Vis enkel innførsel

dc.contributor.authorBerdan, Emma L.
dc.contributor.authorBlanckaert, Alexandre
dc.contributor.authorSlotte, Tanja
dc.contributor.authorSuh, Alexander
dc.contributor.authorWestram, Anja Marie
dc.contributor.authorFragata, Inês
dc.date.accessioned2022-07-11T09:16:43Z
dc.date.available2022-07-11T09:16:43Z
dc.date.created2021-09-23T17:30:37Z
dc.date.issued2021
dc.identifier.citationBerdan, E.L., Blanckaert, A., Slotte, T., Suh, A., Westram, A.M. & Fragata, I. (2021). Unboxing mutations: Connecting mutation types with evolutionary consequences.Molecular Ecology, 30(12), 2710-2723. doi:en_US
dc.identifier.issn1365-294X
dc.identifier.urihttps://hdl.handle.net/11250/3004503
dc.description.abstractA key step in understanding the genetic basis of different evolutionary outcomes (e.g., adaptation) is to determine the roles played by different mutation types (e.g., SNPs, translocations and inversions). To do this we must simultaneously consider different mutation types in an evolutionary framework. Here, we propose a research framework that directly utilizes the most important characteristics of mutations, their population genetic effects, to determine their relative evolutionary significance in a given scenario. We review known population genetic effects of different mutation types and show how these may be connected to different evolutionary outcomes. We provide examples of how to implement this framework and pinpoint areas where more data, theory and synthesis are needed. Linking experimental and theoretical approaches to examine different mutation types simultaneously is a critical step towards understanding their evolutionary significance.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleUnboxing mutations : Connecting mutation types with evolutionary consequencesen_US
dc.title.alternativeUnboxing mutations: Connecting mutation types with evolutionary consequencesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 The Authorsen_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Molekylærbiologi: 473en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Biokjemi: 476en_US
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400::Basale biofag: 470::Genetikk og genomikk: 474en_US
dc.source.pagenumber2710-2723en_US
dc.source.volume30en_US
dc.source.journalMolecular Ecologyen_US
dc.source.issue12en_US
dc.identifier.doi10.1111/mec.15936
dc.identifier.cristin1937883
dc.relation.projectEC/H2020/757451en_US
dc.relation.projectEC/H2020/797747en_US
dc.relation.projectVetenskapsrådet: 2019-04452en_US
dc.relation.projectVetenskapsrådet: 2016-05139en_US
dc.relation.projectAndre: Svenska Forskningsrådet: 2017-01597en_US
dc.relation.projectAndre: Fundação para a Ciência e a Tecnologia: CEECIND/02616/2018en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal