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Abstract:  

Copepods of the genus Calanus are key zooplankton species in temperate to arctic marine 
ecosystems. Despite their ecological importance, species identification remains challenging. 
Furthermore, the recent report of hybrids among Calanus species highlights the need for diagnostic 
nuclear markers to efficiently identify parental species and hybrids. Using next-generation sequencing 
analysis of both the genome and transcriptome from two sibling species, Calanus finmarchicus and 
Calanus glacialis, we developed a panel of 12 nuclear insertion/deletion markers. All the markers 
showed species-specific amplicon length. Furthermore, most of the markers were successfully 
amplified in other Calanus species, allowing the molecular identification of Calanus helgolandicus, 
Calanus hyperboreus and Calanus marshallae. 
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Introduction 

Copepods of the genus Calanus play an important role both as consumers of primary 

production and as prey for many ecologically and commercially important species (Lønne & 

Gulliksen 1989). Calanus comprise up to 70 % of the zooplankton biomass (Head et al. 

2003), with three species dominating the subarctic North Atlantic and Arctic Oceans: Calanus 

finmarchicus (Gunnerus, 1770), C. glacialis Jaschnov, 1955 and C. hyperboreus Kröyer, 1838 

(Søreide et al. 2008; Falk-Petersen et al. 2009). These species are generally closely associated 

with the water masses where they originate from (Hirche & Kosobokova 2007), and therefore 

can be regarded as biological indicators of the North Atlantic sub-Arctic (Calanus 

finmarchicus) and Arctic (C. glacialis and C. hyperboreus) biomes (Kwasniewski et al. 2003; 

Daase et al. 2007). As a response to ocean warming, a northward shift of the subarctic species 

C. finmarchicus has been detected with a parallel decline throughout most of the North 

Atlantic (Beaugrand et al. 2002; Chust et al 2013; Maar et al. 2013). A further northward shift 

of C. finmarchicus is predicted into Arctic waters that are dominated by C. glacialis and C. 

hyperboreus (Beaugrand et al 2013; Wassmann et al. 2011), with a subsequent change in the 

food-web dynamics and secondary production (Falk-Petersen et al. 2007). Thus, Calanus 

species are central to many ecological, environmental and climatological studies (Gabrielsen 

et al. 2012) and correct identification of Calanus species is essential.  

Morphological identification of Calanus species is hampered by their subtle 

morphological differences, especially between early developmental stages (Hirche et al. 1994; 

Lindeque et al. 1999; Lindeque et al. 2006), resulting in persistent misidentification 

(Lindeque et al. 2006; Parent et al. 2011; Gabrielsen et al. 2012). Molecular identification of 

Calanus species is mainly based on mitochondrial markers, 16S rDNA (Bucklin et al. 1995; 

Lindeque et al. 1999) or cytochrome oxidase I (Hill et al. 2001). However, the recent report 
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of hybrids among Calanus species (Parent et al. 2012) highlights the need for diagnostic 

nuclear markers in order to efficiently identify hybrids from parental species. Ten nuclear 

microsatellite loci have been developed for C. finmarchicus for in-depth population genetic 

studies (Provan et al. 2007), and have revealed hybridization between C. finmarchicus and C. 

glacialis in the Canadian Arctic (Parent et al. 2012). However, high mutation rate, lack of a 

mutation model, allelic dropout and difficulties to score alleles (for review see Pompanon et 

al. 2005; Selkoe & Toonen 2006), as well as homoplasy when comparing two species 

(Chambers & MacAvoy 2000; Curtu et al. 2004) can limit their use for species identification. 

Conversely, nuclear insertion/deletion (InDel) polymorphisms are co-dominant, have a low 

mutation rate, arise mainly from a single mutation event and provide a reasonably conserved 

phylogenetic signal (Liu & Cordes 2004; Nagy et al. 2012). The usability of InDel markers is 

further enhanced by ease of genotyping, repeatability, and possible use with degraded DNA 

(e. g. formalin or museum samples) due to generally small amplicon size (Väli et al. 2008; 

Pepinski et al. 2013). 

Next generation sequencing (NGS) has revolutionized speed and availability of data 

acquisition in biology. For non-model species, NGS has dramatically facilitated the 

development of molecular markers such as microsatellites (Nie et al. 2012; Hunter & Hart 

2013), InDels (Choi et al. 2013) and single nucleotide polymorphisms (SNPs) (Everett et al. 

2011; Nussberger et al. 2013). Therefore, in the present study we relied on NGS to generate 

both genomic and transcriptomic sequences to develop a robust panel of nuclear InDel 

markers for the ease and versatile identification of Calanus spp. 

 

Material and methods 

Genome Ion Torrent PGM sequencing 
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Samples of Calanus finmarchicus and C. glacialis for genome sequencing were 

collected from two areas with minimum sympatry: C. finmarchicus close to Svinøy island 

(Norwegian Sea) and C. glacialis – in Rijpfjorden (Svalbard) (Table S1). Samples were 

collected using a WP2 net from 200m to the surface and stored in 95 % non-denatured 

ethanol. Preliminary identification of species was conducted by eye using prosome length 

criteria (Kwasniewski et al. 2003) and individuals with a prosome length far below/above the 

delimitation threshold were selected for further DNA extraction. 

DNA was extracted individually using the E.Z.N.A.® Insect DNA Kit (Omega Bio-

Tek) according to manufacturer´s instruction. To ensure correct species identification, we 

used 6 microsatellite loci previously developed for Calanus finmarchicus: EL696609, 

EL585922, EH666870 (Provan et al. 2007); FK868270, FK670364, FK867682 (Parent et al. 

2012). PCR reactions were performed in a total volume of 5 µl and contained 3 ng of DNA, 

reverse and fluorescently labeled forward primers with a final concentration of 0.25 µM each 

and 1X AmpliTaq Gold® PCR Master Mix (LifeTechnologies). A Veriti 96-Well Fast 

Thermal Cycler (LifeTechnologies) was used for PCR reactions with following cycling 

parameters: an initial denaturation step at 95 °C (10 min) followed by 40 cycles of 95 °C (20 

s), 54 °C (for EL585922 and FK670364) or 56 °C (remaining 4 loci) (20 s), 72 °C (20 s) and a 

final extension at 72 °C (10 min). Fragment analysis was performed for all 6 loci in a single 

multiplex run on a 3500xL Genetic Analyzer (LifeTechnologies) following the 

manufacturer´s protocol. Alleles were scored using GENEMAPPER 3.7 (LifeTechnologies) and 

checked by eye. Species identification was based on results of STRUCTURE (v. 2.3.4) 

(Pritchard et al. 2000). 

A single individual of each species was selected and 100 ng of DNA was subsequently 

used for library preparation. The Ion Plus Fragment Library Kit (Life Technologies) was used 
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for the construction of 200 bp libraries according to manufacturer´s protocol. One library was 

constructed per species. Emulsion PCR was done in the Ion One Touch System, using the Ion 

One Touch 200 Template Kit (LifeTechnologies) followed by enrichment and quality control 

following the manufacturer´s protocol. Sequencing of each library was performed in the Ion 

Personal Genome Machine® (PGM™) System (LifeTechnologies) using the Ion PGM 200 

Sequencing Kit and one Ion 316 chip (LifeTechnologies) per library according to 

manufacturer´s protocols.  

 

Transcriptome Ion Torrent PGM sequencing 

Samples for transcriptome sequencing were obtained from Disko Bay (West 

Greenland) (Table S1). Live females were morphologically identified using prosome length 

criteria and pigmentation/redness (Nielsen et al. submitted) and preserved in RNAlater 

(Qiagen). RNA and DNA were extracted simultaneously from each individual using the 

E.Z.N.A. DNA/RNA Isolation Kit (Omega Bio-Tek) according to manufacturer´s instruction.  

