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Berries are not just a treat for humans – they are also a vital resource for 
many animals. From small insects to large bears, creatures in temperate, 
boreal, and alpine habitats across the northern hemisphere rely on the 
nutritious bounty provided by berry-producing plants in the heather 
family. In return, animals help plants spread by moving and depositing 
seeds through their digestive systems. However, scientists have long 
been puzzled by the ‘reproductive paradox’ of the heather species bilberry, 
lingonberry, bog bilberry and crowberry. These species produce countless 
berries containing viable seeds, yet rarely seem to reproduce through 
seeds themselves. In this thesis, we show that seedling establishment 
of berry-producing species is actually relatively common when the 
behavior of animals is considered and that at least two pathways to sexual 
reproduction exist. By opportunistically consuming berries and carrion, 
scavenging animals provide seed dispersal directed towards carcasses, 
which during decomposition creates viable sites for seedling recruitment. 
Meanwhile, passerine birds direct seed dispersal towards perching points 
on tree stumps, another form of decomposing microsite that is a viable 
location for seedling establishment for berry-producing heather plants. 
Our findings add to the growing body of evidence that highlights the vital 
interdependence between animals and plants.
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Abstract 

Berry-producing ericaceous species are widely distributed in the northern 

hemisphere and they are a keystone resource across their temperate, boreal and 

alpine ranges. Species of the genera Vaccinium and Empetrum have long presented a 

‘reproductive paradox’. Every year they produce staggering amounts of berries 

containing viable seeds which are dispersed by a wide array of animals through 

endozoochory. Nevertheless such ericaceous species are reported to expand by 

clonal propagation almost exclusively. Their seeds are underrepresented in the soil 

seed bank and seedling establishment is thought to be rare. The apparent lack of 

sexual reproduction has been ascribed to a combination of microsite and dispersal 

limitation. That is, seedling establishment is constrained to small-scale disturbances, 

and even if such recruitment windows of opportunity (RWO) occurs, seeds fail to 

arrive at them. However, previous research on seedling recruitment in Vaccinium and 

Empetrum has been based on field experiments without considering endozoochorous 

seed dispersal. This thesis aimed to disentangle the reproductive paradox of clonal 

berry-producing ericaceous species by elucidating pathways of sexual reproduction. 

Specifically, we connect vertebrate disperser species which have the potential for 

directed endozoochory to viable recruitment windows for seedling establishment.  

Carrion has previously been identified as an endpoint of directed endozoochory 

by vertebrate scavengers at a mass-mortality site of 323 reindeer in the alpine tundra 

of south-eastern Norway. Within the same site, we showed that carrion 

decomposition created extensive disturbances in vegetation layers, also known as 

‘cadaver decomposition islands’ (CDIs), which were characterized by high soil cover 

and absence of conspecific adults. Further, the CDIs provided suitable RWOs for 

ericaceous species as the probability of seedling establishment was positively related 

to carcass density. Similarly, we showed that carrion from single-mortality events can 

facilitate sexual recruitment in ericaceous species in a boreal forest. However, the 

recruitment pathway was contingent on the nature of the carcass itself. Large 
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ungulate carrion (moose and reindeer carcasses and hunting remains) created a 

spatiotemporal hotspot of vertebrate activity. Importantly, 93 % of the observed 

activity was of vertebrates that are known to consumer and/or disperse ericaceous 

seeds through endozoochory. Subsequently, large carcasses generally created CDIs 

which were viable RWOs for ericaceous species. Seedlings were significantly more 

abundant in CDIs compared with sites that were mechanically disturbed (suitable 

microsite but limited seed rain) and control plots (unsuited microsite with limited 

seed rain). In comparison, smaller carcasses did not aggregate disperser species nor 

did they generate CDIs, and seedling establishment was not observed at those sites. 

Within forest habitats, large woody debris is another form of decomposing 

biomass which can offer a suitable microsite for seedling establishment of various 

plant species. We demonstrated that passerine birds (order Passeriformes) directed 

ericaceous seed dispersal towards cut stumps from forest management through their 

perching behaviour. Tree stumps were considerably more likely to have bird 

droppings compared to the forest floor and droppings consistently contained viable 

Vaccinium seeds. Finally, the decomposing stumps also served at viable RWOs with 

higher probability of seedling establishment compared with the forest floor. 

However, as with the carcass pathway, functionality of this pathway is rather 

contextual. The probability of scat deposition increased with higher complexity of the 

vertical forest structure and lower canopy cover, whereas seedling establishment 

required bryophyte cover and larger stumps, or alternatively smaller stumps with 

competition-free spaces.  

Overall, this thesis illustrates that seedling recruitment in clonal ericaceous 

species occurs relatively frequently when coupled with directed endozoochorous 

dispersal. Their wide disperser guild ensures at least two complementary pathways to 

sexual reproduction, elevating the probability of seedling establishment within 

landscapes. 
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Sammendrag på norsk  

Bærproduserende arter i lyngfamilien (Ericaceae) er vidt utbredte på den 

nordlige halvkule, og de er en nøkkelressurs på tvers av tempererte, boreale og alpine 

habitater. Arter av slektene Vaccinium og Empetrum har lenge dannet et 

‘reproduksjons paradoks’. Hvert år produserer de svimlende mengder med bær som 

inneholder mange spiredyktige frø, og disse spres av et bredt spekter av dyr via 

endozookori. Likevel er det rapportert at slike lyngarter nesten utelukkende brer seg 

via klonal vekst. Frøene deres er underrepresentert i jordfrøbanken, og det antas at 

frøspirende planter sjeldent forekommer. Den tilsynelatende mangelen på seksuell 

reproduksjon har blitt tilskrevet en kombinasjon av egnet mikrosteds- og 

spredningsbegrensning. Frøspiring er begrenset til småskala forstyrrelser, og selv om 

slike rekrutteringsvinduer oppstår, kommer frø ikke frem til dem. Tidligere forskning 

på rekruttering av frøspirende planter har imidlertid vært basert på felteksperimenter 

som ikke tok hensyn til endozookorisk frøspredning. Målet for denne avhandlingen 

var å belyse det reproduktive paradokset til klonale bær produserende lyngarter. 

Spesifikt kobler vi arter av virveldyr som har potensiale for å rette endozookorisk 

frøspredning mot rekruteringsvinduer som egner seg for frøspiring og etablering. 

Åtsler har tidligere blitt identifisert som et endepunkt for endozookorisk 

spredning fra åtseletere på et massedøds punkt for 323 rein i den alpine tundraen i 

Sørøst-Norge. På den samme plassen har vi vist at nedbrytingen av åtsler skapte 

omfattende forstyrrelser i vegetasjonslag, også kjent som ‘kadaver nedbryting-øyer’ 

(CDIs), som var karakterisert av høy forekomst av bar jord og fravær av voksne 

planter. Videre var CDI-ene egnede rekrutteringsvinduer for lyngarter siden 

sannsynligheten for etablering av frøspirende individer var positivt korrelert med 

kadavertetthet. Tilsvarende viste vi at åtsler fra enkeltdøds hendelser kan fasilitere 

rekruttering av frøspirende lyngplanter i boreal skog. Imidlertid var effekten av denne 

rekrutteringsveien avhengig av kadaveret. Store kadaver (elg- og reinkadavre og 

kadaverrester fra jakt) skapte en aggregering av virveldyr i rom og tid. Totalt var 93 % 
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av virveldyrs-observasjonene ved kadavrene av arter som er kjent for innta og spre 

lyngfrø via endozookori Samtidig genererte store kadaver generelt CDI-er som var 

gode rekrutteringsvinduer for lyngarter. Frøplanter var betydelig mer tallrike i CDI-er 

sammenlignet med mekaniske forstyrrelser (egnet mikrosted, men begrenset 

frøregn) og kontrollplott (uegnet mikrosted med begrenset frøregn). Til 

sammenligning aggregerte ikke mindre kadavre frøspredende virveldyr, genererte 

ikke CDI-er, og frøplantetablering ble ikke observert på disse stedene. 

Innenfor skogshabitater er dødt trevirke en annen form for nedbrytende 

biomasse som kan fungere som et egnet mikrosted for frøplantetablering av ulike 

plantearter. Vi påviste at spurvefugler (orden Passeriformes) rettet spredning av 

lyngfrø mot trestubber fra skogsdrift gjennom sin sitteatferd. Det var betydelig større 

sannsynlighet for å finne fugleeskrementer på trestubber sammenlignet med 

skogbunnen, og slike ekskrementer inneholdt oftest spiredyktige Vaccinium frø. 

Videre fungerte stubbene også som rekrutteringsvinduer med høyere sannsynlighet 

for etablering av frøspirende lyngplanter sammenlignet med skogbunnen. Imidlertid, 

som med kadaver-rekrutteringsveien, var funksjonaliteten av denne 

rekrutteringsveien kontekstuell. Sannsynligheten for avsetting av ekskrementer økte 

med høyere kompleksitet av den vertikale skogsstrukturen og lavere kronedekke, 

mens frøplantetablering krevde mosedekke og større stubber, eller alternativt 

mindre stubber med konkurransefrie områder. 

Samlet illustrerer denne avhandlingen at seksuell reproduksjon i klonale 

lyngarter forekommer relativt ofte når det tas høyde for endozoorisk frøspredning 

rettet mot rekruteringsvinduer. De mange dyrearter som utgjør frøspredningslauget 

til lyngarter sikrer minst to komplementære veier til seksuell reproduksjon, noe som 

øker sannsynligheten for etablering av frøplanter i landskapet. 
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1. Introduction 

1.1 Plant reproduction  

Reproduction is the singular process responsible for continuity of life and is 

directly linked to an organism’s fitness, survival and ecological success (Wiens and 

Worsley, 2016). In plants, recruitment of new individuals into a population is a 

spatially structured process that determines the distribution, dynamics and genetic 

structure of populations and communities (Schupp, 1995; Nathan and Muller-Landau, 

2000) 

Many plant species can reproduce through both asexual and sexual 

reproduction. In contrast to most animal species both reproductive modes usually 

occur simultaneously (Vallejo-Marín et al., 2010). The most common form of asexual 

reproduction in flowering plants (angiosperms) is vegetative reproduction, also 

referred to as clonal growth or clonal propagation (Harper, 1977). In fact, 

approximately 80 % of flowering plants are capable of clonal growth (Klimeš, 1997) 

where new ramets are produced by for example budding from stolons, rhizomes, 

roots or stems (Silvertown, 2008). This results in genetically identical individuals 

capable of independent growth and reproduction. 

In clonal species, the balance between the two reproductive modes is a trade-

off in resource allocation from a finite pool of resources (Zhang and Zhang, 2007). 

Regulation of the trade-off is linked to factors like plant age, soil moisture, 

disturbance, nutrient availability, air temperature, and population density (Zhang and 

Zhang, 2007; Silvertown, 2008; Fu et al., 2010). However, with increased resource 

allocation to asexual reproduction, allocation to sexual reproduction is 

correspondingly reduced, and vice versa (Thompson and Eckert, 2004; Van Drunen 

and Dorken, 2012). In general, clonality is often favored in habitats where sexual 

recruitment is restricted by unfavorable conditions for seed production (including 



2 
 

pollination and crossing incompatibility), germination or seedling establishment 

(Eckert, 2001; Vallejo-Marín et al., 2010; Barrett, 2015). 

Clonal growth has several important advantages which contribute to population 

maintenance, survival, and expansion at local scales. For example, lateral clonal 

growth can facilitate rapid, short-distance spread (Lenssen et al., 2004). Physiological 

integration allows ramets (shoots) of one clone to share resources such as water and 

nutrients in heterogenous environments (i.e. clonal foraging; Alpert and Mooney, 

1986; Hutchings and Wijesinghe, 1997; Liu et al., 2016). In turn, this also provides 

higher tolerance of genets to stress such as herbivory and drought (Zhang et al., 2012; 

Liu et al., 2020). Furthermore, clonal growth requires less energy and time (Wang et 

al., 2018) and can be a low-risk alternative to establishment from seed which is 

susceptible to seed predation, fungal decay and establishment failure (Aarssen, 2008). 

Despite the advantages of clonal growth, most clonal plants also reproduce sexually. 

Sexual reproduction promotes genetically diverse offspring through recombination, 

mutation and geneflow within and between populations. In addition, sexually 

produced propagules (seeds) are capable of dispersal over long distances and 

establishment in areas outside the range of clonal growth which usually aggregates 

around the mother ramet (Crawley, 1997). This further increases genetic variation 

within and between populations through potential long-distance dispersal. Theory 

predicts that genetic diversity increases adaptive potential to environmental variation, 

disease, insect outbreaks and disturbances (Silvertown, 2008; Yang and Kim, 2016). 

The most severe consequence of persistently relying on clonal reproduction is the 

total loss of sexual reproduction which could lead to extinction (Eckert, 2001). 

Studying sexual reproduction in clonal species can be challenging. Genets are 

usually very long-lived and when ramets are not physically integrated, determining 

the extent of a genet is challenging without applying genetic methods. Seedling 

establishment in clonal plants is often considered to be infrequent or irregular 

(Eriksson, 1992; Eriksson, 1993), with considerable variation in sexual reproduction 
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among clonal plants (Zhang and Zhang, 2007). Two end points on a recruitment 

strategy spectrum have been described for plants in which the main population 

expansion relies on clonal growth (Eriksson, 1993): Initial seedling recruitment (ISR) 

where populations consist of the original members from an initial colonization event; 

and repeated seedling recruitment (RSR) where genets are continuously recruited in 

local populations.  

Between these endpoints are plants that show spatial variation in recruitment 

among populations by switching between ISR and RSR in response to environmental 

pressure and species where seedling establishment occurs at ‘recruitment windows 

of opportunity’ (RWOs; Jelinski and Cheliak, 1992; Eriksson, 2011). Under a RWO 

strategy continuous seedling recruitment occurs within local conspecific populations 

but only under specific conditions that are spatially unpredictable (Eriksson and 

Fröborg, 1996; Eriksson, 2011). Irrespective of recruitment strategies, even 

occasional seedling recruitment can be sufficient for maintaining genetic diversity in 

long-lived clonal plant populations (De Witte et al., 2012; Watkinson & Powell, 1993). 

Thus, identifying constraints and pathways to sexual reproduction is important for 

understanding demography, life-history evolution, long-term persistence and 

population dynamics (Eriksson, 1993; Beckman and Rogers, 2013; Bonte and Dahirel, 

2017) 

1.1.1 Constraints to sexual reproduction in plants 

Sexual reproduction is a multi-stage process involving several sequential life-

history stages (i.e. reproductive adults, seeds, seedlings, juveniles). The stage 

between seed production and seedling establishment is a particular bottleneck in 

many plant populations, as it is characterized by high mortality (Clark et al., 2007; 

Terborgh et al., 2014). Many seeds lose their viability over time, decay in the soil or 

are eaten before germination (Kumari et al., 2018). If they do germinate, seedlings no 

longer have the ability to withstand harsh conditions tolerated by seeds, and are 

often much less robust than later life stages (Kitajima and Fenner, 2000). 



4 
 

Recruitment limitation, defined as the failure of a species to recruit new 

individuals (genets) in all available favorable sites, is a combination of factors limiting 

seed production, dispersal, germination, seedling emergence and establishment 

(Crawley, 1990; Nathan and Muller-Landau, 2000). These limiting factors can be 

partitioned into three major components: Source limitation, seed limitation and 

microsite limitation (Fig 1; Turnbull et al., 2000; Beckman and Rogers, 2013). Source 

and dispersal limitation are often grouped under the more general term seed 

limitation which is the failure of seeds to arrive at all microsites suitable for seedling 

establishment (Nathan and Muller-Landau, 2000; Beckman and Rogers, 2013). In 

source limitation, seed production is too low to reach suitable microsites even if 

seeds have the dispersal ability to reach all sites. In dispersal limitation, seeds do not 

reach suitable microsites even though seed production is plentiful (Eriksson and 

Ehrlen, 1992; Clark et al., 1998b). On the other hand, microsite limitation (also called 

site or establishment limitation; Beckman and Rogers, 2013) occurs when 

recruitment is constrained by the number or quality of available sites for germination, 

establishment and survival of seedlings (Clark et al., 1998b). The suitability of a 

microsite is species-specific and determined by abiotic and biotic conditions. Such 

local barriers to recruitment include seed predation (Calviño-Cancela, 2007; Garzon-

Lopez et al., 2022), competition from both conspecific and heterospecific plants 

(Garzon-Lopez et al., 2022), or pathogens (Wenny and Levey, 1998).  
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Sexual reproduction is for the most part determined by both seed and microsite 

availability although at varying degrees in heterogenous landscape (Myers and Harms, 

2009; Long et al., 2014). That is, sexual recruitment cannot occur without seed arrival 

yet seed arrival is no guarantee of recruitment. To establish a new individual via 

sexual reproduction, a seed must be deposited in a suitable microsite and germinate. 

