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It is widely recognized that intestinal inflammation is a major health 
problem in humans. Certain dietary components can evoke an 
inflammatory status in the intestine due to their ability to disrupt the 
intestinal barrier. On the other hand, some natural bioactive compounds 
can prevent the development of intestinal inflammation. This PhD project 
elucidated the molecular characteristics and extraintestinal effects of 
soybean meal-induced intestinal inflammation in zebrafish. The ability of 
dietary ß-glucans (yeast and alga-derived) and alginate oligosaccharides 
to counter soybean meal-induced inflammation in zebrafish was also 
studied to reveal the efficacy of the bioactive compounds. Transcriptome 
and metabolome-based studies were employed to delineate the markers 
of inflammation. Furthermore, soybean meal-induced inflammation 
was associated with defects in development and locomotor activity of 
zebrafish. The interesting finding is that algal ß-glucans and alginate 
oligosaccharides restored the expression of inflammation marker 
genes altered by soybean meal diet. The algal ß-glucan prevented 
the developmental defects and normalized the soybean meal diet-
induced changes in the locomotor behavior of zebrafish. The alginate 
oligosaccharides and algal beta-glucans could elevate the abundance of a 
short chain fatty acid and vitamin in the plasma of zebrafish, respectively. 
The PhD project gave insights into diet-induced inflammatory features 
and distinct modes of action of ß-glucan and alginate oligosaccharides 
to counteract inflammation and associated extraintestinal manifestations.
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SUMMARY 

The intestinal mucosa acts as a selective barrier by preventing the entry of pathogens 

and food toxins while maintaining tolerance to commensal microbiota. Hence, a 

compromised mucosal barrier increases the permeability of the intestine, allowing 

undesirable luminal antigens to cross the barrier and activate an inflammatory 

response in the tissue. Chronic inflammation-associated damage can eventually result 

in the disturbance of the overall intestinal physiology. Though previous studies have 

reported soybean meal-induced inflammation in the intestine of zebrafish, there is a 

paucity of information regarding the underlying molecular changes. Furthermore, the 

extraintestinal effects of soybean meal-associated inflammation have not been studied 

in detail. For instance, the behavioural changes associated with feeding soybean meal 

are underexplored in animal models. Also, the shift in plasma metabolomic landscape 

of zebrafish by dietary soybean meal has not been investigated to understand the 

metabolites associated with inflammation. Such information will establish the 

reliability of zebrafish as a nutritional model for assessing therapeutic agents against 

inflammatory diseases. 

In this PhD project, employing transcriptomic approaches and through histological 

evaluation I elucidated the changes marking soybean meal-induced inflammation in 

the intestine of zebrafish. In this first study, I also examined the effects of yeast β-

glucan supplementation. Dietary soybean meal increased the expression of several 

genes that are associated with small GTPase-mediated signal transduction and ATP 

dependent peptidase activity. The downregulation of genes linked to inhibition of 

GTPase-mediated signal transduction, guanyl nucleotide binding, and intracellular 

signal transduction, reduced lamina propria width and increased villi height of the 

yeast β-glucan fed group point to their protective responses in the intestine. 

The second study focused on soybean meal-induced defects in behaviour and organ 

development during the early stages of zebrafish, using transcriptome analysis, 

morphological observations, and oxygen consumption measurements. Furthermore, 
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an algal β-glucan supplement was evaluated for its ability to mitigate specific 

behavioural and developmental aberrations induced by dietary soybean meal in 

zebrafish. The dietary soybean meal was noted to reduce the locomotor activity, 

induce developmental defects, and increase the oxygen demand in zebrafish larvae. In 

addition, the transcriptomic analysis pointed to the suppression of genes linked to 

visual perception, organ development, phototransduction pathway and activation of 

genes linked to the steroid biosynthesis pathway and retinoic acid metabolism. 

However, the algal β-glucan counteracted the behavioural and phenotypic changes 

induced by dietary soybean meal.  

In the third paper, I studied the intestinal transcriptome and plasma metabolome, 

along with gene markers and histological analysis to evaluate the anti-inflammatory 

potential of alginate oligosaccharides (AOS) and an algal β-glucan in zebrafish fed 

dietary soybean meal. The two functional feed additives could reduce the expression 

of certain inflammatory genes associated with soybean meal intake. Transcriptomic 

analysis indicated that dietary AOS with a higher percentage of the low molecular 

weight fraction suppressed the expression of genes related to complement activation, 

inflammatory and humoral response while algal β-glucan suppressed several genes 

linked to endopeptidase activity and proteolysis. The plasma metabolomic profile 

further revealed the increase of a short chain fatty acid in the AOS group and 

pantothenic acid in the algal β-glucan group, all these responses likely indicate the 

effectiveness of the additives to alleviate the inflammatory signs in the intestine. 

Histological evaluation also revealed the increased goblet cell number and villi length 

in the intestine of the group fed AOS, indicating the ability of the product to possibly 

enhance nutrient absorption and aid in mucosal defence.  

Overall, this thesis provides insights into the transcriptomic, metabolomic and 

behavioural changes that mark soybean-induced intestinal inflammation in zebrafish. 

The project further elucidated the molecular changes and histological alterations 

accompanying the administration of oligo and polysaccharides to counter intestinal 

inflammation in the zebrafish model. 



3 
 

SAMMENDRAG  

Tarmslimhinnen fungerer som en selek�v barriere for å forhindre inntreden av 

patogener og matoksiner sam�dig som toleransen for kommensal mikrobiota 

oppretholdes. En kompromitert slimhinnebarriere øker permeabiliteten �l tarmen, 

slik at uønskede luminale an�gener kan krysse barrieren og ak�vere en inflammatorisk 

respons i vevet. Kronisk betennelsesassosiert skade kan �l slut resultere i en forstyrret 

tarmfysiologi. Selv om �dligere studier har påvist at soyabønner induserer endringer i 

tarmen �l sebrafisk, mangler det informasjon om de underliggende molekylære 

endringene. Videre har de ekstraintes�nale effektene av soyabønnemel-assosiert 

betennelse ikke blit studert i detalj. For eksempel er a�erdsendringer forbundet med 

fôring av soyabønnemel underu�orsket i dyremodeller. Hvordan soyabønnemel i 

dieten påvirker metaboliter i plasma og induserer betennelse har heller ikke blit 

undersøkt. Slik kunnskap vil bidra �l å etablere sebrafisk som en ernæringsmodell for 

vurdering av terapeu�ske midler mot inflammatoriske sykdommer. 

I dete doktorgradsprosjektet bruke jeg transkriptomikk og  histologi �l å belyse 

hvordan soyabønnemel induserer betennelse i tarmen hos sebrafisk. I den første 

studien undersøkte jeg også effekten av gjær-β-glukan�lskudd. Soyabønnemel økte 

utrykket av flere gener som er assosiert med liten GTPase-mediert signaltransduksjon 

og ATP-avhengig pep�daseak�vitet. Nedregulering av gener knytet �l inhibering av 

GTPase-mediert signaltransduksjon, guanylnukleo�dbinding og intracellulær 

signaltransduksjon, redusert lamina propria-bredde og økt tarmvilli-høyde av gjær-β-

glukan tyder på at �lsetning av gjær-β-glukan i fôret beskyter tarmen. 

Den andre studien fokuserte på hvordan soyabønnemel påvirker a�erd og 

organutvikling i �dlige livsstadier i sebrafisk. Dete ble undersøkt ved å studere 

transkriptomikk, morfologiske endringer og oksygenforbruk. Videre ble det undersøkt 

hvordan �lsetning av alge-β-glukan i fôret �l sebrafisk motvirker a�erds- og 

utviklingsavvik indusert av soyabønnemel. Tilsetning av soyabønnemel i fôret medførte 

redusert bevegelsesak�vitet, induserte utviklingsdefekter og øke oksygenbehovet i 
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sebrafisklarver. I �llegge pekte transkriptomikk-analysen på inhibering av gener knytet 

�l visuell persepsjon, organutvikling, fototransduksjonsvei og ak�vering av gener 

knytet �l steroidbiosynteseveien og re�nsyremetabolisme. Tilsetning av alge-β-glukan 

i fôret motvirket de nega�ve effektene av soyabønnemel på a�erdsmessige og 

fenotypiske parametre. 

I den tredje studien brukte jeg analyser av det intes�nale transkriptomet og 

plasmametabolomet, sammen med genmarkører og histologisk analyser, for å evaluere 

det an�inflammatoriske potensialet �l alginatoligosakkarider (AOS) og alge-β-glukan i 

sebrafisk fôret med en soyabønnediet. De to funksjonelle fôr�lsetningene kan 

redusere utrykket av inflammatoriske gener knytet �l inntak av soyabønnemel. 

Transkriptomikk-analyse indikerte at dieten som inneholder en høyere prosentandel 

av lavmolekylvektsfraksjonen av AOS inhiberte utrykket av gener relatert �l 

komplementak�vering, inflammatorisk og humoral respons mens alge-β-glukan 

inhiberte flere gener knytet �l endopep�daseak�vitet og proteolyse. 

Plasmametabolit-profilen avslørte videre at en kortkjedet fetsyre i AOS-gruppen og 

pantotensyre økte i alge-β-glukangruppen. Disse responsene indikerer at de studerte 

�lsetningsstoffene effek�vt kan lindre soyabønnediet-indusert inflammasjon i tarmen. 

Histologiske analyser viste et økt antall av begerceller og økt lengde av tarmvilli i tarmen 

�l den AOS-fôrede gruppen, noe som indikerer at de to funksjonelle fôr�lsetningene 

kan forbedre næringsabsorpsjon og hjelpe �l med slimhinneforsvar. 

Samlet gir oppgaven innsikt i de transkriptomiske, metabolomiske og a�erdsmessige 

endringene som kjennetegner soyabønne-indusert tarmbetennelse hos sebrafisk. 

Prosjektet belyste videre hvordan �lsetning av oligo-/polysakkarider påvirker 

molekylære og histologiske prosesser som bidrar �l å  motvirke tarmbetennelse hos 

sebrafisk. 
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1. INTRODUCTION 

1.1. Intestinal immune components of mammals 

The intestine of vertebrates is a multifunctional organ that performs diverse 

physiological functions such as food digestion, nutrient absorption, and immune 

defense (Ahluwalia et al., 2017). The epithelial layer of the intestine is constantly 

exposed to food and microbe-derived antigens (Allaire et al., 2018) and acts as a 

selective barrier to prevent the entry of pathogens and food toxins while maintaining 

tolerance to commensal microbiota and harmless food-derived ligands. Different 

immune components of the intestine are essential to achieve the complex task of 

maintaining homeostasis and sustaining the overall tissue integrity. The mucosal 

immune sites can be functionally classified as i) inductive sites (e.g., gut-associated 

lymphoid tissues, GALT) where naïve immune cells first go through priming and 

differentiation or ii) effector sites (e.g., lamina propria and epithelium) where activated 

immune cells localize and are maintained to support barrier integrity (Figure 1). The 

intestinal epithelial cells (IECs) include enterocytes, goblet cells, Paneth cells, and 

microfold (M) cells (Allaire et al., 2018). Among these cells, goblet cells are specialized 

cells that are primarily responsible for secreting mucus, which serves as a first layer of 

the physical barrier. Mucus contains glycoproteins that are known as mucins. Mucins 

are broadly divided into secreted gel-forming or transmembrane mucins based on their 

structural and functional properties (Grondin et al., 2020). The gel-forming mucins, 

namely mucin 2 (MUC2), MUC5AC, MUC5B and MUC6, provide viscoelastic property 

to the mucus layer. MUC2 and MUC5AC are the major gel-forming mucins that are 

responsible for barrier formation near the luminal region (Hasnain et al., 2011). 

Transmembrane mucins, such as MUC1, MUC3, MUC4, MUC13, and MUC17, which 

form a carbohydrate-rich layer called glycocalyx, are present on the apical surfaces of  

epithelial cells and act as an outer barrier (Pelaseyed et al., 2014). The enterocyte is a 

columnar intestinal epithelial cell type that is responsible for nutrient and water 

absorption. Large molecules are transported via the transcellular route of the 
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absorptive enterocytes that are equipped with different membrane transporter 

proteins. Certain molecules for example short chain fatty acids (SCFAs) such as 

butyrate are transported via passive diffusion or with the help of transporter proteins. 

Furthermore, enterocytes can also secrete antimicrobial peptides (AMPs; such as β-

defensins, cathelicidin, lysozyme) and the cohesion between the enterocytes 

facilitated by different cell junctions and their interactions with other intestinal cells 

help in maintaining the barrier integrity. The tight junctions (TJs) and adherens 

junctions are present near the apical surface of the enterocytes (Figure 1). 

Desmosomes and gap junctions are located on the baso-lateral membranes and 

hemidesmosomes connect the epithelial cells to the basal membrane. The important 

function of the TJ proteins is to regulate the paracellular transport and the passage of 

water and ions (Wells et al., 2011). On the other hand, the interepithelial flow of ions 

and small molecules is controlled by the intercellular channels of gap junctions (Mowat, 

2003). The tight junctions consist of transmembrane proteins such as claudin, occludin, 

tricellulin, and junctional adhesion molecule‐A and cytosolic proteins such as zonula 

occludens and cingulin, which are impermeable to large organic molecules (e.g., amino 

acids and glucose). Adherens junction allows cell-cell adhesion and maintain 

intracellular actin-cytoskeleton organization. Desmosomes attach to the intermediate 

filament cytoskeleton and create a strong adhesive bond to give mechanical strength 

to tissues. Paneth cells that are at the base of the crypt also reinforce barrier integrity 

by producing several AMPs including α-defensins and lysozyme (Moretti and Blander, 

2014). The intraepithelial lymphocytes (IELs) that reside between the adjacent 

epithelial cells also take part in maintaining the barrier integrity (Olivares-Villagómez 

and Van Kaer, 2018). IELs are polarized into antigen-experienced phenotypes after 

their encounter with foreign antigens present in the lumen. 
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Figure 1. Overview of the intestinal immune components of mammals. The intestine has the 
largest mucosal surface that has a single layer of intestinal epithelial cells, which originate from 
stem cells that reside at the base of crypts. The epithelial cells with its cell junctions (such as tight 
junction, adherens junction and gap junction) maintain the barrier integrity. Goblet cells help in 
the barrier functions by secreting mucus that prevents microbial invasion and entry of unwanted 
antigens. Mucin proteins present in the mucus are broadly divided into secreted gel forming or 
transmembrane mucins. The Paneth cells ensure the physical barrier by secreting AMPs. The 
intraepithelial lymphocytes (IELs) that are present between the adjacent epithelial cells are 
antigen-experienced phenotypes. Antigen presenting cells (dendritic cells, macrophages) sample 
luminal antigens and present the processed antigens to naïve T and B cells. Peyers’s patches 
include follicle associated epithelium (FAE) and subepithelial dome (SED). Created with 
BioRender.com 
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Specific sites that have critical immune components play crucial roles in immune 

defence. GALT is significant among them and has components both in the epithelial 

layer and the connective tissue directly under the intestinal epithelium known as the 

lamina propria (LP). GALT constitutes key antigen sampling sites and its components 

include the Peyer’s patches (PP) and mesenteric lymph nodes (MLN)(Mowat, 2003). PP 

contains large B-cell and T-cell (naïve) clusters, follicle-associated epithelium (FAE) and 

subepithelial dome (SED) (Ahluwalia et al., 2017). The FAE covering the PP contains 

specialized antigen-sampling cells called microfold (M) cells, a specialized IEC subtype 

that can transcytose luminal antigens to the dendritic cells (DCs) to elicit immune 

responses. The second component of GALT, the MLN, contains naïve lymphocytes and 

antigen presenting cells (APCs), and is the site where the antigens are recognized by 

naïve T and B cells in the context of proper antigen-presentation to initiate immune 

responses (Mowat, 2003). The lamina propria contains both the innate (macrophages, 

DCs, neutrophils, eosinophils) and adaptive immune cells (T and B cells).  

To mount an immune response to a particular antigen, APCs such as macrophages, DCs 

and B cells use their pattern recognition receptors (PRRs) to identify pathogen-

associated molecular patterns (PAMPs) (Wells et al., 2011). After the PRR-mediated 

recognition of antigens, APCs internalize their target for eventual phagocytosis or 

signal transduction (Moretti and Blander, 2014). The phagocytosed antigens are 

processed and presented as peptides to naïve T cells via the major histocompatibility 

complex (MHC) class I or II molecules. While CD8+ T cells recognize intracellular 

peptides presented by MHC class I molecules, CD4+ T cells interact with extracellular 

antigenic peptides presented by the MHC class II molecules (Wells et al., 2011). 

Activation and differentiation of naïve T lymphocytes requires two signals, the first one 

is T-cell receptor (TCR) binding to peptide/MHC complexes and the second signal is 

initiated upon engagement with different co-stimulatory molecules. For example, 

cluster of differentiation 28 (CD28) present on the T-cells bind with the ligand B-

lymphocyte activation antigen (B7-1) on the APC cells and such interactions are 

necessary for T cell activation (Gaudino and Kumar, 2019). Upon activation, CD4+T-cells 
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differentiate into CD4+ effector T-cells and CD4+ memory T-cells. The CD4+ effector T-

cells differentiate into T-helper 1 (Th1), Th2, Th17 cells and regulatory (Treg) cells. The 

differentiation of CD4+ T cells into different subsets is affected by several factors, 

including the cytokine milieu, strength of the TCR signal, affinity of the TCR for the 

antigen and the nature of the different co-stimulatory molecules (activation or 

inhibition cascades that enhance or diminish TCR signalling) (Magee et al., 2012). These 

CD4+ T-cell subsets are functionally distinct, and they produce specific cytokines. Th1 

cells primarily secrete interferon-γ (IFN-γ) which is associated with cellular immunity 

against intracellular microbes. Th2 cells secrete cytokines such as interleukin-4 (IL-4), 

IL-5, IL-9, IL-10, IL-13 to promote humoral immunity (for B cell activation and 

differentiation) and to protect the host from extracellular parasites. Th17 cells secrete 

cytokines IL-17A, IL-17F, IL-21 and IL-22 that are essential for protection from 

extracellular bacteria and fungi (Gaudino and Kumar, 2019). The Treg is an important 

population of T cells that secrete cytokines such as IL-10, IL-35 and transforming 

growth factor beta (TGF-β) and support their polarization to anti-inflammatory 

phenotypes (Okeke and Uzonna, 2019). Activation of CD8+ T lymphocytes requires an 

antigen-specific signal initiated through the binding of TCR to peptides derived from 

intracellular pathogens (e.g., virus, signal 1). In addition, optimal CD8+ T lymphocyte 

differentiation may require costimulatory molecules such as CD134 and CD137, 

expressed on activated CD8+ T cells to differentiate into surviving T effector cells (signal 

2) (Karginov et al., 2022, Duttagupta et al., 2009). Most effector CD8+ T cells die after 

the virus is cleared off from the system, but many of them can remain in circulation 

and tissues as resting memory cells (Duttagupta et al., 2009, Okeke and Uzonna, 2019).  

In addition to T lymphocytes, B cells which provide humoral immunity can be activated 

by binding of the B cell receptor (BCR) to antigens and these cells differentiate into 

plasma cells that secrete immunoglobulins. Based on the type of the encountered 

antigen, the naïve B cell activation occurs in two ways- T cell independent and T cell 

dependent activation (Kato et al., 2020). If a particular antigen (e.g., viruses) displays 

many highly repetitive surface antigens (epitopes), it can engage with multiple BCRs on 
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the B cell, resulting in T-independent activation. Weak binding affinity antigens can 

drive T-dependent activation wherein naïve B cells depend on signals from helper T 

cells (CD4+). Furthermore, activated B cell differentiates into short-lived plasma cells 

(plasmablasts) and long-lasting plasma cells and the relative differentiation into these 

distinct states depends on the integration of signals received by the BCR and T helper 

cells (Cyster and Allen, 2019). Both T (CD4+ and CD8+) and B memory cells resides in 

the LP and a re-exposure to specific antigens leads to a rapid response against a 

particular antigen. Thus, the brief overview presented here highlights that the different 

intestinal immune components are crucial to maintaining homeostasis. 

1.2. Intestinal components that have a bearing on brain function 

The intestine is also densely innervated by a complex web of neurons (enteric neurons) 

that govern important physiological functions (Jacobson et al., 2021). Different nerves 

are localized close to immune cells to form neuro-immune cell units. These units can 

independently initiate different responses and can also communicate with each other 

to form a neuro-immune axis. Enteric neuronal stem cells are present in the adult 

mouse and human intestine, however, these cells do not develop new neurons under 

steady-state conditions (Belkind-Gerson et al., 2015). Since intestine immune cells 

express neurotransmitters and neuropeptide receptors and neurons express cytokine 

receptors, cross talk along the neuro-immune axis is essential for inflammatory 

responses. It was reported that intestinal inflammation can induce the development 

of new enteric neurons via serotonin dependent signalling mechanism and enteric 

neuronal hyperplasia can exacerbate inflammation (Margolis et al., 2011). 

Furthermore, a specific macrophage population, which is an anti-inflammatory 

phenotype, resides in the muscularis regions of the intestine near the enteric ganglia 

(Gabanyi et al., 2016). These muscularis macrophages exhibit a tissue-protective 

phenotype characterized by the expression of genes such as arginase 1 (ARG1), IL10, 

CD163 and resemble M2 macrophages (Matheis et al., 2020). It was also reported that 

muscularis macrophages that are similar to M2 phenotype displayed a tissue-

protective role via β2 adrenergic receptor (AR) signalling and upregulation of arginase 
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1 (Matheis et al., 2020). These macrophages can utilize arginine to produce ornithine 

and urea, limiting arginine availability for nitric oxide synthetase (required by pro-

inflammatory M1 phenotype), thus promoting anti-inflammatory M2 phenotype of 

macrophages important for cellular proliferation and tissue repair (Rath et al., 2014). 

In addition to neuro-immune axis, cross talk between central and enteric nervous 

system, aided by microbiota regulates the immune response in the intestine (Maiuolo 

et al., 2021). In this regard, SCFAs, the metabolites produced by the microbiota through 

the anaerobic fermentation of indigestible polysaccharides play an important role 

(Parada Venegas et al., 2019). These SCFAs (acetate, propionate, and butyrate) enter 

the enterocytes by passive diffusion or with the aid of different transporters (mainly 

via H+-dependent monocarboxylate transporters or sodium-dependent 

monocarboxylate transporters). Particularly butyrate can influence mucosal immunity 

by modulating the differentiation of the Treg cells and production of interleukins (e.g., 

IL-10). Furthermore, SCFAs can enhance intestinal barrier by stimulating mucus 

production, alteration of tight junction proteins and production of AMPs (Peng et al., 

2009, Parada Venegas et al., 2019). They can also cross the blood-brain barrier via 

monocarboxylate transporters located on endothelial cells of the blood vessels (Silva 

et al., 2020) and enter the brain, where they affect anti-inflammatory signals of the 

microglia and regulate the production of neurotransmitters like dopamine and 

serotonin (Silva et al., 2020). Together, the interaction of SCFAs with these gut-brain 

pathways can affect behaviour. Thus, intestinal inflammation is regulated by microbial 

metabolites, and neuro-immune axis, among others. These understudied aspects can 

affect behavioural characteristics which should be explored in detail in connection with 

inflammation. 

1.3. Intestinal immune homeostasis and inflammation 

Evoking appropriate immune responses at the epithelial barrier is key in sustaining 

intestinal homeostasis. For example, IECs communicate with both microbiota and 

immune cells to establish a tolerogenic response (Peterson and Artis, 2014). IECs 

express a range of PRRs to sense microbes. However, PRR signalling towards the 
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commensal microbiota have been adapted to avoid inflammatory responses in the gut. 

Among the different PRRs of IECs, members of Toll-like receptors (TLRs) are localized 

on the cell membrane and/or endosomal membrane to recognize extracellular and 

endocytosed microbe associated molecular patterns (MAMPs). Polarized activation of 

TLRs at either the apical or basolateral membranes of IECs can help to distinguish 

between commensal and pathogen-signals. For example, TLR9 activation through the 

apical membrane of IECs by resident Escherichia coli DNA inhibited IL-8 production and 

supressed transcription factor nuclear factor kappa-light-chain-enhancer of activated 

B cells (NF-κB) signalling (Lee et al., 2006). Furthermore, a key strategy for maintaining 

homeostasis is to reduce the contact between luminal antigens and the IECs (Peterson 

and Artis, 2014). For instance, by goblet cells that secrete mucin glycoproteins and by 

other epithelial cells such as enterocytes and Paneth cells that secrete AMPs help to 

eliminate bacteria that penetrate the mucus layer. There are two layers of mucus; 

while the outer mucus layer is home to microbes, the inner layer is impenetrable to 

them (Hansson, 2019).  

If the pathogenic bacteria succeed in crossing the barrier, APCs can prevent their entry 

into intestinal tissue. Macrophages rapidly phagocytose microbes and kill the ingested 

organisms that penetrate beyond the epithelial cells (Hooper and Macpherson, 2010). 

Furthermore, IECs secrete soluble factors such as thymic stromal lymphopoietin (TSLP) 

and TGFβ; these humoral components along with other factors promote the 

development of DCs and macrophages with tolerogenic phenotypes (Li and Guo, 2009, 

Rimoldi et al., 2005). Two major subsets of DCs (CD103+ CX3CR1- and CD103- CX3CR1+) 

are present in the LP to perform different immune functions (Ruane and Lavelle, 2011). 

The CD103- CX3CR1+ DCs lack migratory properties in their steady state and are found 

near IECs. These DCs use their dendrites to clear the pathogens and opportunistic 

commensal bacteria that traverse the mucus barrier (Schulz et al., 2009). CD103+ 

CX3CR1- DCs act as migratory antigen-presenting cells and upon activation transport 

antigens to MLN for presentation to adaptive immune cells. Conditioned by their 

previous interactions with IECs at the intestinal barrier (by TSLP, TGFβ and other 
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factors), these migratory CD103+ DCs promote immune tolerance via the 

differentiation of forkhead box P3 (FOXP3+) Treg cells (from naïve CD4+ cells) and 

production of retinoic acid in the MLN (Ruane and Lavelle, 2011, Coombes et al., 2007). 

This interaction further induces the expression of α4β7 integrins and C-C chemokine 

receptor 9 (CCR9) on FOXP3+Treg cells for allowing them to migrate to the lamina 

propria (Ruane and Lavelle, 2011). There are two main subtypes of Treg cells: FOXP3+ 

Treg cells and FOXP3- IL-10+ Treg cells. Treg cells secrete TGFβ or IL-10 that have 

negative regulatory effects on effector T cells (Th1 and Th17) (Sakaguchi et al., 2008). 

This balance between the functions of Treg cells and the CD4+ effector T cells in the 

intestinal mucosa is crucial for intestinal homeostasis.  

 An imbalance in the immune functions can result in dysregulation of the intestinal 

homeostasis (Figure 2). Defects in the barrier components including junction proteins, 

mucins etc. can increase intestinal permeability leading to increased infiltration of 

luminal antigens and abnormalities in the paracellular and transcellular transport of 

ions (Allaire et al., 2018). Furthermore, binding of the MAMPs to PRRs expressed on 

different IECs and immune cells triggers downstream signalling cascades, leading to the 

activation of transcription factor NF-κB (Wells et al., 2011). The mechanism for NF-κB 

activation is the degradation of nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor, alpha (IκBα). The phosphorylation of IκBα by the multi-

subunit IκB kinase (IKK) complex results in rapid and transient translocation of NF-κB 

dimers (particularly the p50/RelA and p50/c-Rel dimers) into the nucleus, where it 

induces the expression of proinflammatory cytokines such as IL-1β, and chemokines 

like IL-8. The proinflammatory cytokine IL-1β is secreted by immune cells. The cytokine, 

IL-8 is a neutrophil chemoattractant that induces the migration of neutrophils from 

peripheral blood into an inflamed site (Hammond et al., 1995) Neutrophils can kill 

pathogens by producing reactive oxygen species (ROS) and releasing lytic enzymes 

such as proteinases, and cationic peptides from their granules. On the other hand, 

chronic activation of neutrophils damages the epithelium and destroys the barrier 

integrity (Herrero-Cervera et al., 2022). Neutrophils can also produce matrix 
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metalloproteases (MMPs), which degrade extracellular matrix proteins that regulate 

tissue remodelling (Yabluchanskiy et al., 2013).  

The complement system in the intestine is another key component of the innate 

immune system that supports the antibodies and phagocytes to clear the damaged 

cells and microbes (Sina et al., 2018). The complement system is activated via 3 main 

pathways: classical, lectin, and alternative pathways. The classical and lectin pathway 

is initiated by pathogens or damaged cells while alternative pathway is activated by 

hydrolysis of complement component C3. The classical pathway is activated when C1q 

of the C1 complex binds to antigen-antibody complex or non-immunoglobulin 

activators like components of bacteria and viruses. The lectin pathway is activated 

when PRRs such as mannose-binding lectins binds to specific carbohydrate structures 

(PAMPs) on damaged cell surfaces and pathogens. The alternative pathway is activated 

after the spontaneous hydrolysis of C3 to reactive molecules such as C3(H2O) and C3b, 

both of which bind to positively charged surfaces of pathogens. Cleavage of C3 

convertase that is formed via one of the abovementioned pathways can generate C3a, 

C3b, C5a, C5b. Of these, C3b leads to opsonization of pathogens and subsequent 

phagocytosis by neutrophils/macrophages. While C3a, C4a and C5a act as 

chemoattractants, i.e., attracting neutrophils to the site of inflammation, C5b, C6, C7, 

C8 and C9 will form membrane attack complex to form pores on pathogens. 

Appropriate activation of the intestinal complement system helps in the resolution of 

chronic intestinal inflammation, while over-activation or dysregulation may worsen it. 

Furthermore, the expression of complement regulators such as CD59 on the apical side 

of the intestinal epithelial cells regulate the complement activation and formation of 

membrane attack complex (MAC) to prevent destruction of intestinal epithelial cell 

(Sina et al., 2018). Inflammation models should be used to obtain a complete 

understanding of the changes in the intestinal immune components especially in 

relation to dietary factors that stimulate as well as counter inflammation.  



15 
 

 



16 
 

 

1.4. Zebrafish as a model of intestinal inflammation 

Zebrafish (Danio rerio) is an important model organism that is widely used for studying 

intestinal inflammation as well as its behavioural responses to various factors 

(Brugman, 2016). The transparent larval stage, small size, high fecundity, inexpensive 

maintenance, shorter time between generations, ease of genetic manipulation, and 

fully annotated genome are among the attractive characteristics that make the fish an 

ideal experimental model. Furthermore, approximately 70% of human genes have a 

corresponding orthologue in the fish (Howe et al., 2013), and zebrafish and humans 

have conserved transcriptional factors that control intestinal development and 

physiology (Lickwar et al., 2017). Moreover, the late development of adaptive 

immunity (3-4 weeks) enables us to examine the relationship between innate immune 

components and intestinal inflammation (Brugman, 2016). Zebrafish has three 

morphologically distinct gut segments: the anterior, mid, and the posterior parts 

(Wallace et al., 2005, Wallace and Pack, 2003). The typical acidification during the 

digestive process does not occur in this fish as it lacks a stomach. Instead, the intestinal 

bulb, a dilated portion of the intestine functions as a food storage and mixing site 

(Lickwar et al., 2017, Wallace et al., 2005). In the anterior and mid intestine, the 

folds/villi are longer and their size decreases antero-posteriorly. Digestive enzymes and 

solute transporters are also present in these two segments, suggesting their role in 

nutrient absorption. However, the posterior region is the controller of ion and water 

Figure 2. Schematic representation of a healthy and inflamed condition in the intestine of 
mammals. The intestinal mucosa is constituted by, among others, mucus and antimicrobial 
peptides (AMPs) that helps to eliminate bacteria that breach the mucus layer. Macrophages 
phagocytose and kill the microorganisms that infiltrate beyond the epithelial cells. Mucosal CD103+ 
dendritic cells promote immune tolerance through the differentiation of forkhead box P3 (FOXP3+) 
regulatory T cell (Treg) which depends on the TGFβ and retinoic acid (RA). The RA programs 
CD103+DCs to migrate to the mesenteric lymph nodes and induce the expression of CC-chemokine 
receptor 9 (CCR9) and α4β7 integrins on T cells. Treg can secrete TGF-β which have negative 
regulatory effects on effector T cells. Toll-like receptors (TLRs) recognizes antigens, leading to 
phosphorylation of IkBα and the translocation of NF-κB dimers into the nucleus. The release of 
proinflammatory cytokines shifts the T cell balance towards effector T cells (Th1, Th17). Created 

  

 



17 
 

absorption and this segment plays a role in mucosal immunity (Wallace et al., 2005). 

Zebrafish has many genes coding for gel-forming mucins; four muc2, six muc5, and one 

muc19. In addition, this teleost fish has genes that code for the transmembrane mucins; 

muc13 and muc17 have been identified in zebrafish (Lang et al., 2006, Lang et al., 2016). 

Zebrafish intestine expresses multiple defensin-like genes that resemble beta-defensin 

family members of mammals (Brugman, 2016); the expression of defensin beta-like 

gene was higher in the mid-intestine when examined along the antero-posterior 

regions (Oehlers et al., 2011a). The order of formation of different junctions in the 

developing zebrafish intestine (like adherens junction prior to tight junction and 

desmosome) is similar to that in mammalian (Wallace et al., 2005). However, zebrafish 

gut does not have intestinal crypts which are the source of stem cells in mammals; 

instead, in the fish, cells at the base of the folds divide and migrate to the tip where 

they become apoptotic (Wang et al., 2010). Furthermore, several cell types of the 

intestine (enterocytes, goblet cells) and a functional brush border are similar to 

mammalian intestine, but Paneth cells and M cells have not been clearly identified in 

zebrafish (Wallace et al., 2005, Wang et al., 2010). Zebrafish neutrophils can 

phagocytose, degranulate and produce ROS. In addition, eosinophils can also 

degranulate in response to antigenic exposure, another immune reaction that is similar 

to that in mammals (Flores et al., 2020). IELs and APCs like macrophages, DCs, and B 

cells have also been described in zebrafish. Furthermore, the immune cells in zebrafish 

express several homologues of mammalian PRRs (López Nadal et al., 2020). The TLR 

adaptor molecule MyD88 and downstream intracellular signalling are conserved in 

zebrafish (Hu et al., 2021). Several cytokines and chemokines identified in zebrafish are 

homologous to mammalian cytokines. However in zebrafish, several genes are 

duplicated which might affect the functionality of these cytokine subtypes (Oltova et 

al., 2018). In addition, several genes that code for the different components of the 

complement system have been identified in zebrafish and they exhibit functional 

similarities to their mammalian counterparts (Houseright et al., 2020) 



18 
 

In addition, three classes of immunoglobulins, IgM, IgD, and IgZ have been reported in 

zebrafish, with IgZ being the functional equivalent of mammalian mucosal IgA (Lewis 

et al., 2014). Zebrafish intestine also has DCs that express conserved co-stimulatory 

molecules (CD80/CD86) with phagocytic ability and capacity to appropriately stimulate 

and assist in differentiating T-cells (Shao et al., 2022). Moreover, CD4+ cells isolated 

from zebrafish expressed T cell subsets and a population of regulatory T cells (with 

transcriptional factor FOXP3+) resides in the zebrafish gut mucosa, as found in the 

intestine of mammals (Dee et al., 2016). However, T cell subset markers and their 

signature cytokines have not been fully characterized in zebrafish. Because the gut 

draining lymph nodes (like MLNs, Peyer’s patches) have not been identified in zebrafish 

it has been suggested that APCs and adaptive immune cells interact in the spleen, the 

secondary lymphoid organ (Brugman, 2016, Lewis et al., 2014). Other initiators of the 

adaptive immune system, like MHC class I and II molecules, are also found to act in the 

intestine of the fish (Lewis et al., 2014).  

The intestinal architecture of the fish reveals the mucosa, muscularis externa, and 

serosa layers (Wang et al., 2010), but not muscularis mucosa and submucosa that are 

found in mammals (Figure 3). In zebrafish, blood capillaries and muscle fibres are 

located below the lamina propria. Surrounding the mucosa of the fish intestine is the 

muscularis externa composed of circular and longitudinal smooth muscle fibres. Unlike 

the mammalian enteric nervous system (ENS) which is composed of myenteric and 

submucosal plexus with their own interconnected ganglia, zebrafish ENS develops into 

a single myenteric plexus with non-ganglionated network of neurons (Kuil et al., 2021). 
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Notwithstanding the morphological differences between human and zebrafish 

intestine, inflammation models have mimicked several aspects of intestinal disorder in 

humans (Figure 4). For example, a chemically-induced inflammation model has been 

developed in adult zebrafish by intra-rectal administration of oxazolone (Brugman et 

al., 2009). This model is characterized by a distorted intestinal fold architecture, 

depletion of goblet cells, increased infiltration of eosinophils and neutrophils and 

upregulation of pro-inflammatory cytokines (il1b, tnfa). Another model developed by 

immersing larval zebrafish in 2,4,6-trinitrobenzenesulfonic acid (TNBS) has the 

following features: increased expression of mmp9, altered lipid metabolism (Oehlers 

et al., 2011b) and modified microbiota composition (He et al., 2013). The dextran 

sodium sulphate (DSS)-induced inflammation model in zebrafish larvae had reduced 

proliferation of goblet cells and increased acidic mucins in the intestinal bulb with no 

Figure 3. Comparison of intestinal cell types and structures in mammals and zebrafish. Zebrafish 
intestine has irregular folds as opposed to normal villi in mammals. There are no crypts, Paneth 
cell, M cells and organised lymphoid tissues like Peyer’s patches. The different intestinal layers 
include mucosa, muscularis externa with circular and longitudinal muscle layers and serosa layer. 
However, zebrafish intestine lacks muscularis mucosa and submucosa. Mammalian and zebrafish 
intestines have stem cells, enterocytes, enteroendocrine cells, and goblet cells. Created with 
BioRender.com  
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change in the goblet cell number (Oehlers et al., 2012). In the presence of microbiota, 

TNBS exposure induced inflammation through TLR signalling, but in germ free zebrafish 

such a signalling and inflammation were absent (He et al., 2014). The non-steroidal 

anti-inflammatory drug, glafenine, is used to develop intestinal inflammation model in 

zebrafish larvae, and the salient inflammation-linked feature included increased 

apoptosis and shedding of intestinal epithelial cells and increased endoplasmic 

reticulum (ER) stress (Goldsmith et al., 2013, Espenschied et al., 2019). There are also 

other zebrafish models; a neurotoxic pesticide (rotenone) exposure induced intestinal 

inflammation, affected brain function and antioxidant status and also caused 

inflammation in the brain (Cansız et al., 2021). In addition to chemically triggered 

inflammation models, diet-based models have been developed to study the gut and 

brain axis in zebrafish. For example, a high fat diet caused an undesirable shift in the 

microbiota, generated intestinal inflammation (Progatzky et al., 2014, Arias-Jayo et al., 

2018) and impaired cognitive functions of zebrafish (Meguro et al., 2019, Uyttebroek 

et al., 2022). Intestinal inflammation models that rely on dietary triggers are better 

suited to explain the development and progression of such diseases in humans because 

specific diets can stimulate the development and progression of such diseases.  
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1.5. Soybean meal as an inducer of intestinal inflammation in 
zebrafish 

Soybean meal (SBM) is a feed ingredient that is known to cause inflammation in the 

intestine of zebrafish (Hedrera et al., 2013). This condition is characterized by increased 

migration of neutrophils, macrophages, higher proportion of T-lymphocytes with Th17 

profile (Coronado et al., 2019) and elevation of pro-inflammatory cytokines like il1b, 

il8, mmp9, tnfa, il17a/f3, nfkb, cox2. Furthermore, disruption of the epithelial barrier 

(altered barrier related genes like muc2.2, β-defensin, claudin, occludin) and changes 

in the composition of the intestinal microbiota have been reported (Wu et al., 2020) 

(Solis et al., 2020). The different life stages (larvae, juveniles, and adults) of zebrafish 

have been used to develop inflammation models (Xie et al., 2021a, Li et al., 2022c). 

Figure 4. Surge in articles on zebrafish models of intestinal inflammation. This increase suggests 
that the model is a relevant tool for biomedical science. The Y-axis represents the number of 
studies and X-axis indicates the year. Shown in boxes are prominent articles that have presented 
the different methods for developing zebrafish model of intestinal inflammation. Data collected 
from PubMed using keywords “zebrafish intestinal inflammation” and the articles are from the year 
2000 onwards”. 
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Additionally, the extraintestinal effects like delayed bone formation associated with 

soybean-induced inflammatory response have been reported previously (Carnovali et 

al., 2021, Carnovali et al., 2022). The inflammation inducing ability of this dietary 

component is mainly due to anti-nutritional factors including soy saponin that can bind 

to cholesterol in the intestinal epithelial membrane and subsequently form pores to 

increase the membrane permeability (Böttger and Melzig, 2013). Soya saponins are 

amphiphilic molecules, with triterpenoid aglycone (or sapogenin) moieties attached to 

carbohydrate residues via glycosidic bonds (Xu et al., 2021). A strong interaction of 

saponin with cholesterol depends on both the hydrophobic (aglycone) and the 

hydrophilic components (sugar moieties). Saponins can also penetrate into the lipid 

layers and disturb the interaction of cholesterol with other membrane lipids (phospho- 

and sphingolipids), thereby disturbing the overall barrier integrity (Wojciechowski et 

al., 2016). It is reported that such interaction with membrane components increases 

the cell permeability (Francis et al., 2002) and adversely affect nutrient transport 

(Johnson et al., 1986). In addition, soya saponin can reduce the digestion of proteins 

and lipids (Chikwati et al., 2012), reduce growth and feed intake (Chen et al., 2011), 

leading to weight loss and gastroenteritis in animals (Gu et al., 2018). Furthermore, 

dietary saponin increased relative abundance of Vibrio and Shewanella in zebrafish gut 

(López Nadal et al., 2023). Considering the negative impacts of SBM on the intestine, 

this ingredient can be selected to develop a diet-induced intestinal inflammation 

model of zebrafish (Coronado et al., 2019). On the other hand, several additives have 

been identified to counteract the intestinal disorder caused by SBM; the list includes 

lactoferrin (Ulloa et al., 2016), microalgae (Bravo-Tello et al., 2017), aloe vera 

(Fehrmann-Cartes et al., 2019), phytase-producing strain of Bacillus subtilis (Santos et 

al., 2019), cholinesterase inhibitor galantamine (Wu et al., 2020), dipeptide 

supplementation (Molinari et al., 2021), sinomenine hydrochloride (Xie et al., 2021a) 

and functional feed additives.  
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1.6. Efficacy of functional feed additives in countering intestinal 
inflammation 

Polysaccharides are important structural and storage components of plants and other 

organisms (Liu et al., 2015). These complex compounds are held together by glycosidic 

bonds and are classified based on the number of sugar units. For example, a 

monosaccharide contains one sugar unit compared to two, 3-9 and ten or more in the 

case of disaccharides, oligosaccharides, and polysaccharides, respectively (Navarro et 

al., 2019). Many polysaccharides are immune modulatory in nature and can bind to 

PRRs present on various immune (macrophages, dendritic cells, neutrophils, mast cells, 

lymphocytes) or non-immune cells (fibroblasts). Receptors like TLR4, C-type lectins 

(dectin-1 and mannose), scavenger receptors (SR), complement receptor 3 (CR3), CD14, 

and CD44 can recognize polysaccharides. They can stimulate macrophages when they 

interact with TLR4, CD14 and dectin-1 simultaneously (Sindhu et al., 2021). Their 

immunomodulatory effects can also be through their interaction with the gut 

microbiota. For instance, gut microbiota ferment non-digestible polysaccharides (e.g. 

those with a β-glycosidic bonds that resist digestion in the intestine due to lack of β-

1,3 glucanase in the digestive system) to produce SCFAs that activate FOXP3+ T cells 

(Kim, 2021). In addition, these bioactive compounds promote the growth of specific 

bacterial groups (Hayes and Tiwari, 2015) that evoke appropriate receptor-mediated 

signals to release cytokines that stimulate certain innate lymphoid cells or regulate B 

cell responses to produce appropriate immunoglobulins (Kim, 2021). These 

immunomodulatory effects can have several beneficial effects; they reduce intestinal 

inflammation and support gut barrier functions (Davani-Davari et al., 2019). These 

properties of bioactive oligo- and polysaccharides make them ideal anti-inflammatory 

feed additives. β-glucans and alginate oligosaccharides are such additives which have, 

among others, prebiotic, immunomodulatory and antioxidant properties. 

β-glucan is a polysaccharide that serves as storage and structural components of plants, 

fungi, algae and bacteria (Han et al., 2020). They contain glucose polymers that are 

generally linked by β-(1,3) glycosidic bond, with variable levels of branching, depending 
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on the origin. This structure of β-glucans can be recognized by different PRRs like 

dectin-1, TLR, CR3, scavenge receptors, and lactosylceramide present on the surface of 

macrophages, dendritic cells, neutrophils, and lymphocytes. In mammals, β-glucans 

are predominantly recognized by lectin receptor dectin-1 that is a type II 

transmembrane receptor containing a single extracellular C-type lectin-like 

carbohydrate recognition domain and an immunoreceptor tyrosine-based activation 

motif in the cytoplasmic tail (Goodridge et al., 2009). Dectin-1 particularly recognizes 

β-(1-3)(1-6) and β-(1-3) glucans from fungi, plants, and bacteria, but it is not reactive 

toward β-(1-4) glucans. As regards β-glucan receptors in fishes, common carp C-type 

lectin domain family 4 member C (clec4c), salmon C-type lectins (sclra, sclrb, sclrc) and 

cr3 in several fishes have been identified (Petit et al., 2019, Kiron et al., 2016). Another 

β-glucan receptor CR3 is an integrin dimer consisting of CD11b (αM) and CD18 (β2) and 

is highly expressed on neutrophils, monocytes and to a lesser extent on macrophages 

(Goodridge et al., 2009). CR3 also acts as an opsonic receptor for the complement 

component iC3b (inactive form of C3b)(Bose et al., 2013). The opsonization of 

pathogens by complement can lead to direct killing of the pathogen by formation of 

MAC or along with C3 fragment the opsonized pathogen will be recognized by CR3 

present on immune cells (Bose et al., 2013). The CD11b component of CR3 has two 

binding sites, one for β-glucan located within the C terminus (lectin domain), while the 

other for iC3b located within the N-terminus (40). The dual binding of CD11b by 

complement iC3b and β-glucan activates CR3 and CD18 transmits the signal of CD11b 

to the downstream signalling cascade. Furthermore, it has been reported that the 

lectin site of CR3 can bind to other carbohydrates (Goodridge et al., 2009). 

Several studies have indicated that β-glucans can induce pro-inflammatory phenotypes 

of immune cells characterized by increased expression of pro-inflammatory cytokines 

(Pedro et al., 2021). However, the intended bioactivity of β-glucans i.e., to inhibit pro-

inflammatory factors could be revealed when immune cells are stimulated with an 

inflammatory agent. It was reported that pre-treatment with β-glucan can inhibit LPS-

stimulated IL-1β production in macrophages (Camilli et al., 2020). Furthermore, dectin-
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1-mediated signalling is key for the anti-inflammatory effect of β-glucans (Karumuthil-

Melethil et al., 2014, Camilli et al., 2020). In an in vitro gut-inflammation model (in 

which Caco-2 cells were grown along with RAW264.7 cells in a co-culture system and 

then stimulated with LPS to mimic a gut-inflammation condition), the mRNA level of 

IL-8 was significantly lower in cells co-stimulated with LPS and β-glucans, compared to 

cells stimulated with only LPS (Mizuno et al., 2009). Similar inflammation subduing 

effects of β-glucans were also reported in studies which employed in vivo models of 

inflammation. For instance, dietary yeast β-glucan reduced the infiltration of 

macrophages and neutrophils and decreased the production of proinflammatory 

cytokines-TNF-α, IL-6, and IL-8, nitric oxide synthase (NOS), cyclooxygenase-2 (COX-2) 

and prostaglandin E synthase2 (PTGES2) in the intestine of a DSS-induced inflammation 

model of mice (Han et al., 2017). Overall, these studies indicate that β-glucans are 

effective in mitigating the inflammatory response induced by various pro-

inflammatory agents. The immunomodulatory potential of β-glucans is influenced by 

molecular characteristics such as backbone, side chain branching and molecular weight. 

The branching pattern determines the bioactivity of β-glucans (Han et al., 2020). A 

study reported that the side-chains of the glucan can increase the binding affinity to 

dectin-1 (Adams et al., 2008). Furthermore, the same study reported that non-β-linked 

glucans and glucans with a mixed β-(1,3) and β-(1,4) linkages were not recognized by 

dectin-1. The molecular weight (MW) can also affect the immunomodulatory potential 

of β-glucans (Han et al., 2020); higher MW types have more immunomodulatory 

activity possibly because larger polymers can crosslink spatially separated receptors 

and alter immune cell function (Sletmoen and Stokke, 2008). However, there are 

conflicting reports on immunomodulating capacities of low and high MW β-glucans. 

For example, a low MW yeast β-glucan was better as an antioxidant and 

immunostimulant compared to the high MW type (Lei et al., 2015). This indicates that 

structural variations can affect immunomodulation by β-glucans. 

Among the different β-glucans, MacroGard® derived from the cell wall of baker’s yeast 

Saccharomyces cerevisiae (about 55–65% of β-glucan) and paramylon (about 80% of 
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dry weight) derived from the unicellular alga Euglena gracilis are well-studied in terms 

of their immunomodulatory properties (Machuca et al., 2022). MacroGard® is a highly 

branched β-(1,3),(1,6)-glucan compared to the straight-chain β-1,3-glucan in 

paramylon. While MacroGard® β-glucan is the cell wall component of baker’s yeast, 

paramylon is a storage polysaccharide in the cytoplasm of the microalga (Russo et al., 

2017). Furthermore, paramylon is a high MW β-glucan (about 500 kDa) compared to 

yeast β-glucan (about 175kDa) (Machuca et al., 2022, Russo et al., 2017). Therefore, 

these two glucans of different structure and origin can have differential effects on the 

immune cells of animals.  

Upon recognition of the β-glucans by PRRs, dectin-1 dependent signalling can increase 

FOXP3+ T cells; as inferred from in vitro studies (Karumuthil-Melethil et al., 2014). The 

intestinal CD103+ DCs isolated from yeast β-glucan fed mice was found to stimulate the 

expansion of IL-10 producing T cells (Gudi et al., 2019, Karumuthil-Melethil et al., 2014). 

Furthermore, the glucan product can significantly increase the abundance of bacteria 

belonging to the phylum Verrucomicrobia that included many carbohydrate 

fermenting types, with a subsequent increase in the faecal short-chain fatty acids -

acetic acid, propionic acid and butyric acid (Gudi et al., 2020). Conversely paramylon 

can induce the proliferation of DCs and macrophages of anti-inflammatory phenotypes 

(Yasuda et al., 2020, Xie et al., 2021b). Akin to yeast β-glucan, paramylon increased the 

percentage of FOXP3+ Treg and IL-10+ T cells but reduced the percentage of IFNγ 

secreting Th1 cells in the gut of mice (Taylor et al., 2020). In addition, it has been 

reported that paramylon modulates the immune response by reducing the production 

of pro-inflammatory cytokines (IL-17, IL-6, and IFN-γ) in a mice model of arthritis 

(Suzuki et al., 2018). The microalga β-glucan can also promote the polarization of 

macrophages to their M2 phenotype in the liver of a mice model of LPS-induced 

inflammation (Xie et al., 2021b), thereby aiding in resolving the inflammation. 

Other types of polysaccharides can also protect the intestine from inflammation. 

Among them is alginate that is mainly found in the matrix and cell walls of multi-cellular 

brown algae and bacteria (Lu et al., 2022) . Species belonging to the genera Laminaria, 
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Lessonia, Macrocystis, and Sargassum, are the major commercial sources of alginates, 

accounting for about 40% of the dry cell weight. Alginate oligosaccharides (AOS) 

produced by chemical or enzymatic digestion of alginates exhibit greater bioactive 

potential due to their lower molecular weight, better solubility, and bioavailability. AOS 

are linear polymers of 2-25 monosaccharides composed of β-D-mannuronic acid (M) 

and α-L-guluronic acid (G) monomers linked by 1-4 glycosidic linkages with different 

(M/G) ratios and degree of polymerization (Mrudulakumari Vasudevan et al., 2021). 

The TLR4 present on macrophages can recognize AOS and affect the downstream 

signalling pathways such as mitogen-activated protein kinase (MAPK) and NF-κB (Fang 

et al., 2017, Zhao et al., 2020). An in vitro study using murine intestinal cells reported 

that AOS is recognized by mannose receptor and this property was lost upon inhibition 

of the mannose receptor by its specific siRNA (Zhao et al., 2020). The ability of AOS to 

counter inflammation was attributed to the attenuation of nitric oxide and 

prostaglandin E2 (PGE2) production and inactivation of the NF-κB and MAPK pathways 

in a report on mice macrophage cell line (Bi et al., 2018). Another report on busulfan-

induced damage of murine small intestine cells revealed that AOS assist in increasing 

the density of microvilli (improved absorption) and number of desmosomes on cell 

junctions (augmented barrier integrity), decreasing the protein expression of Caspase-

8 (stalled apoptosis), and restoring the expression of marker genes associated with 

Paneth cells and goblet cells (Zhao et al., 2020). Dietary AOS also helped in increasing 

the villi length, goblet cell number and MUC2 expression (Wan et al., 2018) and 

stimulating the abundance of bacteria associated with SCFA production (Gupta et al., 

2019). Furthermore, the antioxidant effects of AOS have been reported based on the 

enhanced activity of antioxidant enzymes such as superoxide dismutase (SOD) and 

catalase (CAT) in human umbilical vein endothelial cells (Jiang et al., 2021). The 

bioactivity of AOS is dependent on its MW (Lu et al., 2022); AOS <1kDa was effective in 

eliciting lysozyme activity, peroxidase activity, phagocytic capacity and total nitric 

oxide synthase activity compared to those having MW 1-2 or 2-4 kDa (Wang et al., 

2014). Additionally, AOS of <1 kDa was efficient in scavenging superoxide, hydroxyl, 
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and hypochlorous acid radicals compared to 1 to 10 kDa product (Zhao et al., 2012). In 

vivo studies to understand the effect of MW of AOS on its anti-inflammatory potential 

have not been explored in detail.  

The studies mentioned above showed that AOS and β-glucan are recognized by their 

specific receptors and the pathways evoked by them could be different. Hence, there 

is a need for further efforts to understand their effects using high-throughput 

techniques. 

1.7. Approaches for studying functional additives that counter 
inflammation  

1.7.1. Transcriptomics 

Transcriptomic studies are important to understand alterations in the complete set of 

transcripts in a specific cell, tissue, or organism (Martin et al., 2016). RNA-Seq-based 

transcriptome profiling is rapidly being adopted in biological research and in this thesis, 

it has been employed to understand the responses associated with intestinal 

inflammation in zebrafish. Through a similar approach with Atlantic salmon fed soya 

saponin-containing diets, the alteration of several solute transporters and immune 

genes of the epithelial barrier and enrichment of steroid biosynthesis were reported 

by Kiron et al. (2020). The upregulation of the cholesterol biosynthesis pathway 

contributed to maintaining intestinal homeostasis in yellow perch (Perca flavescens ) 

juveniles fed a soybean-based diet (Kemski et al., 2020). Likewise, intestinal 

transcriptome profiling indicated the upregulation of immune and inflammation-

related pathways such as phagosome, natural killer cell-mediated cytotoxicity and NF-

κB signalling pathways and the downregulation of genes related to biosynthesis of 

unsaturated fatty acids and cholesterol metabolism in hybrid grouper (Epinephelus 

fuscoguttatus♀ × Epinephelus lanceolatus♂) fed a SBM diet (He et al., 2020). Studies 

on zebrafish intestinal transcriptome have also reported the alteration of genes related 

to immune, lipid and cholesterol metabolism, all linked to soybean feeding (Valenzuela 

et al., 2021, Xie et al., 2021a). However, only few studies on zebrafish have used this 
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approach to understand the efficacy of bioactives-based mitigation strategies against 

soybean induced intestinal inflammation (Xie et al., 2021a, Li et al., 2022c, López Nadal 

et al., 2023). Besides, the overall effect of soybean-induced inflammation on the 

development of zebrafish has not been investigated in detail. 

1.7.2. Metabolomics  

Metabolomics is a technique for selective and non-selective chemical analysis of 

metabolites in biological specimens such as cells, tissues or biofluids. The method can 

provide insights about, among others, the nutritional impact on hosts (Roques et al., 

2020). Moreover, the metabolomic profile of plasma can reflect systemic perturbations 

caused by intestinal inflammation (Roques et al., 2020). Only a few studies have been 

conducted using fish plasma to understand diet-induced alterations and they have 

revealed the changes in the metabolome of the liver and intestine of fishes fed 

soybean-incorporated diet. Amino acid metabolism was altered in the liver of red drum 

(Sciaenops ocellatus) fed a soybean diet; inferences were based on upregulated 

metabolites linked to glycine, serine, and threonine pathway and glycerophospholipid 

metabolism. However, due to variability in plasma metabolites, the authors were not 

able to detect any significant differences (Casu et al., 2017). Dietary SBM altered the 

serum metabolites in cobia (Rachycentron canadum), especially those related to 

energy metabolism (Schock et al., 2012). Alteration in the energy metabolism has also 

been reported in humans with inflamed intestine and perturbed plasma metabolites 

of amino-acid and fatty-acid metabolism (Aldars-García et al., 2021, Scoville et al., 

2018). However, so far, no study has investigated the plasma metabolites of a diet-

induced intestinal inflammation model in zebrafish. 

1.7.3. Behavioural analysis 

Zebrafish is an emerging model for behavioral studies and is widely used to understand 

the effects of drugs/chemicals on behavior (Basnet et al., 2019). At around 4 days 

postfertilization (dpf), following the development of swim bladder, zebrafish larvae 

start to swim freely, and their swimming behavior is modulated by both internal and 
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external stimuli (Kopp et al., 2018). With the use of high throughput tracking system, 

we can monitor the activity of an individual larva and split a particular movement into 

several measurable parameters like total distance travelled, total duration of 

movement, heading angle, turn angle, average velocity, angular velocity; all these 

parameters can be compared to understand the effect of different treatments on 

zebrafish behavior (Maeda et al., 2021). The light-dark locomotion test is adopted 

widely to study the behavioral response of zebrafish larvae to sudden changes in 

illumination. The alternating light and dark conditions prompt zebrafish to follow a 

specific pattern of movement: while a transition from a light to a dark regimen 

increases locomotion, a dark to light transition decreases its movement (Rokszin et al., 

2010). This locomotor behavior depends on the coordination of eye and brain functions. 

Other tests like exploratory biting, T-maze test and diving response test are also used 

to understand zebrafish behavior (Benvenutti et al., 2021, Fontana and Parker, 2022). 

Diet-induced changes can also affect the locomotor behavior in animals. For example, 

a high-fat, low-fiber diet reduced the locomotor activity of mice and a probiotic diet 

(with Lactobacillus rhamnosus IMC 501) increased the movement of zebrafish (Shi et 

al., 2020) (Borrelli et al., 2016). Furthermore, intestinal inflammation can also affect 

animal behavior as reported for a chemically-induced colitis mice model with stress-

associated behavior (Komoto et al., 2022). However, to my knowledge there are no 

studies that have investigated behavioral changes associated with soybean-induced 

intestinal inflammation in zebrafish. 
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2. OBJECTIVES 

For an in-depth understanding of diet-induced inflammation, the appropriate strategy 

is to evaluate the changes in the intestine of the already established SBM-fed zebrafish 

model. The underlying immune-related responses can be revealed by studying the 

intestinal transcriptome of the fish. Furthermore, the systemic effects of SBM-

associated inflammation can be investigated by assessing the behavioural and plasma 

metabolomic alterations in the model. Such information is essential to use the 

zebrafish model for investigating the efficacy of therapeutic agents against intestinal 

inflammation (Figure 5). The hypothesis of this PhD project is that dietary oligo- and 

polysaccharides may alter the intestinal transcriptomic, metabolomic and behavioural 

response in a zebrafish model of SBM-induced inflammation. 

Accordingly, the specific objectives are: 

1) To elucidate the impact of an SBM diet and yeast β-glucan on the intestinal 

transcriptome of juvenile zebrafish (Paper I). 

2) To understand extra-intestinal effects associated with an SBM diet and the 

inflammation alleviation and developmental defects reducing efficacy of algal β-glucan 

in a larval zebrafish inflammation model (Paper II). 

3) To evaluate the impact of alginate oligosaccharides on the intestinal transcriptome 

and plasma metabolome in an adult zebrafish inflammation model (Paper III) 
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 Figure 5. Overview of the different studies in the thesis. Created with BioRender.com 
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3. GENERAL DISCUSSION 

The cellular and extracellular components of the intestinal mucosa can prevent the 

entry of pathogens and resolve unfavourable conditions such as inflammation. Diet is 

an important environmental factor that can regulate intestinal inflammation. Certain 

dietary components can trigger an intestinal inflammatory response whereas others 

can mitigate inflammation by maintaining immune homeostasis. However, there is 

limited knowledge on the mechanisms connected to diet component-linked 

inflammation and processes associated with the preventative properties of functional 

feed additives. Appropriate nutritional models could help not only to explore these 

mechanisms, but also to understand the extraintestinal effects linked to inflammation.  

In this PhD project, transcriptomic and histological analyses were employed to 

elucidate SBM-induced alterations in the intestine of zebrafish (Paper I). Additionally, 

the intestinal transcriptome was evaluated to understand the response of the fish to a 

well-known anti-inflammatory compound, a yeast β-glucan. In the second study, 

behavioural analysis was performed along with transcriptome sequencing to 

understand how intestinal inflammation can affect the development and behaviour of 

zebrafish fed a SBM incorporated diet (Paper II). The study also looked at the efficacy 

of algal β-glucan to mitigate specific behavioural aberrations associated with 

inflammation in zebrafish, triggered by SBM. In the third study the intestinal 

transcriptome and plasma metabolome were analysed to evaluate the anti-

inflammatory potential of alginate oligosaccharides and algal β-glucan in zebrafish fed 

a SBM diet (Paper III). 

3.1. Soybean-induced inflammatory responses in the intestine of 
zebrafish  

Effective enteritis models like the mice enteritis models have been developed in 

zebrafish by immersing the fish in DSS or through intrarectal injection of TNBS and 

oxazolone. Although these chemicals can generate inflammatory responses in the 

intestine of zebrafish, excessive physical damage of the intestinal mucosa can cause 
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mortality (Oehlers et al., 2013). Extensive epithelial abrasion caused by inflammation-

inducing chemicals can damage the intestinal mucosa to evoke injury-associated 

responses. Hence, it will be difficult to separate inflammatory responses from the 

injury-associated ones. An acceptable approach would be to develop and test 

inflammation models that rely on dietary factors. For example, SBM can be used as an 

agent to develop an intestinal inflammation model in zebrafish. Previous studies have 

found that a 50% inclusion of SBM in the diet can induce enteritis in zebrafish (Solis et 

al., 2020). Hence, a diet containing 50% SBM was employed to elucidate SBM-induced 

alterations in the larval (Paper II), juvenile (Paper I), and adult zebrafish models (Paper 

III). The attributes of the SBM-induced intestinal inflammation model are altered 

barrier-related genes, immune cell recruitment, elevated inflammatory marker genes 

and inflammation-linked histomorphological features. The intestinal barrier related 

genes namely mucin5ac (muc5ac), mucin 5d (muc5d), chloride channel 2c (clcn2c) and 

clathrin, light chain B (cltb) were altered in the SBM fed fish (Paper I). An inflammatory 

condition can have an effect on mucins, which are glycoproteins present in mucus. For 

instance, deficiency of MUC2 makes the host prone to intestinal infections (Zarepour 

et al., 2013). In the first study (Paper I), the expression of muc5d (muc2-like) was 

significantly downregulated in zebrafish fed SBM. Therefore, the SBM diet-induced 

reduction in the muc5d gene expression is likely signalling a barrier breach and 

eventual inflammatory response in zebrafish intestine. The histological analysis in 

Paper I also indicated a weak barrier with fewer goblet cells in the soybean group, 

suggesting a dysregulated mucus production in zebrafish. Increased expression of 

matrix metalloprotease genes (mmp9, mmp13a) in the SBM-fed fish (Paper III) also 

indicates barrier disruption (Al-Sadi et al., 2021, Vandenbroucke et al., 2013). The 

protein, CLCN2C, that is localized near the tight junction proteins plays a significant 

role in maintaining epithelial barrier function (Nighot et al., 2017). Its overexpression 

increases occludin, which is essential for preventing tight junction permeability (Nighot 

et al., 2017). Hence, a loss of CLCN2C was found to increase the severity of DSS-induced 

colitis (Nighot et al., 2013). The expression of clcn2c was downregulated in zebrafish 
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fed a SBM diet that exhibited inflammation characteristics (Paper I). Furthermore, the 

observed upregulation of clathrin, light chain B (cltb), a major cytosolic protein that 

plays a key role in intracellular trafficking of membrane proteins, is known to promote 

clathrin-mediated endocytosis of adherens and tight junction proteins (Ivanov et al., 

2004). Alteration in the endocytosis of junction proteins affect the intestinal 

permeability (Nighot and Ma, 2021, Nighot and Blikslager, 2012). Defects in the barrier 

function caused by intestinal structural changes can increase penetration of luminal 

antigens and the associated chemokine-induced recruitment of neutrophils (Xu et al., 

2018). Several inflammation-linked GO terms like leukocyte chemotaxis and leukocyte 

migration were enriched by the upregulated immune genes (mmp13a, coro1a, il22, 

ccl34a.4, CD59) in SBM-fed fish (Paper III). A SBM diet increased the number of 

granulocytes/neutrophils (Sudan black positive) in the intestine of zebrafish larvae 

(Paper II). An upregulation of genes associated with neutrophil 

recruitment−myeloperoxidase (mpx) and chemokine (C-X-C motif) ligand 8a 

(cxcl8a)−in the adult zebrafish fed SBM was reported in Paper III. The neutrophil 

marker mpx was found to be involved in the production of ROS in the mucosa of IBD 

patients (Chami et al., 2018) as well as in the inflamed intestine of zebrafish (Liu et al., 

2014). Stimulated neutrophils activate their nicotinamide adenine dinucleotide 

phosphate oxidase to generate superoxide anion which eventually forms hydrogen 

peroxide that is used by myeloperoxidase to produce hypochlorous acid, the 

bactericidal ROS. An increase in ROS can negatively affect the protein-folding capacity 

of mitochondria resulting in an accumulation of misfolded proteins (Inigo and Chandra, 

2022). Adenosine triphosphate (ATP)-dependent proteases participate in 

mitochondrial protein remodelling, folding and degradation to maintain organelle 

homeostasis (Feng et al., 2021, Baker et al., 2011). Enrichment of ATP-dependent 

peptidase activity was also noted, because of the upregulated mitochondrial matrix 

genes, namely, LON peptidase N-terminal domain and ring finger 1 (lonrf1) and 

caseinolytic mitochondrial matrix peptidase chaperone subunit Xb (clpxb). These genes 

which are involved in the degradation of misfolded or damaged proteins (Li et al., 2023, 
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Feng et al., 2021), possibly indicates an effect of SBM on the mitochondrial protein-

folding environment (Paper I). Furthermore, mitochondrial dysfunction has been 

associated with the development of inflammation (Novak and Mollen, 2015). The 

plasma metabolomic profile of zebrafish revealed the higher abundance of 

inflammation-linked metabolites such as itaconic acid, and lower abundance of 

taurochenodeoxycholic acid as well as the activation of the arginine biosynthesis 

pathway in adult fish fed an SBM containing diet (Paper III). Itaconic acid is considered 

a biomarker of inflammation as M1 macrophages of mammals are known to produce 

substantial amounts of itaconate following interferon-γ- or lipopolysaccharide-induced 

activation (Diotallevi et al., 2021). Secondary bile acids such as taurochenodeoxycholic 

acid are microbiota-associated metabolites and studies have reported a reduction in 

secondary bile acids in IBD patients reviewed by Kriaa et al. (2022). Additionally, 

alterations in arginine metabolic pathways have been reported during intestinal 

inflammation (Li et al., 2022b). In all the studies performed for this PhD thesis, SBM 

diets left a trail of inflammation hallmarks in the intestine and the plasma of zebrafish 

(Paper I, II and III), indicating the suitability of this model for examining diet-linked 

morpho-physiological alterations. 

Although consistent inflammation-associated changes were observed at the molecular 

level (gene expression profile and plasma metabolome), a distinct barrier breach could 

not be validated through micromorphological observations (Paper I and III). For 

example, the lamina propria width in the juvenile and adult zebrafish were not affected 

by the SBM-based diet (Paper I and III). SBM (50% inclusion level) did not induce any 

changes in the intestinal morphology of zebrafish larvae (Solis et al., 2020, Hedrera et 

al., 2013). Our results point to the fact that 50% SBM is not enough to produce distinct 

inflammation-associated histological features in the intestine of zebrafish (Paper I and 

III).  

The inflammatory response evoked by an SBM containing diet is likely to be dependent 

on the life stage of zebrafish. For example, juvenile zebrafish displayed a subdued 

inflammatory response (Paper I) compared to the adult stages (Paper III) in terms of 
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the number of differentially expressed immune genes in the intestine that are linked 

to inflammatory response. Susceptibility to intestinal inflammatory diseases in humans 

is known to progress with age (Sanada et al., 2018). Aging is associated with disruptions 

in gut homeostasis and is linked to altered intestinal stem cell proliferation, epithelial 

barrier function, perturbed gut microbiota composition and microbial metabolites and 

dysregulation of immune response (Walrath et al., 2021). Based on the results from 

Papers I and III, it can be broadly stated that the impact of soybean as an inflammatory 

agent may be age/organ-maturity dependent. It is critical to discriminate between the 

stages for studying intestinal inflammation, as the gene expression responses are 

different in juvenile and adult stages of zebrafish. Furthermore, the diversity and 

composition of zebrafish intestinal microbiota changes with the developmental stage 

(Stephens et al., 2016). Therefore, the distinct responses to SBM-induced inflammation 

are likely due to a specific microbiota profile. Future functional studies can delineate 

the role of the microbiota and the gene expression responses behind SBM-induced 

intestinal inflammation.  

3.2. Metabolomic changes and extraintestinal effects associated with 
soybean meal intake  

Soybean meal is a complex food ingredient with many constituents including anti-

nutritional factors such as phytoestrogens and soyasaponin which can affect other 

physiological processes. In the SBM-fed fish, reproductive process-related GO terms 

such as reproductive process, male gamete generation, spermatogenesis were 

enriched based on the downregulation of several genes like testis specific, 10 (tsga10), 

spermatogenesis associated 4 (spata4), spata22, tudor domain containing 9 (tdrd9), 

tdrd12, follicle stimulating hormone receptor (fshr), gonadal somatic cell derived factor 

(gsdf) (Papers I and III). These results are in agreement with a previous transcriptomic 

study which has revealed the enrichment of GO terms related to reproduction in the 

intestine of zebrafish fed SBM (Li et al., 2022c). Similar effects of SBM on reproductive 

performance and endocrine disruption were reported in human and fish studies 

(Bagheri et al., 2013, Patisaul, 2017). The isoflavones present in SBM have a structure 
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like those of endogenous oestrogens, facilitating their binding to oestrogen receptors 

in tissues including the intestine and thus altering the transcription of genes related to 

reproduction. These observations relevant to specific aspects of reproductive 

physiology were noted only in studies performed in juveniles (50 dpf) and adult 

zebrafish (8 months) (Paper I and III). King and co-workers have reported that sex-

specific genes in zebrafish start to express at around 28 dpf (King et al., 2020). Based 

on the results linked to reproductive processes that have a bearing on behaviour and 

metabolism point to the need to develop a holistic zebrafish model of inflammation 

with processed SBM which is devoid of isoflavones and other reproduction disruptors.  

SBM feeding can also influence cholesterol homeostasis. Disturbance in cholesterol 

metabolism could be due to the inadequate supply of cholesterol from a diet 

containing more SBM and less fishmeal (Kortner et al., 2014), as cholesterol is mainly 

derived from ingredients of animal origin. Cholesterol metabolism can be disrupted by 

soy isoflavones and saponins in SBM that can lower the intake of dietary cholesterol 

(Kortner et al., 2013, Gu et al., 2014). Cholesterol is an important component of cell 

membranes and a precursor of steroid hormones and bile acids (Sonal Sekhar et al., 

2020). Steroid biosynthesis appeared as one of the enriched KEGG pathways in 

zebrafish larvae fed 50% SBM (Paper II). In addition, based on the upregulated genes, 

several GO terms like cholesterol metabolic process, sterol biosynthesis process were 

enriched in zebrafish larvae (Paper II). Inadequate cholesterol intake triggers 

endogenous cholesterol biosynthesis and suppresses cholesterol excretion through 

the biliary route (Gu et al., 2014, Kemski et al., 2020). The expression of solute carrier 

slc51a, that is involved in the absorption of bile acid was upregulated in the intestine 

indicating an effort to reduce bile excretion (Ballatori et al., 2013) (Paper I). There was 

also a decrease in the abundance of secondary bile acid metabolite 

taurochenodeoxycholic acid in the plasma of SBM-fed group (Paper III) indicating an 

alteration of bile acid metabolism. Previous transcriptomic studies have reported 

alterations in the genes related to cholesterol and bile acid metabolism in the intestine 

of fishes fed SBM (Kortner et al., 2013, Kemski et al., 2020). GO terms such as ER part, 
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and nuclear outer membrane- ER membrane network were enriched in the intestine 

of the SBM-fed group (Paper III). Furthermore, the expression of several ER-related 

genes like lipase maturation factor 2b (lmf2b), receptor accessory protein 2 (reep2), 

ELOVL fatty acid elongase 4a (elovl4), ELOVL fatty acid elongase 6 (elovl6), ER lipid raft 

associated 2 (erlin2) were altered in SBM-fed fish (Paper I and III). The ER is the main 

organ in which cholesterol is synthesized and is responsible for cholesterol 

homeostasis (Röhrl and Stangl, 2018). The results in Papers I and III likely indicate the 

negative effect of dietary SBM on cholesterol homeostasis and ER functioning. Since a 

large proportion of cholesterol resides in the membrane as components of lipid rafts 

and disturbance of the lipid raft organization occurs during inflammation (Bowie et al., 

2012), and this aspect can be explored in future studies. 

Dietary SBM also affected the overall development of zebrafish larvae. The results in 

Paper II also indicated enrichment of GO terms related to developmental processes 

like regulation of gastrulation, formation of primary germ layer, somite development 

and positive regulation of organelle organization in the larvae fed SBM, based on 

several downregulated genes such as hairy-related 6 (her6), N-alpha-acetyltransferase 

50, NatE catalytic subunit (naa50), COPI coat complex subunit beta 1 (copb1), growth 

regulating estrogen receptor binding 1 (greb1), transportin 1 (tnpo1), Kruppel like 

factor 2a (klf2a), churchill domain containing 1(churc1). SBM feeding impaired the 

development of swim bladder in larvae (Paper II) and reduced the head to trunk angle 

of the larvae (Paper II). Larvae with uninflated swim bladders will have skeletal 

deformities (Trotter et al., 2001). To my knowledge, none of the previous studies have 

reported the adverse effect of SBM on swim bladder development, though there is 

evidence of SBM-induced bone defects. Carnovali et al. (2022) reported that dietary 

SBM affected ossification (bone formation) in zebrafish larvae, by reducing intra-

membranous mineralization in head by 17% and trunk by 47%. The observed reduction 

of head to trunk angle could be due to reduced mineralization in trunk resulting in 

skeletal deformities (Paper II). Carnovali et al. (2021) had earlier reported that SBM 

consumption could lead to the development of osteoporosis (decrease bone density) 
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like phenotype in the scale border of adult zebrafish. Inflammatory bowel disease 

patients are at high risk of osteoporosis due to different factors including increased 

production of proinflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α). A severe systemic 

inflammation can elevate bone resorption without formation of osteoblasts (Chedid 

and Kane, 2020). Similarities in the impact of intestinal inflammation on bone 

development in zebrafish and humans indicate that the fish model can be used to study 

such adverse systemic responses. 

SBM intake not only affects the swim bladder development, but also influences 

locomotor and feeding behaviour (Schwebel et al., 2018). Zebrafish larvae are 

adversely affected when their swim bladder does not function properly resulting in lack 

of buoyancy (Trotter et al., 2001). This can increase the metabolic demand (Schwebel 

et al., 2018), as indicated by the higher consumption of oxygen in the SBM-fed group 

(Paper II). The locomotor behaviour of zebrafish larvae fed SBM was also affected, as 

inferred from parameters like distance travelled, velocity and movement (Paper II).  

Other impairments include their negative effect on eye size and sensory perception, as 

indicated by velocity time plot analysis of the SBM-fed group (Paper II). Interestingly, 

several genes related to light perception including visual system homeobox 1 (vsx1), 

recoverin a (rcvrna) and guanylate cyclase activator 1b (guca1b) were downregulated 

in SBM-fed fish group. These genes are important for terminal differentiation of retinal 

cells and cone photo response recovery (Ohtoshi et al., 2004, Zang and Neuhauss, 

2018). Enrichment of pathways such as retinol metabolism and phototransduction 

pathway was reported in Paper II. The phototransduction pathway is connected to 

retinal photoreceptors, namely rods and cone cells which are active at low and high 

light intensities, respectively. These cells convert light stimulus into electrical signals 

which are then perceived by the nervous system (Koch and Dell'Orco, 2015). A previous 

study reported that retinoic acid and the associated alteration of gene expression could 

lead to abnormal eye development, visual impairment and altered behaviour in 

zebrafish larvae (Le et al., 2012). The eye size of zebrafish larvae that exhibited signs of 

SBM feeding-induced inflammatory response (based on the number of neutrophils and 
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proinflammatory cytokine expression in the intestine) was smaller compared to larvae 

fed a control diet (Paper II). IBD patients suffer from different eye complications like 

eye conjunctivitis, photophobia and ocular pain (Mintz et al., 2004, Troncoso et al., 

2017). Previous studies have found that CD103+ DCs promote immune tolerance via 

the production of retinoic acid and Treg cells. Paper II reports the upregulation of 

several genes such as UDP glucuronosyltransferase 1 family, polypeptide A1(ugt1a1), 

ugt1a5, ugt1a4, cyp3a65 (cytochrome P450, family 3, subfamily A, polypeptide 65) that 

are involved in retinoic acid pathway. Such an upregulation in zebrafish fed a SBM diet 

is likely indicating the relationship between retinoic acid and inflammation. Retinoic 

acid can induce the expression of gut homing receptors (α4β7 and CCR9) on effector T 

cells as well as on regulatory T cells, the former population is required for Th1 and Th17 

cell response (Hall et al., 2011). Another study reported that increased production of 

retinoic acid by intestinal macrophages can promote their polarization to inflammatory 

phenotype (Sanders et al., 2014). It should be noted that by metabolising retinol, 

dendritic cells can supply the bioactive form of vitamin A to macrophages to evoke 

antimicrobial responses (Kim et al., 2019). The metabolite ethylmalonic acid was 

abundant in the plasma of zebrafish fed an SBM diet (Paper III). Similarly, ulcerative 

colitis patients and mice models were found to have a higher abundance of 

ethylmalonic acid (Keshteli et al., 2019, Kohashi et al., 2014, Shiomi et al., 2011). 

Additional reports also suggest that high levels of ethylmalonic acid in tissues and body 

fluids are associated with brain mitochondrial dysfunction and increased oxidative 

damage in the cerebral mitochondria of rats (Schuck et al., 2015, Ritter et al., 2015). 

Furthermore, subcutaneous injection of ethylmalonic acid induced behavioural deficits 

in developing rats, as demonstrated by learning disabilities, memory loss and increased 

lipoperoxidation in brain hippocampus (Schuck et al., 2009). The increased abundance 

of ethylmalonic acid in the plasma of zebrafish fed SBM-based diet is likely to be a 

factor associated with behavioural problems (locomotor behaviour) observed in larvae 

(Paper II). These extraintestinal manifestations arising from the intake of a diet 

containing 50% SBM, indicates that it can compromise the proper development and 
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behaviour of zebrafish (Paper II and III). From the results presented in this thesis it can 

be concluded that besides causing intestinal inflammation, SBM in diets influences 

several functions including reproduction, cholesterol homeostasis, eye development, 

and behaviour of zebrafish.  

3.3. β-glucans and oligosaccharides as dietary supplements to reduce 
soybean-induced inflammatory response  

Natural indigestible carbohydrates, known as prebiotics, are considered as effective 

agents for the treatment of IBD as they have the ability to regulate intestinal 

inflammation by maintaining immune homeostasis (Yuan et al., 2022). These bioactive 

carbohydrates can reduce intestinal inflammation by establishing beneficial bacteria 

that facilitate the production of SCFAs (McLoughlin et al., 2017). The potential of two 

bioactive products, β-glucans (Paper I, II and III) and AOS (Paper III) to alleviate SBM-

induced intestinal inflammation was examined in this PhD project. It has been reported 

that the bacteria derived from zebrafish intestine can produce three main SCFAs 

(acetate, propionate, and butyrate) (Cholan et al., 2020). Plasma metabolomic analysis 

revealed that the AOS-fed fish had significantly higher levels of 2-hydroxybutyric acid 

(2-HB) compared to SBM-fed group (Paper III). A previous study also reported an 

increase of 2-HB in the serum of mice fed a polysaccharide (from Astragalus) (Li et al., 

2022a). AOS can stimulate the proliferation of bacteria belonging to the genus  

Alloprevotella (Wang et al., 2020) and its abundance was positively correlated with the 

concentrations of both butyric acid and 2-HB (Wu et al., 2021b, Wang et al., 2020). 

Furthermore, dietary β-glucan has been linked to increased production of butyrate in 

mice (Miyamoto et al., 2018). Butyrate helps to thwart inflammation, reduce 

neutrophil migration, and maintain the mucosal barrier integrity (Chen et al., 2018, Li 

et al., 2021). In addition, butyrate, and 2-HB can regulate proinflammatory cytokines 

(Li et al., 2022a, Segain et al., 2000). The anti-inflammatory effect of butyrate was also 

reported in zebrafish, based on the fewer recruitment of neutrophils and M1 

macrophages to wounds (Cholan et al., 2020). In the present thesis the two functional 

additives modulated several inflammation-related processes that were altered by SBM, 
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probably through the production of SCFAs. The additives also provided better barrier 

protection - AOS supplemented diet stimulated the development of goblet cells 

compared to SBM diet (Paper III). According to a previous in vitro study (using the  

human colon cell line), oligosaccharides can influence the mucosal barrier integrity by 

modulating the functions of intestinal goblet cells, by affecting mucins and trefoil 

proteins (Bhatia et al., 2015). Furthermore, more mucus cells per villi suggests that 

more intestinal cells are undergoing goblet cell differentiation to strengthen the barrier 

(Paper III). β-glucan feeding can significantly reduce the lamina propria width in 

zebrafish juveniles, indicating a positive effect on the mucosal barrier (Paper I). The 

ability of the tested polysaccharides to reduce the inflammatory response has been 

described in all three Papers. For example, the expression of several inflammatory 

marker genes (mpx, cxcl8a, mmp9) were downregulated by β-glucan and AOS-fed fish, 

while the expression of these genes was upregulated in SBM-fed group (Paper III). 

There were fewer granulocytes in the intestine of β-glucan group compared to the 

SBM-fed group and these cells (mainly neutrophils) are known to migrate quickly to an 

inflammatory site (Fuentes-Appelgren et al., 2014). β-glucan intake downregulated the 

expression of genes such as janus kinase 1 (jak1), leptin receptor (lepr), jagunal 

homolog 1-A (jagn1a), interleukin 13 receptor, alpha 2 (il13ra2), and this was 

associated with an enrichment of the GO terms leukocyte differentiation and cytokine 

mediated signaling (Paper II). Interestingly, AOS intake was associated with the 

downregulation of the expression of genes like CD59 molecule (cd59), mpx, NLR family, 

CARD domain containing 3 (nlrc3), matrix metallopeptidase 25b (mmp25b), causing an 

enrichment of the GO terms inflammatory response, humoral immune response and 

complement activation (Paper III). This indicates that the dietary oligo- and 

polysaccharides can modulate the expression of several inflammation-related genes 

triggered by the SBM diet, albeit through distinct mechanisms. It can be speculated 

that such carbohydrates can modulate immune responses probably via their prebiotic 

properties viz., fermentation of dietary polysaccharides and/or resultant metabolites, 

which in turn reduce inflammatory responses. These compounds might also have 
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accomplished immune modulation via another route; through direct interaction with 

the host immune system as they are recognized by different PRRs present on several 

immune cells. It can be concluded that these dietary carbohydrates can significantly 

mitigate the intestinal inflammatory response evoked by an SBM diet. Transcriptomic 

analyses undertaken for this PhD project did not reveal any alteration of specific 

immune receptors that recognize these bioactive compounds. It is likely that the doses 

of the tested products were not enough to detect the changes in these specific 

receptors.  

The immune modulatory effect of these polysaccharides can have a beneficial effect 

on the overall physiology and development of zebrafish. Both the β-glucan- and AOS- 

fed fish had longer intestinal villi (Paper I and III), as reported in previous studies (Wan 

et al., 2018, Wu et al., 2021a). Nutrient absorption can be higher in animals with longer 

intestinal villi, which in turn gets translated into better growth and health (Wan et al., 

2018, Ramos et al., 2017). Nevertheless, the tested polysaccharides did change the villi 

length, but the change could not be associated with a better growth performance in 

zebrafish. It is imperative to perform growth trials using zebrafish of age 20–40 dpf 

because it is within this range that energy from diet is completely allocated for growth 

(Gómez-Requeni et al., 2010). However, the feeding experiments were conducted 

when zebrafish were in juvenile (from 50 to 80 dpf ) and adult stages (above 90 dpf) 

(Paper I and Paper III) and early larval stage (from 5-15 dpf) (Paper II) and this could 

be the possible reason for not detecting the feed additive-caused growth 

enhancement. Nevertheless, a positive effect of dietary polysaccharides on the overall 

development and behavior was observed in Paper II. For example, head to trunk angle 

and swim bladder area were significantly increased in the algal β-glucan- fed group 

compared to the SBM-fed group (Paper II). A previous report has stated that β-glucans 

can exert anti-osteoporotic impacts such as preventing bone loss, stimulation of bone 

formation and fracture healing (Ariyoshi et al., 2021). The interaction between 

osteoclasts (cells involved in bone resorption) and osteoblasts (cells promoting bone 

formation) and the action of multiple immunoreceptors present on innate immune 
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cells are important for the bone remodeling (Humphrey and Nakamura, 2016). For 

example, helper T cells can damage multiple joints by enhancing the expression of 

receptor activator of NF-κB ligand (RANKL) mediated by proinflammatory cytokines 

(Boyce and Xing, 2008). Previous studies have reported that β-glucans inhibit bone loss 

via varied mechanisms including suppression of RANKL (Ariyoshi et al., 2021, Aizawa et 

al., 2018). The associated mechanistic processes have been revealed in an in vitro study: 

yeast β-glucan suppressed RANKL formation via Dectin-1 receptor, attenuated the 

osteoclast related gene expression and inhibited RANKL‐mediated NF-κB signalling in 

mouse bone marrow cells (Hara et al., 2021). Therefore, it is possible that β-glucans 

might have inhibited the formation of osteoclasts leading to a positive effect on 

skeletal development in zebrafish larvae. An article in mice reported the ability of β-

glucan to enhance the migration rate of human corneal epithelial cells to repair the 

corneal epithelial wounds and to reduce the acute inflammatory reaction in eyes (Choi 

et al., 2013). In Paper II, it was reported that β-glucan can restore the eye size of 

zebrafish larvae fed SBM diet. This indicates that the anti-inflammatory and tissue 

remodeling effect of β-glucan might also have a positive effect on eye development.  

Locomotor behavior, as indicated by parameters like distance travelled, average 

velocity, movement, and velocity vs. time plot of the light-dark phase, was improved 

in zebrafish larvae fed β-glucan compared to larvae fed SBM. Previous studies have 

indicated the efficacy of β-glucan in enhancing the cognitive behavior in mice; by 

inducing the beneficial effects along the gut-brain axis i.e., by reducing the microglia 

activation and inflammatory cytokines in the hippocampus, altering gut microbiota 

profile and enhancing intestinal mucus production (Shi et al., 2020, Hu et al., 2022). 

Although, the effects of dietary β-glucan on brain functions and gut microbiota profile 

were not studied for this PhD project, Paper II reported improvement in locomotor 

behavior of zebrafish larvae fed β-glucan. Furthermore, the abundance of pantothenic 

acid also known as vitamin B5 (VB5) was higher in the plasma of algal β-glucan-fed fish. 

VB5 is obtained from diet or intestinal microbiota (Magnúsdóttir et al., 2015). An 

inverse correlation between dietary VB5 intake and the serum CRP concentration 
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(marker of inflammation) was observed in humans (Jung et al., 2017). Several intestinal 

commensal bacteria such as Bacteroides fragilis and Prevotella copri possess vitamin 

B5 biosynthesizing capacity (Magnúsdóttir et al., 2015, Yoshii et al., 2019) and it is likely 

that algal β-glucan can stimulate the proliferation of these gut microbes. VB5 is also 

associated with improved brain function and is essentially required for the synthesis of 

acetyl-CoA which is important for producing neurotransmitters like acetylcholine in the 

brain (Ismail et al., 2020). Furthermore, cerebral deficiency of VB5 is associated with 

several neurodegenerative diseases (Xu et al., 2020). Therefore, it can be inferred that 

an improved larval behavior in zebrafish can possibly be due to its prebiotic action. 

Overall, functional oligo-/polysaccharides can have protective effects on the intestine 

(Paper I, II and III), and beneficial effects on the development and behavior of zebrafish 

(Paper II).  

