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ABSTRACT 

 
Biovolume spectrum theory is now being used increasingly to represent the trophic structure of 

marine mesozooplankton communities, yet the ability of applying biovolume spectrum theory to 

indicate the trophic position of different mesozooplankton size groups remains untested using 

direct sampling methods such as stable isotope analyses. Therefore, this study has combined  the 

estimations of trophic positions (TPs) using biovolume spectrum theory with stable nitrogen 

isotope ratios (δ15N), allowed direct comparison of TPs estimates from both methods for 

different groups of zooplankton in relation to the states of the phytoplankton bloom and different 

water masses. Hydrographical and biological data were collected from the subpolar North 

Atlantic Ocean in March/April, 2013 using multinet, WP 2 net and a platform equipped with 

Laser Optical Plankton Counter, Conductivity  temperature depth sensor  and Fluorescence 

sensor. TPs estimates based on biovolume spectrum theory did not correspond to δ15N estimates 

while producing relatively higher TPs compared to  isotopic estimates. Several factors may 

explain these discrepancies between the two methods. A responsiveness of the biovolume 

spectrum to recycling processes driven by microbial community, that was not detected precisely 

by the stable isotope analyses could be identified as the most reasonable and straightforward 

factor for the observed discrepancies. Hence, a hypothetical model was developed to trace and 

evaluate these microbial based food web within zooplankton community. Model interpretation 

showed a microbial loop dominated zooplankton food web in the Labrador Sea surface water 

(LSSW) during the pre-bloom condition, while, less microbial influence to determine the 

zooplankton food web structure in Atlantic water (AtW) during the winter condition. Findings of 

the study, thus proved applying of biovolume spectrum theory to data obtained by LOPC as a 

high resolution method not only for estimation of TPs, but also to trace the influence of  

microbial processes for the sustainability of  mesozooplankton communities. 
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1. INTRODUCTION 

 

Accurate representation and description of trophic relationships are essential to a wide range of 

ecological studies (Vander Zanden et al., 1997). The concept of discrete trophic levels (i.e. 

grouping  organisms by trophic level, producer = 1, herbivore = 2, predator =3) is commonly 

used in ecological  studies and has been used successfully in studies predicting contaminant 

bioaccumulation in top predators (Rasmussen et al., 1990; Cabana et al., 1994). Furthermore, 

trophic levels provide the framework for studies of cascading trophic interactions (Carpenter et 

al., 1985; Wooton and Power, 1993) and ecological energetics and efficiencies (Lindeman, 

1942). However  this categorical approach does not account for complex trophic interactions 

such as omnivory (Kling et al., 1992). Trophic position  is a continuous variable that accounts for 

omnivory and better quantifies matter and energy flow within a food web (Kling et al., 1992; 

Vander Zanden & Rasmussen, 1996) and can be used as  effective tool for assessing trophic 

interactions of highly dynamic marine zooplankton communities. 

 

The structure of zooplankton communities plays a crucial role in determining the fate of primary 

production (Steinberg et al., 2008). Feeding by herbivorous mesozooplankton at the base of 

pelagic food webs links primary production and the microbial loop to higher trophic levels 

(Muñoz, 2007). However, all herbivorous mesozooplankton species are known to be 

opportunistic feeders i.e. omnivorous to some degree  (Sommer & Sommer, 2006) depending on 

prey size and motility (Tiselius & Jonsson, 1990), turbulence (Saiz & Kioerboe, 1995), feeding 

strategy (Greene, 1988) and states of phytoplankton blooms (Meyer-Harms et al., 1999), 

therefore it is difficult to disentangle trophic relationships. 

Fundamental to an understanding of the trophic structure of mesozooplankton is the knowledge 

of feeding relationships among species and their respective trophic positions through time and 

across space at the whole-community level ( Muñoz, 2007). Traditionally trophic positions has 
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been estimated from gut contents analysis and provides detailed information on species' diets, 

but does no account for long-term patterns of mass transfer (Vander Zanden et al., 1997). 

Moreover, dietary analysis only reflects recent feeding history (Tieszen et al., 1983). 

Stable isotope analyses  is increasingly being used to calculate trophic relationships in aquatic 

systems (e.g., Post, 2002; Jardine et al., 2006). Stable isotope analysis has become an effective 

technique for elucidating energy flow pathways through food webs, examining trophic 

interactions and elucidating the trophic structure in an ecosystem (Peterson & Fry, 1987, Lajtha 

& Michener, 1994). The natural abundance of carbon and nitrogen stable isotopes in organisms 

indicates the sources for organic matter and nutrients, as well as their processing through the 

food web, because at each ascending trophic level (from prey to predator), there is an increase in 

the carbon isotope (δ¹3 C or 13C/12C ratio) content and nitrogen isotope (δ¹⁵ N or 15N/14N ratio) 

content of the organism due to selective metabolic loss of  12C and  14N during food assimilation 

(Layman et al., 2011). In the case of nitrogen isotope (δ¹⁵ N) there is a characteristic enrichment 

along the food web, i.e. the consumer is typically enriched by 3–4‰ relative to its diet (Peterson 

and Fry, 1987). Thus, allowing for determination of trophic position of species (Vander Zanden 

and Rassmusen, 2001).  In contrast, carbon isotope (δ¹3 C) change little as carbon moves through 

food webs (Figure 1)  (Rounick and Winterbourn 1986, Peterson and Fry 1987, France and 