Further, the developing seedling must survive dynamic environmental conditions 

during later life history stages until it reaches sexual maturity (Schupp et al., 2010).  

  

Figure 1. Hinderances to sexual recruitment partitioned over the main limitations imposed at 
sequential life-history stages (i.e. adult, seed, seedling, juvenile). Recruitment limitation can result 
from low seed production in plants (source limitation), seeds failing to arrive at suitable microsites 
(dispersal limitation) or unsuitable conditions for germination and seedling establishment at the 
seed deposition site (microsite limitation). Figure adapted from Beckman and Rogers (2013) and 
Beckman et al. (2020). 
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1.2 Seed dispersal: a critical link in sexual reproduction 

Seed dispersal is the movement of seeds from the parent plant to another 

location where they might establish and reproduce (Schupp et al., 2010). The spatial 

pattern of seed deposition (i.e. seed shadow) creates the initial template for 

subsequent abiotic and biotic interactions that determine seed fate and influence 

seedling survival (Nathan and Muller-Landau, 2000; Levine and Murrell, 2003). As 

such, seed dispersal has profound effects on gene flow (Bacles et al., 2006), 

population dynamics and persistence (Kendrick et al., 2012; González-Castro et al., 

2022), community composition, and allows plants to shift or expand their geographic 

ranges (Clark et al., 1998a; LaRue et al., 2019). 

Since plants are sessile organisms, they rely on vectors (e.g. wind, water, 

animal) to disperse their seeds across the landscape. As a result, plants have adapted 

a myriad of different diaspore morphologies to enhance dispersal via specific vectors, 

such as wings and plumes, fleshy fruits, ballistic mechanisms or flotation devices (van 

der Pijl, 1982). For the large energy investment in flower, fruit, and seed production, 

plants can attain several advantages that increase the likelihood of seedling 

establishment: 1) escape higher density- and distance-dependent mortality near 

parents, such as pathogens, seed predators, and/or herbivores (Janzen–Connell 

mechanism, escape hypothesis); 2) seeds are randomly dispersed, allowing some to 

colonize newly available habitat patches (colonization hypothesis); or 3) non-random 

dispersal towards microsites with environmental conditions suitable for seedling 

establishment (directed dispersal hypothesis; Howe and Smallwood, 1982; Wenny, 

2001). These are not mutually exclusive; there are several examples of plant species 

which benefit from multiple advantages concurrently (Wenny, 2001). 

1.2.1 Endozoochory  

Worldwide, approximately 50-60 % of flowering plants have adapted to seed 

dispersal via animals or zoochory (Aslan et al., 2013; Rogers et al., 2021). Many of 

these produce fleshy fruits that attract and are consumed by animals. In this 
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mutualistic interaction, animals consume fruits for nutrient acquisition and 

simultaneously provide dispersal services for plants by transporting seeds across 

landscapes (i.e. ‘endozoochory’; Herrera, 2002). The mutualistic coupling between 

fleshy-fruited plants and their animal partners is in most cases characterized as 

‘diffuse co-evolution’ (Janzen, 1980). That is, frugivores consume fruit from several 

plant species and each fruit-bearing plant often has more than one disperser species, 

creating complex networks of interactions (Herrera, 1982; Bascompte et al., 2003; 

Bascompte and Jordano, 2007).  

From a plant’s perspective, not all animals are equally good partners and the 

effectiveness of a dispersal event will depend on the disperser’s relative contribution 

to plant fitness, namely the number of new reproductive adults to the population 

(Schupp et al., 2010; Schupp et al., 2017). As different animals show both inter- and 

intraspecific variability in morphology, physiology, and behaviour (Muller-Landau et 

al., 2008; Zwolak, 2018), seed dispersal effectiveness is context-dependent and 

influenced by how seed traits interact with disperser traits (Schupp et al., 2010). For 

instance, frugivores can exhibit differences in dietary preferences (Quintero et al., 

2020) and the amount of seeds ingested and dispersed per visit is positively 

correlated with body size (Jordano et al., 2007). Long gut retention time and large 

home ranges can facilitate dispersal over considerable distances (Dennis and 

Westcott, 2007), while treatment of seeds passing through the gut can affect 

germination (Traveset et al., 2007). Further, animal behaviour and habitat-use largely 

determines seed deposition patterns (Cortes and Uriarte, 2013; Escribano-Avila et al., 

2014; García-Cervígon et al., 2017) and thus the biotic and abiotic factors affecting 

seed fate in post-dispersal processes. Ultimately, seed dispersal effectiveness is the 

product of the quantity (visitation rate and seeds consumed) and the quality 

(probability of recruitment of a dispersed seed involving seed treatment, seed 

shadow, post-dispersal factors) of the dispersal event (Schupp et al., 2010).  
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In many complex endozoochorous systems, different animals or functional 

groups within disperser communities play complementary rather than redundant 

roles in plant recruitment (Jordano et al., 2007; McConkey and Brockelman, 2011; 

Escribano-Avila et al., 2014; Morán-López et al., 2020; García-Rodríguez et al., 2022). 

Specifically, dispersers with different movement behaviours, habitat use and faecal 

deposition patterns contribute to distinct parts of the seed shadow in space and time 

(Rother et al., 2016; Tochigi et al., 2022). For example, animals may move seeds over 

short and long distances contributing to both local and metapopulation dynamics of a 

plant (Jordano et al., 2007; Spiegel and Nathan, 2007). Seed dispersing animals may 

also consume seeds at different times during the fruiting season, ensuring dispersal 

through the whole season (García-Cervígon et al., 2017). 

Maybe the most important aspect of the dispersal service in complementary 

networks is the dispersal to many different microsites, as seed fate and recruitment 

depends on it (Nathan and Muller-Landau, 2000). As such, the most effective and 

functionally most important seed dispersers would disperse many seeds to microsites 

suitable for seedling establishment (Schleuning et al., 2015). In fact, it has been 

recently shown that the number of seeds ingested and dispersed (interaction 

frequency) is not correlated with seedling establishment. Rather, dispersal quality is 

determined by the microsite of seed deposition (Donoso et al., 2016; González-Castro 

et al., 2022). 

1.2.2 Directed endozoochory  

In directed dispersal, seeds are disproportionately deposited in particularly 

favourable microsites that results in increased seedling establishment and growth 

(Wenny, 2001). Animal-mediated dispersal is often non-random because animals use 

space in a non-random way (Nathan et al., 2008). For instance, animal behaviour or 

use of habitat structures (e.g. perches or latrines) contribute to aggregation points in 

the seed shadow that overlap with suitable microsites for seedling establishment 

(Wenny and Levey, 1998; Bravo and Cueto, 2020). However, this process is rarely 
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recognized as directed endozoochory (Brodie et al., 2009; Escribano-Avila et al., 2014; 

García-Cervígon et al., 2017), which has commonly been considered a rare process 

(Wenny, 2001). This could be due to factors such as secondary dispersal obscuring 

seed fate, temporally-dependent detection (the timing of observation), or that even 

directed dispersal performed by ‘high-quality’ dispersers can be subtle as most seeds 

die (Wenny, 2001; Mason et al., 2022). Also contributing to directed dispersal’s 

perceived rarity is the restrictive definition that plant adaptations should actively 

direct dispersal vectors to favourable microsites after propagule removal (active 

directed dispersal; Mason et al., 2022). Yet directed dispersal may occur in a ‘passive’ 

form where plant adaptations allow plants to take advantage of reliable vector 

behaviour to arrive in disproportionate numbers at suitable microsites (Mason et al., 

2022). 

In diffuse plant-animal mutualisms, passive directed dispersal is likely 

widespread with important implications for population dynamics as different 

dispersers within a community shape the overall seed shadow (Morán-López et al., 

2020; Mason et al., 2022). For example, small birds generally transport seeds over 

short distances and direct seed dispersal to perching points in closed canopy areas 

(Jordano et al., 2007; Escribano-Avila et al., 2014; González-Varo et al., 2017). In 

comparison, larger mammals can transport seeds over long distances and between 

habitat patches depositing seeds in favourable microsites both in open and forested 

habitat (Jordano et al., 2007; Tochigi et al., 2022). Recruitment will depend on a 

plants ability to utilize multiple vectors with varying behaviours and movement ability 

to arrive at favourable microsites in heterogenous landscapes (Mason et al., 2022). 