3.4. Source/structure of the oligo- and polysaccharides influence 
their functional capacity 

Functional oligo-/polysaccharides are produced from different sources like yeasts, 

mushrooms, macroalgae, microalgae and bacteria. These compounds may have 

different molecular weights, branching patterns, chain conformations and functional 

groups (Ullah et al., 2019). The structural differences in the bioactive carbohydrates 

affect their immune modulation ability. The potential of β-glucans derived from two 

different sources−yeast (Saccharomyces cerevisiae) (Paper I) and microalgae (Euglena 

gracilis) (Paper II and III)−to provide protection against soybean-induced intestinal 

inflammation was assessed in this PhD project. Furthermore, the anti-inflammatory 

potential of two oligosaccharides (AOS derived from the macroalga Laminaria sp.) that 

differed in terms of the percentage of low molecular weight fractions were evaluated 

(Paper III) to delineate their modes of action.  

The yeast- and alga-derived β-glucans, β-(1,3),(1,6) and β-(1,3) respectively, differ 

mainly in terms of branching pattern. The former exhibits side chains that branch 

exclusively from the 6-position of the backbone, while the latter has a linear form that 
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does not have any branches (Han et al., 2020). These structural differences can affect 

their anti-inflammatory potential.  

Yeast β-glucan with side chains downregulated the genes connected to the GO terms 

small GTPase-mediated signal transduction, guanyl nucleotide binding, guanyl and 

intracellular cellular signal transduction. On the other hand, another study reported 

that β-(1,3)-glucan recognition by Dectin-1 activated small GTPase (Choraghe et al., 

2020). Small GTPases (Guanine nucleotide-binding proteins or G-proteins) are 

important in signal transduction, and they regulate diverse cellular responses including 

leukocyte-endothelial interactions and formation of epithelial junctions (Lu et al., 

2013). Previous studies have found that small GTPases affect the functions of 

inflammatory phenotypes (Johnson and Chen, 2012, Chu et al., 2018). For example, 

members of small GTPase regulate diverse functions of neutrophils like adhesion, 

chemotaxis, and recruitment during inflammation. SBM intake caused the enrichment 

of small GTPase-mediated signal transduction by upregulated genes such as ras 

homolog family member Ub (rhoub),RAB25, member ras oncogene family (rab25b)and 

ADP-ribosylation factor-like 4Ca (arl4ca) (Paper I). These genes regulate epithelial cell 

polarity, intracellular membrane transport and the function of tight junction proteins 

(Lapierre et al., 2011, Fujii et al., 2015, Zihni and Terry, 2015). Because yeast β-glucans 

countered inflammation and there was evidence of suppression of small GTPases, it 

could be speculated that β-(1,3),(1,6) that was employed in the current study likely 

uses the same pathway as the β-(1,3) reported by Choraghe et al. (2020). Additional 

studies are needed to clarify the role of small GTPases in maintaining the intestinal 

homeostasis in zebrafish.  

As for the unbranched β-(1,3) algal glucan-fed fish, several GO terms linked to negative 

regulation of proteolysis and endopeptidase inhibitor activity were enriched as a result 

of the alteration of genes such as serpin peptidase inhibitor, clade B (ovalbumin), 

member 1 (serpinb1), serpin peptidase inhibitor, clade B (ovalbumin), member 1, like 3 

(serpinb1l3), TIMP metallopeptidase inhibitor 4, tandem duplicate 2 (timp4.2), TIMP 

metallopeptidase inhibitor 2b (timp2b), mmp13a, complement component 7a (c7a) 
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(Paper II and Paper III). The upregulated gene serpinb1 produced by macrophages and 

neutrophils, is an important inhibitor of enzymes like elastase, proteinase-3, cathepsin 

G secreted by neutrophils (Choi et al., 2019) (Paper II). Algal β-glucan also increased 

the expression of genes associated with blocking of extracellular matrix-degrading 

metalloproteases (timp4.2, timp2b) (Paper II and III). Tissue inhibitors of 

metalloproteases (TIMPs) regulate diverse processes such as extracellular matrix 

deposition, tissue remodeling and wound healing (Cabral-Pacheco et al., 2020). 

Therefore, the alterations in the expression of the timp genes suggest that algal β-

glucan might help to prevent tissue damage by inflammatory phenotypes such as 

neutrophils and macrophages that had their signatures during SBM-induced 

inflammation (Paper II and III). The algal feed additive was associated with an 

enrichment of the GO terms leukocyte differentiation and cytokine mediated signaling, 

(based on downregulated genes) (Paper II). Among the downregulated genes was 

janus kinase 1 (jak1), which is important in mediating inflammatory cytokine signaling 

An inhibition of JAK1-mediated inflammatory signaling is targeted to counter IBD in 

humans (Schwartz et al., 2017). β-glucan is reported to be an inducer of innate immune 

memory in mononuclear phagocytes which causes an increased immune 

responsiveness to secondary challenges primarily via epigenetic alterations in immune 

cells. Moreover, β-glucan–induced innate immune memory in macrophages can 

suppress NLR family pyrin domain containing 3 inflammasome–facilitated caspase-1 

activation and IL-1β secretion, thus inhibiting the inflammation pathway (Camilli et al., 

2020). Therefore, enrichment of several GO terms (histone acetyltransferase complex, 

histone modifications, chromatin organization) related to epigenetic modifications, 

reported in Paper II, points to the possibility that algal β-glucan induced immune 

modulation is likely due to epigenetic modifications in immune cells; this warrants 

further research. In addition to the abovementioned source-specific changes in the 

intestine transcriptome, β-glucans could affect the micromorphology of the organ. For 

instance, yeast β-glucan prevented the lamina propria widening and increased the 



49 
 

villus height of the intestine compared to the SBM diet (Paper I) while such changes 

were not evident for algal β-glucan (Paper II).  

It is known that the immune modulating ability of β-glucans depends on the branching 

pattern (Miyazaki et al., 1979). These functional polysaccharides with a branching ratio 

between 0.2 to 0.33 are effective immunomodulators (Han et al., 2020) and its 

sidechains can increase the binding affinity to dectin-1 (Adams et al., 2008). However, 

it has also been pointed out that large side chains can also interfere with each other, 

reducing the binding affinity of β-glucans. For example, the immune stimulation 

capacity of algal β-(1,3)-glucans (E. gracilis) increased with increasing concentrations 

while that of yeast β-(1,3)(1,6)-glucans (S. cerevisiae) decreased with their 

concentration (Sonck et al., 2010). The same study also reported that algal compound 

activated the ROS-production by monocytes and neutrophils compared to yeast 

product. Therefore, the distinct intestinal transcriptomic responses of yeast and algal 

β-glucans observed in the present study (Paper I, and II, III) might be due to the 

different branching patterns of β-glucans derived from two different sources.  

Two oligosaccharides (AOS - AL and AH) were compared in this study based on the 

intestinal transcriptome, plasma metabolome and histomorphological changes in 

zebrafish (Paper III). The AL (SBM + low molecular weight AOS) diet compared to the 

AH (SBM + high molecular weight AOS) diet evoked distinct responses in the intestine 

of zebrafish. Several GO terms like inflammatory response, complement activation and 

humoral immune response were enriched by the downregulated DEGs (like cd59, c7a, 

mpx, ccl36.1, nlrc3, gpr142 and mmp25b) in the AL group. On the other hand, only one 

GO term, namely negative regulation of immune system process was enriched by the 

downregulated DEGs (lgals9l6, cd59 glycoprotein-like) in the AH group. Histological 

analysis also revealed the increase in goblet cell counts and villi length in the AL diet-

fed fish. Intestinal epithelial cells are sources of complement proteins and proper 

regulation of complement activation is essential to prevent intestinal epithelial cell 

damage (Sina et al., 2018). Increased activation of complement system is associated 

with intestinal inflammation (Ning et al., 2015). The gene c7a is part of the membrane 
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attack complex (MAC), and downregulation of this component might prevent 

complement activation. The protein CD59 restricts the activation of the complement 

system and the associated assembly of MAC, the decrease in epithelial expression of 

CD59 in IBD patients renders the epithelial cells more susceptible to complement lysis 

(Scheinin et al., 1999). Conversely, an increased expression of cd59 glycoprotein-like 

was found in the soybean fed group (Paper III). An increased production of CD59 was 

also found in human colon cancer cells (Zhang et al., 2018). The downregulation of 

cd59 that was observed in zebrafish fed the AL diet compared to the SBM fed group 

could be indicating the ability of the AOS to maintain homeostasis. Therefore, the 

suppression of several processes related to inflammation by the downregulated DEGs 

in the intestine of the AL group suggests the capacity of AL group to reduce 

complement-mediated inflammation induced by the SBM containing diet. 

Furthermore, qPCR-based analysis revealed the increased expression of the 

antioxidant enzyme catalase in the AL group which suggests that it can possibly reduce 

oxidative stress generated during intestinal inflammation, as reported earlier (Ansar et 

al., 2020). On the other hand, lgals9l6 that codes for protein galactoside-binding, 

soluble, 9 (galectin 9)-like 6, an ortholog of human LGALS9 (galectin 9/Gal-9) was 

downregulated in the AH group. Gal-9, a β-galactoside binding lectin with a 

carbohydrate recognition domain, is expressed in human crypt cells and its expression 

is decreased in IBD patients (Sudhakar et al., 2020). Furthermore, a direct comparison 

of the AL group with AH group revealed the downregulation of immune genes ccl36.1 

and crp6 in the former group. The downregulated gene crp6 is an ortholog of human 

CRP, a biomarker of systemic inflammation (Ishida et al., 2021, Vermeire et al., 2004). 

The present study on zebrafish concluded that the difference in the percentage of the 

low molecular weight fraction of AOS can affect their immune modulatory potential. 

The possible explanation is that low molecular weight polysaccharides are more 

soluble and have greater fermentability (Sarbini et al., 2013). It has also been reported 

that lower molecular weight polysaccharides and alginate have better prebiotic 

potential (Ramnani et al., 2012) and enhances the radical scavenging and 
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immunomodulatory capacities (Harada et al., 2021). Furthermore, their anti-

inflammatory activity can increase when these low molecular weight AOS are degraded 

by the gut bacteria into α-L-guluronic acid and β-D-mannuronic acid, which also possess 

anti-inflammatory properties (Zhang et al., 2021, Xing et al., 2020). Thus, the bioactive 

carbohydrates derived from different sources and having different branching patterns 

can generate distinct transcriptomic and histological alterations in the zebrafish intestine. 

Furthermore, even if the oligosaccharides are from the same source, the molecular 

weight can determine their biofunctionality.  
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4. CONCLUSION 

This thesis provided novel insights into the transcriptomic, metabolomic and 

behavioural changes in a zebrafish model of diet-linked intestinal inflammation. SBM 

included in the diet (at 50%) altered the expression of several inflammation- and 

barrier-related marker genes in the intestine of zebrafish. Transcriptome sequencing 

further indicated that SBM intake affected the expression of genes connected to 

several processes including ATP-dependent peptidase activity, steroid biosynthesis, 

endoplasmic reticulum part, reproduction, phototransduction, and retinoic acid 

metabolism. Metabolome analysis revealed that SBM can decrease the 

taurochenodeoxycholic acid levels but increase the abundance of itaconic acid and 

ethylmalonic acid and activated the arginine biosynthesis pathway in the plasma of 

zebrafish. Histological analysis revealed that SBM can increase the recruitment of 

granulocytes and reduce the goblet cell number in the intestine. Furthermore, SBM 

could adversely affect the eye development, swim bladder area and head trunk angle 

in zebrafish. In addition, SBM increased oxygen consumption and reduced locomotor 

behaviour activity in zebrafish.  

β-glucans from yeast and microalga reduced the expression of genes related to small 

GTPase-mediated signal transduction and endopeptidase activity, respectively. Dietary 

algal β-glucans downregulated the genes connected to leukocyte differentiation and 

cytokine-mediated signalling. On the other hand, low molecular weight macroalgal 

oligosaccharide reduced the expression of genes related to complement activation, 

inflammatory response and humoral response in the intestine of zebrafish fed a SBM 

diet. Plasma metabolomic analysis revealed an increased abundance of pantothenic 

acid by dietary algal β-glucan, while dietary AOS increased the content of a short chain 

fatty acid in the plasma of zebrafish. Histological analysis revealed that dietary yeast β-

glucan reduced lamina propria width in the intestinal mucosa whereas algal β-glucan 

reduced the number of granulocytes. On the other hand, the low molecular weight 

AOS in the diet increased the goblet cell number in the intestine. Both yeast β-glucan 
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and AOS increased the villi height of the intestinal mucosa of zebrafish. Furthermore, 

supplementing SBM diet with algal β-glucan counteracted the developmental defects 

and restored the locomotor behaviour activity in zebrafish.  

Thus, this PhD project has given insights into SBM-induced inflammatory features and 

the distinct modes of actions of β-glucan and AOS to counteract intestinal 

inflammation. 

  

 

 

 

 
Figure 6. Overview of the key findings of the thesis. Created with BioRender.com 
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5. CONTRIBUTION TO THE FIELD 

The studies performed for this PhD project provided novel knowledge about the 

developmental aberrations associated with SBM-induced intestinal inflammation in 

zebrafish. Paper II is the first publication that reported the effect of the intake of SBM 

on oxygen consumption and behaviour. The three studies have gathered adequate 

evidence to state that 50% SBM fed zebrafish can be a useful model species to unravel 

deeper insights into the effect of intestinal inflammation on behaviour and metabolism. 

Plasma metabolomic analyses revealed alterations in metabolites accompanying the 

SBM-induced intestinal inflammation. Paper III represents the first report on the 

plasma metabolomic landscape of zebrafish. The information about the plasma 

metabolites (taurochenodeoxycholic acid, itaconic acid, ethylmalonic acid) and the 

enrichment of the arginine biosynthesis pathway reported in Paper III will be useful to 

devise strategies to mitigate intestinal inflammation. 

Distinct differences in the mode of action of β-glucans (branching pattern) and AOS 

(molecular weight), based on the intestinal transcriptome and histomorphology of the 

intestine provide information for other investigators to decide the test products for 

future research. Furthermore, this information is critical for promoting the use of 

different bioactive oligo- and polysaccharides for specific benefits. 

Our results provide in-depth information about the reliability of zebrafish as a model 

of intestine inflammation and its suitability to assess therapeutic agents against 

inflammatory diseases in humans. 
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6. FUTURE PERSPECTIVES 

The PhD project results have revealed that dietary soybean can affect the behaviour of 

zebrafish. However, we did not investigate the effect of soybean-induced intestinal 

inflammation on the gut microbiota-brain axis. Previous studies have linked diet-

induced behavioural changes to bacterial profiles which in turn affect the gut-brain 

axis. Using germ-free and gnotobiotic zebrafish, future studies should investigate the 

contribution of intestinal microbiota towards SBM-induced behavioural changes. Such 

studies will help elucidate the link between intestinal inflammation and behavioural 

alterations to develop effective therapeutic strategies against intestinal disorders as 

well as brain dysfunctions. 

For this PhD project, only the transcriptome of whole intestine tissue or whole larvae 

was studied. Hence, future research should obtain an overview of the cell types that 

are predominantly affected by SBM or functional feed additives. Single cell RNA-Seq 

could be exploited to understand the diet-induced changes in the expression profile of 

different cell populations. This information reveals the particular cell types affected 

during inflammation and those that are active during its resolution.  

β-glucan is reported to be an inducer of trained immunity (in mononuclear phagocytes) 

that primarily takes place through epigenetic alterations in immune cells. Several GO 

terms related to epigenetic modifications were altered in the present study. In the 

future, in depth studies linking epigenetic modifications and immune modulation by 

dietary β-glucan should be investigated using high throughput techniques like whole 

genome bisulphite sequencing and reduced-representation bisulphite sequencing. 

This thesis revealed the differential modes of action employed by dietary β-glucans and 

AOS to exert their anti-inflammatory properties. It would be interesting to explore the 

possible synergetic effect of AOS and algal β-glucan and the associated transcriptomic 

and metabolomic alteration in the zebrafish model. 
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The intestinal epithelium acts as a selective barrier, and the epithelial 
cells evoke appropriate responses to microbial signals and antigenic 
factors (Soderholm & Pedicord, 2019). Normal functioning of the as-
sociated mucosal barrier, which includes the epithelial layer and lam-
ina propria, is vital to carry out digestion and nutrient absorption by 
the intestine (Farré et al., 2020). A compromised mucosal barrier in-
creases the permeability of the intestine, and such a condition allows 

undesirable luminal antigens to cross the barrier, leading to dysbiosis 
and activation of inflammatory response in the tissue. Damage to in-
testinal tissue can eventually result in the disturbance of the overall 
gut physiology (Farré et al., 2020).

Certain dietary components can alleviate issues related to intes-
tinal disorders, whereas some others trigger intestinal inflammation 
(Hou et al., 2014; Khoshbin & Camilleri, 2020). Specific dietary com-
ponents like soya saponins, the anti- nutritional factor in soya bean 
meal, can bind to the intestinal epithelial membrane cholesterol. 
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Anti- nutritional factors in dietary components can have a negative impact on the 
intestinal barrier. Here, we present soya bean- induced changes in the intestine of ju-
venile zebrafish and the effect of yeast β- glucan through a transcriptomic approach. 
The inclusion of soya bean meal affected the expression of several intestinal barrier 
function- related genes like arl4ca, rab25b, rhoub, muc5ac, muc5d, clcn2c and cltb in 
zebrafish. Several metabolic genes like cyp2x10.2, cyp2aa2, aldh3a2b, crata, elovl4, 
elovl6, slc51a, gpat2 and ATP- dependent peptidase activity (lonrf, clpxb) were altered 
in the intestinal tissue. The expression of immune- related genes like nlrc3, nlrp12, 
gimap8, prdm1 and tph1a, and genes related to cell cycle, DNA damage and DNA re-
pair (e.g. spo11, rad21l1, nabp1b, spata22, tdrd9) were also affected in the soya bean 
fed group. Furthermore, our study suggests the plausible effect of yeast β- glucan 
through the modulation of several genes that regulate immune responses and bar-
rier integrity. Our findings indicate a subdued inflammation in juvenile zebrafish fed 
soya bean meal and the efficacy of β- glucan to counter these subtle inflammatory 
responses.

intestinal barrier, small GTPase, soya bean meal, yeast β- glucan, zebrafish
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This subsequently leads to the formation of pores and makes the 
membrane permeable to luminal antigens (Böttger & Melzig, 2013). 
Hence, soya bean anti- nutritional factors are regarded as intestinal 
dysfunction- provoking agents. These dietary components are ideal 
to create an intestinal inflammation model in zebrafish (Coronado 
et al., 2019; Solis et al., 2020).

Most of the studies related to soya bean- induced inflammation 
in zebrafish have been conducted using the larval stages. Previous 
studies have reported that dietary soya bean meal can affect gut 
permeability and increase the expression of key inflammatory cyto-
kines in the larval intestine (Hedrera et al., 2013; Solis et al., 2020). 
It should be noted that the intestine of the larval zebrafish does not 
represent a fully developed organ in terms of cell proliferation (Li 
et al., 2020), and the functional adaptive immune system matures 
during advanced larval stages (Brugman, 2016; Brugman et al., 2014). 
The global gene expression profile in post- larval stages of zebrafish 
fed soya bean will provide information related to the immune and 
metabolic aspects connected to soya bean- induced aberrations.

Intestinal disorders are connected to many mediators and signal-
ling pathways (Newton & Dixit, 2012). Hence, it would be ideal to use 
anti- inflammatory feed additives that have the potential to alter such 
pathways (Bravo- Tello et al., 2017; Romarheim et al., 2013). β- glucan, 
a natural polysaccharide composed of glucose monomers linked by 
β (1,3) glycosidic bonds, is known to have anti- inflammatory proper-

β- glucans derived from different 
sources like yeasts, seaweeds, mushrooms, algae and bacteria vary 
in their branching patterns, molecular weights, chain conformations 

-
ences cause variations in their bioactivity. MacroGard®, a commer-
cially purified yeast β- 1,3/1,6- glucan obtained from the cell wall of 
Saccharomyces cerevisiae, is a commonly used and investigated feed 

inflammatory effect of dietary yeast β
to develop a diet- induced inflammation model in zebrafish juveniles 
using dietary soya bean meal as an inflammation- inducing agent. A 
transcriptomic approach was employed to elucidate soya bean meal- 

further examined the effects of a combination of MacroGard® and 
soya bean meal on the intestinal transcriptome, to understand the 
anti- inflammatory effect of yeast β- glucan.

|

|

Healthy AB zebrafish juveniles (n = 144) were used for the experi-
ment. Zebrafish were bred at Nord University, Norway, according to 

E3 medium and incubated at 28°C in an incubator until hatching, that 

the larvae were fed ad libitum on Artemia nauplii and commercial 
micro diet Zebrafeed® (Sparos Lda, Olhão, Portugal) of <100 μm

onwards, they were fed only microdiets of 100– 200 μm particle size 
(Zebrafeed®, Sparos Lda, Olhão, Portugal).

At 30 days post- fertilization, the fish were transferred to a fresh-
water flow- through system (Zebtec Stand Alone Toxicological Rack, 

a commercial zebrafish diet (CZ) of 300 μm particle size. Fifty- day- 

used for the experiment. These fish were randomly distributed into 
12 tanks (12 fish per tank). The water temperature in the tanks was 

the tanks ranged between 7 and 8 ppm (oxygen saturation above 

day feeding experiment.

|

Sparos Lda. prepared the three diets that were fed to the experi-
mental fish (Figure S1). The reference zebrafish diet containing 
high- quality marine protein served as the control. The control diet 

of premium- quality marine protein sources (fishmeal, fish protein 
hydrolysate, shrimp meal), and the primary lipid sources were fish 

to induce a pro- inflammatory effect. The CP diet also contained a 

diet (PM, plant- based diet containing MacroGard®) was identical to 

yeast (Saccharomyces cerevisiae) β- glucan (MacroGard®, Biorigin,
Antwerp, Belgium). This inclusion level corresponded to a β- glucan 
supplementation of 1,000 mg/kg feed.

Diets were manufactured by SPAROS Lda. All powder ingredients 
were mixed and ground (< μm) in a micropulverizer hammer mill 
(SH1, Hosokawa- Alpine, Germany). Subsequently, the oils were added 

-
erated by a low- shear cold extrusion process (ITALPLAST, Italy). The 
resulting pellets of 0.6 mm were dried in a convection oven for 4 hr at 

sieved to guarantee the desired particle size. Diets were refrigerated 

manually as three rations at 08:00, 13:00 and 18:00), and each exper-
imental diet was offered to fish held in 4 replicate tanks.

|

Analysis of the experimental feeds was carried out with analytical 
duplicates (Table 1), following, in most cases, the methodology de-

-
ing 6 hr) in a muffle furnace (Nabertherm L9/11/B170, Germany). 
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The crude protein (N ×

technique followed by a gas chromatographic separation and ther-

Leco Corporation, USA). The evaluation of the crude lipid was done 

Extraction System (Gerhardt, Germany) with prior acid hydrolysis 
with 8.3 M HCl, and the gross energy was determined in an adiabatic 

|

At the end of the 30- day feeding trial, the fish were killed by immers-
ing in a lethal dose of 200 mg/L of tricaine methane sulphate (Argent 
Chemical Laboratories) buffered with an equal amount of sodium 
bicarbonate. After recording the weight of each fish using Scout® 
STX weighing balance (OHAUS, Parsippany), they were dissected on 
cold plates to collect the distal intestine. The tissue obtained was 

n = 4) 
from each treatment group were used for the transcriptomic analy-
sis. Similarly, 4 distal intestine samples (n = 4) were taken from each 
group for assessing the histomorphology.

|

To extract total RNA, the frozen intestine samples were briefly ho-

for 2 × 20 s in a Precellys 24 homogenizer (Bertin Instruments, 
Montigny- le- Bretonneux, France). RNA was extracted from the tis-
sue homogenate using Direct- zol™ RNA MiniPrep (Zymoresearch) 

-
tion, purity and quality were determined using NanoDropTM 
1,000 (Thermo Fisher Scientific) and Tape Station 2,200 (Agilent 
Technologies). RNA samples (RIN value >7) were used to construct 
RNA- Seq libraries. The preparation of libraries from total RNA was 
done using the NEBNext Ultra™ RNA Library Prep Kit (NE Biolabs) 
with the poly (A) mRNA magnetic isolation module following the 

μg of the total RNA was used for 
library preparation, and after Poly(A) enrichment, mRNA was frag-
mented to obtain fragments of 100– 200 nt length. Next, we synthe-
sized the first and second strand of cDNA, which was then purified, 

end- repaired and used for adaptor ligation followed by barcoding 
using NEBNext Multiplex Oligos (NE Biolabs). PCR enrichment was 
done with 9 cycles, and the amplified libraries were purified using 
AMPure XP beads (Beckman Coulter, Inc.). The barcoded libraries 
were then pooled and loaded at 1.4 pM on the Illumina NextSeq 

University genomics platform (Bodø, Norway).

|

Adapter sequences were trimmed from the raw reads using the fastp 
software (Chen et al., 2018) with default parameters. Further, the 
quality of the reads was assessed using the fastQC command line, 

They were then aligned to the reference zebrafish genome and tran-
scriptome that were downloaded from NCBI (release 100) using 
HISAT2, version 2.2.1, which uses an indexed reference genome for 

-
tureCounts (Liao et al., 2014) to obtain the read counts that belong to 
each gene. Differential expression of the genes across the treatment 
groups was determined by DESeq2 (Love et al., 2014). Transcripts 
with |Log2 p- 
value (q- value) of < -
tion method) were considered significantly differentially expressed 
and used for gene ontology analysis. Enrichment of KEGG pathways 
and gene ontology was performed with the software DAVID (data-
base for annotation, visualization and integrated discovery) version 

enhancedVolcano in R were employed to visualize the data.

|

Selected differentially expressed genes from the transcriptome data 
were employed to confirm the reliability of the RNA- Seq data; their 
relevance is presented in Table S1. The same samples used for RNA- 
Seq (n = 4) were employed for qPCR- based verification, and reac-
tions were run on triplicates. One μg of total RNA from each sample 
was reverse transcribed using the QuantiTect reverse transcription 

was further diluted 10 times with nuclease- free water and used as 
a PCR template. The PCR was conducted using the SYBR green in 
LightCycler® 96 Real- Time PCR System (Roche Holding AG, Basel, 

the Primer- BLAST tool in NCBI. The primers were then checked for 
secondary structures such as hairpin, repeats, self and cross dimer 
by NetPrimer (Premier Biosoft, Palo Alto, USA). The primers for the 
target genes are listed in Table S2. Relative expression of selected 
genes was determined based on the geometric mean of reference 
genes (eef1a and rpl13α), and we employed the primers that were re-
ported previously (Tang et al., 2007). The data were checked for as-

experimental diets

Dry matter 92.76 ± 0.08 92.72 ± 0.06 92.73 ± 0.06

Protein 66.76 ± ± 0.06 ± 0.04

Lipid 13.40 ± ± 0.04 ±

Ash 13.14 ± 0.04 8.46 ± 8.49 ± 0.03

21.44 ± 0.01 ± 0.02 ± 0.01
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statistical difference was determined by Student t
two- sample t- test for two group comparisons and analysis of vari-

|

Distal intestinal samples (n =
(w/v) phosphate- buffered formaldehyde solution (pH 7.2) at 4°C for 
24 hr. Standard histological procedures were employed for dehydra-
tion, processing and paraffin embedding. The paraffin blocks thus pre-

International GmbH). Four- micrometre- thick longitudinal sections 
were cut and mounted on SuperFrost® slides (Menzel, Braunschweig, 
Germany), and a robot slide stainer (Microm HMS 760×, MICROM 
International GmbH) was used to stain the slides with Alcian Blue– 

were stained blue with Alcian blue, and in the subsequent PAS reac-
tion, only the neutral mucins were stained magenta. Light microscopy 
photomicrographs were taken with the Olympus BX61/Camera Color 
View IIIu (Olympus Europa GmbH) and the photo program Cell P (Soft 

the tissue microarchitecture. To understand the histopathological 

of the intestine. Villi length, epithelium width, the width of lamina pro-
pria and goblet cell size were measured, and goblet cell numbers were 
counted from 4 fish per group (Figure S2). Statistical differences were 
identified using the independence test with exact distribution (Zeileis 
et al., 2008). Significant differences are reported for p <
trends in differences are described for p < 0.1.

|

|

Four hundred and twelve million raw reads were retrieved from 12 
samples, and after adapter trimming and quality filtering, 409 M reads 

302 M reads were uniquely mapped to the zebrafish genome and 
71 M reads were mapped to multiple locations in the genome. Overall, 

|

To understand the effect of dietary soya bean meal on zebrafish in-
testinal responses, we compared the intestinal transcriptome of the 
soya bean meal fed (CP) group with that of the control (CZ) group. 

q- value <
plot reveals the differential clustering of the CP and CZ groups, and

data (Figure 2a). The volcano plot (Figure 2b) shows the separation of 
differentially expressed genes based on Log2 fold changes.

Genes related to the immune response were differentially ex-
pressed in the CP group compared to the CZ group (Figure 1). Nod- 
like receptors (NLRs), namely, nlrc3 and nlrp12, were upregulated in 
the CP group by 7.4-  and 2.8- fold, respectively. GTPase genes like 
adp- ribosylation factor- like 4Ca (arl4ca), rab25 member ras oncogene 
family (rab25b) and ras homolog family member Ub (rhoub) were also 

gtpase imap 
family member 8- like (gimap8), by 8.9- fold. Genes like PR domain con-
taining 1c with ZNF domain (prdm1c) that are related to immune regu-
lation were downregulated in the CP group.

