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Abstract. Noncommunicable diseases are among the most significant
health threats in our society, being cardiovascular diseases (CVD) the
most prevalent. Because of the severity and prevalence of these illnesses,
early detection and prevention are critical for reducing the worldwide
health and economic burden. Though machine learning (ML) methods
usually outperform conventional approaches in many domains, class im-
balance can hinder the learning process. Oversampling techniques on the
minority classes can help to overcome this issue. In particular, in this
paper we apply oversampling methods to categorical data, aiming to im-
prove the identification of risk factors associated with CVD. To conduct
this study, questionnaire data (categorical) obtained by the Norwegian
Centre for E-health Research associated with healthy and CVD patients
are considered. The goal of this work is two-fold. Firstly, evaluating the
influence of combining oversampling techniques and linear/nonlinear su-
pervised ML methods in binary tasks. Secondly, identifying the most rele-
vant features for predicting healthy and CVD cases. Experimental results
show that oversampling and FS techniques help to improve CVD predic-
tion. Specifically, the use of Generative Adversarial Networks and linear
models usually achieve the best performance (area under the curve of
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67%), outperforming other oversampling techniques. Synthetic data gen-
eration has proved to be beneficial for both identifying risk factors and
creating models with reasonable generalization capability in the CVD
prediction.

Keywords: Non-communicable diseases · Cardiovascular diseases · Gen-
erative adversarial networks · SMOTE · Synthetic data generation · Fea-
ture selection · Risk factor identification

1 Introduction

Non-communicable diseases (NCDs) are among the significant health threats in
our society due to their impact and severity, affecting all age ranges and coun-
tries [46]. According to the World Health Organization, NCDs are responsible for
the most significant number of deaths worldwide, with approximately 41 million
people dying yearly [35]. The leading NCDs are cardiovascular diseases (CVDs),
cancer, chronic respiratory diseases, and diabetes mellitus, with 17.9, 9, 3.9 and
1.6 million deaths per year, respectively [18]. This accounts for 71% of all deaths
globally, and although NCDs tend to be associated with old people, 15 million
of these deaths occur in people within the range of 30 and 69 years. Therefore,
young people, adults and the elderly may be vulnerable to risk factors related
to the development of NCDs.

NCDs are caused by different factors, including genetic, physiological, behav-
ioral and environmental factors [2]. Among them, the lack of physical activity,
unhealthy diets, alcohol/tobacco use, and obesity play an important role in the
onset of these diseases [36]. The main priority for NCDs prevention is linked to
lifestyle change as well as early intervention. The main problem with NCDs is
that they are often diagnosed at an advanced stage, making it challenging to
deal with them. In this scenario, the availability of models to support decision-
making would help in the early diagnosis of NCDs, as well as to identify high-risk
patients and reduce mortality rates [14, 30].

Over the last years, different machine learning (ML) methods have been de-
veloped to support health practitioners in decision-making, providing remarkable
advances in different knowledge domains. ML techniques use data to build mod-
els capable of making predictions and identifying patterns [9]. In the clinical
setting, a variety of works have applied ML in different applications, including
support to disease diagnosis, extraction of hidden patterns and analysis of health
statuses, among others [9]. Data availability is crucial to the success of ML clas-
sifiers which, in general, are built under the assumption of a similar number
of observations per class [20]. Class imbalance usually causes that data-driven
models capture a better representation of the observations in the majority class,
leading to poor model performance for the minority class [45]. In real-world
scenarios, when dealing with medical databases, as in our case study, the class
imbalance is one of the main challenges for designing data-driven models, usually
due to the limitation in the number of samples.
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To cope with the class imbalance problem, a variety of methods have been
proposed in the literature [21]. In this paper, we focus on oversampling tech-
niques, with the synthetic minority oversampling technique (SMOTE) [7] being
one of the most extensively used. Other approaches are increasingly coming into
use, such as the Generative Adversarial Networks (GANs), which have changed
findings in a variety of fields by providing high performance when generating
synthetic data [1]. Although GANs have been tested in a variety of domains,
they have not been thoroughly investigated when it comes to electronic health
records (EHRs) [1]. In the literature, different GANs have been presented in
the clinical domain to generate synthetic patient samples from real-world data,
addressing the challenge of restricted data sources in healthcare applications [8].
The GAN-based model called medGAN [8] was recently presented to generate
synthetic categorical data related to EHRs using the clinical code-based MIMIC
dataset [28]. Most previous studies refer to the generation of synthetic data from
numerical databases rather than categorical databases, even when most health-
care applications handle categorical data.

