward scattering, which reduces cloud albedo. The magnitude of
this feedback component may be somewhat sensitive to the
microscopic properties of cloud particles that are assumed when
calculating the kernels, but the confidence intervals account for
much of this uncertainty by incorporating particle-size uncer-
tainty and using two ice optical property schemes (appendix B).
Furthermore, the radiative transfer model assumes that ice par-
ticles have a smooth surface (Fu 1996; Ebert and Curry 1992).
Incorporating surface roughness would enhance backscattering
by ice particles and thereby increase the component of cloud-
phase feedback that is associated with changes in scattering
angles (Fu 2007). The main interpretation is therefore robust:
Converting ice to liquid increases cloud optical depth and shifts
the scattering angles of cloud particles toward the forward

FIG. 4. SW feedbacks associated with low clouds and non–low clouds over the Southern Ocean. Low and non–low clouds are defined by
CTP. 600 hPa and CTP# 600 hPa, respectively. (a),(b) Ice- and liquid-cloud components of the temperature-mediated feedback as a function
of optical depth. (c) Feedback components summed over the optical depth dimension. The sum of the liquid- and ice-cloud components is labeled
“Both”. Squares and lines show the mean and 95% confidence interval. (d)–(f) As in (a)–(c), but for the cloud-phase scattering feedback.
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direction. These counteracting feedback components make
the overall cloud-phase scattering feedback small.

All of these feedback values are inferred from observed
natural variability, so they are contingent on the assumptions
of the methodology and the limitations of the observations.
However, we tested the sensitivity of the results to the most
salient of these assumptions and limitations. For instance, the
feedback analysis treats clouds as either entirely liquid or
entirely ice (Zelinka et al. 2012) based on MODIS cloud-
phase observations, which retrieve phase only at cloud top.
Sensitivity to this retrieval limitation is tested by matching
MODIS pixels with coincident radar/lidar measurements that
identify phase below cloud top. The combination of sensors is
used to distinguish ice, pure liquid, and liquid-topped mixed-
phase clouds, and the cloud-phase scattering feedback is esti-
mated while allowing for transitions between the three phase
categories. We also checked sensitivity to satellite retrieval
bias from large solar zenith angle and multilayer clouds, and
we checked sensitivity to observing platform and time period.
The envelope of feedback uncertainty from the sensitivity tests
is close to that of the main estimates (appendix C). Thus, these
assumptions and limitations do not affect the main results.

4. Implications for climate sensitivity

We next frame the results in the context of the existing
literature to show their implications for climate sensitivity. A
recent survey by Sherwood et al. (2020) identified high-latitude
(408–708) low-cloud optical depth feedback as one of six primary
components of global cloud feedback. Observational studies
have argued that this feedback component could be positive
(Tselioudis et al. 1992; Norris and Iacobellis 2005; Huang et al.
2016; Terai et al. 2016; Tan et al. 2019; Mace et al. 2021b; Myers
et al. 2021) or negative (McCoy et al. 2014b; Ceppi et al. 2016b).
Sherwood et al. (2020) therefore established a consensus esti-
mate with a central value of zero and a confidence interval wide

enough to include positive and negative feedback values esti-
mated by Terai et al. (2016) and Ceppi et al. (2016b). The
consensus feedback was then combined with other evidence
to estimate the overall cloud feedback and the equilibrium
response of global-mean surface temperature to doubling
atmospheric CO2. The temperature response was represented
by effective climate sensitivity (Gregory et al. 2004).

Our findings support a different interpretation of high-latitude
low-cloud optical depth feedback. First, we find that the feed-
back is positive over the Southern Ocean. We estimate that the
mean temperature-mediated low-cloud optical depth feedback
is 0.55 6 0.28 W m22 K21 over ice-free ocean between 408 and
608S. Extending the domain to 408–708S to match the analysis
of Sherwood et al. (2020) results in a similar feedback of
0.55 6 0.26 W m22 K21, although we note that the area of
ice-free ocean is much smaller between 608 and 708S than in the
rest of the domain. Second, we find that the negative feedback
estimate on which the consensus value is based is probably
biased because it does not control for the confounding influence
of wind and boundary layer inversion strength when estimating
the temperature-mediated cloud feedback (appendix C; Ceppi
et al. 2016b). Third, our results show that it is very unlikely that
phase conversions in low clouds will produce a substantial nega-
tive optical depth feedback over the Southern Ocean (Fig. 4).
Collectively these findings indicate that high-latitude low-cloud
optical depth feedback is likely positive.