Peters 1997) and, therefore, typically can be used to evaluate the ultimate sources of carbon for 

an organism when the isotopic signature of the sources are different (Post, 2002). Hence, stable 

isotope analyses can be a powerful approach and has been applied successfully in the field as 

well as natural tracer and trophic status survey of mesozooplankton species (e.g. Rolff , 2000, 

Rolff & Elmgren, 2000, Sommer et al., 2005). 
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Since year 2006, a new approach to estimates trophic positions of mesozooplankton communities 

were developed based on biomass size - spectra. The analysis of the distribution of biomass by 

size is an ataxonomic approach to study the structure and function of the pelagic ecosystem 

(Platt, 1985; Quinones, 1994; Rodriguez, 1994). In this approach, every individual in the system 

is assigned to one of a series of size-classes. The high degree of aggregation of such an approach 

greatly reduces the complexity of the system to a manageable level. Theories of the  biomass size 

spectrum based on early observations made by Sheldon et al. (1972) during their research on 

particle size distribution of the Atlantic and Pacific Oceans. Sheldon et al. (1972) have shown 

that the biomass distribution of plankton organisms assumes a characteristic and predictable 

shape and usually show a regular decline in average biomass as the average size of organisms 
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increases (Figure 2). These observations led to the development of several theoretical models 

attempting to explain and quantify these biomass changes (Platt and Denman, 1978; Heath, 1995; Zhou 

and Huntly , 1997). 

 

 

 

 

 

 

 

 

 

 

 

 

Energy fluxes through  aquatic systems determine the shape of the biomass spectrum (Silvert and 

Platt, 1978; Zhou and Huntley, 1997; Zhou, 2006). Platt and Denman (1977, 1978) explained 

energy flux through a given size interval as  functions of individual growth within the size 

interval and  respiration losses to the system. In contrast, Heath (1995) described the flow of 

energy through a group of individuals within a given size interval (cohort of individuals)   as a 

equilibrium between population growth and mortality. Zhou and Huntley (1997) incorporated 

both Platt and Denman (1977, 1978) and Heath (1995) models to developed a mathematical 

theory of population dynamics in the context of the abundance and biomass spectra of  plankton. 

Zhou and Huntley (1997) model described the energy flow through the biomass spectrum based 

on the distribution function of abundance and the law of the conservation of mass. Furthermore, 

the biomass spectrum theory developed by Zhou and Huntly (1997) includes all sinks (e.g. net 

Figure 2: A regular decline in average biomass as the average size of organisms increases 
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mortality including birth, depth and predation) and sources (e.g. energy from primary producers, 

microbial loops and population growth) which contribute to the flow of biomass through a given 

size interval. In addition, Zhou (2006) developed mathematical theory to compute trophic 

position of plankton communities based on slope of the biomass spectrum and community 

assimilation efficiency. These biomass spectrum theories  now being progressively  use to 

understand community processes within  mesozooplankton ( i.e. growth and mortality, size and 

taxonomic relationships, population and trophic dynamics) based on semi-automatic sampling 

(Basedow et al., 2010).  

The intercept of the biomass spectrum represents the abundance of plankton (Zhou, 2006), thus 

high community abundance such as productive systems are characterized by a high intercept of 

the spectrum (Basedow et al., 2010). Increase of small herbivorous zooplankton with the increase    

of primary production  leads to an accumulation of biomass at base of the biomass spectrum 

(small sizes), hence yield a high intercept (Zhou, 2006). In a time-dependent system, 

accumulated biomass at small sizes can be propagate along the biomass spectrum due to 

mesozooplankton cohorts development (Basedow et al., 2010). These developing 

mesozooplankton cohorts propagating as waves along the spectrum (Silvert and Platt, 1978; 

Zhou and Huntley, 1997). Slope of the biomass spectrum and community assimilation efficiency 

provide information on internal recycling of the biomass in mesozooplankton community, e.g. A 

flat slope of the spectrum indicates more internal recycling of the biomass (Zhou, 2006). Trophic 

positions compute based on biomass spectrum theory can have relatively high values, because all 

energy fluxes are taken into account. The theory has being practically used in several 

mesozooplankton community studies and yields reasonable values for TPs (Basedow et al, 

2010). However, estimating TPs based on biovolume spectrum theory has not been extensively 

tested using direct sampling techniques such as stable isotope analysis. 
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This study focus on the trophic dynamics of zooplankton communities in different geographical 

areas in the North Atlantic Ocean including Iceland Basin, Reykjanes Ridge, Irminger Basin and 

Labrador Sea, estimated by two distinct methods; biovolume spectrum theory (BST) and stable 

isotope analysis (SIA). The North Atlantic is the most sampled and studied ocean of all  oceans 

(Marra, 1995). Many oceanographic paradigms originate here, such as oceanic seasonality, ocean 

currents (Gulf stream, Labrador current, North Atlantic drift) and circulation in the abyss. These 

physical phenomena strongly affect biological processes of the region. The North Atlantic is also 

noted for a strong seasonal cycle in the productivity (Ho and Marra, 1994). Convective mixing in 

winter resets the seasonal production cycle. In springtime, the combined effects of longer, 

warmer days and reduced wind speeds lead to formation of a thermally stratified surface layer 

(Henson et al., 2006), thus  induces initiating of productivity in the region. Zooplankton 

communities in the North Atlantic providing a crucial trophic link between the microplankton 

and commercially important fish stocks (Kane 1984), hence it is important have a better 

understand of trophic relationships of these vital marine organisms. 