In order to achieve class balance, we created synthetic samples by focusing
on the following types of data augmentation schemes: SMOTEN, a variant of
SMOTE for categorical data, Tabular Variational Autoencoder (TVAE) [47],
Gaussian Copula (GC) [33] and medGAN [8]. Once the classes were balanced, we
applied several ML approaches to extract the most predominant risk factors and
perform classification tasks. Finally, the performance of the resulting model was
evaluated using a subset of real observations, independent from those considered
during the model design.

The rest of the paper is organized as follows. Section 2 describes the dataset
and pre-processing stage. Section 3 introduces the theoretical foundations of the
oversampling and classification methods used. Next, Section 4 shows experimen-
tal results related to CVD classification performance and model interpretability
outcomes when considering linear and nonlinear methods. Finally, Section 5
presents the discussion and main conclusions.

2 Dataset description and pre-processing

The dataset considered in this work is part of the contribution to a three-year
project carried out by the Norwegian Centre for E-health Research, UiT The
Arctic University of Norway and Healthcom, who designed the “Health and Dis-
ease” of NCDs [19]. A smartphone-based method was used to collect the data
by a series of survey questions to a population group in Norway. This study
was developed for monitoring the modifiable risk factors of four NCDs: diabetes,
cancer, CVD and chronic respiratory diseases. The dataset was composed of
2303 individuals, but in the preprocessing stage we eliminated 10 individuals
who had not completed the questionnaire, resulting in a dataset with a total of
2293 individuals.

The survey was designed with a total of 26 questions (variables): 7 questions
related to socioeconomic factors, 7 questions related to alcohol and drug use,
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4 questions related to physical activity, 7 questions related to the type of diet,
and 1 question indicating current/previous NCDs. In particular, the following
NCDs were considered: high cholesterol, atrial fibrillation, myocardial infarction,
heart failure, stroke, chronic respiratory disease, cancer and diabetes. Finally, by
studying the disease groups separately, we observed that all those who suffered
or had suffered heart failure, cardiovascular accident, atrial fibrillation and/or
myocardial infarction had also responded that they suffered cardiovascular dis-
ease. For this reason, we decided to group these four variables into a new variable
indicating only whether the patient had CVD. Individuals who did not respond
to the question related to NCDs were considered as healthy individuals. Thus,
there were 465 people with CVD, 72 people with cancer, 46 people with both
NCDs and 1578 people who do not suffer from any disease (associated with the
healthy population group). Considering the low number of patients with cancer
and both diseases, we decided to focus only on the study of CVD patients, which
according to the literature it is also the predominant disease within NCDs [18].
Furthermore, we created a new category called ‘NA’ to indicate that the answer
to a question is not available. Finally, our dataset consists of 2043 individuals,
with 1578 healthy respondents and 465 individuals with CVD. Regarding the
variables, we have organized them into the following six groups:

– Socioeconomic background factors: year of birth (age), sex, body mass
index (BMI) and level of education (education).

– Substance use: cigarette consumption (smoking), snuff and e-cigarette use,
and alcohol consumption. Concerning alcohol, there are specific variables
extracted from the Alcohol Use Disorders Identification Test (AUDIT) [3],
with information about frequency, the number of units usually consumed and
the frequency of occasions of consumption of more than 6 units of alcohol.

– Physical activity: it was extracted from the International Physical Ac-
tivity Questionnaire (IPAQ) [10]. There are data about: number of days of
strenuous physical activity in the last 7 days, number of days of moderate
physical activity in the last 7 days, number of days of walking for more
than 10 minutes in the previous 7 days, and hours spent sitting (excluding
sleeping hours) on a regular weekday in the previous 7 days.