This demonstrates the importance of considering the contribution of multiple 

frugivores to plant recruitment and linking animal behaviour to suitable microsites for 

recruitment. Understanding the mechanisms and effects of directed endozoochorous 

dispersal on plant recruitment is critical for understanding plant population dynamics 

of endozoochorously dispersed species. Such dispersal pathways might be crucial for 
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species with limited seed availability to locate otherwise elusive microsites for 

regeneration in heterogenous landscapes. 

1.3 Ericaceous dwarf shrubs  

Ericaceae (the heath family) is a globally distributed and morphologically diverse 

family of mostly woody plants (trees, shrubs, lianas) that can be found in a variety of 

habitats (Stevens et al., 2004; Kron and Luteyn, 2005). Among the ericaceous species, 

dwarf shrubs (< 50 cm) dominate field layer vegetation in many habitats throughout 

temperate, boreal, alpine, and arctic regions of the northern hemisphere (Nilsson and 

Wardle, 2005; Nestby et al., 2019). Despite their small stature, they have large effects 

on ecosystem function both above and below ground. For example, in forested areas 

they exert strong filtering effects on tree seedling survival and subsequently forest 

succession and composition (Mallik, 2003; Nilsson and Wardle, 2005). Furthermore, 

ericaceous shrubs and their root-associated ericoid mycorrhizal fungi are key 

components to maintenance of microbial activity (Fanin et al., 2019), exerting direct 

control on processes regulating nutrient cycling, and carbon sequestration (Fanin et 

al., 2022). Perhaps most conspicuous is the keystone plant resource (Peres, 2000) 

from genera producing fleshy fruits (berries).  

Ericaceous berries have great trophic importance as they provide a reliable food 

source sustaining a wide diversity of frugivore species from large mammals, 

mesopredators and birds, down to insects (e.g. Guitian et al., 1994; Atlegrim and 

Sjoberg, 1996; Schaumann and Heinken, 2002; Wegge and Kastdalen, 2008; Hertel et 

al., 2018). For example, during peak fruiting season, berries can constitute up to 30 % 

of the diet in red fox (Vulpes vulpes; Needham et al., 2014). For brown bears (Ursus 

arctos), berries can account for as much as 82 % of food consumption (Dahle et al., 

1998) and constitute 68 % of their daily energy intake during fruiting season (Stenset 

et al., 2016).  
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The most frequent and abundant berry-producers of the boral and alpine 

biomes include three species of the genus Vaccinium (subfamily Vaccinioideae): 

bilberry (V. myrtillus), lingonberry (V. vitis-ideae) and bog bilberry (V. uliginosum), 

and one species of genus Empetrum (subfamily Ericoideae): crowberry (E. nigrum) 

(Fig. 2). These species have circumpolar distributions and wide natural ranges that 

stretch through temperate and boreal forests to alpine and arctic regions more or 

less continuously in northern and central Europe, northern Asia and North America. 

The populations grow predominantly on acidic, nutrient poor substrates such as 

mountainous mineral heath, organic forest soils, and peat bogs (Bell and Tallis, 1973; 

Nestby et al., 2019). They have extensive horizontal creeping subterranean rhizome 

systems which produce ramets. Clones form discrete patches with multiple 

‘individual’ shrubs (i.e. ramets) which can be relatively large, in some cases extending 

over 30 meters (Persson and Gustavsson, 2001; Albert et al., 2003; Bienau et al., 

2016). They are slow growing and long-lived. Although actual life-span is unknown, 

genet age has been estimated to between 100 and 750 years (Flower-Ellis, 1971; 

Bienau et al., 2016). Bilberry, lingonberry, bog bilberry and crowberry usually coexist 

within habitat patches (Hultén and Fries, 1986; Jacquemart, 1996) although the 

relative abundance of each species is determined by various abiotic and biotic factors 

(Nilsson and Wardle, 2005).  
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Figure 2. Species distribution maps of (a) bilberry (Vaccinium myrtillus), (b) Bog bilberry (Vaccinium 
uliginosum), (c) lingonberry (Vaccinium vitis-idaea) and (d) black crowberry (Empetrum nigrum) in 
the northern hemisphere. The maps were created using occurrence data from the Global 
Biodiversity Information Facility (GBIF) database. The true distributions of these species are likely 
larger than displayed in the maps. Note that observations in the southern hemisphere are not shown 
here. 
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1.3.1 From seed to seedling - the ericaceous reproductive paradox 

Clonal ericaceous berry-producing species present an intriguing ‘reproductive 

paradox’ (Vander Kloet and Hill, 1994). Most clonal plants that rely mainly on clonal 

propagation exhibit lower energy allocation for sexual reproduction (Eckert, 2001). 

However, berry-producing ericaceous species invest heavily in sexual reproduction by 

producing numerous berries during summer that contain viable seeds (Ranwala and 

Naylor, 2004; Miina et al., 2009). The seeds are endozoochorously dispersed in large 

numbers by a wide animal community every fruiting season (García-Rodríguez et al., 

2022). Further, a large proportion of seeds remain viable after passage through the 

gastro-intestinal system of disperser species (Honkavaara et al., 2007; Steyaert et al., 

2018). In fact, germination rates can be significantly higher when seeds are defecated 

by frugivores compared with seeds embedded within berries (i.e. undispersed; 

Schaumann and Heinken, 2002; García-Rodríguez et al., 2021). Despite this, these 

species are reported to expand by clonal propagation almost exclusively (Hautala et 

al., 2001; Welch et al., 2000). Their seeds are underrepresented in the soil seed bank 

even when they dominate the field layer (Hester et al., 1991; Vander Kloet and Hill, 

1994; Welch et al., 2000) and seedling recruitment is rarely observed under 

conspecific stands (Hester et al., 1991; Eriksson and Fröborg, 1996).  

The discrepancy between seed production, soil seed bank formation and 

realized seedling establishment becomes even more bewildering when considering 

the magnitude of their annual seed production. On average, berries of the Vaccinium 

species contain 12-66 viable seeds (Jacquemart, 1996; Nuortila et al., 2002; Ranwala 

and Naylor, 2004; Nuortila et al., 2006; Manninen and Tolvanen, 2017), while E. 

nigrum contain fewer (7-8) but larger viable seeds (Bell and Tallis, 1973; Manninen 

and Tolvanen, 2017). Although seed yield is affected by variation in pollination 

dynamics (Fröborg, 1996; Nuortila et al., 2002) and climatic conditions (Krebs et al., 

2009), ericaceous berry-producing plants can generate between 1200 to 12 000 seeds 

per m2 (Vander Kloet and Hill, 1994; Hill et al., 2012). In productive stands, V. myrtillus 

can produce nearly 20 000 viable seeds per m2 (Ranwala and Naylor, 2004).  
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There are two major contributors to the apparent lack of sexual regeneration in 

such species. Firstly, ericaceous species are microsite limited (Graae et al., 2011; 

Manninen and Tolvanen, 2017). Niche requirements for seedlings and established 

adults differ, which has implications for sexual regeneration (Eriksson, 2002; Auffret 

et al., 2010). The seedlings are weak competitors with very slow growth (Ritchie, 

1955; Ritchie, 1956). Even after four years growth under natural conditions seedlings 

may not be taller than 4 cm (Eriksson and Fröborg, 1996) and thus typically do not 

survive competition from established adults. Eriksson and Fröborg (1996) showed 

that clonal ericaceous shrubs follow a recruitment strategy where seedling 

establishment occurs in spatially unpredictable RWOs within stands of mature 

conspecifics. Such recruitment windows consist of disturbances that remove barriers 

to recruitment such as field- and ground-layer vegetation and have moist soil with 

high organic content (Eriksson and Fröborg, 1996; Graae et al., 2011). Secondly, 

despite large seed production, seeds are not available or do not reach viable 

recruitment windows (i.e. dispersal limitation; Manninen and Tolvanen, 2017). Burial 

experiments have shown that seeds can retain high levels of viability over many years 

in the soil (Granstrøm, 1987; Vander Kloet and Hill, 1994; Hill and Vander Kloet, 2005). 