Therefore, here we present results from cruise conducted in the North Atlantic during March and 

April 2013, designed to (i) compare trophic positions estimated by biomass spectrum theory and 

stable isotopes analysis and (ii) identify the different trophic positions of mesozooplankton in 

relation to the states of the phytoplankton bloom and different water masses. 

 

2.  METHOD  

2.1 Study area 

The annual primary production of the North Atlantic basin has being estimated about 10.5 Gt C 

y-1( Sathyendranath et al., 1995) and much of the export production occurs during the spring 

bloom (Falkowski et al., 2000). The topography of the North Atlantic includes several basins 

separated by sills and ridges. The Labrador Sea is the coldest and freshest basin of the North 
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Atlantic Ocean and the source of the intermediate depth water mass - Labrador Sea water (LSW), 

which may spreads throughout the entire North Atlantic (Yashayaev and Loder, 2009).  The 

Reykjanes Ridge is the part of the Mid-Atlantic Ridge extending from Iceland to the southwest 

of the North Atlantic (Malmberg, 2004), which separates Iceland Basin and Irminger Basin. The 

Iceland Basin and the Irminger Basin are the northernmost regions of the North Atlantic Ocean 

(Malmberg, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Field sampling 

 

Data presented in this study were collected from an area of the subpolar North Atlantic (from 61° 

30 N, 11° 00W to 59° 55N, 55° 58W, Fig. 3 ) which was visited during the transatlantic cruise 

MSM 26 from Cork (Ireland) to St John's (Canada)  in 2013 (20 March - 16 April). Cruise MSM 

26 was part of the International EURO-BASIN project, which focused on broad scale 

investigation of the North Atlantic pelagic ecosystem including physical, biogeochemical and 

biological processes in different habitats.  

 

Figure 3: Map of the study area, 

showing the sampling stations over 

the Iceland Basin (ICB), Reykjanes 

Ridge (RR), Iminger Basin (IB), 

and Labrador Sea (LS). 

 

ICB 
RR 

IB 

LS 
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The cruise covered a transect across the subpolar North Atlantic with a total of 12 stations in the  

Iceland Basin, Reykjanes Ridge, Irminger Basin and Labrador Sea. Hydrographical and 

biological data were taken from 9 stations using a platform equipped with Laser Optical Plankton 

Counter (LOPC; Brooke-Ocean Technology Ltd, Canada), Conductivity  temperature depth 

sensor (CTD; Seabird 19plusV2, Seabird Electronics Inc., USA) and Fluorescence sensor (F, 

WetLabs EcoFl, Seabird Electronics Inc., USA). The sensors provided data including 

hydrography (CTD), fluorescence (F) and zooplankton abundance in the size range between 0.1 

and 30 mm (LOPC). The platform was hauled vertically at a speed of 0.8 to 1.0 ms-2 from surface 

to bottom, however sampling depth was limited to 2000 m, when the depth of the sampling 

station exceeds the 2000 m. Data were logged every 0.5 seconds. A shipboard global position 

system (GPS) provided the geo-position data, which were later combined to the LOPC data. In 

addition zooplankton net samples were collected  in the surface layer (0 - 200 m) at 7 stations for 

stable isotope analyses. Microzooplankton was collected by 55 μm net (MultiNet®, Hydro-Bios, 

Kiel, Germany) with 0.25 m2 mouth opening. Meso and macrozooplankton were collected by 

150 μm net (WP2, Hydro-Bios, Kiel, Germany) with 0.26 m2 mouth opening. For both nets, 

heaving speed of the winch was between 0.2 ms-1 to 0.3 ms-1.   

 

This study presents bio-physical data gathered from these 7 stations including both semi 

automated (LOPC-CTD-F data) and zooplankton net samples (Table 1). In order to compare and 

interpret sized - based estimates of trophic indices computed by both biovolume spectrum theory 

and stable isotope analyses, data collected from the semi automated (LOPC-CTD-F data) 

sampling were confined to the upper 200 m.   
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2.3 Hydrographical  and fluorescence data analyses 

 

At each station, mean temperature and salinity values of the surface layer (0 - 200 m) were 

computed based on CTD profiles. Different water masses of the study area were defined by 

comparing observed hydrographical data with literature (e.g. Talley and McCartney, 1982; Swift, 

1986; Yashayaev and Greenan, 2011).  

 

At each station, mean chl a value of the upper 200 m was estimated based on fluorescence 

measurements. During the cruise the fluorescence sensor was calibrated against chl a values 

obtained from water samples of randomly selected sampling station. At the station, water 

samples from several depths (5, 15, 30, 45, 60, 75 and 100 m) within the upper 200 m were 

collected from corresponding 5L - Niskin bottles. Samples were filtered through GF/C filters. 