– Dietary intake: servings of fruits and berries per day, lettuce and vegetable
intake per day, sugary drinks and number of glasses per day, fish and num-
ber of times consumed per week, red meat and number of times consumed
per week, processed meat and number of times consumed per week, and
frequency with which extra salt is added to food before eating.

– Income: number of persons in the household over and under 18, and gross
household income the previous year.

– Clinical: presence of high cholesterol.

Since we are dealing with categorical variables, we considered the one-hot-
encoding strategy [6] for the majority of ML approaches. This type of coding
creates one additional feature for each category in the variable (excepting for
binary variables) and sets to ‘1’ just the feature linked to the active category for
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each observation. After this encoding, the dataset dimension [23] increased to a
total of 153 features.

3 Methodology for predicting cardiovascular diseases

The workflow is sketched in Figure 1. First, an exploratory analysis and prepro-
cessing stage was performed to clean the data and ensure that the database is
curated for use by ML methods. Next, the dataset was split into two independent
sets (training and test sets), and the bootstrap resampling-based test was used
to perform FS. Subsequently, we used different oversampling methods to bal-
ance the classes and design CVD classifiers with balanced datasets. This section
describes the FS approach, the oversampling techniques and the ML methods.

Features

72
Features

153

58 Features
(n = 2303)

26 Variables
(n = 2043)

Fig. 1: Workflow using CVD data, oversampling methods and ML classifiers.

3.1 Test based on bootstrap resampling for feature selection

High-dimensional data could lead to irrelevant and redundant features, which can
cause overfitting and worsen the model performance. To cope with these issues,
FS techniques aim to find a subset of the input variables that best describes
the underlying data structure [4]. According to the literature, FS techniques
can be categorized in filter, wrapper and embedded methods [4]. This paper
focuses on filter methods due to their simplicity and ease of implementation.
In particular, we use the non-parametric test named bootstrap resampling to
estimate the distribution of one statistics (e.g., the mean) taking samples without
replacement from a population [16, 27, 31].

In our work, we compute the difference ∆ between the proportion of a specific
binary feature in the CVD population and in the healthy population. To estimate
the distribution of ∆, a bootstrap resampling is performed. Thus, each class is
resampled 3,000 times, with the size of each resample being the same for both
classes. Then, the difference in proportions between the populations for each
resampling and the 95% confidence interval (CI∆) for each feature is computed.
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The null hypothesis H0 is true if 0 ∈ CI∆, while the alternative hypothesis H1

is considered true if 0 ̸∈ CI∆ (e.g., no overlapping with 0). When H1 is true,
it indicates a significant difference between the proportion of the same feature
in both populations (healthy and CVD individuals). Thus, features fulfilling H1

are selected as relevant for subsequent analysis.

3.2 Oversampling techniques for categorical variables

We applied the following oversampling strategies to generate synthetic samples
of the minority class for categorical data:

SMOTE is one of the most popular methods for oversampling. It performs
a linear interpolation of the variables associated with random samples of the mi-
nority class through the k-Nearest Neighbours scheme [17]. Since SMOTE only
deals with continuous variables, variants such as SMOTEN [7, 32] have been
proposed for dealing with categorical variables. In SMOTEN, the nearest neigh-
bors are found through a modified version of the value difference measure [42]
proposed by Cost and Salzberg [11].

VAE is a deep generative model based on artificial neural networks [22].
Like most autoencoders, VAE is comprised of one encoder compressing the input
data into a lower dimensional latent space and one decoder reconstructing the
input by only using the latent space. VAE is similar in architecture to AE, but
includes a generative part to learn underlying probability distribution from data
and generate synthetic samples.

VAEs are applied in fields such as image/text classification, anomaly detec-
tion or image generation [38, 48]. To generate tabular data, a variant of VAE
called TVAE [47] for handling numerical and categorical variables was consid-
ered.

GC is a probabilistic method based on copula functions. A copula is a
joint probability distribution built from marginal univariate probability distri-
butions [33]. In other words, a copula function allows us to describe the joint
probability distribution of several random variables through the dependencies
among their marginal distributions.