We investigate the global implications of these results using
the framework of Sherwood et al. (2020). Following their
analysis, we begin with our estimate of low-cloud optical
depth feedback over ice-free ocean between 408 and 708S. We
then assume that the high-latitude low-cloud optical depth
feedback in the Southern Hemisphere is dominated by regions
of ice-free ocean and is 3.8 times larger than the corresponding
feedback in the Northern Hemisphere (M. D. Zelinka 2021,
personal communication). These assumptions are based on
the analysis of Terai et al. (2016). We then scale the estimate

FIG. 5. Mean SW cloud feedback over the Southern Ocean. (a) Temperature-mediated feedback and cloud-phase
scattering feedback for ice clouds, liquid clouds, and both phases combined. Lines and colored bars show the mean
and 95% confidence interval. (b) Cloud-phase scattering feedback decomposed into contributions from changes in
cloud-particle asymmetry parameter and single-scattering albedo (g and ṽ) and cloud optical depth (t).
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of high-latitude low-cloud optical depth feedback by the frac-
tion of global surface area that is between 408 and 708 latitude
to determine the contribution to global cloud feedback. This
yields a global feedback of 0.10 6 0.02 W m22 K21 (one stan-
dard deviation). Our feedback estimate has a more positive
central value and a narrower confidence interval than the
value of 0.0 6 0.1 W m22 K21 (one standard deviation)
assessed by Sherwood et al. (2020). Finally, we estimate effec-
tive climate sensitivity by performing the “Baseline” calculation
of Sherwood et al. (2020) with our feedback estimate in place of
their assessed value. Our feedback constraint slightly narrows
the probability distribution of the overall global cloud feedback,
and it increases the modal value from 0.45 to 0.55 W m22 K21

(Fig. 6a). Consequently, the 66% confidence range for climate
sensitivity increases from 2.55–3.88 to 2.63–4.02 K (Fig. 6b).
Our observational constraint thus shifts the bounds of the
“likely” range of climate sensitivity by about10.1 K.

5. Conclusions

Southern Ocean clouds have large radiative effects that
shape global climate (Hwang and Frierson 2013; Kay et al.
2016; Hawcroft et al. 2017). They are also especially difficult
to simulate, so observations offer a valuable alternative path
toward understanding their radiative feedbacks (Trenberth
and Fasullo 2010). Here we use MODIS observations to infer
Southern Ocean SW cloud feedback as a function of cloud-top
phase. The temperature-mediated feedback includes contribu-
tions from an optical thinning of low clouds and an ice-to-liquid
conversion in free-tropospheric clouds (Figs. 3 and 4). The low-

cloud feedback dominates, causing the overall temperature-
mediated feedback to be positive (Fig. 5). These constraints
imply a higher climate sensitivity than a recent consensus esti-
mate of cloud feedback (Fig. 6).

In addition to constraining SW cloud feedback, another
key goal is to decompose the feedback into contributions
from particular physical mechanisms. Such a decomposition is
essential for understanding the climate response to external
forcing. Here we leverage the new feedback methodology to
isolate one mechanism: the cloud-phase scattering feedback.
This mechanism increases cloud optical depth and shifts the
scattering angles of cloud particles toward the forward direc-
tion. The resulting feedback components offset one another,
and thus the cloud-phase scattering feedback is an order of
magnitude smaller than the overall temperature-mediated
feedback (Fig. 5). These results do not preclude the possi-
bility that changes in cloud phase will cause a substantial
cloud-amount feedback by changing precipitation efficiency
(Mülmenstädt et al. 2021), nor do they reveal which mecha-
nisms dominate the temperature-mediated feedback. How-
ever, the results do reveal a robust constraint on Southern
Ocean cloud feedback: Although the dominant feedback
mechanisms remain elusive, it is very unlikely that the cloud-
phase scattering feedback is one of them.
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APPENDIX A

Validation of Radiative Kernels

SW cloud radiative effect (CRE) is defined as the differ-
ence between all-sky and clear-sky SW flux at the top of

FIG. 6. Implications of the feedback constraints for climate
sensitivity. The “Baseline” case shows results from the analysis of
Sherwood et al. (2020), and the “Update” case is similar except
that it uses our estimate of high-latitude low-cloud optical depth
feedback. Probability density functions (PDFs) are shown for
(a) global cloud feedback and (b) effective climate sensitivity.
Horizontal lines in (b) show the 66% confidence range.
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the atmosphere. We validate the radiative kernels by using
them to predict monthly anomalies of SW CRE:

SW CREkernel �
∑
i

ciKi, (3)

where i runs over all MODIS histogram bins, ci is the
monthly cloud-fraction anomaly reported by MODIS, and Ki

is the kernel. SW CREkernel is compared with observed val-
ues from Clouds and the Earth’s Radiant Energy System
(CERES) satellite data (SW CRECERES; Loeb et al. 2018).
Monthly SW CRE anomalies are averaged over 1-yr intervals
for consistency with the annual-mean SW cloud-feedback
estimates, and SW CREkernel is regressed on SW CRECERES

using all data from the study domain. The regression agrees
very well with conditional means of SW CREkernel as a func-
tion of SW CRECERES, indicating that linear regression accu-
rately represents the bias of the kernel method (Fig. A1). If
m is the regression slope, then m 2 1 is the bias of the mag-
nitude of SW CREkernel. We find that m = 1.05 6 0.04 (95%
confidence interval). This indicates that the kernels will over-
estimate the magnitude of SW cloud feedback by 5% 6 4%.

APPENDIX B

Uncertainty

Cloud feedback is inferred from observed cloud–temperature
relationships, radiative kernels, and model projections of CO2-

forced warming, so all three terms contribute to feedback
uncertainty. These uncertainty components are indepen-
dent, so they are calculated separately and then com-
bined. We illustrate the uncertainty analysis by describing
the calculation of the 95% confidence interval for the
mean temperature-mediated feedback for both cloud phases
combined.

The first source of feedback uncertainty arises from
uncertainty in cloud–temperature regression slopes. Let g

represent the standard error of the feedback summed over
all MODIS histogram bins for a given latitude and calendar
month. We estimate g as

g �
���������������������������������������������∑
i

∑
j

siKi
dTi

dT2m

( )
sjKj

dTj

dT2m

( )
ri,j

√
,

where i and j run over all histogram bins; si is the standard
error of regression slope ­ci/­Ti; ri,j is the correlation
between cloud-fraction anomalies in bins i and j; and cen-
tral estimates are used for Ki, Kj, dTi/dT2m, and dTj/dT2m.
Central estimates for the K terms are calculated following
the method described in section 2b, and central estimates
for the dT/dT2m terms are determined by the CMIP6 multi-
model mean. The g terms are then combined to account for
averaging over the seasonal cycle:

d � 1
12

��������∑
n

g2n

√
,

where n runs over all calendar months. The d terms are
combined further to account for averaging over latitude:

d �
������������∑
l

d2l w
2
l

√ /∑
l

wl,

where l runs over all latitude bins and wl is a weighting factor
that is proportional to the area of ice-free ocean in bin l. Finally,
the confidence interval is scaled to account for the number of
effective degrees of freedom. Serial correlation is diagnosed
from SW CRE as defined by Eq. (3). The ratio of nominal to
effective spatial degrees of freedom, Ns=N*

s , is estimated using
Eq. (5) of Bretherton et al. (1999), and the ratio of nominal to
effective temporal degrees of freedom is estimated by

Nt=N*
t �

1 1 r
1 2 r

,

where r is the lag-1 autocorrelation of SW CRE. Values of
Nt=N*

t are calculated for every spatial grid point and then
averaged. The half width of the 95% confidence interval for
the mean feedback due to regression-slope uncertainty is

D1 � bd

���������
Ns

N*
s

Nt

N*
t

√
,

where b is the critical value of a Student’s t distribution at
the (1 2 a/2)100% significance level using N*

sN
*
t 2 6 degrees

of freedom and a = 0.05.