The remaining water from the Niskin bottles were used for measurements by the fluorescence 

sensor. Ashore, chl a values were analysed fluorometrically at the laboratory in University of 

Hamburg, Germany. Corresponding chl a values then plotted against fluorescence measured by 

the fluorescence sensor and a best fitted regression line for the data was drawn by using the least 

squares method. All fluorescence measurements (F) were converted into chl a values using 

resulting regression equation (r2 = 0.60) of, 

 
   𝐶ℎ𝑙 𝑎 = 0.3516 × 𝐹 − 0.7055  ( mg 𝑚−3)............................. (1)
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Station 
 LOPC sampling     Closest net sampling 

     Region 
Latitude (°N) Longitude (°W) Date Time (UTC)     Net type Latitude (°N) Longitude (°W) Date Time (UTC) 

126 61° 30.00‘  11° 00.01‘ 25-Mar 01:05 
  

MN 61° 26.91‘ 10° 51.77‘ 25-Mar 20:12 
Iceland Basin 

  

WP 2 61° 30.00‘ 11° 00.01 25-Mar 04:53 

             
127 62° 49.28‘ 21° 21.74‘ 28-Mar 06:49 

  

MN * 60⁰ 31. 46´  23⁰ 44. 88´ 30-Mar 16.06 
Iceland  Basin 

  

WP 2 62° 49.28‘ 21° 21.73‘ 28-Mar 05:19 

             
132 61° 38.26‘ 27° 02.08‘ 01-Apr 02:07 

  

MN 61° 38.26‘ 27° 02.09‘ 01-Apr 07:57 
Reykjanes Ridge 

  

WP 2 61° 38.26‘ 27° 02.09‘ 01-Apr 08:30 

             
133 62° 24.01‘ 29° 31.81‘ 02-Apr 09:37 

  

MN 62° 24.02‘ 29° 31.78‘ 03-Apr 02:23 
Irminger Basin North 

  

WP 2 62° 24.05‘ 29° 31.74‘ 03-Apr 02:51 

             
134 60° 32.40‘ 34° 18.62‘ 05-Apr 00:25 

  

MN 60° 32.40‘ 34° 18.61‘ 04-Apr 14:05 
Irminger Basin South 

  

WP 2 60° 32.40‘ 34° 18.61‘ 04-Apr 13:17 

             
135 59° 55.66‘ 55° 58.78‘ 09-Apr 00:45 

  

MN 59° 53.28‘ 55° 50.94‘ 08-Apr 15:03 
Labrador Sea 

  

WP 2 59° 53.28‘ 55° 50.94‘ 08-Apr 14:24 

             
137 53° 21.47‘ 46° 45.91‘ 13-Apr 09:42 

  

MN 53° 21.50‘ 46° 45.97‘ 13-Apr 08:20 
Labrador Sea 

    WP 2 53° 21.48‘ 46° 45.91‘ 13-Apr 08:51 

 

 

Table 1: Stations in the study area - the subpolar North Atlantic Ocean, where the multinet (MN), WP 2 net and LOPC were deployed in March-April, 2013 

MN * - multinet sample was unable to collected from station 127, instead I used multinet sample collected from station 131 (see the map), which has similar hydrographic 

characteristics. At station 131, only multinet sample was collected and WP 2  sample was unable to obtained  due to net damage. Therefore δ15N value of microzooplankton 

collected from multinet at station 131 was used as a reference base line to determine trophic positions of meso and macrozooplankton collected by the WP 2 net at station 127. 
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2.4   LOPC data analyses 

 

2.4.1   LOPC data processing  

 

The LOPC is the second generation of optical plankton counter providing continuous real-time 

information on the size and abundance of particles in the water (Herman, 1988, 1992; Herman et 

al., 1993), and also  information on the morphology  of zooplankton (Herman et al., 2004). When 

the instrument is hauled through the water, zooplankton and other particles pass through a laser 

beam (1 mm in width) inside the instrument and their number, size and transparency is registered 

on a matrix of photo diodes. The LOPC uses 35 photodiodes to detect the transparency of each 

particle passing through the laser sheet of light in the sampling tunnel. LOPC discriminate 

counted particles in to two types depending on the number of neighboring subunits of the 

detector are activated by the passing particle. A  particle covering all or part of  one or two 

subunits is called a single-element particle (SEP) and a particle that span at least three or more 

subunits is called a multi-element particle (MEP). The size of particles is registered as a digital 

size, which can be converted into equivalent spherical diameter (ESD), i.e. the diameter of a 

sphere with an volume corresponding to the volume estimated for the particle passing through 

the LOPC. SEPs are automatically registered into  1 of 122 ESD size categories between 0.09 

and 1.92 mm ESD. MEPs, typically > 0.8 mm ESD (Basedow et al., 2013) are recorded along 

with the information on their shape and are converted to ESD using a function provided by the 

manufacturer. The instrument can detect particles within a range of 0.1–30 mm equivalent 

spherical diameter (ESD). Particles counted by the LOPC were grouped into 50 size groups of 

equal body volume increments to increase statistics and to simplify data presentation.  

 

All LOPC data were processed and analysed using  the python (version 3.3.4) and  R  (version 

3.0.2) programming languages. 
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2.4.2 Biovolume spectra 

 

Biovolume spectra can be used, replacing the biomass spectra if relation between body size and 

biomass is unknown (Zhou, 2006). Biovolume spectrum is unique for a given plankton 

community (Zhou et al., 2010) and shape of the spectrum is determine by energy fluxes through 

the plankton community (Platt and Denman, 1978; Zhou and Huntley,1997; Zhou, 2006). A 

normalised biovolume spectrum b is defined as (Edvardsen et al., 2002; Quinones et al., 2003), 

 

𝐵𝑖𝑜𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 (𝑏) =  
𝑏𝑖𝑜𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝑠𝑖𝑧𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝛥𝑤

𝑠𝑖𝑧𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝛥𝑤
(𝑖𝑛 𝑚−3)..............................(2) 

where, w is the body volume of a zooplankter in mm3.  