Yet, most seeds die between deposition and incorporation into the soil column due 

to factors such as germination in unsuited microsites or ineffective defense against 

fungal attack (Welch et al., 2000). Hence, if a disturbance occurs, ericaceous seeds 

are not available unless deposited directly into it. That is, in disturbances, ericaceous 

species grow and recover mainly clonally without additional seed rain (Hautala et al., 

2001). 

To date, research has focussed on mechanical disturbances with seed addition 

experiments (e.g. Eriksson and Fröborg, 1996; Hautala et al., 2001; Eriksson, 2002; 

Manninen and Tolvanen, 2017) to assess recruitment dynamics in clonal ericaceous 

species. However, such sites are unlikely to attract disperser species. This becomes 

problematic when recruitment is dependent upon dispersing seeds reaching suitable 

sites for germination, seedling establishment and survival.  
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A recruitment window was proposed by Steyaert et al. (2018), who observed 

directed seed dispersal by vertebrate scavengers towards carcasses of large 

ungulates. Carcass decomposition can generate discrete vegetation-denuded 

disturbances also called ‘cadaver decomposition islands’ (CDI; Towne, 2000; Carter et 

al., 2007). In addition, CDIs have previously been linked to seedling establishment in 

long-lived clonal trees (Bump et al., 2009). Further, Eriksson and Fröborg (1996) 

observed seedling establishment on decomposing woody debris and hypothesized 

that such substrates could be possible regeneration microsites for ericaceous species. 

Neither Steyaert et al.’s (2018) observations of directed seed dispersal, nor Eriksson 

and Fröborg’s (1996) observations of seedlings on decomposing wood provide a 

complete and definitive picture of viable recruitment pathways. In combination they 

provided the motive for this thesis: that vertebrate dispersal vectors direct 

endozoochorous dispersal towards suitable microsites which facilitates seedling 

establishment in for berry-producing ericaceous species (Figure 3).  
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Figure 3. Schematic diagram showing directed seed dispersal by endozoochorous dispersal vectors 
towards favorable microsites as a pathway to successful sexual reproduction in clonal berry-
producing ericaceous shrub species. Non-directed dispersed seeds have a limited encounter rate 
with temporally and spatially unpredictable recruitment windows of opportunity. By linking the 
endozoochorous dispersal capacity of frugivorous vertebrates and disperser-attractive microsites, 
dispersal limitation is overcome at ideal microsites due to (1) vectors facilitating their (2) directed 
dispersal (i.e. enhanced seed rain) into (3) favorable microsites for seedling establishment. Figure 
adapted from Arnberg et al. (2022). 
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2. Objectives 

The overall objective of this thesis was to disentangle the ericaceous 

reproductive paradox by elucidating pathways of sexual reproduction (i.e. 

recruitment from seed) in clonal berry-producing ericaceous species. Specifically, we 

aimed to connect vertebrate disperser species which have the potential for directed 

endozoochory to viable recruitment windows for seedling establishment (Figure 3). 

This thesis focuses on two possible regeneration pathways: 1) Vertebrate scavengers 

provide directed dispersal towards cadaver decomposition islands by 

opportunistically consuming both ericaceous berries and carrion, and 2) Frugivorous 

passerine birds, also known as perching birds (order Passeriformes) direct seed 

dispersal towards perching points in the landscape, which can be suitable microsites 

for seedling establishment of ericaceous plants. Both recruitment pathways entail 

that seed deposition sites also accommodate seedling establishment. 

The goal of Paper I was to extend the findings of Steyaert et al. (2018). In an 

alpine ecosystem, the authors found that scavenging birds and mammalian 

mesopredators provided directed seed dispersal towards a mass die-off site where 

323 tundra reindeer had been killed by a lightning strike. Furthermore, animal feces 

consistently contained viable seeds from the ericaceous shrub Empetrum nigrum. 

Within the same mass die-of site, we used a permanent grid of survey plots spanning 

a gradient from high carcass-induced disturbance to intact vegetation, surveying 

environmental variables and seedling establishment concurrently. Specifically, this 

paper investigated I) if seedling establishment was associated with decomposing 

carcasses and II) the influence of other microsite conditions important for seedling 

establishment such as reduced competition. 

Although mass mortality events are not necessarily rare (Fey et al., 2015), the 

majority of mammal carcasses are distributed individually across landscapes as most 

die from predation, hunting, starvation, or disease (Barton et al., 2019; Moleón et al., 

2019). Paper II aimed to characterize the role of single mortality events in sexual 
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reproduction of ericaceous species in a boreal forest ecosystem. Specifically the aim 

was to elucidate links between carcass-induced disturbances in the vegetation, the 

scavenger community (i.e. documented dispersal vectors), and seedling 

establishment of keystone ericaceous species. By using a experimental control-

intervention study design with control, mechanically disturbed and carcass plots, this 

paper assessed how carcass size and time of death influenced the I) vertebrate 

disperser community, II) development of CDIs (i.e. recruitment windows); then 

testing III) if seedling establishment was more abundant in CDIs compared to 

mechanical disturbances and control plots which have little disperser incentive. 

Decomposing wood is an important habitat and regeneration site for many 

forest-associated plant species (Harmon et al., 1986; Santiago, 2000; Bače et al., 

2012; Chmura et al., 2016). Within intensively-managed boral forest, cut stumps 

constitute the majority of large woody debris (Rouvinen et al., 2002). Although 

passerines have not been directly associated with such man-made woody debris, they 

often use low coarse woody debris in natural forests, for example to perch on while 

foraging for insects (Hagelin et al., 2015). The aims of Paper III were to I) document 

directed endozoochorous dispersal of viable seeds towards cut stumps by passerines; 

II) asses if seedling establishment is more likely in cut stumps than random points on 

the forest floor; and III) uncover environmental factors modulating the two important 

components of this proposed recruitment pathway, i.e. scat deposition and seedling 

establishment. 

  



19 
 

3. Main results  

Paper I: Directed endozoochorous dispersal by scavengers facilitate 
sexual reproduction in otherwise clonal plants at cadaver sites  

The large and spatially-concentrated input of carrion biomass from 323 reindeer 

carcasses of animals that died from lightning in 2016 in the alpine tundra in 

southcentral Norway had drastic effects on the vegetation layer in the immediate 

vicinity of the mass die-off. Over the course of three years, the decomposing 

carcasses had created one mega CDI (25×25 m) in the most carcass-dense area and 

several smaller CDIs from scattered carcasses. Furthermore, the disturbance from 

carcass decomposition and scavenger activity had created patches of bare soil that 

extended far beyond carcass positions.  

Our results showed that CDIs provided microsites that were suitable for 

ericaceous seedling establishment. In total, we registered 43 ericaceous seedlings 

within 67 survey plots. Empetum nigrum was most abundant (n = 22), followed by 

Vaccinium vitis-idaea (n = 11), V. uliginosum (n = 7) and V. myrtillus (n = 1). Two 

seedlings could not be identified beyond genus level (Vaccinium spp.). The probability 

of ericaceous seedling establishment within survey plots was positively affected by 

carcass density. All other microhabitat conditions such as soil or vegetation cover 

were poor predictors of seedling establishments. Even plots with high amounts of soil 

cover and thus low competition did not have seedling establishment unless they were 

also near a carcass. 

Together with Steyaert et al. (2018) our findings in Paper I established 

understanding of a novel, viable recruitment pathway. Seedlings of berry-producing 

ericaceous shrubs are more likely to establish within CDIs due to dispersal vectors 

facilitating directed dispersal of viable seeds into favorable microsites. 
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Paper II: Characterizing the role of carcasses in seedling establishment 
for clonal ericaceous shrubs 

Across 30 experimental sites, each consisting of one experimentally deployed 

carcass, one control and one mechanically disturbed plot, we quantified vertebrate 

activity, microsite changes and ericaceous seedling establishment. After carcass 

deposition, plots with carrion material effectively created a spatiotemporal hotspot 

of animal activity. Of the 16 886 vertebrate observations from wildlife cameras, 

carcass plots accounted for 97 % of all observations with only the remaining 3 % of 

observations occurring at controls (i.e. baseline vertebrate community; we did not 

place cameras on mechanically-disturbed plots). The aggregation of vertebrates was 

contingent on carcass size: larger carcasses (e.g. moose, reindeer) attracted similar 

communities to one another whereas observations at small carcasses (e.g. red fox) 

resembled those at control plots. Crucial to plant recruitment, animals with the 

potential for ericaceous seed dispersal constituted an overwhelming 93 % of all 

observations at carcass plots. Further, the greatest occurrence of such species 

overlapped with berry ripening and the peak time of ericaceous seed dispersal. 