Many genes involved in metabolic and transport functions were 
also differentially expressed in fish fed the CP diet. The lipid metab-
olism gene, carnitine O- acetyltransferase a (crata), was upregulated by 

cyp2x10.2, cy-
p2aa2, were upregulated by 4.2-  and 3.8- fold, respectively. Similarly, 
fatty acid elongation gene elovl fatty acid elongase 6 (elovl6) was up-
regulated by 3.6- fold, while elovl fatty acid elongase 4 (elovl4b) was 

+- dependent enzyme aldehyde de-
hydrogenase 3 family, member A2b (aldh3a2b), solute carrier family 51 
alpha subunit (slc51a) and ATP- dependent proteases genes like LON 
peptidase N- terminal domain and ring finger 1 (lonrf1), and caseino-
lytic mitochondrial matrix peptidase chaperone subunit b (clpxb) were 
upregulated, while tryptophan hydroxylase- 1a (tph1a) and glycerol- 
3- phosphate acyltransferase (gpat2) were downregulated in the CP 
group. Barrier function- related genes, namely, mucin 5AC (muc5ac), 
guanylin (guca2a) and clathrin light chain B (cltb), were upregulated 
in the CP group, while mucin 5d (muc5d) and chloride channel 2c 
(clcn2c) were downregulated in the CP group. Interestingly, we also 
found cilia- related gene, namely, dynein axonemal assembly factor 3 
(dnaaf3
the other hand, another cilia- related gene, regulatory factor X 3 (rfx3), 
was downregulated in the CP group. Several genes such as cohesin 
subunit genes (stag2, rad21l1), serine/threonine- protein kinase 31- 
like (stk31), spo11 initiator of meiotic double- stranded breaks (spo11), 
speedy/ringo cell cycle regulator family member A (spdya), tudor domain 
containing (tdrd6, tdrd9) and nucleic acid binding protein 1b (nabp1b) 
that are related to cell cycle and DNA damage and genes related to 
reproduction, namely, testis- specific 10 (tsga10), spermatogenesis as-
sociated (spata6l, spata22) and zona pellucida glycoprotein 3d (zp3d.2), 
were downregulated in the CP group.

|

The analysis revealed the enrichment of several GO terms (Figure 3a) 
in the soya bean- fed fish (CP). The differentially upregulated genes 
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in the CP group caused the significant enrichment of oxidoreductase 
activity, ATP- dependent peptidase activity, oxidoreduction process 
and small GTPase- mediated signal transduction. On the other hand, 
the downregulated genes in the CP group caused the significant en-
richment of GO terms such as reproductive process, cell cycle, ni-
trogen metabolism, DNA repair and metabolic process (Figure 3b).

| ®

To analyse the effect of dietary glucan supplementation on ze-
brafish, we compared the data from the fish fed MacroGard® (PM) 

28 differentially expressed genes in the PM versus CP group: 9 were 
q- 

value <
genes, 12 were uncharacterized. The PCA plot illustrates the separa-

separation of differentially expressed genes in the PM group com-
pared to the CP group.

Among the upregulated genes in the PM versus CP group were 
neutrophil protease elastase 2 (ela2), actin- related protein 2/3 complex 
subunit 4 like (arpc4l) and autophagy- related gene receptor- interacting 
serine- threonine kinase 2 (ripk2). The most downregulated (by 8- fold) 
genes in the PM group was chemokine C- C motif ligand 36 (ccl36.1). 
The other downregulated genes were anti- viral genes, namely, sterile 

alpha motif domain- containing protein 9 like (samd9) and interferon- 
induced protein with tetratricopeptide repeats 9 (ifit9), metabolic gene 
alpha (1,3) fucosyltransferase gene 2 (ft2), iodothyronine deiodinase 2 
(dio2), GTPase gene ADP- ribosylation factor 4b (arf4b) and pleckstrin 
2 (plek2).

Comparison of the PM and CZ groups revealed 23 differentially 
-

q- value <
Of these differentially expressed genes, 12 were uncharacterized. 
The principal component analysis plot reveals differential cluster-
ing of the PM and CZ groups; the first principal component (PC1) 

(Figure 7b) shows the separation of differentially expressed genes 
based on Log2 fold changes. CP and PM versus CZ and CP versus 
PM comparisons revealed some common differentially expressed 
genes (Figures 4 and 6). The upregulated gene, ifi30 lysosomal thiol 
reductase (ifi30) (upregulated by 7.6- fold) and the downregulated 
genes, gtpase imap family member 4- like (gimap4), coiled- coil domain- 
containing protein 134 (ccdc134), interferon- induced very large gtpase 
1 (vlig- 1) and enoyl- acyl- carrier- protein reductase, mitochondrial- like 
(mecr), were detected only by the PM versus CZ comparison.

|
®

The downregulated genes in the PM compared to the CP group 
revealed the significant enrichment of several GO terms like small 

Differentially expressed genes in the intestine of the soya bean group (CP) compared to the control (CZ) group. An adjusted 
p
order of Log2 fold change). Each treatment group consisted of four biological replicates
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GTPase- mediated signal transduction, intracellular signal transduc-
tion, response to stimulus, carbohydrate derivative binding, GTP 
binding, guanyl ribonucleotide binding and guanyl nucleotide bind-
ing (Figure 8). GO term analysis did not reveal any enrichment based 
on the upregulated genes in the PM group. Five of the abovemen-
tioned GO terms (based on downregulated genes from PM versus 
CP groups) were also enriched by the downregulated genes from the 
PM versus CZ comparison, small GTPase- mediated signal transduc-
tion, GTP binding, guanyl ribonucleotide binding and guanyl nucleo-
tide binding and intracellular cellular signal transduction (Figure S4). 
None of the differentially expressed genes caused a significant en-
richment of KEGG pathways.

|

Table S1 (Figure 9). Overall, the expression of the selected genes was 
in agreement with transcriptomics data (Figure 10).

| ®

Statistical analysis of the goblet cell numbers revealed a decreasing 
trend (p < 0.1) in the CP group compared to the CZ group (Figure 11a, 

b). An apparent widening of the lamina propria could also be ob-
served in the CP group compared to the CZ group, but the difference 
was not statistically significant (Figure 11a, b; p >

compared to the CP group. The CP group had shorter villi (based on a 
trend indicated by p < -

|

Soya bean meal is used as an inflammatory agent to develop intes-
tinal inflammation models. Previous studies using zebrafish larvae 

induce enteritis, characterized by changes in the expression of in-
flammatory genes and intestinal permeability (Hedrera et al., 2013; 

soya bean meal to understand the effect of soya bean- induced in-
flammation in zebrafish juveniles; to our knowledge, there are not 
many studies that reported the effect in juveniles. Here, we report 
that the responses in juvenile zebrafish towards soya bean meal are 
not as strong compared to responses in larvae, and acute inflam-
matory signals were not evident; we did not observe any changes 
in the expression of key inflammatory genes. Nevertheless, our 
study revealed the dietary soya bean- induced changes in the ex-
pression of several immune and metabolic genes. Furthermore, we 

Intestinal transcriptome- based differences in the soya bean group (CP) compared to the control (CZ) group. Principal 
component analyses (a) and Volcano plot (b) of the differentially expressed genes in the CP group compared to the CZ group. Volcano plot 
shows the differentially expressed genes (red dots) with an adjusted p
consisted of four biological replicates
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Chord diagram showing the link between the enriched GO terms in the soya bean (CP) group and the associated genes. 
The genes were upregulated (a) and downregulated (b) in the CP group compared to the control (CZ) group. The enriched GO terms 
are colour- coded, and differentially expressed genes contributing to this enrichment are shown on the left of the circle. The gradient 
colour bar intensity varies with the Log2 fold change (adjusted p- value <

Differentially expressed 
genes in the intestine of the MacroGard® 
group (PM) compared to the soya bean 
group (CP). An adjusted p- value below 

employed to generate the results (dots 
are plotted from left to right in the 
increasing order of Log2 fold change). 
Each treatment group consisted of four 
biological replicates

Intestinal transcriptome- 
based differences in the MacroGard® 
group (PM) compared to the soya 
bean group (CP). Principal component 
analyses (a) and heatmap (b) of 
differentially expressed genes in the 
PM group compared to the CP group. 
Each treatment group consisted of four 
biological replicates
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investigated the intestinal transcriptomic response involved in coun-
teracting the soya bean- induced alterations in zebrafish juveniles 
fed MacroGard®

the fish fed soya bean diet (CP) with those fed a commercial feed 
(CZ); the altered genes were related to, among others, oxidative pro-
cesses, small GTPase, ATP- dependent proteases, DNA repair and 

cell cycle and the enriched GO terms included oxidoreductase activ-
ity, oxidoreduction process and small GTPase signal transduction, 
reproductive process, cell cycle, DNA repair and metabolic process. 
The comparison of intestinal transcriptome of the fish fed soya bean 
diet (CP) with those fed a MacroGard®- soya bean mixture (PM) re-
vealed the changes that can be attributed to the barrier maintenance 
effect of the product. The inclusion of MacroGard® in the soya bean 
diet altered the expression of several barrier and immune related 
genes and the enriched GO terms were small GTPase- mediated sig-
nal transduction, intracellular signal transduction, response to stim-
ulus and carbohydrate derivative binding.

Ras proteins belong to a prominent family of small GTPases. 
These proteins are activated by extracellular stimuli and feeding soya 
bean meal to zebrafish upregulated genes such as rhoub, rab25b and 
arl4ca that are members of small GTPases. The former two genes are 
known to control epithelial cell polarity (Krishnan et al., 2013; Van 
Aelst & Symons, 2002). Furthermore, rab25b can regulate the ex-
pression of claudins, the epithelial tight junction proteins (Krishnan 
et al., 2013) and influence protein trafficking (Kessler et al., 2012). 
Overexpression of rab25 is associated with microtubule- dependent 
transformation and integrin- dependent focal adhesion disruption 
(Lapierre et al., 2011). Overexpression of rhoub also disturbs epithe-
lial focal adhesion and tight junctions (Chuang et al., 2007). The gene 
rho was upregulated in the intestine of salmon fed a plant- based feed 

arl4ca is known to stim-
ulate intestinal epithelial tubule formation (Matsumoto et al., 2014). 
Furthermore, higher expression of arl4ca can enhance cellular 

Differentially expressed genes in the intestine of 
the MacroGard® group (PM) compared to the control group (CZ). 
An adjusted p
employed to generate the results (dots are plotted from left to right 
in the increasing order of Log2 fold change). Each treatment group 
consisted of four biological replicates

Intestinal transcriptome- based differences in the MacroGard® group (PM) compared to the control (CZ) group. Principal 
component analyses (a) and Volcano plot (b) of the differentially expressed genes in the PM group compared to the CZ group. Volcano plot 
shows the differentially expressed genes (red dots) with an adjusted p
consisted of four biological replicates
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Moreover, small GTPase alterations are linked to barrier function 
defects caused by intestinal epithelial and endothelial cytoskele-
tal rearrangement (López- Posadas et al., 2017). Specific functional 
studies are needed to investigate the role of small GTPases in main-
taining the intestinal barrier in zebrafish.

Several other genes namely muc5ac, muc5d, clcn2c and cltb that 
are regulators of intestinal barrier function were altered in the soya 
bean fed group. Mucins are glycoproteins present in mucus, and 
gel- forming mucins, namely, muc5ac- like and muc5d (muc2- like), 
were significantly altered in zebrafish fed soya bean. During intes-
tinal inflammation in humans, muc2 was downregulated because of 

muc5ac 
in the intestine cells of humans by food- derived peptides has been 
reported previously (Martínez- Maqueda et al., 2012). In our study, 
muc- 5ac- like (2.9- fold) was upregulated, and muc5d (7- fold) was 
downregulated in the CP group. A similar downregulation of muc2- 
like and upregulation of muc- 5b like in the intestine of salmon fed 

addition, muc2
bean meal (Sørensen et al., 2021). Further research is required to 
conclusively establish the response of mucin genes to plant- based 
diets. The clcn2c gene codes for a voltage- gated chloride channel, 
which plays a critical role in preserving the intestinal barrier. The 
protein, Clcn2c, is found near tight junctions, and its deficiency has 
been associated with increased endocytosis of occludins (Nighot 
& Blikslager, 2012), which enhances the severity of DSS- induced 

colitis and intestinal paracellular permeability (Ye et al., 2010). clcn2 
was downregulated in the intestine of Atlantic salmon fed soya 
bean products (Kiron et al., 2020) as observed in the present study. 
Furthermore, the observed upregulation of cltb is known to promote 
clathrin- mediated endocytosis of both adherens and tight junction 
proteins in intestinal epithelial cells (Ivanov et al., 2004). The ex-
pression of cltb increased during exposure to pathogens, inflamma-
tory cytokines and dietary soya bean (Fukumatsu et al., 2012; Król 
et al., 2016; Utech et al., 2010). Therefore, the altered expression of 
muc5ac, muc5d, clcn2c and cltb in the CP group probably indicates 
aberrant barrier integrity in the intestine of zebrafish fed soya bean 
diet.

Changes in the barrier function are often linked to abnormalities 
in the paracellular or transcellular transport of ions. The genes, gu-
ca2a, dnaaf3 and rfx3 were altered in the soya bean fed group. The 
intestinal natriuretic peptide, guca2a, secreted into the lumen binds 
to guanylate cyclase- C (gc- c) receptor and inhibits sodium and water 
absorption and increases bicarbonate and chloride secretion via 
cGMP- dependent signalling pathways (Nakazato, 2001). The peptide 
also acts as a second messenger that affects smooth muscle con-
tractibility (Ochiai et al., 1997). Reduced expression of guca2a and 
gc- c is known to damage intestinal epithelium and increase inflam-

gc- c 
results in diarrhoea in humans (Fiskerstrand et al., 2012). Our finding 
of increased expression of guca2a corroborates the result linked to 
saponin feeding in salmon (Kortner et al., 2012). The gene, dnaaf3, 
encodes for an axonemal cytoskeletal motor protein of cilia, and rfx3 

Chord diagram showing the 
link between the enriched GO terms in 
the MacroGard® group and the associated 
genes. The genes were downregulated in 
the PM group compared to the soya bean 
(CP) group. The enriched GO terms are 
colour- coded, and differentially expressed 
genes contributing to this enrichment 
are shown on the left of the circle. The 
gradient colour bar intensity varies with 
the Log2 fold change (adjusted p- value 
<
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is a transcriptional factor that regulates the expression of axonemal 
dyneins; both these genes are involved in the motility of cilia (El Zein 
et al., 2009). Abnormality of dnaaf3 and rfx3 is linked to dyskinesia 
(Mitchison et al., 2012), and abdominal wall dyskinesia is associated 
with uncontrolled motility of the muscle (Gupta & Kushwaha, 2017). 
Although a direct connection between these genes and intestinal 
functions has not been confirmed yet, intestinal motility increases 
during dietary cholesterol- induced alteration in zebrafish (Progatzky 

and cholesterol accumulation in immune cells is known to be a cause 
of intestinal inflammation (Progatzky et al., 2014).

Inflammation is associated with changes in the expression of 
key inflammatory genes like interleukins and other cytokines as 
observed in chemical- induced inflammation in adult zebrafish 
(Brugman et al., 2009; Geiger et al., 2013). However, we did not 
observe dietary soya bean- induced changes in the expression of 
inflammatory cytokines. In our study, the expression of several 
immune- related genes like nlrc3, nlp12, gimap8, tph1a and prdm1c 
were altered in the soya bean fed group. NOD- like receptor (NLRs) 
genes like nlrc3 and nlrp12 that are localized in immune cells and are 

known to inhibit inflammatory cytokine production (Allen, 2014) 
were upregulated in the CP group, indicating an attempt of ze-
brafish to cope with the soya bean- induced alterations. The gene 
gimap8 was found to correlate with the recirculating B- cell num-
bers, and deletion of gimap can delay the apoptosis of mature T 
cells (Filén & Lahesmaa, 2010). In the present study, we observed 
an 8- fold reduction in gimap8 in fish- fed soya bean diet. Another 
study also pointed out the downregulation of gimap8; in soya bean 
meal fed yellow perch (Megan Marie Kemski, 2018). On the other 
hand, in Atlantic salmon a 3- day feeding of soya bean meal diet led 
to alteration of two other gimap genes: gimap4 (downregulated) and 
gimap7 (upregulated) (Sahlmann et al., 2013). Another gene, prdm1 
(blimp- 1), that is known to affect the development and differentia-
tion of T and B cells was downregulated in the CP group. Deletion 
of prdm1 in mice resulted in the loss of T regulatory cell functions 
(Ogawa et al., 2018) and progression of chronic intestinal inflam-
mation (Salehi et al., 2012). The gene, tph1, is a mast cell- derived 
immune tolerance factor that regulates inflammatory response in 

probiotic L. rhamnosus increased the expression of tph1a in the gut 

Relative gene expression of 10 selected genes in the intestine of the zebrafish fed control (CZ), soya bean (CP) and 
MacroGard® (PM) diets (n = 4). Asterisks *** indicate p < 0.001, ** indicate p < 0.01, * indicates p < p < 0.1
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of zebrafish (Borrelli et al., 2016), soya bean feeding, in our study, 
downregulated tph1a.

Soya bean feeding caused an enrichment of oxidoreductase ac-
tivity driven by the upregulation of cyp2x10.2, cyp2aa2, dio2 and al-
dh3a2b. Plant- based feeds can induce reactive oxygen species, ROS 
(Zhang et al., 2020), and cyp is involved in the production of ROS 
(Veith & Moorthy, 2018). The increased expression of the aldh3a2b 
gene also implies oxidative stress (Singh et al., 2013). Diet- induced 
oxidative stress brought about by terrestrial plant ingredients has 
been reported frequently in teleosts (Olsvik et al., 2011). However, 
the extent to which an organism copes with stress is largely de-
pendent upon its inherent ability to produce antioxidant enzymes 
(Birnie- Gauvin et al., 2017). An increase in ROS negatively affects 
the protein- folding capacity of mitochondria resulting in an accu-
mulation of misfolded or misassembled proteins (Scherz- Shouval & 
Elazar, 2007). ATP- dependent proteases participate in mitochondrial 
protein remodelling, folding and degradation to maintain organelle 
homeostasis (Baker et al., 2011). The enrichment of ATP- dependent 
peptidase activity by the upregulated mitochondrial matrix genes, 
namely, lonrf1 and clpxb, which are involved in the degradation of 
misfolded or damaged proteins (Baker et al., 2011), probably indi-
cates an effect of dietary soya bean on the mitochondrial protein- 
folding environment. Furthermore, mitochondrial dysfunction 
during DSS- induced intestinal inflammation has been reported pre-
viously (McQueen et al., 2019) and mitochondrial dysfunction has 
been associated with the development of inflammation (Novak & 

Soya bean products have also been shown to be potent arres-
tors of the cell cycle machinery, and this ability is being investi-
gated to promote their use as anticancer agents (Zhang et al., 2013). 
Dysregulation of the intestinal cell cycle has consequences for in-

induced cell cycle alterations in the intestine of zebrafish have been 
previously reported (Peyric et al., 2013). Several genes such as, 
spo11, rad21l1, nabp1b and spata22 that are related to cell cycle were 
downregulated in the CP group. The downregulation of the genes 
related to the cell cycle is likely to be a consequence of exposure to 
bioactive compounds present in the soya bean meal. Chronic DSS 
mice inflammation model has revealed the associated reduction in 
the intestinal villi height, but the authors have not attributed the ab-
erration to cell cycle but to enterocyte apoptosis (Parker et al., 2019). 
Some of the genes that were associated with the enriched GO term 
cell cycle were also associated with another GO term DNA repair 
due to the significantly downregulated genes spata22, spo11, rad21l1, 
tdrd9 and nabp1b. DNA integrity is preserved by cells through the 
activation of an evolutionarily conserved network known as DNA 
damage response (DDR), and DDR in a cell is activated to repair le-
sions in DNA and to ensure genome stability (Campos & Clemente- 
Blanco, 2020). The cellular responses are also affected by oxidative 
stress (Barzilai & Yamamoto, 2004). The increase of oxidoreductase 
activity and oxidoreduction processes by the upregulated genes in 
the CP group might be pointing to oxidative stress as mentioned 
previously. This endogenous factor can jeopardize genome stability 
(Campos & Clemente- Blanco, 2020). Furthermore, the knockdown 

Correlation between the 
normalized counts from the RNA- Seq 
data and gene expression values from the 
qPCR data
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of tdrd9 promotes DNA double- strand break (DSB) in tumour posi-
tive cell lines (Guijo et al., 2017), while Spo11 is the catalytic unit of 
meiotic DSB formation (Keeney, 2008). On the other hand, the genes 
rad21, spata 22 and nabp1 are essential for DSB repair (Boucher 

-
ation in the expression of genes related to cell cycle, DNA damage 
and DNA repair machinery by soya bean meal in zebrafish is worth 
further investigation.

Lipid metabolism in the intestine is a complex process that in-
volves the absorption of lipid species into the enterocytes and their 
ensuing transport. Besides, the energy demands of enterocytes are 
heavily dependent on fatty acid (FA) oxidation. The gene crata is in-
volved in the transfer of FAs from the cytoplasm to mitochondria for 
β oxidation. Short-  and long- term studies in rats have revealed that 
dietary soy proteins can cause a sustained reduction in the insulin: 
glucagon ratio (Tovar et al., 2002). This reduction has been further 
linked to increased β oxidation through increased expression of crata 

-
tion of lipids in the intestine through alteration of the bile physiology 
in fish (Murashita et al., 2018). The high affinity of the amino acids of 
soya protein to bile acids prevents the reabsorption of the latter (Choi 

slc51a in the CP group, 
and the solute carrier is essential for intestinal bile acid absorption 
(Ballatori et al., 2013). Glycerol- 3- phosphate acyltransferase (gpat) 

is the first rate- limiting enzyme involved in the de novo biosynthe-
sis of the glycerolipid pathway. In an in vitro study, soya isoflavone 
downregulated gpat in HepG2 cell line (Shin et al., 2007), whereas 
intraperitoneal injection of the same product upregulated gpat in the 

downregulation (by 4.9- fold) of gpat2 in the CP group. ELOVL family 
of fatty acid elongases catalyses the formation of long- chain fatty 
acids; elovl4 can catalyse the synthesis of both very- long- chain sat-
urated fatty acids and very- long- chain polyunsaturated fatty acids 

elovl4 elongates PUFAs, and higher intake of LC- PUFA has an in-
verse relationship with the IBD onset (Ananthakrishnan et al., 2014). 
On the other hand, elovl6 is known to promote high fat diet- induced 
inflammation (Matsuzaka et al., 2012) and enhance macrophage 
recruitment to lipid deposits in aortic blood vessel in mice (Saito 
et al., 2011). A previous study has also indicated an upregulation of 
elovl6 in the intestine of fish- fed soya bean (Kemski et al., 2020).

Soya bean- derived bioactive compounds resemble the structure 
of endogenous oestrogens, which can bind to oestrogen receptors 

Several downregulated genes (tsga10, spata22, tdrd9, zp3d.2a) in 
the CP group caused a significant enrichment of the reproductive 
process- related GO terms. Previous studies have reported an ef-
fect of soya bean meal on reproductive performance and endocrine 

Differences in micromorphology of the distal intestine of zebrafish fed different feeds. Representative histological images 
(a) and box plots (b) showing the changes in the tissue architecture of the distal intestine of zebrafish stained with AB- PAS. The control
group (CZ) has more absorptive vacuoles. MacroGard® group (PM) has a narrower lamina propria compared to the soya bean group
(CP). Goblet cells (red arrow) and lamina propria (yellow arrow) are shown in image (a). Scale bar = μm
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disruption in fishes (Bennetau- Pelissero et al., 2001; Ng et al., 2006). 
The downregulation of genes related to the reproductive process in 
the CP group indicates possible effects on the reproductive perfor-
mance of zebrafish. Zebrafish become sexually mature around 90 
dpf, and when our experiment was terminated, the fish were 80 
dpf. It should be noted that the effect of soya bean feeding on re-
productive performance was not the main objective of our study. 
Nevertheless, we assume that soya bean feeding might have sup-
pressed some processes due to the alteration of the associated 
genes; during the experimental period, the fish may have entered 
the reproductive developmental phase.

After understanding the effects of soya bean on intestinal tissue, 
we delineated the effectiveness of MacroGard® in counteracting 
the adverse effects of soya bean, for example barrier function dis-

® fed group (PM) with both 
the CP and CZ groups. Among the many natural anti- inflammatory 
substances, MacroGard® effectively suppresses inflammatory cy-
tokines and maintains mucosal barrier integrity and gut microbiota 
balance (Bacha et al., 2017; Carballo et al., 2019).

Soya bean feeding for 30 days did not alter the inflamma-
tory cytokines in zebrafish. On the other hand, certain genes that 
could affect barrier functions were altered in zebrafish fed soya 
bean. Based on the observed alterations of genes in the intestine 
of zebrafish fed soya bean meal, we presume that the ingredient is 
likely to affect the barrier integrity in the fish. Intestinal disorders 
are accompanied by increased intestinal barrier permeability which 
facilitates microbes to cross the protective mucosal layer resulting 

ripk2 is known to pro-
mote autophagy (Lupfer et al., 2013), and overexpression of ripk2 
was correlated with increased ability of cells to resist viral and bac-

-
tion of ripk2 in the PM group. In the epithelial cells, actin filament 
turnover is essential for adherens and tight junction assembly, which 
in turn regulates the barrier integrity. The gene actin- related protein 
(Arp) 2/3 complex (arpc4l), which is known to nucleate the branches 
of actin filaments (Amann & Pollard, 2001), was upregulated in the 
PM group. Furthermore, arp2/3 complex deficiency is associated 
with cellular abnormalities and more susceptibility to inflammation 
(Kahr et al., 2017). Although it is believed that the paralogs of arf4 
are present in the actin filaments, the localization and functions of 
arf4b are still unknown (Marwaha et al., 2019). Hence, we are unable 
to explain the downregulation of arf4b in the PM group.

Chemokines are low molecular weight proteins that guide spe-
cific leukocytes like macrophages or neutrophils to appropriate 

group, the chemokine motif ligand gene ccl36.1 was the most down-
regulated gene. There are 2 duplicates for ccl36 in zebrafish, with 
no orthologues of the gene found in human and mouse genomes. 
Furthermore, the specific role of ccl36.1 has not been reported yet. 
ccl36.1 was downregulated in flounder embryonic cells infected with 
viral haemorrhagic septicaemia virus (Hwang et al., 2021). The gene 
ela2 encodes for serine protease in neutrophil and monocyte gran-
ules; the inflammatory condition is associated with an upregulation 

of the gene and alteration of the serine protease can impair barrier 
integrity (Pham, 2008). On the other hand, the proteolytic process-
ing of chemokines by neutrophil elastase can decrease the activity 

compromising their chemotactic action on immune cells. β- glucan 
can affect the chemotactic migration of leukocytes and the activity 
of cytokines (LeBlanc et al., 2006) and the alteration in the expres-
sion of these genes by β- glucan suggests a homeostatic role in mod-
ulating the inflammatory response in the tissue.

Several genes like ft2, dio2, plek2, ifit9 and samd9 were down-
regulated in the PM group. Although the main function of the ox-
idoreductase selenoenzyme, dio2, is to catalyse the conversion of 
T4 to T3 (activated form of thyroid hormone), the gene plays a sig-
nificant role in monocyte and macrophage functions via cytokine se-
cretion (Van der Spek et al., 2020). An increased expression of dio2 
was observed both in murine liver and murine macrophages after 
an inflammatory stimulus (Kwakkel et al., 2014). The expression of 
dio2 was downregulated in the PM group, while a comparison of CP 
versus CZ groups revealed the upregulation of the gene in the CP 
group, indicating the efficacy of dietary β- glucan in counteracting 
the soya bean induced response. Pleckstrin (plek2) is involved in the 
pro- inflammatory cytokine secretion and the phosphorylation of 
this protein increases proinflammatory cytokine secretion by macro-
phages in diabetes mellitus patients (Ding et al., 2007). Furthermore, 
knockdown of plek2 resulted in decreased cytokine production in 
the human macrophage (Ding et al., 2007). The gene ft2 (fut2) en-
codes the enzyme α(1,3) fucosyltransferase that catalyses the ad-
dition of terminal α(1,2)- fucose residues on intestine epithelial cells, 
and these residues act both as an attachment site and carbon source 
for intestinal bacteria. Knockdown of fut2 in the intestine epithelial 
cell line of piglets decreased the adhesion of E.coli
Interferon induced protein with tetratricopeptide repeats (ifit) and the 
cytoplasmic protein sterile alpha motif domain- containing protein 9- 
like (samd9) are stimulated after virus exposure. The gene ifit was 
upregulated in the inflamed tissues of inflammatory bowel disease 

samd9 is positively regulated by inflammatory cytokines IFN- γ and 
TNF- α (Hershkovitz et al., 2011).

Among the differentially expressed genes, we detected some 
common genes in the CP versus CZ and PM versus CZ compari-

bean meal in the two diets (CP and PM). ifi30 lysosomal thiol reduc-
tase (ifi30/gilt) that is expressed on antigen- presenting cells either 
facilitates major histocompatibility (MHC) class- II restricted- antigen 
presentation via the reduction of disulphide bonds in the antigen or 
enables cross presentation (Hastings, 2013). Furthermore, β- glucan 
is recognized by the immune receptors present on the antigen- 
presenting cells, causing an increased expression of MHC- II (Sonck 
et al., 2011). The upregulation of ifi30 in the PM group may partly be 
explained by the recognition and processing of β- glucan by antigen- 
presenting cells in the intestine. Although the expression of vlig- 1 is 
induced by interferons, the functional significance of its downreg-
ulation is yet to be revealed (Haque et al., 2021). The gene ccdc134 
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serves as an immune cytokine promoting CD8(+) T- cell activation 
(Huang et al., 2014), and hence, the downregulated expression of 
ccdc134 in the PM group suggests an immunomodulatory response 
following β- glucan feeding.