Microsatellite genotyping was performed as previously described to ensure correct 

species identification. An equal amount of total RNA was pooled from 30 individuals per 

species. Pooled RNAs were treated with Baseline-ZERO DNase (Epicentre) and subsequently 

cleaned using the RNA Clean & Concentrator kit (Zymo Research, USA). Isolation of mRNA 

from total RNA was performed using two rounds of Mag-Bind mRNA Enrichment (Omega 

Bio-Tek, USA) with subsequent cleaning and concentration using the RNA Clean & 

Concentrator kit (Zymo Research, USA). Libraries were constructed using 40 ng of Poly(A) 

RNA and the Ion Total RNA-Seq Kit for AB Library Builder System (LifeTechnologies). 

Emulsion PCR was done in the Ion One Touch 2 System, using the Ion PGM Template OT2 

200 Kit (LifeTechnologies) followed by enrichment and quality control following the 
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manufacturer´s protocol. Sequencing of each library was performed in the Ion PGM System 

(LifeTechnologies) using the Ion PGM 200 Sequencing Kit and one Ion 318 chip 

(LifeTechnologies) for each species. 

 

Bioinformatics 

Sequences were analyzed using GENEIOUS 6.1.6 (Biomatters, available from 

http://www.geneious.com). Reads of genomes and transcriptomes for each species were 

analyzed separately using the following strategy. Reads were quality trimmed with an error 

probability limit of 0.05 and de novo assembled with medium-low sensitivity settings into 

four separate assemblies. To identify homologous regions between the two species, the 1000 

longest genomic contigs and the 700 longest transcriptomic contigs of C. finmarchicus were 

used for BLAST searches (Megablast, default settings) against custom databases of genomic 

and transcriptomic contigs of C. glacialis respectively. Aligned regions between contigs were 

then visually scanned for large insertions/deletions between the two species using the criteria: 

InDel size > 7 nucleotides for genome, ≥ 3 for transcriptome, and suitable conserved flanking 

regions for primer development. Primers were then designed using PRIMER3 (Koressaar & 

Remm 2007; Untergrasser et al. 2012) incorporated into GENEIOUS 6.1.6 (Biomatters). 

 

Marker optimization and multiplexing 

InDel optimization and multiplexing have been performed with DNA of two C. 

finmarchicus and two C. glacialis individuals identified as specimens for transcriptome Ion 

Torrent PGM sequencing (Table S1). PCR amplification of the candidate markers were tested 

using a Veriti 96-Well Fast Thermal Cycler (LifeTechnologies) in a total volume of 5 µl with 

3 ng of DNA, 0.25 µM of each primer and 1X AmpliTaq Gold PCR Master Mix 
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(LifeTechnologies). Cycling parameters included an initial denaturation step at 95 °C (10 

min) followed by 40 cycles of 95 °C for 20 s, 55 °C for 20 s, 72 °C for 25 s, and a final 

extension at 72 °C for 20 min. Amplifications were checked on 2.7% agarose gels, and 

markers failing to amplify, showing multiple bands or no size difference between the two 

species were discarded. For the rest of the markers, new forward PCR primers were obtained 

with fluorescent labeling (VIC, 6-FAM, PET or NED) and tested using a 3500XL Genetic 

Analyzer (LifeTechnologies). 

 

InDels test  

To test validity of the new marker panel, 12 samples of C. finmarchicus and C. 

glacialis were obtained from both the West Greenland Sea and East Greenland Sea (Table 

S1). Calanus individuals were sampled with a WP2 net and preserved in 75 % non-denatured 

ethanol. Molecular identification based on a mitochondrial 16S rDNA fragment was 

performed according to Lindeque et al. (1999; 2006) with minor modifications and using half 

of the copepod. Modifications consisted of GoTAQ DNA polymerase (Promega) usage for 

PCR with the following cycling parameters: initial denaturation step at 94 °C (5 min) followed 

by 40 cycles of 94 °C (1 min), 45 °C (2 min), 72 °C (1 min), and a final annealing phase at 45 

°C (2 min) and an extension phase at 72 °C (5 min). From the remaining half of each copepod 

DNA was extracted using the E.Z.N.A. Insect DNA Kit (Omega Bio-Tek) according to 

manufacturer´s instruction. Microsatellite loci were genotyped as described above in the 

Genome Ion Torrent PGM sequencing section. InDels were genotyped in four multiplex 

PCRs as follow: (1) G_150, G_155, G_461 and G_701; (2) T_595, T_1338 and T_6474; (3) 

T_1301 and T_1966; (4) T_4700, T_3133 and T_461. PCR conditions were as described 

above in the Marker optimization and multiplexing section. 
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InDel sequencing and annotation 

To ensure that homologous regions were amplified in both C. finmarchicus and C. 

glacialis, two individuals of each species (Table S1) were sequenced for each marker. PCR 

products were cleaned with ExoSAP-IT (Affymetrix), and sequenced using a BigDye 

Terminator v3.1 Cycle Sequencing Kit (LifeTechnologies) on a 3500XL Genetic Analyzer 

(LifeTechnologies) following the manufacturer´s protocols. Sequences were analyzed and 

aligned in GENEIOUS 6.1.6 (Biomatters) and deposited in the Genbank. BLASTN searches 

against nucleotide and EST databases at NCBI (http://blast.ncbi.nlm.nih.gov) were used to 

annotate the regions/genes containing the InDels. Hits with E-value > 1e-10 were ignored. 

 

Cross-amplification with other Calanus spp.  

The usability of the 12 InDel markers was tested for Calanus species found in the 

North Atlantic and in the Arctic Oceans. DNA was extracted from two specimens of each of 

the following species: C. hyperboreus (Disko Bay), C. helgolandicus (Claus, 1863) (Bay of 

Biscay) and C. marshallae Frost, 1974 (Alaska) (Table S1) using the E.Z.N.A. Insect DNA 

Kit (Omega Bio-Tek). To ensure correct species identification we sequenced 400 bp of the 

16S rDNA site using the following primers: C_16s_Fd1 (5´-

GCCGCGTTAGTGYTAAGGTAGCA-3´) and C_16s_Rd1 (5´-

AGAAACCAATCTGACTTRCGTCGA-3´). Amplification reactions were performed in a 

total volume of 10 µl with 6 ng of DNA, 0.25 µM of each primer and 1X AmpliTaq Gold 

PCR Master Mix (LifeTechnologies). Cycling parameters included an initial denaturation step 

at 95 °C (10 min) followed by 40 cycles of 95 °C, 62 °C, 72 °C for 20 s each step, and a final 

extension at 72 °C for 3 min. Amplifications were checked on 1 % agarose gel, and cleaned 
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with ExoSAP-IT (Affymetrix). Sequencing was as described above and sequences were 

compared against nucleotide NCBI databases (http://blast.ncbi.nlm.nih.gov) using BLASTN 

and deposited in the Genbank. InDel amplification and genotyping was performed as 

described above in the Marker optimization and multiplexing section. 

Following the results of cross-species amplification, we tested different combinations 

of markers and amplification conditions to provide an easy	  and	  inexpensive protocol for 

high-throughput Calanus species identification in a single PCR capillary	  electrophoresis	  on	  

automatic	  sequencers. 

 

Results 

For genome and transcriptome sequencing only individuals with morphological 

identification confirmed by nuclear microsatellites (probability of belonging to the cluster of 

either species at 99 %) were used. The sequencing of genomic libraries resulted in 3,118,080 

reads for C. finmarchicus and in 1,920,496 reads for C. glacialis. After quality trimming, for 

C. finmarchicus 2,754,339 reads (mean length = 188 nt) were assembled into 36,134 contigs 

(mean contig length = 835 nt), and for C. glacialis 1,042,632 reads (mean length = 83.2 nt) 

were assembled into 52,597 contigs (mean contig length = 185 nt). The sequencing of 

transcriptome libraries of C. finmarchicus and C. glacialis resulted in 4,894,166 and 

3,412,784 reads respectively. Quality trimming reduced number of reads to 3,548,728 (mean 

length = 108 nt) and 2,843,610 (mean length = 112 nt) respectively, and following assembly 

produced 251,042 (mean contig length = 225 nt) and 242,602 (mean contig length = 298 nt) 

contigs. 