To compare biovolume spectrum in different regions, the slope of a biovolume spectrum on  

logarithmic coordinates was computed for the whole zooplankton community (S to L, see section 

2.6) by using the least-squares fit of a linear function. 

 

2.5 Stable-isotope analyses 

 

2.5.1 Sample preparation 

 
 

Upon recovery, retained zooplankton were wash off the nets into jars. At each station, each net 

sample was split into 200 and 50 ml fractions and 200 ml fraction of the sample was prepared for 

stable isotope analysis (see section 2.5.1a and 1b); the remaining plankton sample was preserved 

in a 40% formaldehyde–seawater solution for taxonomic analysis (not presented in this paper).  
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2.5.1a  Microzoopankton 
 

 

At each station, in the shipboard laboratory, the content of the collecting flask of the multinet  

was first transferred into a jar and its level was brought up to 250 ml by adding filtered sea water 

(FSW - was prepared by filtering sea surface water through the 40 μm sieve). Suspended 

particles (plankton) were collected by gentle vacuum filtration of 200 ml of the sample through a 

47 mm pre-weighted GFA  filter. The filter with particles was then dried  at 55 ºC for 24 hours  

and stored for analysis ashore.  

 

2.5.1b  Meso and macrozooplankton 
 

At each station, the content of the collecting flask was first transferred into a jar and its level was  

brought up to 250 ml by adding FSW. 200 ml of the sample was subsequently fractionated 

through sieves of 2.0, 1.0, 0.5 and 0.2 mm and each fraction was carefully washed with FSW and 

transferred to 47 mm pre-weighted GFA filter papers. Samples were dried at 55 ºC for 24 hours 

and  stored  until further analysis.  

 

2.5.1c Blank 

 A blank filter was prepared at each sampling station to characterize background nitrogen value 

of surrounding water by pre-filtering 250 ml of surface sea water through a 40 μm sieve and 

subsequently filtering through the pre-weighted GFA filter. The filter was dried and stored with 

the corresponding plankton samples.  

 

2.5.2 Stable isotope determination 

Stable isotope analyses were carried out at Centro Oceanográfico de A Coruña, Instituto Español 

de Oceanografía, Spain. Natural abundance of nitrogen isotope  were measured using an isotope-
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ratio mass spectrometer (Finnigan Matt Delta Plus) coupled to an elemental analyser (Carlo Erba 

CHNSO 1108). Nitrogen stable isotope abundance was expressed as 𝛿15N in parts per thousand 

(‰) relative to atmospheric N2 isotope standards. 

 

𝛿15𝑁 = ((𝑅𝑠𝑎𝑚𝑝𝑙𝑒 𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁄ ) − 1) × 1000.......................(3) 

 

where, R is the ratio of 15N/14N. 

 

2.6 Zooplankton composition and size classification  

 

The level of taxonomic identification was not covered in this study. Instead literary records of 

common zooplankton species/groups in the study area, their ESD sizes and prosome lengths  

were used to develop common size classification for particles, based on data from the  LOPC and 

the size fractionated net samples (Table 2). Based on the results, particles were divided into 3 

size classes: small (S), medium (M) and large (L) (Table 3). However, determining the size range 

will always be somewhat subjective and most of the time zooplankton species/groups can 

overlap each other. Particles from 0.10 - 0.25 mm ESD and from the 0.055 - 0.2 mm size fraction 

were not included in the analyses, because such small particles may result from  eroded 

phytoplankton aggregates and other detrital particles. Particles with an ESD > 4 mm were 

excluded from the analyses as few particles were registered by the LOPC in this size range at 

most of the sampling stations. In addition, Calanus finmarchicus was the dominant zooplankton 

species observed  in all sampling stations during the study period (own observation), therefore 

ESD and prosome length of the different development stages (Calanus spp. nauplii to CVI 

female) in the size classification are relevant to the C. finmarchicus. 
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Species/groups ESD (mm) 
Prosome length 

 (mm) 
Size class   

Calanus spp. a b c d f p 
  

   

         - Nauplii   ̴ 0.25 - 0.6a b    0.2 - 0.6a d S   

         - CI    0.5c < 1.0c g S   

         - CII - CIII   ̴ 0.6 - 1.0c e   ̴ 1.0- 1.5c g M   

         - CIV - CVI females   ̴ 1.1 - 2.0c e   ̴ 2.0 - 2.6c L   

   
   

Metridia spp.a d k    ̴ 0.3 - 1.0a     0.55 - 1.8g i S and M   

   
   

Microcalanus spp. a d k n j < 0.6 d   ̴ 0.6 - 1.1e S   

   
   

Pseudocalanus spp. a d k n    ̴ 0.3 - 1.0b d    ̴ 0.2 - 1.2f g i S and M   

   
   

Oithona spp. c d e n k   ̴ 0.3 - 0.5b d   ̴ 0.1 - 1.0f i S   

   
   

Euphausids  d m n h k > 1.8b > 2.0g L   

   
   

Chaetognaths d o k   ̴ 1.1 - 1.5b > 2.0b g M and L   

   
   

Balanus nauplii o   ̴ 0.25 - 0.6b   ̴ 0.75 (mean)h S   

   
   

Hydrozoa i    0.25 - 0.95b    0.77 ± 0.42b S and M    

   
   

Oncaea spp. o k < 0.5d   ̴ 0.3 - 0.8i S   

(1st column: a:Beaugrand et al., 2002; b:Planque and Taylor, 1998; c:Castellani et al., 2008; d:Krause et al., 2003; e 