Carcass size also played an important role in the formation of CDIs (i.e. 

recruitment microsites). Larger carcasses effectively created disturbances in the 

forest floor vegetation, while small carcasses had no or little effect on vegetation 

cover. Disturbances from large carcasses were characterized by a decrease in field- 

and ground-layer vegetation, and increase of bare soil in discrete patches. Thus, they 

closely fit the requirements for RWOs for ericaceous species. Season of carcass 

deposition did not affect animal aggregation or CDI formation. In fact, larger 

carcasses persisted for a surprisingly long time, often through multiple seasons. 

Lastly, our results indicated that CDIs from single mortality events can be viable 

RWOs for ericaceous species. Seedlings were significantly more abundant in CDIs 

compared to mechanical disturbances and control plots. Our study demonstrates 

how individual carcasses in a forest landscape facilitates sexual reproduction in 
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ericaceous keystone species. However, the recruitment pathway is a multistep 

process where each step is modulated by the nature of the carcass itself. Smaller 

carcasses did not aggregate disperser species nor did they generate CDIs, and 

seedling establishment was never observed at those sites. 

Paper III: Perfect poopers; Passerine birds facilitate sexual 
reproduction in clonal keystone plants of the boreal forest through 
directed endozoochory towards dead wood 

Within a boreal forest landscape in Trøndelag, Norway, we quantified passerine 

scat deposition and seedling establishment at 142 cut stumps from forest 

management and paired forest floor plots. We used this data to evaluate how and to 

what extent passerine birds can direct ericaceous seed dispersal towards cut stumps, 

which have been suggested to be suitable microsites for ericaceous seedlings. Our 

result showed that passerine birds directed seed dispersal towards cut stumps in a 

managed forest landscape. Scat deposition was 24 times more likely on stumps 

compared to forest floor plots suggesting that passerine birds actively perch and 

regularly defecate on stumps. Importantly, bird droppings consistently contained 

viable seeds. In a germination trial of bird droppings collected at stumps, Vaccinium 

seeds germinated from 81 %. Stumps were also suitable recruitment windows for 

Vaccinium species, with a higher probability of seedling establishment at stumps 

compared with the forest floor. In total, we recorded 126 Vaccinium seedlings, 121 of 

which were on stumps (range: 0–24; mean: 0.85) and only 5 of which were in forest-

floor plots (range: 0–2; mean: 0.03). 

Our study shows how directed endozoochorous seed dispersal by passerine 

birds towards tree stumps provides another pathway to successful sexual 

reproduction in berry-producing Vaccinium spp. shrubs. Notably, our results indicate 

that the functionality of this recruitment pathway is rather contextual. That is, not all 

stumps were used for perches and not all stumps supported seedling establishment. 

The probability of seed deposition and seedling establishment varied strongly with 
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environmental context. If stumps were located in areas with higher complexity of the 

vertical forest structure and relatively low canopy cover, probability of scat 

deposition at stumps increased from 0.11 to 0.73. Seedling establishment was 

regulated by environmental variables at the stump level. Without bryophyte cover, 

seedings never established on stumps while a combination of increasing bryophyte 

cover and stump diameter elevated the probability of seedling establishment from 0 

to 0.74. 
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4. General discussion 

This thesis demonstrates how berry-producing ericaceous species utilize 

different pathways to attain seedling establishment. Although seedling establishment 

has been categorised as rare in the Vaccinium and Empetrum genera (Eriksson and 

Ehrlen, 1992; Vander Kloet and Hill, 1994; Ranwala and Naylor, 2004), we show that it 

is a relatively frequent phenomenon when coupled with directed endozoochorous 

dispersal. Specifically, we demonstrate two functional pathways of sexual 

reproduction: 1) Scavenging vertebrate species direct endozoochorous seed dispersal 

towards CDIs (Steyaert et al., 2018) which are viable RWOs for seedling establishment 

(Papers I and II), and 2) Passerines direct endozoochorous seed dispersal towards 

decomposing tree stumps, i.e. viable RWOs, through their perching behaviour (Paper 

III). As such, this thesis adds to the growing body of evidence showing that (passive) 

directed endozoochory can be an important driver for population dynamics in plants 

(Mason et al., 2022) 

4.1 Ecological consequences of the discovered pathways  

4.1.1 Seedling establishment when connected to dispersal strategy 

Our results support recent studies indicating that seedling recruitment in clonal 

ericaceous plants occurs much more frequently in nature than previously expected 

(García-Rodríguez and Selva, 2021; García-Rodríguez et al., 2022). However, it is all a 

matter of looking in the right place: the success of sexual reproduction is tightly 

linked to endozoochorous disperser activity at habitat disturbances (Fig. 4; Papers I, II 

and III). On average, microsites from carrion decomposition at single mortality events 

had 17 seedlings/m2 (Paper II) while decaying stumps had 18.12 seedlings/m2 (paper 

III). In comparison, seedling establishment under mature conspecific plants ranged 

between 0.72 - 0.97 seedlings/m2 (Papers III and II, respectively). Mechanical 

disturbances, which are not necessarily attractive to disperser species but offer 

suitable conditions for seedling establishment, averaged 4.2 seedlings/m2 (Paper II).  
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The seedling abundance we found in mechanical disturbances and among adult 

plants are similar to those reported in other studies (Hautala et al., 2001; Manninen 

and Tolvanen, 2017). These seedlings are likely the product of ‘background’ seed rain 

generated by berries falling directly to the ground (i.e. undispersed) or undirected 

dispersal by frugivorous animals (Fig. 4c; Graae et al., 2011). Considering the vast 

expanse of habitat covered by mature ericaceous vegetation in boreal and alpine 

biomes, nearly one seedling per square meter could potentially account for 

considerable annual recruitment. However, such seedlings are usually short-lived as 

they are easily outcompeted by the adult plants (Eriksson and Fröborg, 1996); a 

common end to life in many plant species that do not have seed or seedling traits 

which favor survival when faced with abiotic and biotic stress (e.g. large seeds or fast 

growth; Kitajima and Fenner, 2000; Moles and Westoby, 2004). Hence, the 

probability of ericaceous seedlings assimilating into the adult population as new 

reproductive individuals in mature vegetation is likely very low. 

High levels of seedling establishment appeared to be achieved only when 1) 

landscape structures or resources were attractive to dispersal vectors and animal 

activity was concentrated at such points, and 2) those points were also viable RWOs 

for ericaceous seedling establishment. Although not comparable in size, CDIs from 

single mortality events could have up to 126 seedlings and decomposing stumps up 

to 24 seedlings at the time of observation (Papers II and III, respectively). The 

maximum abundance within survey plots (0.25 m2) at mass-mortality induced CDIs 

was 10 seedlings (Paper I).  
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Figure 4. Pictures of: (a-b) bird droppings on decaying wood, colored blue by berries and with visible 
seeds of Vaccinium spp.; (c) Vaccinium spp. seedlings germinating directly out of an undispersed 
berry; (d) V. myrtillus seedlings on a tree stump; (e) V. myrtillus and V. vitis-idaea seedlings in a 
cadaver decomposition island; (f) ericaceous seedlings emerging from a red fox scat deposited at a 
moose carcass. Picture credit a and c: Sam Steyaert  
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The genetic diversity found in Vaccinium spp. and Empetrum nigrum 

populations, which is comparable to that of nonclonal species, supports frequent 

recruitment from seed (Persson and Gustavsson, 2001; Albert et al., 2003; Bienau et 

al., 2016). In Vaccinium populations, the majority of the genetic variation (86-89%) 

resides within populations (Persson and Gustavsson, 2001; Albert et al., 2004; Albert 

et al., 2005) and multiple genets can be found in relatively small patches (Persson and 

Gustavsson, 2001). For instance, Albert et al. (2004) found up to 21 genets of 

Vaccinium myrtillus in 3×3 meter plots in a temperate forest ecosystem. Together, 

this points to continuous seedling recruitment within conspecific plants and that such 

establishment is, at least to some extent, a result of long-distance dispersal events 

between populations (Hamrick and Godt, 1996).  