GAN-based oversampling methods make use of neural networks. They
are composed of two parts: a generative model, which we train to generate new
samples, and a discriminative model which attempts to classify samples as real
or synthetic (generated). Both models are trained together until the generator
model produces believable examples [12]. Despite their popularity and perfor-
mance, most of GAN-based methods have been used for unstructured data and
in applications related to image generation. However, just a few studies have
analysed GAN-based approaches for oversampling structured and tabular data.
One of the most remarkable works in this line is medGAN [8], orientated to the
generation of synthetic patients from EHR data.
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3.3 Classification methods

Different ML classifiers have been employed in the health-care literature [34].
To support interpretability by medical professionals as well as the identifica-
tion of the most predominant risk factors for CVD, we considered the following
approaches [5, 26]: Least Absolute Shrinkage and Selection Operator (LASSO),
Linear Support Vector Machine (LSVM), and Decision Trees (DTs).

LASSO is a technique for obtaining the best linear model for a data set by
minimizing the sum of squared residuals among real and predicted values. L1
regularization is a strategy used in LASSO to penalize the previous cost function
by including a term computed as the sum of the absolute values of the model
coefficients [39]. As a consequence, the less relevant variables are set to zero,
implicitly discarding the less relevant features in the model. The hyperparameter
λ regulates the degree of penalty: the higher the λ value, the greater the penalty
and the greater the number of coefficients that will be set to 0.

LSVM is a kernel-based method [29] which transforms the input space into
a higher dimensional space where a hyperplane with good generalization capa-
bility is created. The main idea of SVM is to minimize the classification error
by finding the maximum margin hyperplane splitting the observations into two
classes. The hyperparameter C in SVM quantifies the degree of importance given
to misclassifications. Different kernels have been proposed in the literature, in-
cluding linear, radial basis function, sigmoid or polynomial. We used a linear
kernel since its weights allows us to characterize the feature importance of the
variables in an easy way [43].

DT allows to create nonlinear models in a non-parametric way. DT is com-
posed by a set of nodes recursively divided into branches according to some
criteria such as entropy [41]. When the DT just consider one feature per node,
every time a node is created the associated region in the feature space is split
into two parts by a linear boundary. In classification tasks, a label is assigned
to each part according to the majority class among the training samples in that
region. The root node (placed at the top of the tree) indicates the most rele-
vant feature for classification, from which the first partition is performed. Below
the root node are the intermediate nodes, which continue subdividing the input
space. The terminal nodes indicate the final classification [41].

4 Experimental results

This section analyzes the influence of several oversampling techniques on the
classifier performance when tackling a binary classification task (healthy versus
CVD individuals), and conduct a post-hoc interpretability stage.

4.1 Experimental setup

Data-driven classifiers are designed and validated using two independent subsets,
the training set and the test set, by allocating 80% and 20% of the samples, re-
spectively. In order to better characterize the model performance, 5 independent
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training and test partitions have been considered in this work. For hyperparame-
ter selection in the classifiers, the 3-fold cross validation (CV) [40] approach was
considered just with the training set: λ for LASSO, C for LSVM, and both the
minimum number of samples for splitting a node and the maximum tree depth
for DT.

Since we are dealing with an imbalanced dataset, the area under the receiver
operating characteristic (AUC) was chosen as a figure of merit for assessing the
classification performance [20]. It is commonly used in the medical domain since
it provides a trade-off between sensitivity and specificity. Note that, as we work
with 5 partitions, the classifier performance is shown in terms of the average
AUC and the standard deviation on the AUC values over the five test partitions
(which remain imbalanced for evaluation purposes).