FIG. A1. Validation of the radiative kernels. Kernel-predicted
SW cloud radiative effect (SW CREkernel) is plotted as function of
observed SW cloud radiative effect (SW CRECERES). Gray dots
are individual data points, and black dots are conditional means of
SW CREkernel as a function of SW CRECERES. The red line and
shading show the regression line and its 95% confidence interval.
The regression slope is in the top-left corner.
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The second source of uncertainty arises from assumptions
about cloud microphysical properties that are made when
calculating the radiative kernels. We assume a mean and
95% confidence interval for cloud-droplet effective radius
of 14 6 3 mm, which spans the range of values throughout
the climatological seasonal cycle from three MODIS-
derived products (McCoy et al. 2014a). We also assume a
mean and 95% confidence interval for ice-crystal effective
radius of 35 6 10 mm based on satellite radar/lidar observa-
tions (McCoy et al. 2014a). Finally, we use two ice optical
property schemes that are based on different observed par-
ticle-size distributions (Fu 1996; Ebert and Curry 1992).
Radiative kernels are calculated with the upper and lower
bounds of particle size and with both ice optical property
schemes, and feedbacks are calculated using the modified
kernels. Central estimates of ­ci/­Ti and dTi/dT2m are used
in the calculations. The component of feedback uncertainty
that is associated with particle-size uncertainty is defined
such that the confidence interval just encompasses the feed-
back values of both the upper and lower bounds of particle
size. Variations in feedback values from the kernel modifi-
cations are added in quadrature to determine their cumula-
tive contribution to cloud-feedback uncertainty D2.

The final source of uncertainty arises from the spread
in model projections of CO2-forced warming. We estimate
this uncertainty component by calculating feedbacks using
dTi/dT2m values from each of the 34 CMIP6 models. Cen-
tral estimates of ­ci/­Ti and Ki are used in the calculations.
The 95% confidence interval D3 is defined such that the
interval just encompasses the second-largest and second-
smallest feedback values.

After computing the three uncertainty terms, the half width
of the 95% confidence interval for the mean temperature-
mediated feedback Dnet is calculated by adding the terms in
quadrature:

Dnet �
�������������������
D2
1 1 D2

2 1 D2
3

√
:

Confidence intervals for other feedback components are
calculated similarly.

APPENDIX C

Bias

Here we investigate sensitivity of the results to several
assumptions of the methodology and limitations of the obser-
vations. We consider the meteorological predictors used in the
regression model, the time period of analysis, and the observ-
ing platform. We also investigate satellite retrieval bias from
large solar zenith angle, multilayer clouds, liquid-topped
mixed-phase clouds, and partly cloudy pixels. The sensitivity
tests are described below and summarized in Fig. C1.

a. Meteorological predictors

Three studies including ours have reported estimates and
confidence intervals for Southern Ocean SW cloud feedback
inferred from MODIS data. Terai et al. (2016, hereafter
T16) estimated that the mean SW low-cloud optical depth
feedback between 408 and 708S is 0.38 6 0.25 W m22 K21;
Ceppi et al. (2016b, hereafter C16) estimated that the mean
temperature-mediated feedback between 458 and 608S is

FIG. C1. Summary of sensitivity tests, showing the (a)–(d) temperature-mediated cloud feedback and (e),(f) cloud-
phase scattering feedback. The plotted values represent feedbacks from all cloud phases combined. Gray lines and
shading show the mean and 95% confidence interval for the main estimates, and black squares and lines show the
mean and 95% confidence interval for the sensitivity tests. (a) Sensitivity to whether or not wind and boundary layer
inversion strength are controlled for in the regression model. The “T only” case estimates the feedback using only tem-
perature as a predictor. (b) Sensitivity to time period. The “2003–10” and “2012–19” cases estimate feedbacks using
the earliest and latest 8-yr periods of the record. (c) Sensitivity to observing platform. The “Terra” case estimates the
feedback using MODIS data from the Terra satellite. (d) Sensitivity to bias from large solar zenith angle (SZA). The
“SZA , 658” case estimates the feedback using MODIS data that are not affected by bias from large SZA. (e) Sensi-
tivity to multilayer clouds. The “Low M” and “High M” cases estimate feedbacks using subsets that have relatively
low and high proportions of data with suspected multilayer-cloud bias. (f) Sensitivity to the treatment of liquid-topped
mixed-phase clouds (LTMP). The “Full FOV” case estimates the feedback using the full MODIS dataset and applying
the compositing technique that is introduced to accommodate radar/lidar data (see text). The “Nadir” case is similar
but uses the near-nadir subset of MODIS pixels that are collocated with radar/lidar measurements. The “Nadir
w/LTMP” case is similar to the “Nadir” case except that the feedback is estimated with transitions between three
phase categories: ice, pure liquid, and LTMP.
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20.76 6 0.82 W m22 K21 relative to local warming between
500 and 850 hPa; and we estimate that the mean tempera-
ture-mediated feedback over ice-free ocean between 408 and
608S is 0.66 6 0.32 W m22 K21. Our results are consistent
with the estimate of T16 and inconsistent with the estimate
of C16. Here we attempt to reconcile this discrepancy.