:Gallienne and Robins, 2001; f:Fry and Quinones, 1994; g:Unstad and Tande, 1991; h:Cleary et al., 2012; i:Gibbon and  

Richardson, 2009; j:Walter, T.C., and Boxshell, G., 2014; k:Head et al., 2003; l:Johns et al., 2001; m:Letessier et al., 2011; 

n:Gislason, 2003; o:Barnard et al.,  2004) 

 

 

 

 

 

 

 

 

(2nd column: a:Zhou et al., 2009; b:Basedow et al., 2010; c:Edvardsen et al., 2002; d:Forest et al., 2012; e:Basedow et al., 

2006) 

 

 

 

 

 

(3rd column: a:Ogilvie, 1953; b:Basedow et al., 2010; c:Edvardsen et al., 2002; d:Prokopchuk, 2003; e 

:Zooplankton Identification Manual for North European Seas, 2014; f:Cohen and Lough, 1981; g:Piontkovski and Melnik, 

2008; h:Turner et al.: 2001; i:Conway, 2012) 

 

 

 

 

Table 2: Common zooplankton species/groups in the North Atlantic Ocean, their ESD sizes and prosome lengths 

data recorded in early studies. Based on the results zooplankton counted by the LOPC and size fractionated net 

samples were classified as small (s), medium (M) and large (L) size classes.  
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2.7 Zooplankton abundances  

Average zooplankton abundance in the upper 200 m were estimated for all stations and all size 

classes (S,M and L)  based on abundance data recorded by the LOPC. 

 

2.8 TPs estimation 

 Trophic positions of the zooplankton, which were assumed to be representative of primary 

consumers such as herbivorous copepods to top consumers such as chaetognaths  were 

investigated through the biovolume spectrum analyses and use of nitrogen stable isotope tracers. 

 

2.8.1 TPs estimation from biovolume Spectrum analyses 

Biovolume spectra were constructed for all 7 stations and from each biovolume spectrum, one 

slope was calculated for the entire size range (S to L) and three separate slopes for each of the 

size ranges of the three zooplankton groups (S, M and L). To assess the community structures 

associated with trophic dynamics, the  trophic positions for each group (S, M and L ) and for the  

Size class ESD (mm) Size fraction (mm) Common  zooplankton species/groups 

S 0.25 - 0.6 0.2 - 1.0a 

Calanus spp. nauplii, Oithona sp., Microcalanus spp.,  Pseudocalanus 

spp., Hydrozoa, Balanus nauplii , Metridia spp., Oncaea spp. 

   

Calanus spp. CI   

 

M 0.6 - 1.0 1.0 - 2.0 Pseudocalanus spp., Calanus spp. CI I- CIII, Metridia spp.,  Hydrozoa 

   

Chaetognaths 

 

L 1.0 - 4.0 > 2.0b Calanus spp. CIV - CVI, Chaetognaths,  euphausids 

      

 

Table 3: Classification of size classes applied to the LOPC and size fractionated net samples data. Zooplankton was 

divided into 3 classes: small (S), medium (M) and large (L). Zooplankton species/groups within each size class were 

determined based on literature values, see Table 2.   

a  Size fractions of 0.2 - 0.5 and 0.5 - 1.0 were grouped to have S size class. 

b Size fraction > 2.0 mm (L class) refers to the size range from 2.0 mm to size fraction corresponding to 4 mm ESD. 
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whole zooplankton community (S to L) were estimated based on the slopes of biovolume spectra 

(b) and the mean assimilation efficiency of zooplankton (𝜇𝑛) (Zhou, 2006). 

𝑇𝑃 =  
−(1+𝜇𝑛)

(𝛿 𝑙𝑛 𝑏/𝛿𝑙𝑛 𝑤) 
  ............................ (4) 

 

The computation of TPs is based on the assumption that the biovolume spectrum can be 

linearized on a logarithmic scale (Zhou, 2006). Therefore, at first data were checked for the 

linearity and found consistent with the assumption. Furthermore, to compute TPs, the 

assimilation efficiency of the zooplankton community has to be known (Zhou, 2006). I have used 

a mean assimilation efficiency of 70%, a value typically used for copepods (Basedow et al., 

2010). However the existing data of zooplankton assimilation efficiency shows a greater 

variability depending on food source, species, body weight, temperature and development stage 

(Mauchline, 1998; Almeda et al., 2011) . For  instance, assimilation efficiency of Oithona 

davisae ranges from 65% to 86% depending on body weight, temperature and development stage 

(Almeda et al., 2011). For carnivores zooplankton, assimilation efficiency may be as high as 

98% (Mauchline, 1998). Therefore, TPs estimates that are made choosing of constant 

assimilation efficiency for all size classes and species/groups may not represent exact TPs, but 

the variations of TPs represent the trophic dynamics of plankton communities. 

 

2.8.2 TPs estimation from stable isotope analyses 

Mesozooplankton trophic positions for each size fraction (0.2 - 0.5, 0.5 - 1.0, 1.0 - 2.0 and > 2.0) 

were calculated based on the assumption that δ
15

N signature becomes enriched by 3.4‰ per 

trophic level, and that the  0.055 - 0.2 mm size fraction acts as the reference baseline with a 

trophic level of 1.5 (mixture of phytoplankton and primary consumers). The 0.055 - 0.2 mm size 
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fraction obtained from the station 131 was used as reference baseline for station 127 (see Table 

1). The trophic positions of each mesozooplankton size fraction i (TPi) was calculated as: 

                                                    TPi = (Δ δ
15

Ni /3.4) + d............................(5) 

where, d is 1.5. 