Previous attempts to understand recruitment patterns in clonal plants, including 

berry-producing ericaceous shrubs, have not accounted for seed dispersal strategies 

(Eriksson, 1993; Vander Kloet and Hill, 1994; Welch et al., 2000). As such, ericaceous 

species have produced a perceived paradoxical set of life-history traits: profuse clonal 

growth, costly berry production that favours dispersal, relatively small seeds with 

poor defence mechanisms, slow growing seedlings with low stress and competitive 

abilities, and rare seedling establishment at suitable microsites. Yet, seed dispersal is 

crucial for explaining life-history traits and evolution (Bonte and Dahirel, 2017; 

Beckman et al., 2018). In the case of ericaceous species, frugivorous dispersal vectors 

form the red thread which ties it all together. We show the importance of dispersal 

services provided by avian and mammalian dispersal vectors to successful sexual 

reproduction in clonal ericaceous species (Papers I, II and III). Seed dispersal directed 

towards suitable RWOs results in seedling establishment at much higher frequency 

than earlier thought. 

By neglecting endozoochorous seed dispersal by vertebrates and their distinct 

contribution to the seed shadow, the importance of seedling recruitment has 

undoubtedly been underestimated. Sexual recruitment likely contributes to 
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population dynamics at both local and regional scales as evidenced by the genetic 

structure of the populations (Persson and Gustavsson, 2001; Albert et al., 2004; 

Albert et al., 2005). Notably, an array of plants primarily thought to propagate 

clonally have also shown high genetic diversity (Ellstrand and Roose, 1987; Nybom, 

2004; Jankowska-Wróblewska et al., 2016; West et al., 2023). This may indicate that 

many plant species are dependent on previously overlooked complex and multistage 

processes related to successful seedling recruitment 

4.1.2 When multiple species eat and poop 

Within the documented recruitment pathways of this thesis, the disperser 

community of ericaceous seeds consists of many species that can direct seed 

dispersal towards suitable microsites (Paper III; Steyaert et al., 2018). At carcass sites, 

the most commonly observed species were the mammalian scavengers red fox and 

European pine marten (Martes martes), and corvids such as Eurasian jay (Garrulus 

glandarius), hooded crow (Corvus cornix) and Eurasian magpie (Pica pica) (Paper II). 

While we did not document the species of passerines that perched and defecated on 

stumps, more than 40 passerine species inhabit the area during summer and autumn. 

Hence, it is highly likely that more than one species contributed to droppings 

observed at stumps (Paper III).  

When considering the two recruitment pathways in parallel, the disperser 

communities provided complementary seed dispersal services in two ways. Firstly, 

they directed dispersal towards two distinct microsites (carrion and stumps) in the 

landscape (Paper III; Steyaert et al., 2018;). Secondly, the dispersal communities 

included species with varying movement ranges which may contribute differently to 

particular regions of the seed shadow (i.e. seed deposition at differential distances 

from the source plant; Jordano et al., 2007; Papers II and III). The combination of both 

recruitment pathways allows ericaceous species to reach more RWOs and increase 

the frequency of sexual recruitment (Papers I, II and III) – a pattern found in several 

other plant-frugivore mutualisms (Escribano-Avila et al., 2014; González-Castro et al., 
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2015; Morán-López et al., 2020). The medium sized scavengers, such as the red fox 

and corvids observed at carcass sites (Paper III), are considered long-distance seed 

dispersers with dispersal distances that can reach nearly 3 kilometres in a 

Mediterranean study system (González-Varo et al., 2013; Green et al., 2019). 

Importantly, such long distance dispersal is crucial to metapopulation dynamics as it 

allows for genetic connectivity between populations (Spiegel and Nathan, 2007; 

Jordano, 2017). For example, Jordano et al. (2007) found that 74 % of seeds from the 

mahaleb cherry (Prunus mahaleb) were deposited outside the genetic neighborhood 

of the source population when dispersed by medium sized mammals (foxes, badgers, 

and stone martens). In comparison, passerines which direct seed dispersal towards 

stumps (Paper III) and likely also CDIs (Badia et al., 2019; Paper I) mainly move seeds 

over short distances and deposit them within the source population (Jordano et al., 

2007). Such short distance dispersal is also important to population dynamics as it 

promotes gene flow and population persistence at local scales (Jordano, 2017). Still, 

passerines such as robins or thrushes can also disperse seeds over very long 

distances, particularly during autumn migration (Costa et al., 2014).  

The division of seed dispersers according to their potential dispersal distances 

also suggest that some functional redundancy exists within each dispersal pathway. 

That is, multiple species provide similar dispersal services and if one species becomes 

extinct other species could replace its function without a reduction in plant 

recruitment (Schleuning et al., 2015). Seed dispersal patterns by vertebrate 

scavengers are comparable in their contribution to the seed shadow: seeds are 

transported over long distances and deposited into the same microsite type (CDIs; 

González-Varo et al., 2013; Steyaert et al., 2018). Similarly, the passerine community 

disperses seeds over short distances to decomposing stumps or alternatively CDIs 

(Jordano et al., 2007; Paper III). Functional redundancy plays an important role in 

ecosystem resilience during environmental perturbations (Peterson et al., 1998) and 

can buffer the effects of disperser loss (García et al., 2011; Rumeu et al., 2017). Due 

to the similar dispersal services provided by subsections of the dispersal community, 
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dispersal patterns would persist if some frugivore species experienced population 

declines or even extinction. 

4.2 The magnitude of overlooked recruitment opportunities 

RWOs for seedling establishment and survival in clonal ericaceous species likely 

occur at relatively high frequencies across landscapes. Although the occurrence of 

RWOs in natural ecosystems at any given time point is unknown, many papers report 

relatively high frequencies of carrion input and coarse woody debris – material which 

we know can become suitable RWOs for ericaceous species (Papers I, II and III).  

The annual input of carrion biomass to terrestrial systems from ungulates (wild 

and domestic) that died from natural causes such as predation, disease or starvation 

ranges from 10 to almost 700 kg/km2 (Moleón et al., 2019 and references therein). 

Human activities can further increase the influx of carrion materiel (e.g. vehicle 

collisions, supplementary feeding; Moreno-Opo and Margalida, 2019). For example, 

remains from moose hunting (e.g. viscera, head, vertebral column, lower legs and 

hide) can annually subsidize carrion available biomass with almost 83 kg/km2 

(Lafferty et al., 2016). However, in many European countries, sanitary regulations has 

led to systematic removal of carrion from domestic livestock following the outbreak 

of bovine spongiform encephalopathy (mad cow disease; Margalida et al., 2010). 

Nevertheless, considering that experimentally-placed carcasses weighing from 70 

kilos and upwards created CDIs within our study site (Paper II), ‘natural’ carcasses 

could potentially generate several RWOs per km2 each year. In addition, estimates of 

carrion biomass are likely conservative due to carrion’s ephemeral nature: carrion has 

rapid turnover and is also a highly sought after resource by organisms of the 

necrobiome (e.g. scavengers, insects; Barton et al., 2019).  

In Paper III, we showed that stumps from timber production can be viable RWOs 

for ericaceous species but decomposing wood comes in variety of forms. These 

include standing dead trees (snags), dead branches, fallen trees, coarse roots or 
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fragmentated pieces from larger snags and logs. The amount of decomposing wood 

(m3/ha) can vary with climate, forest age, site fertility and stand density (Bujoczek et 

al., 2021). Forest management for timber production, however, is the most important 

driver of dead wood availability in most Scandinavian forests (Linder and Östlund, 

1998). Managed forest stands consistently contain less woody debris compared to 

old growth forest across biomes and the woody debris that remains largely consists 

of stumps (e.g. Kirby et al., 1998; Siitonen et al., 2000; Lombardi et al., 2008; Bujoczek 

et al., 2021). Similarly, within managed stands, the volume of dead wood decreases 

with intensity of logging practices (Green and Peterken, 1997; Paletto et al., 2014). 

For seedling establishment, downed woody debris such as logs has been identified as 

an important microsite for many species (Chmura et al., 2016), and incidentally these 

are also seed deposition sites (Rehling et al., 2022). Directed endozoochorous 

dispersal towards stumps in an intensively managed forest (Paper III) might represent 

a subset of a much larger plant-frugivore dispersal network. The potential 

contribution of this reproductive pathway to recruitment is likely much bigger in 

more intact forests which host more potential regeneration sites and a more diverse 

avian disperser community.  