One difference among the three studies is that each one
treats confounding meteorological factors differently in their
regression models. Our study controls for the monthly three-
dimensional wind field and estimated inversion strength.
T16 include changes in inversion strength in their feedback
estimate, and they filter the data for low clouds, which
controls for most of the confounding influence of large-
scale vertical motion. C16 regress cloud properties on tem-
perature anomalies without controlling for other meteoro-
logical factors. To check if this matters, we align our anal-
ysis with that of C16 by estimating feedbacks using only
temperature as a predictor in the regression model. The
temperature-only model predicts a temperature-mediated
SW cloud feedback that is significantly more negative (Fig. C1a).
Furthermore, we also check the results by applying the
method of C16 to our cloud histograms and kernels. This
yields a mean temperature-mediated feedback estimate of
20.48 6 0.82 W m22 K21 between 458 and 608S relative to
local warming between 500 and 850 hPa, which is consistent
with the value of 20.76 6 0.82 W m22 K21 reported by
C16. These results show that the treatment of confounding
meteorological factors is probably the main reason for the
discrepancy among the studies.

The relative importance of confounding meteorological fac-
tors can be estimated based on their correlation with tempera-
ture (Scott et al. 2020). For a given MODIS histogram bin i, a
confounding meteorological variable xi will bias the estimate
of the temperature-mediated cloud feedback from the temper-
ature-only regression model by an amount FSW,xi given by

FSW,xi � ­ci
­xi

dxi
dTi

Ki
dTi

dT2m
:

Based on this equation, we find that estimated inversion
strength and meridional wind are the two most important
confounding factors that affect the temperature-only regres-
sion model over the Southern Ocean. This relationship
exists because warm atmospheric temperature anomalies
tend to occur with anomalous poleward wind and enhanced
inversion strength in the context of natural variability (Wall
et al. 2017). Failure to control for wind and inversion
strength in the regression model will therefore significantly
bias the estimate of the temperature-mediated cloud feed-
back and potentially introduce a sign error.

b. Time period

Our analysis assumes that extratropical cloud–temperature
relationships will not substantially change as the climate
responds to anthropogenic radiative forcing. This assumption
has been verified in many model projections of anthropo-
genic climate change (Gordon and Klein 2014; Terai et al.
2016; Ceppi et al. 2016b), although it does not hold in every

model (Bjordal et al. 2020). To check the assumption further,
we compare temperature-mediated feedbacks inferred from the
first eight years (2003–10) and the final eight years (2012–19) of
the 17-yr MODIS record. The feedbacks inferred from the two
periods are similar to one another and to the main estimate
(Fig. C1b). This provides some additional support for the
assumption of time-invariant cloud–temperature relation-
ships, at least for decadal climate changes.

c. Observing platform

Our main analysis infers feedbacks using MODIS data
from the Aqua satellite. We also check the results using
MODIS data from the Terra satellite because MODIS-Terra
is calibrated differently and acquires data in the morning
rather than the afternoon. The temperature-mediated feed-
backs inferred from MODIS-Aqua and MODIS-Terra are
similar, so the results are not sensitive to the observing plat-
form (Fig. C1c).

d. Solar zenith angle

In addition to temporal sampling limitations, MODIS data
have systematic biases that occur during certain conditions. The
first bias we consider is associated with solar zenith angle
(SZA). The MODIS cloud retrieval algorithms assume that
radiative transfer in each pixel is plane parallel and is indepen-
dent of the properties of the surrounding area. These assump-
tions break down when SZA . 658, which biases the cloud
data (Grosvenor and Wood 2014). We investigate the impli-
cations of this bias by screening the data based on SZA.
Latitude–month combinations are considered to have “good”
data if SZA , 658 at the data acquisition time for all pixel-level
measurements, and latitude–month combinations are considered
to have “varied” data otherwise. Sensitivity to SZA bias is
checked by calculating the temperature-mediated feedback
using only “good” data. Regression slopes from latitude–month
combinations with “varied” data are replaced with regression
slopes from the same latitude and the closest calendar month
with “good” data. When two months are equally close, then
their regression slopes are averaged. After applying these substi-
tutions, the resulting feedback estimate is similar to the main
estimate, indicating that SZA bias does not influence the results
(Fig. C1d). This is probably because the bias does not affect
data during spring and summer, when insolation is largest.

e. Multilayer clouds

Other MODIS biases are especially relevant to the cloud-
phase scattering feedback. For instance, the presence of
multilayer clouds can cause errors in the retrievals of CTP
and cloud-top phase. We investigate this bias using the
MODIS multilayer-cloud quality assurance flag, which iden-
tifies pixels that are suspected to be adversely affected by
multilayer clouds. The proportion of cloudy scenes affected
by multilayer clouds is

M � NML=Ncloud,

where NML is the number of pixels with potentially prob-
lematic multilayer clouds and Ncloud is the total number of
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cloudy pixels. For each latitude–calendar month combina-
tion, high-M and low-M composites are created from data
with above-median and below-median values of M, respec-
tively. The cloud-phase scattering feedback is then esti-
mated separately for the two composites. The M difference
between the high and low composites is 2.4 times smaller
than the mean value of M for the whole dataset, so the
high-M-minus-low-M feedback difference is scaled by a fac-
tor of 2.4 to estimate the feedback bias from multilayer
clouds. Even after applying the scaling factor, the high-M-
minus-low-M difference is very small (Fig. C1e). Thus, mul-
tilayer clouds do not bias the estimate of the cloud-phase
scattering feedback.

f. Liquid-topped mixed-phase clouds

Another data limitation that is relevant to cloud-phase feed-
back is the fact that MODIS retrieves phase only at cloud top.
Field observations indicate that liquid-topped clouds over
the Southern Ocean can be either pure-liquid clouds or
mixed-phase clouds with supercooled liquid at cloud top
and ice below (Mace et al. 2021a,b). Because MODIS
cloud-phase data are limited to cloud top, MODIS cannot
distinguish liquid-topped mixed-phase (LTMP) clouds
from pure-liquid clouds, so our main analysis treats these
clouds as a single phase category. Consequently, if LTMP
clouds convert to pure-liquid clouds as they warm, then
the associated feedback component would not be included
in our estimate of cloud-phase scattering feedback. We
therefore need to estimate this component using another
method.

LTMP clouds are investigated using MODIS data and
radar/lidar data from the CloudSat and CALIPSO satellites.
Footprint data are analyzed from the CloudSat MOD06-
1KM-AUX and 2B-CLDCLASS-lidar datasets from June
2006 through April 2011 (Sassen et al. 2008; Zhang et al.
2010). The radar/lidar data detect phase below cloud top
and label cloud layers as liquid, ice, or mixed phase. Each
radar/lidar profile is matched with the collocated MODIS
pixel and the adjacent pixel on either side in the across-
track direction. MODIS pixels are then gridded by latitude,
longitude, and month, and cloud-fraction histograms are
compiled as a function of CTP, optical depth, and phase.

Although the radar/lidar data provide valuable additional
information, they also have sampling limitations that moti-
vate minor changes to the methodology. Specifically, the
radar and lidar are nadir-staring instruments, so all of the
collocated MODIS pixels are viewed at nadir. These data
differ from the full MODIS dataset because of viewing
angle dependencies (Maddux et al. 2010). Furthermore,
nadir sampling causes the number of MODIS pixels to vary
by several orders of magnitude between grid boxes, which
is problematic for applying linear regression. We accommo-
date this issue by calculating ­Pliq/­T by compositing. For
each CTP–latitude–calendar month combination, warm and
cold composites are created from the data with above-
median and below-median temperature anomalies. The
value of ­Pliq/­T is then calculated from the warm-minus-
cold composite difference of the mean values of Pliq and T

weighted by the number of cloudy pixels in each grid box.
Sampling uncertainty is then estimated by bootstrapping.
Data are separated into blocks with dimensions of 108 lati-
tude, 108 longitude, and 1 month so that each block has
approximately one degree of freedom. Data blocks are ran-
domly selected with replacement to create 1000 bootstrap
samples of the observations, and cloud-phase scattering
feedback is estimated from each sample. The 95% confi-
dence interval associated with sampling uncertainty (D1) is
then determined by the interval that just encompasses the
2.5th and 97.5th percentiles of the feedback values from the
bootstrapping calculation. All other aspects of the cloud-
phase feedback methodology are carried out as before.