2.9 Comparison of TPs 

 

TPs estimated from the LOPC data were compared with those estimated from the δ15 N stable 

isotope analyses. In order to make common size classification (section 2.6) TP of 0.2 - 0.5 and 

0.5 - 1.0 sized fractions estimated by stable isotope analyses were grouped and a mean value was 

assigned for TP of  0.2 - 1.0 size fraction (S size class). For the comparison, TPs estimated by 

both methods and δ15 N variations were plotted in the same graph against the sampling stations. 

Moreover, predictions have been made by previous studies (Basedow et al., 2010; Zhou, 2006) 

for biovolume spectrum to yield relatively higher TPs than direct sampling methods which was 

confirmed by this study. Therefore, a Mean Trophic Position Increment (MTPI) was introduced 

to determine deviation factor of TPs between the two methods,   

𝑀𝑒𝑎𝑛 𝑇𝑟𝑜𝑝ℎ𝑖𝑐 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 (𝑀𝑇𝑃𝐼) =  
𝑀𝑇𝑃(𝐵𝑖𝑜𝑣𝑜𝑙𝑢𝑚𝑒 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑠)

𝑀𝑇𝑃 (𝑆𝑡𝑎𝑏𝑙𝑒 𝑖𝑠𝑜𝑡𝑜𝑝𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑒𝑠)                
 

                                    𝑀𝑒𝑎𝑛 𝑇𝑟𝑜𝑝ℎ𝑖𝑐 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑀𝑇𝑃) =  
(𝑇𝑃1+𝑇𝑃2+⋯+𝑇𝑃𝑛)

𝑛
 

where n is number of TP. MTPI was calculated for the each size class and for the whole 

zooplankton community, except for the medium size class due to the unavailability of TPs 

estimates for biovolume spectrum analyses. Finally, based on observed MTPI and slopes of the 

biovolume spectra, a hypothetical model was developed to interpret possible reasons for the 

deviations. 
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3. RESULTS 

3.1 Hydrograpy and fluorescence 

 

In general, along the transatlantic transect, there was a marked longitudinal gradient in the mean 

salinity and temperature recorded by the CTD. At the eastern end of the cruise track, the salinity 

and temperature  ranged between 35.2 - 35.3 and 7.8 - 8.7 °C respectively, while further to the 

west salinity and temperature decreased to a range of  34.5 - 34.7 and 3.8 - 4.6 °C respectively 

(Fig. 4). Two distinct water masses were identified by tracking salinity and temperature 

variations along the transect; warm, saline Atlantic water (AtW, salinity > 35.0 and temperature 

> 0 °C, Swift, 1986) and cold, less saline Labrador Sea surface water (LSSW, salinity < 34.97, 

Yashayaev and Greenan, 2011). Surface water of stations over the Iceland Basin, Reykjanes 

Ridge and northern-most part of the Irminger Basin were dominated by warmer AtW. LSSW 

were found at stations in the Labrador Sea and southern-most part of the Irminger Basin, where, 

Labrador Sea water advecting into the Irminger Sea (Tally and McCartney, 1982). Weakly 

developed stratified layer can be observed within upper 50 - 80 m in the Labrador Sea, while the 

water columns over the Iceland Basin, Reykjanes Ridge and Irminger Basin appeared to be well 

mixed approximately down to the 500 m (CTD profiles, only the upper 200 m are shown, Fig. 5).   

The chl a concentration remained very low (0.07 - 0.21 mg chl a m-3) along the  transect during 

the cruise and was not linked to water mass characteristics (Fig. 4). Minimum  chl a 

concentrations were observed at eastern (station 126) and western (station 135) ends of the 

transect (0.07 mg chl a m-3 per each) . Fairly high  chl a concentration was observed at station 

137  in the Labrador Sea with a maximum value of 0.21 mg chl a m-3, followed by the chl a 

concentration of station 132 over the Reykjanes Ridge ( 0.17 mg chl a m-3 ). Relatively a 

moderate chl a concentrations were observed in stations over the Irminger  Basin (0.14 mg chl a 

m-3 per each ).   
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Figure 4: Mean salinity, temperature and chl a variations 

along the transatlantic transect from east (right) to west 

(left). There was a marked longitudinal gradient in the mean 

salinity and temperature. Chl a distribution was not linked 

to water mass characteristics and did not show any 

longitudinal gradient. 

Figure 5: Vertical distribution of salinity, temperature 

and fluorescence in the upper 200m at stations in the 

Iceland Basin, Irminger Basin and Labrador Sea. Weakly 

developed stratified water layer was observed over the 

Labrador Sea (at about upper 50 - 80 m).  
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3.2 Zooplankton abundances 
 

 

There was a non-uniform distribution of zooplankton abundance across the transatlantic transect. 

Zooplankton abundance was corresponded roughly to the pattern in chl a. Total  

mesozooplankton abundance was lower in the Iceland Basin  and Reykjanes ridge (average of 

372 and 352 ind m-3 respectively),  whereas those in the Irminger Basin and Labrador Sea were 

relatively high (average of 1157 and 2884 ind m-3 respectively) (Fig. 6). The highest zooplankton 

abundance was recorded at the station 137 in  Labrador Sea with a maximum value of  4457 ind 

m-3, where the maximum chl a concentration was observed. Densities of the medium and large-

sized zooplankton were approximately in order of magnitude lower than the small-sized 

zooplankton in most of the hydrographic regions.   