 Primers were developed for 48 markers (InDel size ≥ 7nt) located in 43 genomic 

contigs and 31 markers (InDel size ≥ 3 nt) located in 30 transcriptomic contigs. Among those, 
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four genome-based and eight transcriptome-based markers showed clear bands of a 

consistently different size between C. finmarchicus and C. glacialis (Table 1) and was 

consistent with other identification methods (Table S1). Sequencing the fragments for both 

species confirmed the homology of the amplicons. Only two markers could be annotated 

using BLAST: T_595 similar to H+ transporting ATP synthase gene (Genbank FK040981.1, E-

value = 7e-26), and T_1966 similar to CDA02 protein (EL696767.1, E-value= 1e-33). 

All 12 InDel markers successfully amplified in all 48 samples of C. finmarchicus and 

C. glacialis from Greenland. The length of the PCR product for each marker was species 

specific, and species identification based on InDels was in agreement with morphological and 

molecular (mtDNA and microsatellite) identifications. No hybrids were found in our samples. 

Sequencing of the 16S rDNA region of C. hyperboreus, C. helgolandicus and C. 

marshallae confirmed their morphological identification. Most of the InDel loci also 

amplified in these three species, and the results of cross species amplification are presented in 

Table 1. The following loci were diagnostic: G_155 and T_461 for C. hyperboreus, T_3133 

for C. helgolandicus and C. marshallae. 

We were able to multiplex six InDel markers in a single PCR, allowing efficient 

discrimination of all five species. Amplification was performed in a single PCR reaction in a 

total volume of 5 µl with 3 ng of DNA, 1X AccuStart™ II PCR ToughMix (Quanta 

BioSciences) and the following combination of markers and primer concentrations (equal 

forward and reverse): G_150 (13 µM), T_461 (27 µM), T_1338 (22 µM), T_1966 (16 µM), 

T_3133 (25 µM) and T_4700 (22 µM). Cycling protocol was shortened to 40 minutes in total 

and included an initial denaturation step at 94 °C (2 min) followed by 35 cycles of 94 °C (10 

s), 55 °C (10 s), 72 °C (10 s), and a final extension at 72 °C for 5 min.  
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Discussion 

In less than a decade, next-generation sequencing (NGS) technologies have 

fundamentally changed our approach to the genomes of non-model species. NGS approaches 

considerably reduce the per-base sequencing cost, while dramatically increasing the number 

of bases sequenced, by sequencing DNA in a massively parallel fashion (Metzker 2009). 

Initially reserved to large-scale projects, such as whole human genomes, the recent 

introduction of a new generation of instruments (Ion Torrent, MiSeq, 454 Junior) has opened 

up the use of NGS to smaller and cheaper projects (Quail et al. 2012). Among the new 

instruments, the major benefits of the Ion Torrent platform are sequencing speed and low 

upfront and operating costs (Perkel 2011). Indeed, sequencing costs on the Ion Torrent are 

<1000 USD for 1 Gb (Quail et al. 2012) with run time < 1/2 day. It is now economically 

feasible for individual laboratories to employ genome/transcriptome sequencing of non-model 

organisms in order to develop relevant molecular markers.  

Our approach shows that both genome and transcriptome sequencing on the Ion 

Torrent can be used as useful tools for the development of molecular markers for copepods. 

Although we did not formally quantify the presence of InDels, they appeared to be more 

frequent and longer in the genomic contigs compared to the transcriptome based ones. 

However, it was generally easier to develop primers for the transcriptome based markers and 

amplification was also more successful. If resources were limited we would thus recommend 

relying on transcriptome sequencing. One of the advantages of genome sequencing is that 

only a small amount of DNA is required for library preparation (ca. 100 ng) compared to the 

amount of total RNA required (ca. 2000 ng) for transcriptome sequencing. Furthermore tissue 

preservation for RNA extraction can be more difficult than for DNA. 
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The panel of 12 nuclear markers we have developed allows the identification of all 

species of Calanus present in the North Atlantic/Arctic Oceans. The markers are easy to 

amplify and genotyping can be done in relatively high throughput using an automatic 

sequencer. Furthermore, the absence of stutter and the size difference between species allows 

reliable automatic scoring using software such as GENEMAPPER or GENEIOUS. For some of the 

markers, the size difference is sufficient for species discrimination using agarose gels (Fig. 1). 