4.2 CVD classification performance

We present the AUC statistics when classifying healthy and CVD patients in
two scenarios: (1) considering all features, and (2) only using the most relevant
features according to the bootstrap resampling test. Firstly, considering only
the training subset, we generate synthetic data of the minority class (CVD),
aiming to balance the dataset and improve the CVD prediction. Note that for
evaluating classification performance, the test subset does not present synthetic
samples, and only real samples are used for getting the figures of merit. Differ-
ent imbalance ratios (IRs) are considered to balance the number of samples of
the dataset classes and evaluate the influence of synthetic samples on the clas-
sifier performance. IR is defined as the ratio between the number of samples of
the minority class (Nmin) and the number of samples of the majority classes
(Nmaj). Note that IR is directly related to Nmin, with greater IR indicating
more synthetic samples of the minority class (when keeping a constant value in
Nmaj) and with IR=1 indicating a balanced dataset. We compare the following
oversampling techniques: SMOTEN, TVAE, GC and medGAN. We analyze the
influence of Nmin (the minority class size) in terms of AUC when varying the
IR and considering different oversampling techniques (see Figure 2 for details).
Since we consider five partitions, the mean (indicated with ◦,△,×) and the stan-
dard deviation (represented by a shaded color) of the AUC values obtained in
the test sets are shown.

We can observe in Figure 2 that varying the IR does not substantially change
the AUC values when considering TVAE, GC and SMOTEN. This means that
a more significant number of synthetic samples from the minority class does not
make the classification models perform better. However, in the case of medGAN,
the effect of the size of the synthetic dataset (by varying IR in the interval
[0.5, 1.0]) improves the AUC values. Secondly, medGAN seems to be the over-
sampling technique providing the better performance, reaching AUC = 0.65
(see Figure 2 (d)). Also, in general, we can observe that linear models (LASSO
and LSVM) provide the best AUC values compared with DT. As stated, han-
dling categorical data with one-hot encoding increases the dimensionality of the
dataset considerably, with a total of D = 153 features. Bootstrap resampling
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(d)

Fig. 2: Classification performance (AUC) in the test set by varying IR when
considering all features and several oversampling techniques: (a) SMOTEN; (b)
TVAE; (c) GC; and (d) medGAN. Solid lines refer to average AUC values, while
shaded areas are associated with the corresponding standard deviation in AUC.

was used to remove those features that were non-relevant and uninformative for
predicting the target variable. By applying bootstrap resampling, we take D̂ fea-
tures, being D̂ < D. With this, it is sought to evaluate if there are improvements
in the classification performance and compare them.

Figures 3 and 4 show the CI∆ for each feature when the hypothesis test based
on bootstrap resampling (see subsection 3.1) is performed. Each CI∆ shown in
blue in Figure 3 refers to one selected feature, with 72 out of the 153 initial
features. In contrast, the CI∆ shown in red in Figure 4 indicates the non-selected
features. It is important to highlight that features such as high cholesterol, age,
BMI, household adults, house income, alcohol drink frequency, and smoking were
selected. According to the literature [13, 15, 44], BMI, high cholesterol and age
are documented as risk factors in CVD. The AUC values when considering the
selected features are shown in Figure 5. As in the previous scenario, the linear
models (LASSO and LSVM) provide better AUC values than those obtained
with DT.

To compare the differences in the binary classification performance using all
features and the selected ones, we show in Table 1 the AUC values when consid-
ering the different test subsets (different partitions). From this table, note that
the best AUC values (about 0.65 or 0.66) using all the features were obtained
with medGAN. Also, focusing on this oversampling technique, the best AUC
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0.3 0.2 0.1 0.0 0.1 0.2 0.3