Besides the recruitment pathways we have shown in this thesis, recent studies 

have shown that brown bears disperse bilberry seeds towards their daybeds which 

are small disturbed areas in which seeds can germinate and establish (Steyaert et al., 

2019; García-Rodríguez and Selva, 2021). Undiscovered pathways likely exist and 

piecing together ecological clues and animal behaviour can thus reveal potential 

pathways. For example, windthrows are part of the natural disturbance regime and 

drivers of forest dynamics (Mitchell, 2013). When trees are uprooted by wind, they 

leave a pit at the former root position and an adjacent mound forms from falling soil 

released as the upturned root plate decomposes, creating discrete patches of bare 

soil in the forest floor (Schaetzl et al., 1989). Passerines use upturned root plates for 

perching and nesting (Thompson, 1980; Karpińska et al., 2022), and thereby deposit 

seeds into the pit and mound (Thompson, 1980). On a larger scale, extensive 
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windthrow gaps with multiple downed trees could provide a ‘mega’ opportunity for 

ericaceous species being dispersed by passerines. First, they immediately create 

exposed soil at upturned root plates and second, downed logs eventually decompose 

and become suitable for seedling establishment. In conclusion, there is likely a 

permanent supply of viable RWOs from natural disturbances in heterogenous 

habitats for ericaceous shrubs or even other species relying on directed 

endozoochorous dispersal. The main barrier to recruitment for RWO strategy species 

is to locate such microsites. For RWO pathways to be better recognised by the 

scientific community, the main barrier seems to be linking seed dispersal to suitable 

microsites, for example through animal behaviour. 

4.3 Seed dispersal in a changing world 

For endozoochorous plants, particularly those which require specific microsites 

for seedling establishment, recruitment dependents on the reliability of dispersal 

vectors – an increasing challenge in the Anthropocene. Many vertebrates world-wide 

are facing population declines, extinctions at local and global scales, altered spatial 

distributions and reduced movement ranges. Such ‘defaunation’ is caused by human-

driven overharvesting, habitat fragmentation, degradation and loss, and invasion of 

alien species (Dirzo et al., 2014; Ceballos et al., 2015; Ceballos et al., 2017; Tucker et 

al., 2021). Here, I consider defaunation a larger threat to interactions between 

ericaceous species and their animal partners due to the generalist nature of both 

ericaceous berry-producing species and their disperser community. Changes in 

dispersal vector populations or behavior can have cascading effects (Rogers et al., 

2021). They can severely impact plant-animal interactions such as seed dispersal 

(Neuschulz et al., 2016; Teixido et al., 2022) which may lead to reduced or even failed 

plant recruitment and increased risk of local extinction (Rodríguez-Cabal et al., 2007; 

Moran et al., 2009; Rogers et al., 2021).  

We have shown that sexual recruitment through directed endozoochory occurs 

in both undisturbed (Paper I) and human-impacted habitats (Paper III). Although the 
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suggested redundancy of dispersal services discussed above offers some buffer to 

human disturbance, defaunation processes likely affect sexual reproduction in 

ericaceous plants. The impact on plant recruitment is tied to which members of the 

disperser assembly are susceptible to defaunation hazards: Animals with large body 

mass usually have the highest chance of population decline and local extinction (Dirzo 

et al., 2014; Rogers et al., 2021). Within Norwegian boreal forests (Papers II and III), 

the largest seed disperser in terms of body size and berry consumption, is the brown 

bear, which occupies a fraction of their original habitat due to overexploitation, 

habitat loss, and management policies favoring free ranging livestock husbandry 

(Swenson et al., 1995; Bischof et al., 2020). This implies not only loss of unique 

recruitment pathways (i.e. bear beds) but also loss of long distance dispersal 

oppertunities (Lalleroni et al., 2017), with potential consequences for population 

connectivity and genetic diversity (Pérez-Mendez et al., 2016; Jordano, 2017). 

Similarly, species abundance and richness within scavenger assemblages are highly 

affected by human activity (Sebastián-González et al., 2019). A major driver is hunting 

and persecution, often due to misconceptions and livestock conflicts, while the 

important ecosystem services that scavengers provide are overlooked (Ogada et al., 

2012; Moleón et al., 2014). In fact, many municipalities in Norway still have bounty 

payments in place for scavengers such as red fox, European pine marten, common 

raven (Corvus corax) and hooded crow to actively reduce their populations. This is a 

process which also results in a reduction of the seed dispersal services provided by 

such omnivorous scavengers. In addition, population declines are also evident in 

smaller mammals and birds (Donald et al., 2006; Davidson et al., 2009). There is, 

however, little knowledge on how loss of small disperser species, such as passerines 

(Paper III), affects seed dispersal (Rogers et al., 2021). 

How anthropogenic interference in key ecosystem functions has altered and 

most importantly continues to impact sexual recruitment in keystone ericaceous 

plants is largely unknown. However, the abundance and diversity of seed dispersers is 

positively correlated with the number of seeds arriving at suitable microsites for 
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seedling establishment across landscapes (García et al., 2018; García-Rodríguez et al., 

2022). Maintaining diverse disperser communities can thus be important for 

safeguarding complete dispersal networks and its associated biodiversity. 
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5. Conclusion and further perspectives  

This thesis shows that ericaceous berry producing species do not necessarily 

present a reproductive paradox. Instead, they possess life-history traits (fleshy fruit) 

to overcome dispersal limitation and reach suitable microsites. Seedling 

establishment occurs at relatively high frequencies when endozoochorous dispersal 

vectors direct their seed dispersal towards RWOs. This approach also explains the 

observed high genetic diversity within relatively small patches of mature ericaceous 

stands. Although our finding elucidate a solution to the reproductive paradox, 

important question remain unanswered.  

The relative fitness contribution of a dispersal event to plant populations is only 

realised when seedlings persist and grow into new reproductive adults (Schupp et al., 

2010). There are several factors besides reduced competition which might facilitate 

seedling persistence at RWOs within our study sites. For example, elevated levels of 

growth-restrictive nutrients from carrion decomposition can enhance seedling 

growth (Bump et al., 2009), and partnerships with ericoid mycorrhizal fungi can 

increase nutrient assimilation from decomposing wood (Perotto et al., 2018). 

However, long-term studies are needed to evaluate the survival of ericaceous 

seedlings, including both those which emerge under conspecific adults and those 

emerging in RWOs. Although such studies are challenging in long-lived clonal plants, 

they would also help in assessing the comparative importance of our dispersal 

pathways. For example, which pathway offers the most return in form of new adults 

to the ericaceous population and which disperser species are the functionally most 

important to sexual recruitment. In parallel, studies on population genetics would be 

necessary to evaluate how seed dispersal contributes and structures gene pools 

within and across populations of ericaceous plants. Preferentially, such investigations 

would connect seedling establishment (propagule) from known disperser species to 

the maternal plant or population (source). Then the actual frequency of long-distance 
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dispersal events which transport seeds between population can be quantified and 

inference made regarding which species provides such dispersal events. 
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Berries are not just a treat for humans – they are also a vital resource for 
many animals. From small insects to large bears, creatures in temperate, 
boreal, and alpine habitats across the northern hemisphere rely on the 
nutritious bounty provided by berry-producing plants in the heather 
family. In return, animals help plants spread by moving and depositing 
seeds through their digestive systems. However, scientists have long 
been puzzled by the ‘reproductive paradox’ of the heather species bilberry, 
lingonberry, bog bilberry and crowberry. These species produce countless 
berries containing viable seeds, yet rarely seem to reproduce through 
seeds themselves. In this thesis, we show that seedling establishment 
of berry-producing species is actually relatively common when the 
behavior of animals is considered and that at least two pathways to sexual 
reproduction exist. By opportunistically consuming berries and carrion, 
scavenging animals provide seed dispersal directed towards carcasses, 
which during decomposition creates viable sites for seedling recruitment. 
Meanwhile, passerine birds direct seed dispersal towards perching points 
on tree stumps, another form of decomposing microsite that is a viable 
location for seedling establishment for berry-producing heather plants. 
Our findings add to the growing body of evidence that highlights the vital 
interdependence between animals and plants.

FACULTY OF BIOSCIENCES AND AQUACULTURE


	Tom side