The abovementioned alterations of genes by MacroGard® likely 
point to the immunomodulatory and barrier safeguarding effects of 
the additive. Furthermore, GO terms namely GTP binding and small 
GTPase mediated signal transduction were suppressed because of 
the downregulation of certain genes in the PM group. On the other 
hand, small GTPase signal transduction was enriched by the upregu-
lated genes in the CP versus CZ comparison. These two results prob-
ably indicate the impact of soya bean feeding on the barrier function 
and the counteracting effect of MacroGard® through intestinal bar-

of the lamina propria is a hallmark of inflammation (Brugman, 2016), 
and a manifestation of compromised intestine barrier function 
(Laukoetter et al., 2008). Although there was a widening of lamina 
propria in the CP group compared to CZ, this difference was not 

-
ish larvae also did not induce any changes in the intestinal morphol-
ogy (Hedrera et al., 2013; Solis et al., 2020). On the other hand, 

intestinal inflammation in chinook salmon, Atlantic salmon (Booman 
-

sion analysis in the present study indicated an aberrated barrier 
function due to alteration of arl4ca, rab25b, rhoub, clcn2c, cltb and 
guca2a. Furthermore, our results indicated fewer goblet cells in the 
CP group, suggesting a dysregulated mucus production (Brugman 
et al., 2009). This reduction in the goblet cell number can be linked to 
the alteration of the mucin genes muc5ac and muc5d in the CP group. 
It is noteworthy that MacroGard® feeding significantly reduced the 
lamina propria width in zebrafish juveniles compared to those fed CP 
diet, indicating a positive effect of β- glucan on the intestinal barrier 

Intestinal inflammation in zebrafish is often linked to a shift in mi-
crobial communities (Brugman et al., 2009). Furthermore, it has been 
observed that zebrafish intestinal microbiota changes in terms of di-
versity and composition from larval to the juvenile stage (Stephens 
et al., 2016). Therefore, it may be speculated that the resistance to 
soya bean- induced inflammation may be due to either a specific mi-
crobiota profile or mature adaptive immune system of the juvenile 
zebrafish compared to the larvae. Hence, future studies can investi-
gate how exposure to dietary soya bean meal influences the juvenile 
zebrafish intestinal microbiota. Furthermore, functional studies are 
required to establish the mechanisms that may ultimately explain the 
role of the functional adaptive immune system and/or microbiota in 
countering inflammation in juvenile zebrafish.

|

The intestinal transcriptome of juvenile zebrafish fed soya bean- 
based feed revealed the modulation of several genes related to 

barrier function, oxidative stress, mitochondrial protein folding, cell 
cycle, DNA damage and DNA repair. Furthermore, dietary soya bean 
meal affected the expression of several immune and reproductive 

the expression of key pro- inflammatory genes, mild inflammatory sig-
nals were evident in zebrafish. Nevertheless, MacroGard® in the soya 
bean- based feed indicated a positive effect on the mucosal barrier 
with the histomorphological changes supporting the gene expres-
sion results. Since we observed only subtle inflammatory responses 
of soya bean feeding, future studies should employ higher incorpora-
tion levels of soya bean meal or consider using antinutritional factors 
like saponin to induce inflammation in zebrafish juveniles. In addition, 
the reason behind the considerable resistance of juvenile zebrafish to 
soya bean- induced enteritis needs to be verified.
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Developmental defects and
behavioral changes in a diet-
induced inflammation model
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Soybean meal evokes diet-induced intestinal inflammation in certain fishes.

Although the molecular aspects of soybean-induced intestinal inflammation in

zebrafish are known, the impact of the inflammatory diet on fish behavior

remain largely underexplored. We fed zebrafish larvae with three diets -

control, soybean meal and soybean meal with b-glucan to gain deeper

insight into the behavioral changes associated with the soybean meal-

induced inflammation model. We assessed the effect of the diets on the

locomotor behavior, morphological development, oxygen consumption and

larval transcriptome. Our study revealed that dietary soybean meal can reduce

the locomotor activity, induce developmental defects and increase the oxygen

demand in zebrafish larvae. Transcriptomic analysis pointed to the suppression

of genes linked to visual perception, organ development, phototransduction

pathway and activation of genes linked to the steroid biosynthesis pathway. On

the contrary, b-glucan, an anti-inflammatory feed additive, counteracted the

behavioral and phenotypic changes linked to dietary soybean. Although we did

not identify any differentially expressed genes from the soybean meal alone fed

group vs soybean meal + b-glucan-fed group comparison, the unique genes

from the comparisons of the two groups with the control likely indicate

reduction in inflammatory cytokine signaling, inhibition of proteolysis and

induction of epigenetic modifications by the dietary glucan. Furthermore, we

found that feeding an inflammatory diet at the larval stage can lead to long-

lasting developmental defects. In conclusion, our study reveals the extra-

intestinal manifestations associated with soybean meal-induced

inflammation model.
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Introduction

Intestinal inflammation is a significant health problem that

affects a considerable portion of the world population (1). A

myriad of genetic and environmental factors have been

associated with the onset of the disease (2) and intestinal

inflammation can adversely affect the functions of other

organs. For instance, chronic intestinal inflammation can lead

to the development of several forms of psychiatric disorders (3–

5). Mice models have been employed to understand the

aftereffects of intestinal inflammation (6). For example, stress-

associated behavior of chemically-induced colitis model (7, 8)

and compromised cognitive ability after the consumption of

high-fat inflammatory diet (9).

Similar to mice, zebrafish is a model organism widely used to

understand intestinal inflammation (10, 11). This model

replicates inflammation hallmarks like increased intestinal

permeability, immune cell recruitment and alteration in the

microbiota profile (12–14). An inflammation model of

zebrafish has been developed by feeding zebrafish larvae at 5

days post-fertilization (dpf) with a soybean meal-based diet (12,

15). The success of the model could be due to triggering of an

inflammatory reaction in the intestine of zebrafish larvae by

saponins, which are antinutritional factors in soybean meal (12).

This model is used extensively and mainly to understand the

molecular aspects of diet-induced inflammation (15, 16).

However, the extra-intestinal manifestations of this

model have not been extensively studied. We believe that

zebrafish is an ideal model to study diet-induced changes in

swimming behavior.

Zebrafish larvae start to swim freely at around 4 dpf and

their swimming behavior is modulated by both internal and

external stimuli (17). At this early stage, larvae have a narrow

repertoire of discrete stereotyped movements, which can be

assessed to understand their behavior. With the use of

automated movement tracking systems, it is now possible to

monitor the activity of an individual and split a particular

movement into several measurable parameters like distance

travelled, movement, heading and turn angle which can be

assessed to understand behavioral changes. In the present

study, we analyzed the locomotor behavior of zebrafish larvae

to understand the behavioral changes associated with a well-

established soybean meal-induced inflammation model (12, 15).

Additionally, we exploited transcriptomics data to gain deeper

insight into the underlying molecular aspects of behavioral

changes in the larval zebrafish model. Since it is well-known

that b-glucan can impart anti-inflammatory effects (18, 19), we

tested the efficacy of a commercial product to abate soybean

meal-induced behavioral changes.

Materials and methods

Zebrafish husbandry

Adult zebrafish (AB strain) were maintained in a

recirculatory aquaculture system at Nord University, Norway,

following standard protocols (20). Zebrafish eggs were obtained

by naturally breeding sexually mature males and females. Fish in

five tanks were used for breeding, and in each of these tanks

there were 15 males and 30 females. They were community bred

and 300-400 eggs were obtained from each tank. These eggs were

kept in larval rearing tanks (3.5 L) which were part of a

freshwater flow-through system (Zebtec Toxicological Rack,

Tecniplast, Varese, Italy), hereafter called system water. The

eggs were randomly distributed into 18 rearing tanks, with 100

eggs in each tank. The water temperature in the tanks was 28 ±

0.5°C, the water flow rate was 1 L/h, and dissolved oxygen was 7-

8 ppm (oxygen saturation > 85%). A 14L:10D photoperiod was

maintained throughout the experimental period.

Test diets and feeding study

Five-day-old larvae (five days post fertilization, 5 dpf) were

used for the study and the test diets were prepared by SPAROS

Lda (Olhão, Portugal). The control diet, CT, was a fish meal-

based diet with high-quality marine protein. Soybean-based diet

(SBM) contained 50% of the test component to induce a pro-

inflammatory effect (12, 15). The b-glucan diet (BG) was

supplemented with 2.5% (w/w) of the product Aleta™

(derived from the microalga Euglena gracilis; Kemin, Des

Moines, USA) in the SBM diet (Supplementary Table 1). Each

experimental fish group (6 tanks/group) was assigned to the

respective test diet (< 100 µm particle size) from 5 to 14 dpf.

From 15 dpf to 30 dpf, the larvae in the SBM, BG and CT groups

were offered the control diet (100-200 µm particle size)

(Supplementary Figure 1). The larvae were hand-fed four

times a day ad libitum, i.e., at 08:00, 12:00, 16:00 and 20:00.

The feeding study that started with 5-day-old larvae ended at

30 dpf.

Sampling

At 15 and 30 dpf, larvae were analyzed under the

microscope. In addition, their behavior was assessed, and

oxygen consumption was recorded. Samples were collected at

15 dpf for transcriptomics. The larvae were immersed in a lethal

dose of 200 mg/L of tricaine methanesulfonate (Argent

Chemical Laboratories, Redmond, WA, USA) buffered with an
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equal amount of sodium bicarbonate. Five larvae were pooled to

obtain one sample and 6 replicate samples were prepared from

each treatment group. The samples were snap-frozen in liquid

nitrogen and then stored at -80°C until further analyses.

Microscopic examination

Larvae from each group (n=9-10) were randomly selected

for the microscopic examination. For the study, the larvae were

immobilized on a cavity glass slide using 3.5% (w/v)

methylcellulose (Sigma Aldrich, Saint Louis, USA). Images

were captured using a stereomicroscope (SZX12, Olympus,

Shinjuku, Japan) equipped with an Olympus SC50 camera

(Olympus Soft Imaging Solutions, Münster, Germany). Key

morphological traits like standard length, snout-vent length,

head-trunk angle, swim bladder area and eye area (21, 22)

were measured using the ImageJ software (23).

Locomotor behavior test

Larval locomotor behavior was assessed using the

DanioVision system (Noldus Information Technology,

Wageningen, the Netherlands). The assessment was performed

as described in our previous study (24). The larvae were first

acclimatized to 24 well plates for one hour at 28°C in an

incubator (Sanyo MIR-154, Osaka, Japan). The analysis was

carried out three times in the DanioVision system (n=20). The

temperature of the well plates (28 ± 1°C) was maintained using

the DanioVision temperature control unit. The 20 min behavior

analysis included a 5 min dark period followed by a 5 min light

period and then a second cycle of 5 min of darkness followed by

5 min of light period. The video recordings were analyzed using

the EthoVision® XT 16.0 software (Noldus Information

Technology) to assess the distance moved, velocity, movement,

angular velocity and heading angle.

Sudan black staining

Zebrafish larvae (n=24-25; 15 dpf) were fixed overnight in

4% formaldehyde in PBS at 4 °C. After the fixation step, larvae

were washed with cold PBS containing 0.1% Tween 20 (PBT)

(Sigma Aldrich, Saint Louis, USA), and incubated in Sudan

Black stain (Sigma Aldrich) for 20 min. Then the samples were

washed (3-4 times; each time 10 min) in 70% ethanol. Larvae

were then rehydrated with PBT and mounted in 90% glycerol for

viewing under a stereomicroscope (SZX12, Olympus).

Thereafter, the images were captured using Olympus SC50

camera (Olympus Soft Imaging Solutions) and analyzed to

quantify the granulocytes in the mid and posterior intestine.

Oxygen consumption analysis

Oxygen consumption of the larvae was determined using the

Loligo® Microplate Respirometry System (Loligo Systems,

Viborg , Denmark) . Twenty-four hours before the

measurement, the instrument was calibrated with oxygen-

saturated and oxygen-depleted system water at 28°C. The

oxygen-depleted water was first prepared by dissolving 20 g of

sodium sulfite (Sigma Aldrich) in 1 liter of system water. Then

larvae from each treatment (n=12) were placed in the two

independent 24-well plate sensor dishes (PreSens, Regensburg,

Germany), with each well containing one larva. Thereafter, the

24-well plate sensor dish was submerged in a tank containing

system water. During the 2 hour-long respiration measurement,

the tank and plates were kept at 28°C in a climate chamber. The

oxygen saturation was recorded using the software MicroResp®

version 1.0.4 (Loligo).

RNA isolation, library preparation and
mRNA sequencing

Total RNA was extracted from the frozen samples using the

Direct-zol™ RNA MiniPrep kit (Zymoresearch, CA, USA)

following the manufacturer ’s instructions. The RNA

concentration and integrity were determined using the

Invitrogen Qubit 3.0 fluorometer (ThermoFisher Scientific,

USA) and Tape Station 2200 (Agilent Technologies, Santa

Clara, CA, USA). RNA from the samples (n=6) with RIN value

≥7 were used for RNA-Seq. Library preparation and sequencing

were done by Novogene Europe, Cambridge, United Kingdom.

Messenger RNA was purified from total RNA using poly-T oligo-

attached magnetic beads. After fragmentation, the first strand

cDNA was synthesized using random hexamer primers followed

by the second strand cDNA synthesis. The libraries were end

repaired, A-tailed, adapter ligated, size selected, amplified, and

finally purified. The libraries were quantified using Qubit and real-

time PCR and bioanalyzer was employed to detect the size

distribution. The barcoded libraries were then pooled and

loaded on the Illumina NovaSeq 6000 Sequencing system

(Illumina, San Diego, CA, USA) to obtain 150 bp paired end

reads. For each sample, a minimum of 20 million paired raw reads

were obtained with an average of 21.4 million reads per sample.

Overall, the average mapping percentage offiltered reads was 88%

(Supplementary Table 2).

Transcriptome data analyses

The quality of raw reads was assessed using the FastQC

command line, and reads were filtered based on the Phred quality

score (Q ≥ 30) using the tool fastp (25) (Supplementary Table 2).
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The filtered reads were then aligned to the reference zebrafish

genome downloaded from NCBI (release 106) using HISAT2,

version 2.2.1 with default parameters (26). featureCounts version

1.5.3 was employed to obtain the read counts that belong to each

gene (27). Differential expression of the genes across the treatment

groups was determined by DESeq2 (28). Transcripts with |Log2 fold

change| ≥ 1 and an adjusted p-value < 0.05 (Benjamini-Hochberg

multiple test correction method) were considered significantly

differentially expressed. The gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses were performed with the software DAVID

(Database for Annotation, Visualization and Integrated Discovery)

version 6.8 with p value of 0.05 and minimum gene count of 2 (27).

GO term-gene networks were generated using Cytoscape version

3.8.2 (29). The packages ggplot2, pheatmap, GOplot, in R were

employed to visualize the parameters of interest.

Statistical analysis

The behavioral, morphological and granulocyte data were

checked for the assumptions of normality (Shapiro-Wilk) and

homogeneity of variance (Bartlett’s test). Parametric t-test and

one-way ANOVA were performed where the normality

assumptions were met. In the case of non-parametric data,

statistical differences were identified using the Wilcoxon-

Mann-Whitney test and Kruskal-Wallis test. Tukey’s test

(parametric data) and Dunn’s test (non-parametric data)

were employed to understand the statistical differences

between treatments. We employed the gam function in the

mgcv package of R to study the oxygen depletion in the three

groups. In addition, we employed the gganimate package to

create a gif to display the differences at 15 and 30 dpf

separately. The angular data was analyzed using circular

package in R and the statistical differences were detected

using Watson U2 test.

Results

Morphological changes, locomotor
activity, granulocyte number and
oxygen consumption

Microscopic evaluation helped us to understand the diet-

induced changes in the morphology of zebrafish larvae

(Figures 1A-D and Supplementary Figure 2). The standard

length and snout-vent length of the treatment groups did not

differ significantly (Figures 1E, F). However, we found a

significant decrease in the eye area (Figure 1G) of the SBM

group (p < 0.01) compared to the CT group. The eye area in the

BG group was significantly increased (p < 0.05) compared to the

SBM group. Also, there was a significant difference in the swim

bladder area in the SBM group (p < 0.001) and BG group (p <

0.05) compared to the CT group. In the BG group, however, the

effect was less pronounced, since swim bladder area was

significantly increased (p < 0.001) compared to the SBM group

(Figure 1H). We found a significant reduction in the head-trunk

angle of the larvae from the SBM group (p < 0.05) compared

with the CT group (Figure 1I). On the other hand, the head-

trunk angle was increased in the BG group compared to the SBM

group (p < 0.01).

The locomotor activity of the experimental larvae was

evaluated by conducting a light-dark (LD) locomotion test.

The total distance travelled (Figure 2A) by the SBM group was

significantly reduced (p < 0.001) at 15 dpf. Average velocity

(Figure 2B) and movement (Figure 2C) were also significantly

(p < 0.001) reduced in the SBM group compared to both the CT

and BG groups. The parameter angular velocity (Figure 2D)

did not appear to be altered compared to the CT group (p <

0.1). However, the heading angle seemed to be slightly, but not

significantly, altered in the SBM group (Figure 2E). The

velocity vs. time plot (Figure 2F) of the light-dark phase

experiment clearly indicated the loss in the dark-induced

motion phenotype in the SBM group compared to the CT

group. The BG group also showed a slightly altered activity

after the first dark phase.

The larvae were stained with Sudan Black to examine the

number of granulocytes in the intestine. The SBM diet-fed larvae

had a greater number of granulocytes (p < 0.001) compared to

the CT group. The BG group had lower number of granulocytes

(p < 0.05) compared to the SBM group (Figures 3A, B).

We found an overall decrease in oxygen saturation with time

in all the treatments. The oxygen saturation decreased at a

significantly higher rate in the SBM and BG groups than in

the CT group (Figure 4). The factors treatment and time were

found to be significant (p < 0.05).

Suppression of genes linked to visual
perception and organ development

To understand the underlying effects of the soybean feeding

in zebrafish larvae, we compared the transcriptome of the SBM

group with that of the CT group. The analysis revealed 707

differentially expressed genes (|Log2 fold-change| ≥ 1, adjusted

p-value < 0.05) with 280 upregulated genes and 427

downregulated genes in the SBM group (Supplementary

Table 3). The principal component analysis (PCA) plot shows

the differential clustering of the SBM and CT groups along the

first principal component (PC1), which explains 58% variability

in the data (Figure 5A). Hierarchical clustering (Figure 5B)

revealed a clear separation of differentially upregulated and

downregulated genes in the SBM group compared to the CT
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FIGURE 2

Changes in parameters linked to locomotor activity of zebrafish larvae. The measured parameters included (A) Distance travelled (B) Average
velocity (C) Movement (D) Angular velocity and (E) Heading angle. Effect of alternating light-dark phases on the (F) velocity of zebrafish larvae.
*** p < 0.001 and (.) p < 0.1. Larvae assessed at 15 dpf (n = 18-20 per group). Control - CT, soybean - SBM and b-glucan - BG.
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FIGURE 1

Diet-induced morphological changes in zebrafish larvae. Representative images of the zebrafish larvae fed the (A) CT (B) SBM and (C) BG diets (D).
Measurement strategy that was adopted to assess the morphological changes in zebrafish larvae. The measured parameters include (E) Standard
length (F) Snout to vent length (G) Eye area (H) Swim bladder area (I) Head to trunk angle. Asterisks *** indicate p < 0.001, ** indicate p < 0.01,
* indicates p < 0.05. Larvae were assessed at 15 dpf (n = 9-10 per group). Control - CT, soybean - SBM and b-glucan - BG. Scale bar = 500 mm.
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group. The downregulated genes-associated significantly

enriched GO terms in the SBM group were related to

developmental processes like regulation of gastrulation,

formation of primary germ layer, somite development and

positive regulation of organelle organization (Figure 6).

Furthermore, several GO terms related to sensory perception

like sensory organ development, eye development, sensory

perception of light stimulus and camera type eye development

FIGURE 4

Oxygen consumption of zebrafish larvae from the 3 study groups. A generalized additive model using R package mgcv indicated significant
differences (p < 0.05) in oxygen saturation. Larvae assessed at 15 dpf (n = 12 per group). Control - CT, soybean - SBM and b-glucan - BG.

A

B

FIGURE 3

Localization of granulocytes in the intestine of zebrafish larvae. (A) Representative images of the intestine region of zebrafish larvae stained with
Sudan Black to reveal the presence of granulocytes, yellow arrows indicate the granulocytes in the intestine region. (B) Quantification of Sudan-
Black+ cells in the intestine region of zebrafish larvae. *** p < 0.001 and * p < 0.05. n = 24-25 per group. Control - CT, soybean - SBM and b-
glucan – BG. Scale bar = 200 mm.
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were also enriched based on the downregulated genes. KEGG

enrichment analysis that considered the downregulated genes

revealed the alteration of the phototransduction pathway in the

SBM group compared to the CT group (Figure 7). On the other

hand, upregulated genes-based KEGG pathway enrichment

revealed the possible alteration of pathways like steroid

biosynthesis, peroxisome proliferator activated lipid receptor

(PPAR) signaling and metabolism of xenobiotics by

cytochrome P450 (Figure 7). Similarly, upregulated genes-

based GO enrichment analysis indicated the likely alteration of

steroid biosynthesis process, sterol metabolic process,

cholesterol metabolic process, fatty acid transport and lipid

FIGURE 6

Network plot showing the link between the enriched GO terms. DEGs (downregulated; SBM vs CT) that were considered for the enrichment are
indicated using red circles and only the non-redundant GO terms are shown in the cluster. The gradient color bar intensity varies with the p
value and the sizes of the nodes of the GO terms increase with the associated fold change. There are six biological replicates in each study
group. Control - CT, soybean - SBM.

A B

FIGURE 5

Transcriptome-based differences in zebrafish larvae from the soybean group compared to the control group. Principal component analyses
(A) and heatmap (B) of the differentially expressed genes (DEGs) in the soybean (SBM) group compared to the control (CT) group. Transcripts
with an adjusted p-value below 0.05 and |Log2 fold change| ≥ 1 were considered significantly differentially expressed. There are six biological
replicates in each study group.
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homeostasis (Figure 8). Furthermore, there was a significant

enrichment of GO terms (based on the upregulated genes in the

SBM group) related to protein degradation, namely proteasome

core complex, exopeptidase activity and aminoglycan catabolic

process (Figure 8). Several immune, intestinal barrier and brain-

related genes were altered in the SBM group compared to the CT

group (Supplementary Figures 3A-C).

b-glucan supplementation-caused
distinct changes in zebrafish larvae

Here we describe the DEGs from the BG vs CT comparison. As

we did not detect any DEGs from the SBM vs BG comparison,

unique (upregulated and downregulated) genes from the SBM vs

CT and BG vs CT comparisons are given importance in this section.

FIGURE 8

Network plot showing the link between enriched GO terms. DEGs (upregulated; SBM vs CT) that were considered for the enrichment are
indicated using red circles and only the non-redundant GO terms are shown in the cluster. The gradient color bar intensity varies with the p
value and the sizes of nodes of the GO terms increase with the associated fold change. There are six biological replicates in each study group.
Control - CT, soybean - SBM.

FIGURE 7

KEGG pathways that were enriched in the zebrafish larvae from the soybean group. Differentially expressed genes in the soybean (SBM) group
compared to the control (CT) group were employed for the pathway enrichment analysis. The size of the circles is proportional to the gene
count and gradient color bar intensity of circle correlates with the p value. There are six biological replicates in each study group.
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In addition, we selected the genes linked to the immune system to

gather more evidence on the effect of b-glucan. A comparison of the

transcriptome of the BG group with that of the CT group revealed

736 DEGs (|Log2 fold-change| ≥ 1, adjusted p value < 0.05) with 537

downregulated genes and 199 upregulated genes (Supplementary

Table 4). The PCA plot shows differential clustering of the BG and

CT groups along PC1, which explains 59% variability in the data

(Figure 9A). Hierarchical clustering (Figure 9B) revealed a clear

separation of differentially upregulated and downregulated genes in

the BG group compared to the CT group. BG vs CT transcriptomic

comparison revealed several common genes which were also

present in the SBM vs CT comparison, possibly due to the

presence of soybean meal in the BG diet too. We used a Venn

diagram to display the common and unique DEGs from the SBM vs

CT and BG vs CT comparisons (Supplementary Figure 4); 343

common DEGs (239 downregulated and 104 upregulated) and 298

unique downregulated genes and 95 unique upregulated genes from

the BG vs CT comparison. To reveal the efficacy of the b-glucan, we
focused on the altered genes that are unique to the BG vs CT

comparison. GO term enrichment by considering 95 unique

upregulated genes included negative regulation of proteolysis,

endopeptidase inhibitor activity and negative regulation of cellular

protein metabolic process (Figure 10A). GO term enrichment based

on the 298 unique downregulated genes in the BG group included

cytokine mediated signaling pathway, leukocyte differentiation,

histone acetyltransferase complex, histone acetylation, histone

modification and regulation of G-protein coupled receptor

protein signaling pathway (Figure 10B).

From the DEGs of the three comparisons, immune-, barrier-

and brain-related genes were selected to understand the

inflammation mitigation capacity of b-glucan. We observed that

BG feeding restored the expression of several genes which were

perturbed by SBM feeding (Supplementary Figures 3A-C). The

expression of immune genes like major histocompatibility complex

class I UBA (mhc1uba), complement C3a (c3a.3), interleukin 2

receptor, gamma a (il2rga), macrophage stimulating 1 receptor a

(mst1ra) that was upregulated in the SBM group was

downregulated in the BG group. The expressions of brain-related

genes like tachykinin receptor 1b (tacr1b), bradykinin receptor b1

(bdkr1) in the BG group were similar to those in the CT group.

A defective swim bladder persisted
despite the cessation of soybean feeding

A switch to the control diet without soybean meal helped in

restoring the phenotypic characteristics, locomotor activity and

oxygen consumption of the SBM group. The locomotor

behavioral analysis revealed that all the study groups

performed similarly at 30 dpf (Supplementary Figures 5A-D),

i.e., when the fish did not consume soybean meal-based diets.

However, the head to trunk angle in the SBM group was

significantly decreased (p < 0.05) compared to CT and BG

groups. The swim bladder area in the SBM group was

significantly smaller (p < 0.001) compared to the CT and BG

groups. Notably, the swim bladder area in the BG group seemed

A B

FIGURE 9

Transcriptome-based differences in the zebrafish larvae from the b-glucan group compared to the control group. Principal component analyses
(A) and heatmap (B) of differentially expressed genes (DEGs) in the b-glucan (BG) group compared to the control (CT) group. Transcripts with an
adjusted p below 0.05 and |Log2 fold change| ≥ 1 were considered as significantly differentially expressed. There are six biological replicates in
each study group.
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to have returned to a level similar to the CT group

(Supplementary Figures 5E, 6). The oxygen consumption in all

the three treatments at 30 dpf did not differ significantly

(Supplementary Figure 7), even though we observed a steep

decline in oxygen saturation in all the three treatments,

indicating a higher consumption of oxygen at 30 dpf.

Discussion

Soybean meal-based diet is effective in inducing intestinal

inflammation in zebrafish. The attributes of inflammation in this

model are increased intestinal permeability, immune cell

recruitment and alteration in the microbiota profile (13–15).

Behavioral changes accompanying diet-induced intestinal

inflammation in animals have been reported previously (30, 31).

In the present study, we have linked behavioral changes of

zebrafish with alterations in the transcriptome to gain deeper

insights into the impact of inflammatory and anti-inflammatory

diets. Dietary soybean was found to reduce the locomotor activity,

induce developmental defects and increase oxygen consumption

of zebrafish larvae. Transcriptomic analysis indicated the soybean

meal-induced suppression of the genes linked to visual perception,

organ development, phototransduction pathway and activation of

genes related to steroid biosynthesis pathway. On the contrary, b-
glucan partly negated the behavioral and phenotypic alterations

brought about by the soybean diet.

Soybean-induced alteration in
locomotor behavior

We performed a light-dark locomotion test to understand

soybean meal-induced behavioral changes in zebrafish larvae.

Alternating light and dark conditions prompts zebrafish to

follow a specific pattern of movement; while a transition from

light-dark increases locomotion, a dark-light transition

decreases its movement (32). The CT and BG groups

displayed normal responses to light, as indicated by the

velocity-time analysis. On the other hand, the behavior of the

SBM group was abnormal, probably due to a defect in sensory

perception, as indicated by the potential shift in sensory organ

development, sensory perception of light stimulus and the

significantly affected phototransduction pathway. This pathway

occurs in the retinal photoreceptors, namely rods and cone cells

which are active at low and high light intensities, respectively

(33). These cells convert light stimulus into electrical signals

which are then perceived by the nervous system. Several genes

related to light perception including visual system homeobox 1

(vsx1), recoverin a (rcvrna) and guanylate cyclase activator 1b

(guca1b) were downregulated in the SBM group. The proteins

coded by these genes are critical for retinal functions like

terminal differentiation of retinal cells and cone photo

response recovery (34, 35). The transcriptomic data also

revealed the potential alteration of several pathways such as

retinol metabolism, steroid biosynthesis, PPAR signaling based

on the upregulated genes in the SBM group. Alterations in these

A B

FIGURE 10

Network plot showing the link between the enriched GO terms. The enriched GO terms that were unique (from the BG and SBM vs CT
comparisons) to the zebrafish larvae fed with the BG diet are shown in the figure, and 298 and 95 genes were significantly (A) upregulated and
(B) downregulated, respectively, in BG vs CT comparison. Control - CT, soybean - SBM and b-glucan - BG.
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pathways have been linked with retinal impairments (36–38). In

addition, SBM feeding reduced the eye area, indicating a possible

impact on the overall eye development. Therefore, it can be

speculated that the metabolic changes induced by the soybean-

based diet might have affected retinal functions. The altered

heading angle and angular velocity of the SBM group can also be

linked to the impaired light perception. Furthermore, several

locomotor behavioral parameters like distance travelled, velocity

and movement were also decreased in the SBM group. Other

feeding studies have also reported diet-induced changes in

locomotion; while a high-fat, low-fiber diet reduced the motor

activity of mice (30, 39) a probiotic diet (with Lactobacillus

rhamnosus IMC 501) increased the movement of zebrafish (40).

This indicates that locomotor behavior of animals can be altered

by diet. Concerning the b-glucan diet, another study has

indicated the efficacy of the compound in improving the

cognitive ability in diet-induced colitis model of mice (9). The

observations in the present study also likely indicate an

improvement in locomotor behavior. Diet-induced behavioral

changes can be due to microbiota alterations which in turn affect

the gut-brain axis as observed in mice models (9). Although in

the present study we did not investigate the microbiota changes,

future studies should focus on the effect of diet-induced

inflammation on the gut-brain axis.