Age_16-29
Age_30-39
Age_40-49
Age_50-59
Age_60-69

Sex_man
Sex_NA

Sex_woman
BMI_healthy weight

BMI_NA
BMI_obesity class I
BMI_obesity class II

BMI_overweight
Education_university  4 years
Education_university < 4 years

Education_high school < 3 years
Education_NA

Smoking_current daily
Smoking_current occasional

Smoking_former daily
Smoking_never

Snuff_use_current daily
Snuff_use_never

Snuff_use_NA
E-cigarette_use_current daily

E-cigarette_use_current occasional
Alcohol_no

Alcohol_yes
Alcohol_freq_2-4 per month

Alcohol_freq_NA
Alcohol_freq_ 1 per month
Alcohol_freq_ 4  per week

Alcohol_units_1-2
Alcohol_units_NA

6_alcohol_units_less than monthly
6_alcohol_units_NA

Strenous_PA_5-6
Moderate_PA_5-6
Moderate_PA_NA

Walking_7
Walking_NA
Sitting_3-5
Sitting_6-8

Sitting_9-11
Sitting_NA

Extra_salt_NA
Extra_salt_often
Sugary_drinks_2

Sugary_drinks_NA
Lettuce_2

Red_meat_NA
Processed_meat_0
Processed_meat_1
Processed_meat_3

Processed_meat_NA
Fish_1
Fish_3

Income_551-750K
Income_751-1000K

Income_NA
Income_ 1000K

Income_<150
Household_adults_0
Household_adults_1
Household_adults_2

Household_adults_NA
Household_adults_ 4
Household_youngs_1
Household_youngs_2
Household_youngs_3

Household_youngs_NA
High_cholesterol

Selected

Fig. 3: CI∆ for the selected features when considering the hypothesis test based
on bootstrap resampling.

value (0.66) was achieved considering LASSO. DT presents a very similar per-
formance, with a score of 0.66, although with a highest standard deviation (0.02
versus 0.01 of the LASSO model). From Table 1, we can conclude that better
performance are obtained after FS and the best AUC values are obtained using
the medGAN technique and the LASSO model.
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0.3 0.2 0.1 0.0 0.1 0.2 0.3

Age_NA
BMI_obesity class III

BMI_underweight
Education_primary up to 10 years

Smoking_former occasional
Smoking_NA

Snuff_use_current occasional
Snuff_use_former daily

Snuff_use_former occasional
E-cigarette_use_former daily

E-cigarette_use_former occasional
E-cigarette_use_never

E-cigarette_use_NA
Alcohol_NA

Alcohol_freq_2-3 per week
Alcohol_units_10+
Alcohol_units_3-4
Alcohol_units_5-6
Alcohol_units_7-9

6_alcohol_units_ daily
6_alcohol_units_monthly

6_alcohol_units_never
6_alcohol_units_weekly

Strenous_PA_0
Strenous_PA_1-2
Strenous_PA_3-4

Strenous_PA_7
Strenous_PA_NA
Moderate_PA_0

Moderate_PA_1-2
Moderate_PA_3-4

Moderate_PA_7
Walking_0

Walking_1-2
Walking_3-4
Walking_5-6

Sitting_0-2
Sitting_12-14

Sitting_ 15
Extra_salt_always
Extra_salt_never

Extra_salt_occasionally
Sugary_drinks_0
Sugary_drinks_1
Sugary_drinks_3
Sugary_drinks_4
Sugary_drinks_5
Sugary_drinks_6

Sugary_drinks_ 7
Fruits_0
Fruits_1
Fruits_2
Fruits_3
Fruits_4

Fruits_NA
Fruits_ 5

Lettuce__0
Lettuce_1
Lettuce_3
Lettuce_4

Lettuce_NA
Lettuce_ 5

Red_meat_0
Red_meat_1
Red_meat_2

red_meat2_3
Red_meat_4

Red_meat_ 5
Processed_meat_2
Processed_meat_4

Processed_meat_ 5
Fish_0
Fish_2
Fish_4

Fish_NA
Fish_ 5

Income_150-350K
Income_351-550K

Household_adults_3
Household_youngs_0

Household_youngs_ 4

Not selected

Fig. 4: CI∆ for the non-selected features when considering the hypothesis test
based on bootstrap resampling.

4.3 Post hoc interpretability

An important challenge in ML is the model interpretation, which refers to the
reasoning behind the model decision in a way that humans can understand. In
healthcare, interpretability is key to extracting knowledge and, above all, sup-
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Fig. 5: Classification performance by considering the selected features with boot-
strap resampling test and for: (a) SMOTEN; (b) TVAE; (c) GC; and (d)
medGAN.

Table 1: AUC values (mean ± standard deviation) for different oversampling
techniques and classifiers when considering all features and those selected with
bootstrap resampling.

Oversampler Classifier All features Selected features
LASSO 0.60±0.01 0.63±0.01

SMOTEN SVM 0.61±0.01 0.61±0.02
DT 0.62±0.02 0.63±0.03

LASSO 0.61±0.01 0.61±0.01
TVAE SVM 0.61±0.01 0.61±0.02

DT 0.58±0.02 0.59±0.03
LASSO 0.60±0.00 0.63±0.01

GC SVM 0.61±0.01 0.62±0.02
DT 0.60±0.01 0.60±0.02

LASSO 0.66±0.01 0.67±0.01
medGAN SVM 0.64±0.03 0.66±0.03

DT 0.66±0.02 0.65±0.02

porting physicians in decision-making. Three techniques to create interpretable
models (see Section 3.3) were used in this work. On the one hand, two linear
models (LASSO and SVM) were analyzed since the coefficient weighting each fea-
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ture provides us with information on their relevance in the class prediction [29].
On the other hand, a nonlinear classifier (DT) has been studied. DTs also allow
us to identify the importance of the features, assigning a score to each feature
according to their usefulness in predicting the output class [24].

The feature importance values associated with DT are shown in Figure 6
when considering four oversampling techniques. Note that age, BMI, high choles-
terol (by denoting the presence/absence) and gender were the more representa-
tive features in DT. According to the literature, excessive adiposity is a major
cause of hypertension, dyslipidemia and type 2 diabetes, which is one of the
primary precursors of CVDs. BMI is a key indicator of overall adiposity [44].
Our data-driven approach could identify this feature as relevant to distinguish-
ing CVD cases. Note that in all panels of Figure 6, the features linked to BMI
are those with the highest importance values. We highlighted features related to
high cholesterol and smoking among other relevant features. Evidence suggests
that high cholesterol levels and smoking are two predominant risk factors for
CVD, which are also two of the leading causes of death in industrialized coun-
tries [13]. The literature also supports that all of these modifiable risk factors
are prevalent in all age groups and both genders, but increase when people get
older [15, 25]. Another relevant aspect is that individuals with low socioeconomic
status seem to have a higher risk of CVD. According to the literature, people
with higher socioeconomic backgrounds and higher educational level have more
access to nutritionally balanced food [37], supporting that diet is considered one
of the most crucial risk factors.

5 Conclusion and discussion

In this paper, we studied the effectiveness and feasibility of using oversampling
techniques on categorical data for CVD prediction. Several state-of-the-art meth-
ods were evaluated by varying the size of the minority class subset in a bi-
nary classification scenario (healthy versus CVD patients). Experimental results
showed medGAN outperformed SMOTEN, TVAE and GC when generating new
samples from real data in our dataset. Also in favour of medGAN, note that the
AUC obtained when using the other three oversamplers did not improve with
IR as Nmaj is constant.

Further research in this line may explore a quantitative and qualitative frame-
work analysis related to the quality of synthetic data, measuring and comparing,
for instance, the joint probability distribution of features associated with real and
synthetic data.

As mentioned in the paper, model interpretability is crucial for practitioners
in the healthcare domain. To address this issue, we identified the most repre-
sentative features for both linear (LASSO and LSVM) and nonlinear classifiers
(DT). According to the coefficient values and the feature importance indexes, the
most relevant risk factors associated with CVD were age, BMI, high cholesterol,
gender and smoking. These findings are in line with the state-of-the-art [13, 15,
25, 44, 49].
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Fig. 6: Feature importance provided by DT when considering: (a) SMOTEN; (b)
TVAE; (c) GC; and (d) medGAN. Note that features in each panel are sorted
according to their feature importance value.

Our work reveals that the combination of medGAN and LASSO achieve the
best classification performance, reaching an average AUC value of about 67.90%.
Furthermore, using an FS technique allows us to improve the CVD prediction,
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obtaining higher AUC values and identifying the most representative features
for CVD. In summary, the results in this study show that the combination of
FS and oversampling strategies improve the prediction efficiency of healthy and
CVD cases, allowing their extrapolation to more complex scenarios.
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