This will permit the use of these markers in a low tech/low cost setting such as in the field or 

on board of a research vessel. 

The large number of diagnostic markers between C. finmarchicus and C. glacialis we 

have developed will contribute to the in-depth study of hybridization between the two taxa. 

Hybrids between C. finmarchicus and C. glacialis have been reported in Canada (Parent et al. 

2012), but we did not detect any in our samples from Greenland. However, the current 

microsatellite loci available for Calanus have insufficient power to separate the different 

classes of hybrids (e.g. F1, F2, backcrosses etc…). The twelve fully diagnostic markers we 

have developed would allow the resolution of the different hybrid classes with low error 

(Anderson & Thompson 2002). 

In conclusion, the present study illustrates the utility of NGS to easily develop 

molecular markers for ecologically important non-model species. The correct identification of 

Calanus species in both modern and historical samples is a necessary condition for 

understanding the response of the North-Atlantic/Arctic ecosystems to climate change. 
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Figure 1. Calanus species identification using a 2.7% agarose gel and 4 InDels markers.
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Table 1. Calanus InDel markers.  

Marker Primers Amplicon size Accession 

  C. finmarchicus C. glacialis C. helgolandicus C. hyperboreus C. marshallae number 

G_150 F: GACGCCATTGACCATCCAGT 

R: GCTCCAGCGGTTAGGTTTCT 

131 161 na na 161 KF913026, 

KF913030 

G_155 F: AGAACAACTTGAGCTTATGGA 

R: CAGCACAATCTTCACATTCA 

188 161 170, 188 169 161 KF913027, 

KF913031 

G_461 F: CCTGTTGCTTCAAGGTCAAA 

R: CTCAGGTGGATCAACCCCC 

166 157 166 166 157,170 KF913028, 

KF913032 

G_701 F: GTGGACATAGTTTACTGAAAA 

R: GTGAGAATGTGAGTAGAGGGCA 

209 180, 191 na na 180, 191 KF913029, 

KF913033 

T_461 F: TGTGAAATGGCGGCCTAACA 

R: ACAGTACATTAAAATTATGAGCTCGCA 

143 136 na 170 136 KF913034, 

KF913042 

T_595 F: GACTTCTCCGTGAGCTCTCC 

R: ACCGATGACAGAGACAACCTG 

68 65 68 na 65 KF913035, 

KF913043 

T_1301 F: CCTCCTCACCCAACTCATCC 

R: GGATTCATATATTCAAACAAGATATCC 

66 76 na na 76 KF913036, 

KF913044 

T_1338 F: GACTACTCCACCATCTCCGAC 

R: AAGACTACGGCATGTGTTG 

75 72 na na 72 KF913037, 

KF913045 
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T_1966 F: GCCATCGCTCACAAGATCCA 

R: CCCTTGCTTCCTGGGACATAG 

102 99 102 102 99 KF913038, 

KF913046 

T_3133 F: ACGTGAATCTCCTGTGATTTCTGA 

R: TTTCAAATCAGTCGAAAGCCGT 

115 107 110 na 126 KF913039, 

KF913047 

T_4700 F: TGAGGAGGAACACGTACAAGG 

R: TGTAGATCACCGTGCCATTGG 

70 67 70 na 67 KF913040, 

KF913048 

T_6474 

 

F: CAAGCGCTCTCCCTCAAGAT 

R: GGAGATTTAGACCTGGATCTGGAT 

97 

 

91 

 

86, 91 na 

 

91 

 

KF913041, 

KF913049  

na – no amplification, G = genomic origin and T = transcriptome origin. The first accession number is given for C. finmarchicus sequence; 

the second is for C. glacialis sequence	  



Table S1 Sampling location and species identification of Calanus. 

 

 