Figure C1f shows cloud-phase scattering feedback esti-
mated by this method. The first two cases show the effects
of the methodological and viewing geometry differences
one at a time. The “Full FOV” case is the feedback esti-
mated using the full MODIS dataset and calculating ­Pliq/­T
by compositing, and the “Nadir” case is similar except that it
uses near-nadir MODIS data that are collocated with radar/
lidar measurements. Feedback estimates from these cases are
consistent with one another and with the main estimate.
Thus, the differences in methodology and viewing geometry
do not significantly affect the results.

Having established the feedback of the “Nadir” case, we
now leverage the radar/lidar data to distinguish pure-liquid
clouds from LTMP clouds. MODIS pixels that coincide
with radar/lidar data are assigned to one of three phase cat-
egories: 1) “ice” when MODIS reports ice, 2) “pure liquid”
when MODIS reports liquid and radar/lidar reports that the
highest liquid-containing cloud is pure liquid, and 3)
“LTMP” when MODIS reports liquid and radar/lidar
reports that the highest liquid-containing cloud is mixed
phase or that all clouds are ice. The climatology of the
cloud-fraction histograms for the three phase categories is
shown in Fig. C2. As expected from previous work, pure-
liquid clouds occur most often in the boundary layer, and
LTMP clouds occur between the surface and the middle
troposphere (Zhang et al. 2010). The presence of pure-liq-
uid cloud in the boundary layer is also consistent with field
observations that sample cloud profiles more completely
near the surface (Mace et al. 2021b).

The ability to distinguish pure-liquid and LTMP clouds
facilitates a revised estimate of cloud-phase scattering feed-
back with three phase categories. For a given CTP bin, the
proportion of total cloud fraction in each phase is

Pice � Cice

Cice 1 Cpl 1 CLTMP
,

Ppl � Cpl

Cice 1 Cpl 1 CLTMP
,

PLTMP � CLTMP

Cice 1 Cpl 1 CLTMP
,

where the subscripts ice, pl, and LTMP represent ice, pure liq-
uid, and LTMP phases, respectively. We calculate ­Cice/­T,
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­Cpl/­T, and ­CLTMP/­T and partition the values among the
optical depth bins similarly to the main methodology. Finally,
liquid condensate in LTMP clouds is assumed to be radia-
tively dominant over ice (Shupe et al. 2008), so the liquid-
cloud kernel is used to calculate feedbacks for LTMP clouds.
This method accounts for feedbacks that arise from transitions
between any of the three phase categories, so it includes the
component from LTMP-to-pure-liquid transitions that is miss-
ing from the main analysis.

The resulting feedback estimate is shown by the “Nadir
w/LTMP” case in Fig. C1f. This estimate is consistent with
the first two cases and with the main estimate. Thus, the fact
the MODIS is unable to distinguish LTMP and pure-liquid
clouds does not affect the main conclusions. This lack of sen-
sitivity occurs because we calculate the cloud-phase scatter-
ing feedback separately for each CTP interval. LTMP and
pure-liquid clouds mostly coexist in the two CTP intervals
that are closest to the surface, and LTMP and pure-liquid
clouds have similar optical depth distributions in these inter-
vals (Fig. C2).

g. Partly cloudy pixels

The final data limitation we consider is the fact that MODIS
excludes partly cloudy pixels when compiling monthly histo-
grams. This could introduce a sampling bias if cloud elements
that entirely cover pixels respond to warming differently than
cloud elements that partially cover pixels. Fully and partly
cloudy pixels make up 70.2% and 5.9% of the observations,
respectively, and the partly cloudy cases include 5.7% liquid
clouds and 0.2% ice clouds. The partly cloudy pixels are prob-
ably mostly associated with the edges of liquid clouds in the
boundary layer, where the estimated cloud-phase scattering
feedback is small. Thus, it is unlikely that excluding partly
cloudy pixels affects the estimate of cloud-phase scattering
feedback.
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