Soybean-induced developmental defects
and oxygen demand

We did not detect any significant differences in growth

parameters like standard length and snout to vent length in

zebrafish larvae belonging to the 3 study groups. The short

duration of the experiment, i.e., 10 days may not be sufficient to

reveal any significant differences in growth, as observed in a

study on red seabream, Sparus aurata larvae (41). We found a

significant reduction in swim bladder area and head-trunk angle

in the SBM group. The swim bladder is an important organ to

maintain buoyancy, and larvae with uninflated swim bladders

develop complications such as spinal deformities and lordosis

(38). GO terms such as regulation of gastrulation, somite

development, positive regulation of organelle organization and

formation of primary germ layer likely indicate developmental

defects of the larvae in the SBM group. As soybean meal-induced

inflammation causes morphological changes in the intestine

(42), and the swim bladder develops as an evagination of the

digestive tract, there is a possibility that dietary soybean meal is

interfering with swim bladder inflation. Furthermore, metabolic

demands are higher in zebrafish larvae with uninflated swim

bladders and these larvae use additional energy to maintain

buoyancy (38, 39). The altered locomotor behavior and high

oxygen consumption that we observed in the SBM group is likely

due to uninflated swim bladder (43, 44). Furthermore, feeding

CT diet to 15-30 dpf larvae of the 3 groups indicated that the

SBM-caused adverse effects on behavior-related parameters and

oxygen consumption rate can be abated by stopping the SBM

diet. Although the swim bladder area was increased in SBM

group at 30 dpf as compared to 15 dpf, it was still significantly

smaller compared to the other treatment groups. It seems that

developmental defects such as uninflated swim bladder and

reduced head-trunk angle persist even after stopping the SBM

diet. Addition of b-glucan speeds up the recovery or lowers the

effect of SBM on development. This suggests that proper

nutrition during the critical developmental window is essential

to avoid long-lasting effects on an organism (45).

KEGG pathway analyses revealed steroid biosynthesis (most

enriched pathway based on p value and gene count) and steroid

hormone biosynthesis as the enriched pathways, based on the

upregulated genes in the SBM group. We also found enrichment

of several GO terms like cholesterol metabolic process, sterol

biosynthesis process, and sterol metabolic process. This can be

because plant-derived food has no cholesterol and soybean

contains phytosterols which can reduce dietary cholesterol

absorption (46). Such a scenario can lead to stimulation of

cholesterol biosynthesis, as reported in a study on fish fed

soybean meal (47). Cholesterol is the key precursor of steroid

hormone biosynthesis and cholesterol biosynthesis is an oxygen-

intensive process that requires 11 molecules of O2 per molecule

of cholesterol (41). Furthermore, molecular oxygen is a

prerequisite to most of the enzymatic reactions in the steroid

biosynthesis pathway (45). Therefore, the higher consumption of

oxygen could be attributed to the increased metabolic demands

in the SBM and BG groups and steroid biosynthesis can be a

causative factor.

Plausible effects of dietary b-glucan on
zebrafish larval transcriptome

Several immune, intestinal barrier and brain-related genes

were altered in the SBM and BG groups compared to the CT

group. In this section we describe the common and unique genes

from the SBM and BG vs CT comparisons. It was only in the BG

group that the differential expression of jak1, zbtb11, jagn1a,

lepr, il13ra2, ccl34b.1 caused an enrichment of the GO terms,

leukocyte differentiation and cytokine mediated signaling. Janus

Kinase (JAK1) plays an important role in inflammatory cytokine

signaling and inhibition of JAK1-mediated inflammatory

pathways are effective therapeutic targets to counter intestinal

inflammation (48, 49). Furthermore, genes such as leptin

receptor (lepr), jagunal homolog 1-A (jagn1a) that are related

to neutrophil development and migration (50, 51) and

inflammation-associated cytokine like il13ra2 (52) were

differentially downregulated in the BG group. Granular cells

(mainly neutrophils) are the first responders that migrate to an

inflammatory site (53).The number of granulocytes in the BG

group was lower compared to the SBM group, indicating the
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dietary b-glucan-mediated lowering of inflammation. In

addition, the BG group was associated with GO terms related

to negative regulation of proteolysis and endopeptidase inhibitor

activity, as a result of the upregulated genes such as serpin

peptidase inhibitor, clade B, member 1, like 3 (serpinb1l3), TIMP

metallopeptidase inhibitor 4, tandem duplicate 2 (timp4.2).

Serpin family B member is produced by macrophages and

neutrophils to restrict the activity of serine proteases and

inflammatory caspases to suppress inflammation (54). Also,

tissue inhibitors of metalloproteinases (TIMPs) regulate

diverse processes such as tissue remodeling, wound healing

and inhibition of matrix metalloproteinases (46). Therefore,

the upregulation of serpinb1, serpinb1l3 and timp4 in the b-
glucan fed group might possibly help in controlling the tissue

damage caused by dietary soybean. Moreover, the enriched GO

term, G-protein-coupled receptor (GPCR) based on the

downregulated genes, ubiquitin-specific protease 20 (usp20)

and phosducin (pdca) in the BG group is likely pointing to the

efficacy of the glucan to counter inflammatory pathways. The

protein coded by usp20 is involved in the Tumor necrosis factor

(TNFa)-induced activation of Nuclear factor kappa-light-chain-

enhancer of activated B cells protein (NF-kB) pathway through
the stabilization of p62 protein (55). In addition, b-glucan is also

a potent epigenetic modulator (50, 51). Several GO terms related

to epigenetic modifications such as histone acetyltransferase

complex, histone modifications, chromatin organization were

enriched (based on downregulated genes) in the BG group.

Histone acetyltransferases (HATs) transfer acetyl groups from

donor-acetyl coenzyme A to lysine residues of the histone

proteins to sustain an active transcription. HATs also act as a

cofactor for NF-kB activation by acetylating its various

promotor proteins (56) because a HAT knockout study

reported reduced DSS-induced colitis in mice (57). The

expression of immune genes like mhc1uba, c3a.3, il2rga,

mst1ra were upregulated in the SBM group, but the CT and

BG groups had similar mRNA levels. Two brain-related genes,

tachykinin receptor 1b (tacr1b) and bradykinin receptor b1

(bdkr1) that were upregulated by the SBM diet (58, 59) were

found to be downregulated by the BG diet. Therefore, we

speculate that b-glucan can also reduce intest inal

inflammation induced by the soybean diet, plausibly by

altering the expression of GPCRs, cytokine signaling and

inducing epigenetic modifications.

Conclusion

Our study shows that dietary soybean meal reduces larval

locomotor behavior, increases oxygen consumption, and induces

developmental defects in zebrafish larvae. Transcriptomic

analysis indicated soybean meal-induced suppression of genes

related to the phototransduction pathway, organ development

and activation of genes linked to the steroid biosynthesis

pathway. Dietary b-glucan can likely alleviate the behavioral

defects induced by the inflammatory diet and negate the

aforementioned alterations in gene expression. Importantly,

when zebrafish larvae receive an inflammation-sustaining

dietary component, the developmental defects persist even

after the withdrawal of the inflammatory diet. It would be

interesting to explore if the gut microbiota has a role in the

observed alterations. Hence, future studies should focus on the

effect of dietary soybean-induced inflammation on the gut-

brain axis.
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Microscopic images of the zebrafish larve at 15 dpf. Scale bar = 500 mm.
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Changes in parameters linked to locomotor activity and morphology of
zebrafish larvae. Themeasured parameters included (A)Distance travelled

(B) Average velocity (C) Movement. Effect of alternating light-dark phases
on the (D) Velocity of zebrafish larvae (E) Head to trunk angle (F) Swim

bladder area. Larvae assessed at 30 dpf (n = 18-20 per group).

SUPPLEMENTARY FIGURE 6

Microscopic images of the zebrafish larvae at 30 dpf. Scale bar = 500 mm.

SUPPLEMENTARY FIGURE 7

Oxygen consumption of zebrafish larvae from the 3 study groups. Larvae
assessed at 30 dpf (n = 12 per group). Control - CT, soybean - SBM and b-
glucan - BG.
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19. Żyła E, Dziendzikowska K, Gajewska M, Wilczak J, Harasym J, Gromadzka-
Ostrowska J. Beneficial effects of oat beta-glucan dietary supplementation in colitis
depend on its molecular weight. Molecules (2019) 24:3591. doi: 10.3390/
molecules24193591

Rehman et al. 10.3389/fimmu.2022.1018768

Frontiers in Immunology frontiersin.org13

https://www.frontiersin.org/articles/10.3389/fimmu.2022.1018768/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2022.1018768/full#supplementary-material
https://doi.org/10.1038/nrgastro.2015.150
https://doi.org/10.1038/nrgastro.2015.34
https://doi.org/10.2147/NDT.S106039
https://doi.org/10.1136/bmjgast-2015-000071
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439135/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5439135/
https://doi.org/10.1016/j.jcmgh.2015.01.006
https://doi.org/10.1016/j.jcmgh.2015.01.006
https://doi.org/10.1016/j.lfs.2021.120217
https://doi.org/10.1038/srep09970
https://doi.org/10.1186/s40168-020-00920-y
https://doi.org/10.3389/fcell.2020.620984
https://doi.org/10.1016/j.dci.2016.02.020
https://doi.org/10.1371/journal.pone.0069983
https://doi.org/10.3389/fimmu.2020.01330
https://doi.org/10.3389/fmicb.2018.02588
https://doi.org/10.3389/fimmu.2019.00610
https://doi.org/10.1111/jfd.13484
https://doi.org/10.1007/s11356-016-6704-3
https://doi.org/10.1111/ijfs.14971
https://doi.org/10.3390/molecules24193591
https://doi.org/10.3390/molecules24193591
https://doi.org/10.3389/fimmu.2022.1018768
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


20. Westerfield M. The zebrafish book: A guide for the laboratory use of zebrafish
(2000). Available at: http://zfin.org/zf_info/zfbook/zfbk.html.
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Potential of algae-derived
alginate oligosaccharides and
b-glucan to counter
inflammation in adult
zebrafish intestine
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Jorge Dias2, Ronan Pierre3, Koen Meynen4,
Jorge M. O. Fernandes1, Mette Sørensen1, Sylvia Brugman5

and Viswanath Kiron1*

1Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway, 2SPAROS Lda,
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4Kemin Aquascience, Division of Kemin Europa N.V., Herentals, Belgium, 5Animal Sciences Group,
Host Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands

Alginate oligosaccharides (AOS) are natural bioactive compounds with anti-

inflammatory properties. We performed a feeding trial employing a zebrafish

(Danio rerio) model of soybean-induced intestinal inflammation. Five groups of

fish were fed different diets: a control (CT) diet, a soybean meal (SBM) diet, a

soybean meal+b-glucan (BG) diet and 2 soybean meal+AOS diets (alginate

products differing in the content of low molecular weight fractions - AL, with

31% < 3kDa and AH, with 3% < 3kDa). We analyzed the intestinal transcriptomic

and plasma metabolomic profiles of the study groups. In addition, we assessed

the expression of inflammatory marker genes and histological alterations in the

intestine. Dietary algal b-(1, 3)-glucan and AOS were able to bring the expression

of certain inflammatory genes altered by dietary SBM to a level similar to that in

the control group. Intestinal transcriptomic analysis indicated that dietary SBM

changed the expression of genes linked to inflammation, endoplasmic reticulum,

reproduction and cell motility. The AL diet suppressed the expression of genes

related to complement activation, inflammatory and humoral response, which

can likely have an inflammation alleviation effect. On the other hand, the AH diet

reduced the expression of genes, causing an enrichment of negative regulation

of immune system process. The BG diet suppressed several immune genes

linked to the endopeptidase activity and proteolysis. The plasma metabolomic

profile further revealed that dietary SBM can alter inflammation-linked

metabolites such as itaconic acid, taurochenodeoxycholic acid and enriched

the arginine biosynthesis pathway. The diet AL helped in elevating one of the

short chain fatty acids, namely 2-hydroxybutyric acid while the BG diet increased

the abundance of a vitamin, pantothenic acid. Histological evaluation revealed

the advantage of the AL diet: it increased the goblet cell number and length of villi

of the intestinal mucosa. Overall, our results indicate that dietary AOS with an

appropriate amount of < 3kDa can stall the inflammatory responses in zebrafish.
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1 Introduction

Inflammatory bowel disease (IBD) is a multifactorial disorder

characterized by chronic and recurrent episodes of inflammation in

specific segments of the intestine. IBD can be instigated by both

genetic and environmental factors, but the rise in IBD cases over the

last decade suggests the decisive role of diverse environmental

factors in the pathogenesis of IBD (1). Moreover, the accelerated

incidence of IBD in developing nations is correlated with a high

intake of Western diet. Current approaches for the treatment of IBD

include the use of different anti-inflammatory drugs (2). The

remitting and relapsing nature of the disease necessitates

prolonged use of such anti-inflammatory agents, leading to

undesirable side effects (3). Diet is an important environmental

factor that can be an alternative to drugs, since components such as

prebiotics are known to regulate intestinal inflammation by

maintaining immune homeostasis. These non-digestible

carbohydrates are considered as establishers of beneficial bacteria

that can produce bioactive metabolites, such as short-chain fatty

acids that provide energy to enterocytes and maintain mucosal

integrity (4).

Alginate oligosaccharides (AOS) are natural bioactive

compounds and among other bioactivities have anti-inflammatory,

antioxidant and prebiotic properties (5). They are produced through

chemical or enzymatic digestion of alginates mainly extracted from

brown algae. AOS are linear polymers of 2-25 monosaccharides

composed of b-D-mannuronic acid (M) and a-L-guluronic acid

(G) monomers linked by 1-4 glycosidic linkages with different M/G

ratios and degrees of polymerization. The biological functions of AOS

is dependent on the molecular weight (MW) (5). An in vitro study

has reported that low molecular weight alginates enhance the radical

scavenging and immunomodulatory capacities in the gut (6) and

AOS < 1 kDa and 1.84 M/G can efficiently scavenge superoxide,

hydroxyl, and hypochlorous acid radicals compared to AOS of MW 1

to 10 kDa (7). Furthermore, an in vitro study reported that AOS

< 1kDa is effective in eliciting lysozyme activity, peroxidase activity,

phagocytic capacity and total nitric oxide synthase activity compared

to AOS of MW 1-2 kDa or 2-4 kDa (8). Inflammation suppressing

ability of AOS has also been described previously; through

attenuation of nitric oxide and prostaglandin E2 production and

inactivation of the nuclear-factor kappa B and mitogen-activated-

protein-kinase signaling pathways, as reported for mice macrophage

cell lines (9) and enhancement of the activity of antioxidant enzymes

such as superoxide dismutase (SOD) and catalase (CAT), as reported

for human umbilical vein endothelial cells (10). Dietary AOS can also

alter intestinal morphology and barrier function; by increasing the

villi length, goblet cell number andmucin-2 (MUC2) expression (11).

Furthermore, AOS supplemented diet ameliorated the inflammatory

responses in a DSS-induced colitis mice model by reducing the

infiltration of neutrophils and level of inflammatory markers

(TNF-a, COX-2) and increasing the expression of tight junction

proteins Zonula occludens-1 and Occludin (12). We have reported

the ability of AOS to increase the abundance of bacteria associated

with short chain fatty acid (SCFA) production (13). Most of the

previous reports on the anti-inflammatory and antioxidant activities

of AOS have been based on in vitro studies. Hence, it is essential to

generate in vivo study-based evidence on the anti-inflammatory

potential of AOS using an animal model. Furthermore, in vivo

studies to understand the effect of molecular weight of AOS on its

anti-inflammatory potential has not been explored in detail.

Algal b-(1, 3)-glucan is a known prebiotic derived from the

unicellular alga Euglena gracilis. Paramylon is the storage

polysaccharide in E. gracilis and it is a straight-chain b- (1, 3)-

glucan (14). Previous studies have reported the anti-inflammatory

potential of paramylon; oral administration of paramylon reduced

the number of infiltrating CD3+ T-lymphocytes, and decreased

expression of Ccl2 and Il-11 in the gut of gastric cancer mice model

(14). Furthermore, paramylon treatment activated M2 macrophages

and downregulated the expression of inflammatory cytokines in the

liver of mice (15).

In the present study, intestinal transcriptome and plasma

metabolome of zebrafish were profiled to reveal the effects of

dietary AOS (Laminaria sp.-derived, with varying amounts of <

3kDa fraction). We employed an adult zebrafish intestine

inflammation model to understand the efficacy of the macroalga-

derived oligosaccharides to counter inflammation. In addition, we

investigated the changes caused by AOS and those imparted by a

well-known anti-inflammatory product, algal b-(1, 3)-glucan (16).

2 Materials and methods

2.1 Experimental fish

Adult zebrafish (8-month-old AB strain) were used for the

experiment. To obtain this stock, the parents were bred in five tanks

at the zebrafish facility of Nord University, Norway, following a

previously reported protocol (17). Fifteen males and 30 females in

each of the five replicate tanks were community bred to obtain 300-400

eggs from each tank. These eggs were kept in E3 medium and

incubated at 28 °C in an incubator until hatching i.e., at around 50 h

post-fertilization. Larvae at 5-day post -fertilization (dpf) stage were fed

ad libitum commercial micro diets (< 100 µm particle size, Zebrafeed®,

Sparos Lda, Olhão, Portugal). From 15 dpf (advanced larval stage), they

were transferred to a recirculatory system and fed micro diets of 100-

200 µm particle size (Zebrafeed®). From 30 days post-fertilization, the

fish were fed a zebrafish diet (Zebrafeed®) of 300 µm particle size.

Upon reaching the 8thmonth, 250male zebrafish weighing 300-400mg

were transferred to a freshwater flow-through system (Zebtec Stand

Alone Toxicological Rack, Techniplast, Varese, Italy) and acclimatized

in 3.5 L tanks of the system. These fish were randomly distributed into

25 tanks (10 fish per tank). The water temperature in the tanks was

28°C; the water flow rate was 2.5 L/h and dissolved oxygen in the

tanks ranged between 7-8 ppm (oxygen saturation above 85%).

A 14L:10D photoperiod was maintained throughout the 30-day

feeding experiment.

Rehman et al. 10.3389/fimmu.2023.1183701

Frontiers in Immunology frontiersin.org02

https://doi.org/10.3389/fimmu.2023.1183701
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


2.2 Diet preparation and
feeding experiment

Sparos Lda. prepared the five experimental diets (Supplementary

Table 1A): One control diet and four soybean-based diets. The

control (CT) diet was a fish meal-based diet with high-quality

marine protein. Soybean-based (SBM) diet contained 50% (w/w)

soybean meal (defatted, protein content 44%) and 11% soy protein

isolate; the former is expected to induce intestinal inflammation (16).

The product Aquastem™ 300DR (derived from the microalga

Euglena gracilis) from Kemin, Des Moines, USA was added (2.5%,

w/w) to the SBM diet to prepare the b-glucan diet (BG). Likewise, the
diets AL and AH were prepared by adding 0.962 and 0.658% (w/w)

alginate oligosaccharide, AOS (derived from the macroalga

Laminaria; Centre d’Etude et de Valorisation des Algues (CEVA),

Pleubian, France). The AL diet had a lower overall MW, in particular

a higher content of short-chain AOS (over 30% < 3kDa). In addition,

AL had 3-10kDa (7%), 10-30kDa (22%) and 30-60kDa (40%)

compared to the AH diet that had AOS < 3kDa (3%), 3-10kDa

(5%), 10-30kDa (30%) and 30-60kDa (60%). AOS in both AL and

AH diets were prepared from the same batch of purified alginates.

Hence, they have the same M:G ratio (0.9) and M:G distribution

along the polymer (Supplementary Table 1B). Thus, BG, AL and AH

diets had all the ingredients of the SBM diet in addition to the

respective test compound. The experimental fish were fed daily at 5%

body weight (offered manually as three rations at 08:00, 13:00 and

18:00) for 30 days. Fish in 5 replicate tanks were allotted to each of the

five study groups.

2.3 Sampling

At the end of the experimental period, the fish were sacrificed by

immersing (5 min) in a lethal dose of 200 mg/l of tricaine

methanesulfonate (Argent Chemical Laboratories, Redmond, WA,

USA) buffered with an equal amount of sodium bicarbonate. Total

length and weight of the individual fish from each treatment group

were measured and the information is in Supplementary Figure 1.

The fish were dissected to collect the posterior intestine (n = 5 per

group) and snap-frozen in liquid nitrogen. These samples were later

stored in a −80°C freezer until further analyses. Blood drawn by tail

ablation (18) was collected in a heparinized tube and centrifuged at

5000 g for 10 min at 4°C to collect the plasma (n = 5 per group; 5

fish from each tank pooled). Intestine samples (n=6-9 per group)

were taken to assess the histomorphology.

2.4 RNA isolation, mRNA sequencing and
bioinformatic analyses

Total RNA was extracted from the frozen intestine samples using

Direct-zol™ RNA MiniPrep (Zymoresearch, CA, USA), following

the manufacturer’s instructions. The RNA concentration and

integrity were determined using Qubit 4 Fluorometer (Thermo

Fisher Scientific, Waltham MA, USA) and Tape Station 2200

(Agilent Technologies, Santa Clara, CA, USA). RNA samples

exhibiting RIN value ≥ 7 were used for qPCR and preparation of

RNA-Seq libraries. Library preparation and sequencing of samples

(n=5 for each diet group) were done by Novogene Europe

(Cambridge, UK). Messenger RNA was purified from total RNA

using poly-T oligo-attached magnetic beads. After fragmentation, the

first strand cDNA was synthesized using random hexamers followed

by the second strand cDNA synthesis. The libraries were end-

repaired, A-tailed, adapter ligated, size selected, amplified, and

finally purified. The libraries were quantified by Qubit and real-

time PCR and size distribution was checked by bioanalyzer. The

barcoded libraries were then pooled at equimolar concentrations and

loaded on the Illumina NovaSeq 6000 Sequencing system (Illumina,

San Diego, CA, USA) to obtain 150 bp paired end reads. For each

sample, an average of 22 million filtered reads were obtained with a

minimum of 19.8 million reads per sample. The average mapping

percentage of the filtered reads was 86% (Supplementary Table 2).

The bioinformatic analysis of the RNA-Seq data was performed

following our previously described protocol (16). In brief, the

quality of raw reads was assessed using the FastQC command line,

and the tool fastp to filter the reads by considering the Phred quality

score (Q ≥ 30). The filtered reads were then aligned to the reference

zebrafish genome downloaded from NCBI (release 106) using

HISAT2, version 2.2.1 with default parameters. Read counts that

belong to each gene were generated using featureCounts version 1.5.3.

Differential expression of the genes across the treatment groups was

determined by DESeq2 and transcripts with |Log2 fold change| ≥ 1

and an adjusted p-value < 0.05 (Benjamini-Hochberg multiple test

correction method) were considered significantly differentially

expressed. The gene ontology (GO) enrichment analyses

were performed using the software Database for Annotation,

Visualization and Integrated Discovery version 6.8 with a p value

of 0.05 and minimum gene count of 2. The packages ggplot2,

pheatmap and GOplot in R were employed to present the data.

2.5 qPCR analysis

Genes related to intestinal inflammation, namely interleukin-1b

(il1b), matrix metalloproteinase-9 (mmp-9), myeloid-specific

peroxidase (mpx), interleukin-10 (il10), chemokine (C-X-C motif)

ligand 8a (cxcl8a), mucin2.1 (muc2.1), mucin5ac (muc5ac) and

those of antioxidant enzymes superoxide dismutase 1 (sod1),

glutathione peroxidase 1a (gpx1a), catalase (cat) were selected for

qPCR (n = 5 for each diet group) and each reaction was done with

technical replicates. One µg of total RNA from each sample was

reverse transcribed using the QuantiTect reverse transcription kit

(Qiagen, Hilden, Germany), according to the manufacturer’s

instructions. The cDNA was further diluted 10 times with

nuclease-free water and used as a PCR template. PCR reactions

were performed using the SYBR green in LightCycler® 96 Real-

Time PCR System (Roche Holding AG, Basel, Switzerland) with the

following conditions: initial denaturation at 95°C for 10 min,

followed by 35 cycles of 95°C for 20 s, 60°C for 30 s and 72°C for

10 s. We designed the primers for the selected genes using the

Primer-BLAST tool in NCBI. The primers were then checked for
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secondary structures such as hairpin, repeats, self and cross dimer

by NetPrimer (Premier Biosoft, Palo Alto, USA). The primers for

the target genes are listed in Supplementary Table 3. Relative

expression of selected genes was determined based on the

geometric mean of three reference genes (eef1a1l1, rpl13a and

actb1). The data were checked for assumptions of normality

(Shapiro-Wilk) and homogeneity of variance (Bartlett’s test).

Based on the normality and equal variance assumption check

results, the statistical difference was determined by Analysis of

Variance (ANOVA) or Kruskal-Wallis test. The pair wise

comparison between the treatments was done by Tukey’s or

Dunn test.

2.6 Intestinal histomorphometry

Distal intestine sample were fixed in 3.7% (v/v) phosphate-

buffered formaldehyde solution (pH 7.2) at 4°C for 24 h. Standard

histological procedures were employed for dehydration, processing,

and paraffin embedding as described by Bancroft and Gamble (19).

The paraffin blocks thus prepared were sectioned using a

microtome (Microm HM3555, MICROM International GmbH,

Walldorf, Germany). Four micrometer thick longitudinal sections

were cut and mounted on SuperFrost® slides (Menzel,

Braunschweig, Germany), and a robot slide stainer (Microm

HMS 760×, MICROM International GmbH) was used to stain the

slides with Alcian Blue-Periodic Acid Schiff’s reagent (AB-PAS, pH

2.5). First, all acid mucins were stained blue with alcian blue, and in

the subsequent PAS reaction, only the neutral mucins were stained

magenta. Light microscopy photomicrographs were taken with the

Olympus BX61/Camera Color View IIIu (Olympus Europa GmbH,

Hamburg, Germany) and the photo program Cell P (Soft Imaging

System GmbH, Munster, Germany). The ImageJ software (20) was

used for analysing the tissue microarchitecture. To understand the

histopathological changes, we measured five parameters of the

intestine features: number of eosinophils, goblet cell number,

goblet cell size, villi length and width of lamina propria.

2.7 Plasma metabolomics

Metabolomic profiling was carried out by MS-Omics (Vedbæk,

Denmark). The analysis was carried out using a Thermo Scientific

Vanquish LC (Thermo Fisher Scientific, Waltham, U.S.) coupled to

Orbitrap Exploris 240 MS (Thermo Fisher Scientific). The company

used an electrospray ionization interface as the ionization source.

The analysis was performed in positive and negative ionization

mode under polarity switching. The ultra-performance liquid

chromatography was performed using a slightly modified version

of the protocol described by Doneanu et al. (21). Peak areas were

extracted using Compound Discoverer 3.2 (Thermo Fisher

Scientific). Metabolites in the samples were identified at four

levels; Level 1: identification by retention times (compared against

in-house standards), accurate mass (with an acceptable deviation of

3 ppm), and MS/MS spectra, Level 2a: identification by retention

times (compared against in-house standards), accurate mass (with

an acceptable deviation of 3ppm). Level 2b: identification by

accurate mass (with an acceptable deviation of 3 ppm), and MS/

MS spectra, Level 3: identification by accurate mass alone (with an

acceptable deviation of 3 ppm). The obtained metabolomic data

were analyzed employing MetaboAnalyst 5.0 (22). The data were

log-transformed and auto-scaled (mean-centered and divided by

the standard deviation of each variable) before downstream

analyses. Principal component analysis was performed using the

mixomics package in R 4.2.1 to understand the differential

clustering of the study groups. Metabolites with a |Log2 fold

change| ≥ 0.6 and a p value of < 0.05 are reported as significantly

altered metabolites. The packages ggplot2 and pheatmap in R 4.2.1

were employed to prepare the illustrations in this article.

3 Results

3.1 Soybean-based diet altered the
expression of key genes related to
inflammation

To gather evidence on soybean meal-induced inflammatory

response in zebrafish, we examined the relative expression of

selected inflammatory genes in the intestine of the fish fed a

soybean meal-based diet for 30 days. The relative expression of il1b

was significantly (p < 0.05) increased in the SBM and AH groups

compared to CT group (Figure 1A). Furthermore, the SBM group

had significantly higher expression (p < 0.05) of mmp9 compared to

the BG and AH groups (Figure 1B) and significantly (p < 0.001)

higher expression of mpx compared to the CT group (Figure 1C).

However, the expression of mpx in the BG, AL and AH groups was

significantly lower compared to the SBM group. The expression of

cxcl8a was significantly higher in the SBM group (p < 0.001)

compared to CT, BG and AH groups (Figure 1D). In addition, we

observed significant differences in the expression of the antioxidant

genes sod1 and cat (Figures 1E, F); the expression of sod1 was

significantly lower in the AH group compared to the CT, SBM and

AL groups and the expression of cat was significantly higher in the

AL group compared to the CT group. We did not detect any

statistically significant differences in the expression of the mucin

genes, muc2.1 and muc5ac, the gene of the antioxidant enzyme,

gpx1a, and the anti-inflammatory gene, il10 (Figures 1G–J).

3.2 Intestinal transcriptome profile
reflected soybean-induced inflammation

To gain a deeper understanding of the effects of soybean meal-

induced inflammation, we analyzed the intestinal transcriptome of

zebrafish fed the soybean meal-based diet. A comparison of the

SBM group with the CT group revealed 141 differentially expressed

genes (DEGs), of which 58 were upregulated and 83 were

downregulated in the SBM group (Figure 2A and Supplementary

Table 4). The principal component analysis (PCA) plot shows the

differential clustering of the SBM and CT groups along the first

principal component (PC1), which explains 56% variability in the

Rehman et al. 10.3389/fimmu.2023.1183701

Frontiers in Immunology frontiersin.org04

https://doi.org/10.3389/fimmu.2023.1183701
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


data (Figure 2B). Hierarchical clustering (Figure 2C) revealed a

clear separation of upregulated and downregulated DEGs in the

SBM group compared to the CT group.

The GO enrichment analysis based on the upregulated DEGs

revealed significant enrichment of several GO terms including those

linked to immune system process, endoplasmic reticulum (ER) part,

leukocyte chemotaxis, response to stress, response to external

stimulus and leukocyte migration (Figure 2D). GO enrichment

analysis employing the downregulated DEGs revealed terms

like cilium dependent motility, flagellum dependent cell motility,

sexual reproduction, alpha-tubulin activity and male gamete

generation (Figure 2E).

3.3 Algal b-glucan targets distinct
immune-related genes

We performed a comparison of the transcriptome of the BG and

SBM groups. Forty-two genes were differentially expressed, of

which 16 were upregulated and 26 were downregulated in the BG

group (Figure 3A and Supplementary Table 5). The PCA plot shows

the differential clustering of the SBM and BG groups along the PC1,

which reveals 63% variability in the data (Figure 3B). Hierarchical

clustering (Figure 3C) revealed a clear separation of DEGs in the

SBM group compared to the BG group. Several downregulated

DEGs were immune-related, for example GTPase IMAP family

member-like gimap7 (LOC799889), gimap8 (LOC103910175), lectin,

galactoside-binding, soluble, 9 (galectin 9)-like 6 (lgals9l6), matrix

metal loprote inase-13a (mmp13a) , chemokine cc l -c17a

(LOC100002392), TIMP metallopeptidase inhibitor 2b (timp2b)

and complement component (c7a). The GO enrichment analysis

employing the downregulated DEGs revealed the enrichment of

terms like endopeptidase activity, hydrolase activity and proteolysis

(Figure 3D). However, the upregulated DEGs did not reveal any

significant GO enrichment.

3.4 Specific shift in the expression of
immune-related genes caused by AOS

We first compared the intestine transcriptome of the AL group

with the SBM group. The analysis revealed 32 DEGs, of which 10

were upregulated and 22 were downregulated in the AL group

(Figure 4A). The PCA plot shows the differential clustering of the

SBM and AL groups along the PC1, which explains 65% of

variability in the data (Figure 4B). Hierarchical clustering

(Figure 4C) revealed a clear separation of differentially expressed

genes in the SBM group compared to the AL group. Several

downregulated DEGs were immune related; chemokine (C-C

motif) ligand 36, duplicate 1 (ccl36.1), intelectin 3 (itln3), CD59A

glycoprotein-like (LOC103910140), aquaporin 1a (aqp1a.1), NLR

family CARD domain-containing protein 3-like (LOC101882744),

cxcl8a

sod1

A B C

E F G

D

H

I Jgpx1a

FIGURE 1

Relative expression of immune genes in the intestine of zebrafish fed different diets. (A) interleukin-1b (il1b); (B) matrix metalloproteinase-9 (mmp9);
(C) myeloid-specific peroxidase (mpx); (D) chemokine (C-X-C motif) ligand 8a (cxcl8a); (E) superoxide dismutase 1 (sod1); (F) catalase (cat); (G)
mucin2.1 (muc2.1); (H) mucin5ac (muc5ac); (I) glutathione peroxidase (gpx1a); (J) interleukin-10 (il10). CT- control diet; SBM- soybean diet; BG-
algal b-glucan; AL- AOS with 31% < 3kDa; AH- AOS with 3% < 3kDa. Asterisk * p < 0.05, ** p < 0.01 and *** p < 0.001, • p < 0.1. Each treatment
group consisted of five biological replicates.
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myeloid-specific peroxidase (mpx), c7a, G protein-coupled receptor

142 (gpr142) and matrix metalloproteinase-25b (mmp25b)

(Figure 4C and Supplementary Table 6). GO enrichment analysis

employing the downregulated DEGs revealed terms like response to

stress, inflammatory response, immune response, humoral immune

response and complement activation (Figure 4D). The upregulated

DEGs based analyses revealed the enrichment of intracellular

organelle lumen (Supplementary Table 7).

Comparison of the AH group with the SBM group revealed 20

DEGs of which 10 were upregulated and 10 were downregulated in

the AH group (Figure 4E and Supplementary Table 8). The PCA

plot shows the clustering of samples into SBM and AH groups. The
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FIGURE 2

Transcriptome-based differences in the intestine of zebrafish from the soybean group compared to the control group. Volcano plot (A), PCA plot (B)
and heatmap (C) of the differentially expressed genes in the soybean (SBM) group compared to the control (CT) group. Chord diagram showing the
link between the enriched GO terms in the soybean group and the associated genes that were upregulated (D) and downregulated (E) in the
soybean (SBM) group compared to the control (CT) group. The enriched GO terms are colour-coded and on the right side of the circles one finds
the differentially expressed genes contributing to the enriched GO terms that are shown on the left of the circles. The gradient colour bar intensity
varies with the Log2 fold change (adjusted p-value < 0.05 and |Log2 fold change| ≥ 1). There are five biological replicates in each study group.
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clusters are separated from each other along the PC1, which

explains 63% of variability in the data (Figure 4F). Hierarchical

clustering (Figure 4G) revealed a clear separation of up- and

downregulated DEGs in the AH group compared to the SBM

group. The downregulated DEGs-based GO analysis revealed

enrichment of negative regulation of immune system processes

(Supplementary Table 9). Our analysis did not detect a significant

GO term enrichment based on the upregulated DEGs. The

upregulated DEGs were immune related: B-cell receptor CD22

(LOC100151328), NLR family CARD domain-containing protein

3-like (LOC108183498), Fc receptor-like protein 5 (LOC101886098)

and macrophage mannose receptor 1-like (LOC100331140). The

downregulated DEGs were, among others, interleukin 26 (il26),

adhesion G protein-coupled receptor E15 (adgre15), lectin

galactoside-binding, soluble, 9 (galectin 9)-like 6 (lgals9l6) and

CD59 glycoprotein-like (LOC103910140) (Figure 4H).

To find out if the AOS has the capacity to shift the expression of

genes that were altered by SBM, we examined the common DEGs

from the transcriptome comparisons, viz. SBM vs. CT as well as AL

vs SBM and AH vs SBM (Supplementary Figure 2 and Figures 5A,

B). Here we list the DEGs that had contrasting expression patterns

in the abovementioned comparisons. The expression of four

upregulated DEGs in SBM vs CT comparison, namely fin TRIM

family, member 37 (LOC567984), CD59A glycoprotein-like

(LOC103910140), cell division cycle 6 homolog (cdc6), alcohol

dehydrogenase 5-like (zgc:63568) and four downregulated DEGs in

SBM vs CT comparison namely RAS like family 11 member B

(rasl11b), HECT and RLD domain containing E3 ubiquitin protein

ligase 56.3 (zgc:163136), si:cabz01076231.1, RNA polymerase II

subunit C (polr2c) were shifted in the AL group to a level almost

similar to that in the control group (Supplementary Figure 2

and Figures 5C, D). On the other hand, the expression of five

upregulated DEGs in SBM vs CT namely NADH:ubiquinone

oxidoreductase subunit S4 (ndufs4), CD59A glycoprotein-like

(LOC103910140), fibroblast growth factor binding protein 1b

(fgfbp1b), alcohol dehydrogenase 5-like (zgc:63568), acyl-CoA

thioesterase 19 (acot19) and four downregulated DEGs in SBM vs

CT comparison namely Fc receptor-like protein 5 (LOC101886098),

B-cell receptor CD22 (LOC100151328), si:dkey-286h2.7, RNA

polymerase II subunit C (polr2c) were shifted in the AH group to

levels almost similar to those in the control group (Figures 5E, F).

Venn diagram reveals the two common downregulated DEGs

(LOC103910140, zgc:63568) (Figures 5C, E) and one common

upregulated (polr2c) (Figures 5D, F) DEG in the AL and AH diet

groups compared to the SBM group, respectively.

A direct comparison of AL versus AH group revealed 14 DEGs, of

which 2 were upregulated and 12 were downregulated in the AL group.

Among the downregulated DEGs, immune genes like ccl36.1 had a 12-

fold and C-reactive protein -6 (crp6) had a 5-fold downregulation in the

AL group compared to the AH group (Supplementary Table 10).
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FIGURE 3

Transcriptome-based differences in the intestine of zebrafish from the algal b-glucan group compared to the soybean group. Volcano plot (A), PCA
plot (B) and heatmap (C) of the differentially expressed genes in the algal b-glucan (BG) group compared to the soybean (SBM) group. Transcripts
with an adjusted p-value below 0.05 and |Log2 fold change| ≥ 1 were considered as significantly differentially expressed. Dot plot (D) showing
enriched GO terms in the BG group based on the genes that were differentially downregulated compared to the SBM group. The gradient colour bar
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Furthermore, these 2 DEGs caused the enrichment of the GO term

“response to virus” (Supplementary Table 11).

3.5 Soybean-based diets (both with and
without glucans or AOS) altered the
plasma metabolome

To gain deeper insights into the impact of different dietary

treatments, we compared the plasma metabolome of the various

treatment groups. We identified a total of 71 metabolites (level 1).

Partial least squares discriminant analysis revealed a group-based

clustering of the samples (Supplementary Figure 3). Comparison of

the SBM group with the CT group revealed aldopentose,

ethylmalonic acid, xanthine, itaconic acid, 2-(hydroxymethyl)

butanoic acid, citrulline, ornithine, taurochenodeoxycholic acid and

trigonelline as the significantly altered metabolites (Figures 6A, B;

Supplementary Figure 4 and Supplementary Table 12). The pathway

analysis using these nine significantly altered metabolites identified

arginine biosynthesis as the significantly enriched pathway

(Figure 6C). Comparison of the BG group with the SBM group

revealed pantothenic acid and isocitric acid as the significantly altered

metabolites (Supplementary Figure 5A and Supplementary Table 13).

Furthermore, the AL group versus the SBM group revealed 2-

hydroxybutyric acid as the significantly abundant metabolite

(Figure 6D; Supplementary Figure 5B and Supplementary

Table 14). We did not find any significantly altered metabolite

from the AH vs SBM comparison.

3.6 AOS altered the intestinal
histomorphology

We investigated histological changes in the intestine of

zebrafish to understand the effect of different diets (Figure 7A).

We found a significantly higher number of goblet cells per villi (p <

0.05) in the AL group compared to the CT and SBM groups

(Figure 7B). We also found an increase in the villi length in the

AL group compared to the CT and BG groups (Figure 7C). The

diets seem to have no effect on goblet cell size, eosinophils and

lamina propria width in zebrafish (Figures 7D–F).

4 Discussion

Prebiotics are often administered through diet to obtain a

“synergistic or complementary synbiotic” effect, and currently,

scientists are gathering evidence on the IBD-alleviating potential of
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this approach. The belief is that dietary prebiotics change the

composition of intestinal microbiota, which influences mucosal as

well as systemic immune responses in a host (23). In one of our

previous studies (13), we profiled the intestinal bacterial communities

in Atlantic salmon fed two levels of AOS (0.5 and 2.5%). We reported

the potential ability of 0.5% AOS to stimulate the proliferation of

bacteria with SCFA-producing capacity. The same product was added

to the AL diet of the current study. For comparative purposes, we

formulated the AH diet that contained an AOS with a lower

proportion of < 3kDa. The two products were incorporated at

0.962% (AL) and 0.658% (AH) (both w/w) into the diet of

zebrafish, taking into consideration the content of the active

component. We performed an in vivo study to compare the anti-

inflammatory effects imparted by two AOS products (with 31% <

3kDa and with 3% < 3kDa), using an intestine inflammation model in

adult zebrafish. We targeted the transcriptome and metabolome of

the fish to evaluate the anti-inflammatory potential of AOS. We have

also studied the transcriptome and metabolome of zebrafish fed an

algal b-glucan that we studied previously (16).

The generated transcriptomic and metabolomic profiles

revealed the distinct responses evoked by the products (based on

the comparison with the SBM group). Downregulated DEGs-based

enriched GO terms of the AL group were complement activation,

inflammatory response and humoral response, compared to the

negative regulation of the immune system in the case of the AH

group. The significantly abundant plasma metabolite in the AL

group was 2-hydroxybutyric acid. Histological evaluation indicated

that the AL group had more goblet cells and longer intestinal villi.

4.1 Dietary soybean meal altered the
expression of genes linked to
inflammation, endoplasmic reticulum,
reproduction and
cell motility

Soybean meal contains several anti-nutritional factors (ANFs)

including saponins, lectins, isoflavones, and b-conglycinin (24).

These ANFs can hamper growth, reduce digestive enzyme activity,

and alter the gut mucosal integrity to induce inflammation. Such an

inflammatory response could be due to soy saponins as reported in fish

studies (25, 26). Increased granulocyte recruitment and higher

expression of inflammatory marker genes (il1b and il8) were the

characteristics described in zebrafish larvae fed a diet containing

soybean meal and soy saponin (27). In our previous studies, we

found that the dietary soybean meal (50% inclusion) affected barrier-

related genes in the intestine of juvenile zebrafish (28) and soy saponin

developed inflammation features such as increased lamina propria

width, infiltration of immune cells, and increased expression of genes

related to antimicrobial peptides and ion transport in the intestine of

Atlantic salmon (26). In the present study, the expression of

inflammatory marker genes (il1b, mpx, cxcl8a) were upregulated in

the SBM group. The proinflammatory cytokine IL-1b is secreted by

innate immune cells and is an important mediator of inflammatory

response (29). The chemokine CXCL8A is a neutrophil

chemoattractant that stimulates the migration of neutrophils from

blood to the inflamed sites. Granulocytes (mainly neutrophils) are the

first responders that migrate to an inflamed site and a high
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concentration of granulocytes represents a transition from an acute

phase to a chronic inflammatory state (30). We also gathered evidence

on increased presence of neutrophils in the intestine of larval zebrafish

(16) and in the present study the expression of the neutrophil marker

mpx was elevated by the SBM diet. Moreover, MPX was found to be

involved in the production of ROS in the mucosa of patients suffering

from intestinal inflammation (31). The MMPs secreted by neutrophils

degrade the extracellular matrix, facilitating the transendothelial

migration of neutrophils to the inflamed sites (32). In the present

study, several inflammation-related GO terms like leukocyte

chemotaxis, leukocyte migration were enriched in the SBM group

with significantly upregulated immune genes (mmp13a, coro1a, il22,

ccl34a.4, cd59, foxn, gig2i). The metalloprotease gene mmp13 codes for

an endopeptidase that plays a critical role in intestinal epithelial barrier

disruption and is therefore considered a potential therapeutic agent for

treating IBD (33). LPS-induced goblet cell depletion, ER stress,

permeability and tight junction alterations were reduced in the gut of

Mmp13 knockout mice (33). The gene il22 codes for a cytokine that

regulates the intestinal barrier integrity and its expression was altered

during inflammation (34). A previous study on juvenile Jian carp

(Cyprinus carpio var. Jian) reported that soybean b-conglycinin can

also cause intestinal damage and induce inflammation and oxidative

stress as a result of the elevated expression of inflammatory cytokine il-

8, tumor necrosis factor-a (tnf-a), and transforming growth factor-b
(tgf-b) genes and reduction of the anti-oxidant enzymes SOD and CAT

(35). Hence, the negative effects of soybean meal can be compounded

by the actions of all the antinutritional factors. For instance, soybean

lectins can potentiate the detrimental effects of saponin on epithelial

barrier function (36). Furthermore, dietary soybean meal can also have

other metabolic effects like altering the cholesterol metabolism and

hampering reproductive development (37, 38). In the present study,

several downregulated DEGs in the SBM group significantly enriched

the GO term sexual reproduction. These results corroborated those

reported in our previous article; 50% soybean meal feeding altered

genes related to reproduction and cholesterol metabolism in zebrafish

(16, 28). This could be attributed to isoflavones present in soybean

meal, which can bind to oestrogen receptors (39). As reported in

previous studies, alteration in the membrane cholesterol by soy saponin

might have affected cell motility and lipid metabolism by influencing

the functioning of ER (40, 41). Furthermore, dietary soybean meal can
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increase the rate of respiration (16), thereby increasing the production

of reactive oxygen species (42) and aggravating the inflammatory

response (43). Soybean meal diet increased the oxygen consumption

(16) and altered the genes related to oxidoreductase activity in zebrafish

(28). Thus, the intestinal inflammatory response to soybean meal can

be a direct effect of anti-nutritional factors or due to cumulative

metabolic changes caused by multiple factors in the soybean diet.

4.2 Distinct changes in the intestine of
adult zebrafish fed soybean meal and algal
b-glucan or AOS

Defects in the barrier function caused by intestinal structural

changes can increase luminal antigen penetration and the

associated chemokine-induced recruitment of neutrophils. We

found that the expression of genes associated with neutrophil

recruitment (mpx and cxcl8a) and barrier disruption (mmp9) was

downregulated in the AOS and BG fed groups. The expression of

proinflammatory cytokine il1b was upregulated in the SBM and AH

group. Conversely, the expression of il1b was not altered in the AL

group compared to the control group suggesting an immune

modulation in the zebrafish intestine by the AL diet.

Furthermore, in the AL group the downregulated DEGs (cd59,

c7a, mpx, ccl36.1, itln3, aqp1a.1, nlrc3, gpr142 and mmp25b)

enriched the GO terms inflammatory response, complement

activation and humoral immune response. Note that mpx and

mmp (mmp25b) were downregulated in the AL group.

Furthermore, the expression of the gene, cat was upregulated in

the AL group, and this antioxidant is a key regulator of ROS

generated during inflammatory conditions (44). It should be

noted that catalase activity was lower in patients suffering from

intestinal inflammation (45) and catalase administration can reduce

ROS levels and ameliorate inflammation, as shown in colitis mice

models (44). Intestinal epithelial cells are sources of complement

components and appropriate regulation of complement activation

is essential to prevent intestinal epithelial cell damage. Increased

complement activation has been associated with the pathogenesis of

IBD (46). The C7A protein is part of the membrane attack complex

(MAC), and the downregulation of gene expression of this

component points to the prevention of complement activation.

Therefore, the suppression of several processes related to

inflammation by the downregulated DEGs and the increase in the

antioxidant gene cat in the AL group suggest the ability of AOS

(AL) to reduce the intestinal inflammation induced by the

dietary soybean.

Conversely, in the AH group, we found one GO term, viz.

negative regulation of immune system process, enriched by the

downregulated DEGs (lgals9l6, CD59 glycoprotein-like). The

downregulated DEG in the AH group, lgals9l6 that codes for

protein galactoside-binding, soluble, 9 (galectin 9)-like 6, is an

ortholog of human LGALS9 (galectin 9/Gal-9). Gal-9, a b-
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FIGURE 7

Diet-induced histomorphological changes in the intestine of zebrafish. Representative histological images (A) showing the changes in tissue
architecture of the intestine of zebrafish stained with AB-PAS. Scale bar = 100 mm. The measured parameters include (B) Goblet cells per villus (C)
Villi length (D) Goblet cell size (E) Eosinophils per villus (F) Lamina propria width. Horizontal bars indicate mean values. * indicates p < 0.05 and p <
0.1 (n = 6-9 per group). CT- control diet; SBM- soybean diet; BG- algal b-glucan diet; AL- AOS diet with 31% < 3kDa; AH- AOS diet with 3% < 3kDa.
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galactoside binding lectin with a carbohydrate recognition domain,

is expressed in human crypt cells and its expression is lowered in

IBD patients (47). Furthermore, mice lacking gal-9 were reported to

have impaired intestinal mucosal antigen-specific IgA response and

were more susceptible to developing watery diarrhoea (47). Because

CD59 prevents the activation of the complement system and the

associated assembly of MAC, the decrease in epithelial expression of

CD59 in IBD patients renders the epithelial cells prone to

complement lysis and may lead to destruction of gut epithelium

(48). Furthermore, the comparison of AH group with the SBM

group revealed the upregulation of several immune genes (il26,

cd22, nlrc3, cd206). The gene il26 is a mediator of inflammation and

is overexpressed in activated or transformed T cells (49). The

protein CD22 is abundantly expressed on the cell surface of

activated B-lymphocytes and it can negatively regulate lamina

propria eosinophil levels, as in the case of mice (50). Based on

these facts, we speculate that the AL group is effective in

reducing inflammation.

Venn diagrams created to understand the differential effects of

AL and AH on the expression of genes in zebrafish intestine

revealed that the results of the AL vs SBM comparison was

distinct from those of AH vs SBM comparison. We found only

three common DEGs (loc103910140, zgc:63568, polr2c) in the two

comparisons; two (zgc:63568 and loc103910140/CD59) of these

were downregulated DEGs and one was an upregulated (polr2c)

DEG. As mentioned before, the protein CD59 prevents the

complement activation and MAC formation. We performed a

direct transcriptomic comparison of the AL group with AH group

to delineate further the specific effects of the two products. This

comparison revealed the downregulation of ccl36.1 and crp6 in the

AL group. The zebrafish gene crp6 is an ortholog of human CRP,

which is used as a biomarker of systemic inflammation and has been

reported as a valuable marker of IBD (51). In our previous study, we

have reported that the positive effects of yeast-derived b-glucan on

soybean meal-induced inflammation could also be due to a

downregulation in the expression of ccl36.1 (28). In the present

study, dietary algal b-glucan downregulated the DEGs (zgc:171509,

timp2b, lipg, mmp13a, c7a) linked to the GO terms like

endopeptidase activity and proteolysis. We found that the

immunostimulant can suppress the expression of mmp13a while

the expression of mmp13 was upregulated in Atlantic salmon

infested with sea lice in response to chronic tissue damage (52).

The genes mmp13 and timp2 have an essential role during tissue

remodelling because the expression of the molecules determine the

intricate extracellular matrix turnover (53, 54). Therefore, these

genes could be markers of tissue damage caused by the dietary

soybean. Furthermore, as noted in this study on adult fish, in larval

zebrafish also algal b-glucan reduced endopeptidase and proteolytic

activity (16).

4.3 AOS diet altered the histological
architecture of the intestine

We studied five histomorphological parameters of the intestine

and found that the AL group had longer villi with significantly

higher number of goblet cells. Goblet cells are responsible for the

synthesis, storage, and release of intestinal mucin proteins. Mucus

production is an indication of a healthy barrier function as it

restricts the entry of pathogens and unwanted luminal antigens

into the intestine. It is reported that oligosaccharides can support

the mucosal barrier function by stimulating intestinal goblet cells to

produce more mucus (55). More mucus cells per villi is an

indication that more intestinal cells differentiate into goblet cells

to reinforce the barrier. We noted changes specific to the AL group.

AL diet fed fish had longer villi and more goblet cells. More goblet

cells, longer villi and an increase in the villus height-to-crypt depth

(V:C) ratio were reported in a study on AOS diet fed pigs that had

better growth (11). b-glucans increased the V:C ratio as well as the

average body weight of broiler chicken (56). Mannan

oligosaccharide enhanced the growth, increased the villi height

and decreased the intestine crypt depth of the juvenile striped

catfish (Pangasianodon hypophthalmus) (57). There are not many

reports on AOS induced alteration in V:C ratio and its correlation

with the growth offishes. Since zebrafish lacks intestinal crypts (58),

we cannot relate the growth to the V:C ratio. Nevertheless,

increased villus height has been associated with increased nutrient

absorption, higher transport of nutrients and improved growth in

mammals and fish (59, 60). However, the AL diet did not stimulate

the growth of zebrafish. Our previous study on the larval zebrafish

model also did not reveal any effect of the SBM and b-glucan diets

(also used in the present study) on the standard length (16).

Conversely, SBM diet caused several developmental defects like

impairment of eye, swim bladder and skeletal deformities in the

larval zebrafish (16). Zebrafish is known to have a determinate

growth (46) and therefore fish of age 20–40 dpf is considered

suitable for a reliable growth study. During this period, energy is

predominantly allocated for rapid growth and this time window

permits a 40-fold increase in body weight (61). However, in our

study we did not find any changes in the growth of the AL group as

the feeding experiment was conducted using adult zebrafish. A

previous study has also reported that inclusion of soybean meal can

stimulate an inflammatory response in the intestine without any

effect on the growth of zebrafish (62).

4.4 Plasma metabolites indicate soybean
meal-induced inflammation, and AOS
and algal b-glucan induced SCFA and
vitamin production

To our knowledge, this is the first study on the metabolites of

zebrafish plasma. Plasma metabolomics can give indications of the

systemic perturbations caused by intestinal inflammation (39).

Only few metabolites have been detected in plasma from

zebrafish due to the small sample amount that can be retrieved

from the fish. A comparison of the SBM group with the control

group yielded 9 differentially abundant metabolites, out of the 71

detected metabolites. Among the altered metabolites, itaconic acid

was significantly abundant in the SBM group compared to the

control group. Itaconic acid is considered a biomarker of

inflammation, and M1 macrophages are known to produce
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substantial amounts of itaconate (63). Furthermore, itaconate

concentration was markedly increased during lipopolysaccharide-

and interferon-g-induced activation of mammalian macrophages

(64), probably due to polarization of macrophages to their M1

phenotype. We also found a decrease in the metabolite

taurochenodeoxycholic acid (TCDCA) in the SBM fed group.

TCDCA, the secondary bile acid that is conjugated with taurine,

is a derivative of the primary bile acid chenodeoxycholic acid.

Secondary bile acids are microbiota-associated metabolites and

studies have reported an increase in primary bile acids and a

reduction in secondary bile acids in IBD patients (65).

Furthermore, the amino acid residues in soybean protein have a

high bile acid-binding ability and can suppress enterohepatic

circulation, even in fishes (66). Therefore, the decreased

concentration of TCDCA in plasma is also likely due to soybean

feeding. On the other hand, arginine nitric oxide and arginine urea

pathways are implicated in the pathogenesis of IBD; in the former

case NOS2 (the inducible form of nitric oxide synthase [iNOS])

metabolizes L-arginine to NO and L-citrulline and in the latter

arginases (ARG1 and ARG2) catalyse the conversion of arginine to

urea and ornithine. The abundance of ornithine and citrulline was

higher in the plasma of zebrafish fed the inflammation-inducing

diet, as reported for IBD patients (67). However, pathway analysis

using metabolites with significantly higher abundance in SBM

group detected arginine biosynthesis as the significantly enriched

pathway. Our results point to the enrichment of the arginine

biosynthesis pathway and upregulation of ornithine and citrulline.

Increase of arginine biosynthesis in the SBM group could be a

compensatory response in the body due to decreased arginine

availability associated with the inflammatory response (68).

SCFAs are produced by microbial fermentation of non-digestible

carbohydrates in the posterior segment of the intestine of mammals

(69). We found significantly higher levels of 2-hydroxybutyric acid

(2-HB) in the plasma of the AL group.While a high fat diet decreased

the abundance of 2-HB in the serum of mice, dietary polysaccharide

increased the metabolite (70). The same study reported that pre-

treatment of macrophages with 2-HB can significantly decrease LPS-

induced up-regulation of TNF-a. In the present study,

proinflammatory genes were downregulated in the AL group with

a high abundance of 2-HB. Interestingly, we found that AOS (AL)

can elevate 2-HB, which was positively correlated with Alloprevotella

in another study (71). Furthermore, dietary AOS could increase the

abundance of Alloprevotella and butyric acid which are positively

correlated (72). The AL and AH groups exhibited distinct

transcriptomic and metabolomic responses although the two diets

differed only in terms of the percentage of the low molecular weight

fraction (AL, with 31% < 3kDa and AH, with 3% < 3kDa). Our results

indicate that this difference can affect the immune modulatory and

prebiotic potential of the diet; the AL diet was more effective in

reducing the intestinal inflammation compared to the AH diet. Low

molecular weight polysaccharides are more soluble and have greater

fermentability (73). Low and high molecular polysaccharides are

utilized by different intestine bacteria (74), and the former type is

fermented faster to produce SCFAs and have better prebiotic

potential (75). This could be the reason for the detection of a

SCFA in the plasma of the AL group.

A comparison of the BG group with the SBM group indicated

an increase in the abundance of pantothenic acid also known as

vitamin B5 (VB5). A previous study has found an inverse

correlation between dietary VB5 intake and serum CRP

concentration (marker of inflammation) in humans (76).

Although we observed a downregulation of crp6 in the AL group

compared to the AH group, such changes were not noted for the BG

group. A study on mice revealed that VB5 could enhance the

phagocytosis of macrophages to reduce the pathogen load in

macrophages (77). In addition, in vitro studies have shown that

VB5 can increase glutathione levels in cells, suggesting a role of VB5

as an antioxidant to reduce cell damage (78). Although previous

studies have not indicated a connection between pantothenic acid

and dietary b-glucan, it is possible that algal b-glucan might have

stimulated the proliferation of gut microbes such as Bacteroides

fragilis, Prevotella copri and Ruminococcus spp. that possess the

genes to synthesize vitamin B5 (79).

5 Conclusion

Dietary soybean affected both the expression of inflammatory

marker genes (il1b, mpx, cxcl8a) and metabolites like itaconic acid

and taurochenodeoxycholic acid in the intestine of zebrafish.

Conversely dietary AOS with a higher percentage of low molecular

weight reduced the expression of several inflammatory marker genes,

increased goblet cell number, villi height and a SCFA in the plasma.

The BG diet suppressed several immune genes linked to the

endopeptidase activity and proteolysis, suggesting a possible role of

algal b-glucan in controlling the tissue damage caused by dietary

soybean. In the future, it would be interesting to study the impact of

structurally different AOS on the microbiota composition and SCFAs

in zebrafish and explore the synergetic effect of AOS and algal

b-glucan in reducing soybean induced intestinal inflammation.
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It is widely recognized that intestinal inflammation is a major health 
problem in humans. Certain dietary components can evoke an 
inflammatory status in the intestine due to their ability to disrupt the 
intestinal barrier. On the other hand, some natural bioactive compounds 
can prevent the development of intestinal inflammation. This PhD project 
elucidated the molecular characteristics and extraintestinal effects of 
soybean meal-induced intestinal inflammation in zebrafish. The ability of 
dietary ß-glucans (yeast and alga-derived) and alginate oligosaccharides 
to counter soybean meal-induced inflammation in zebrafish was also 
studied to reveal the efficacy of the bioactive compounds. Transcriptome 
and metabolome-based studies were employed to delineate the markers 
of inflammation. Furthermore, soybean meal-induced inflammation 
was associated with defects in development and locomotor activity of 
zebrafish. The interesting finding is that algal ß-glucans and alginate 
oligosaccharides restored the expression of inflammation marker 
genes altered by soybean meal diet. The algal ß-glucan prevented 
the developmental defects and normalized the soybean meal diet-
induced changes in the locomotor behavior of zebrafish. The alginate 
oligosaccharides and algal beta-glucans could elevate the abundance of a 
short chain fatty acid and vitamin in the plasma of zebrafish, respectively. 
The PhD project gave insights into diet-induced inflammatory features 
and distinct modes of action of ß-glucan and alginate oligosaccharides 
to counteract inflammation and associated extraintestinal manifestations.
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