 

 

 

 

 

 

 

 

 

 

 

3.3 Biovolume Spectra 

Collecting data into logarithmically equal biovolume size categories indicated an almost 

consistent decrease in total zooplankton biovolume with increased size in all stations (Fig. 7 ). In 

general, biovolume spectra yielded low intercepts for the all stations and ranged between 0.82 
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Figure 6: Abundance distribution of the 

small, medium and large-sized 

zooplankton along the transatlantic transect 

in relation to the chl a variation (green 

line) in March - April 2013. 
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Figure 7: Biovolume spectra of the zooplankton community in March-April 2013 at the stations; Iceland Basin, Irminger Basin and Labrador Sea, 

associated slope and predicted numbers of internal biomass recycles (assuming the community assimilation efficiency of 70%.) 
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Station Region 
Water 

mass 
Size group Slope Intercept r2 P-value 

126 Iceland Basin AtW 0.25 - 0.6 -1.07 0.37 0.89 < 0.001 

   

0.6 - 1 -0.16 1.03 -0.40 0.7367 

   

1 - 4 -0.62 0.76 0.69 < 0.001 

   

All -0.74 0.82 0.93 < 0.001 

        127 Iceland Basin AtW 0.25 - 0.6 -0.88 0.70 0.88 < 0.001 

   

0.6 - 1 -0.27 1.32 -0.13 0.5063 

   

1 - 4 -0.98 1.48 0.95 < 0.001 

   

All -0.62 1.18 0.91 < 0.001 

        132 Reykjanes AtW 0.25 - 0.6 -1.27 0.01 0.93 < 0.001 

 

Ridge 

 

0.6 - 1 -0.34 0.81 -0.18 0.541 

   

1 - 4 -0.76 1.10 0.80 < 0.001 

   

All -0.64 0.95 0.87 < 0.001 

        133 Irminger Basin  AtW 0.25 - 0.6 -0.75 1.40 0.88 < 0.001 

 

North 

 

0.6 - 1 -0.26 1.82 0.19 0.324 

   

1 - 4 -0.88 1.85 0.51 < 0.01 

   

All -0.62 1.65 0.78 < 0.001 

        134 Irminger Basin  AtW 0.25 - 0.6 -0.84 1.22 0.90 < 0.001 

 

South 

 

0.6 - 1 0.29 2.41 0.38 0.2343 

   

1 - 4 -0.44 1.95 0.82 < 0.001 

   

All -0.41 1.92 0.91 < 0.001 

        135 Labrador Sea LSW 0.25 - 0.6 -0.71 1.53 0.88 < 0.001 

   

0.6 - 1 -1.50 0.91 0.99 < 0.01 

   

1 - 4 -0.43 1.98 0.39 < 0.05 

   

All -0.42 1.92 0.75 < 0.001 

        137 Labrador Sea LSW 0.25 - 0.6 -1.19 1.29 0.98 < 0.001 

   

0.6 - 1 -1.54 0.92 0.91 <0.05 

   

1 - 4 -0.39 1.69 0.46 < 0.01 

      All -0.71 1.87 0.86 < 0.001 

 

and 1.92. However, the stations in the Irminger Basin and Labrador Sea had relatively high 

intercepts (1.65 - 1.92), than the intercepts of stations in the Iceland Basin and Reykjanes Ridge   

(0.82 - 1.18), reflecting the observed high  zooplankton abundances in the Irminger Basin and  

Labrador Sea and low abundances in  the Iceland Basin and Reykjanes Ridge. Relatively flatter 

Table 4: Parameters of the linear functions fitted to the biovolume spectra,  obtained from LOPC 

data collected at the stations along the North Atlantic transect. 
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slopes of -0.41 and -0.42 were observed in the southern-most part of the Irminger Basin (station. 

134)  and northwest end of the Labrador Sea (station 135) respectively, where the Labrador Sea 

surface water (LSSW) was dominated. Thus, the maintenance of such flat slopes indicating that 

biomass has been recycled within the mesozooplankton community several times. In contrast 

more steeper and relatively uniform slopes, ranged between -0.62 and -0.74 were observed for all 

the other stations in the study area (Fig. 7, Table 4 ), indicating a higher loss of energy from the 

mesozooplankton community. 

 

3.4 δ15N isotope 

 

In general, all zooplankton size groups  showed the same pattern of spatial variation along the 

transect, although the relationship between δ15N and size groups showed some variation among 

stations. In addition, zooplankton showed a weak association between size and δ15N. Only two 

stations  followed by a typical relationship of  increasing δ15N with   animal size (stations 132 

and 133), while no such consistent trend was observed in other stations. Many stations along the 

transect δ15N of S sized zooplankton was higher than that of M sized zooplankton (Stations 126, 

127, 134, 135) and higher than that of L sized zooplankton in  stations 127 and 135 (Fig 8, b). 

Further, for the all size groups (S,M and L group), relatively constant δ15N values were observed 

in the western part of the transect extending from the northern Irminger Basin to northwest 

Labrador Sea, while more fluctuations in δ15N were observed in the eastern part of the transect  

from the Iceland Basin to Reykjanes Ridge (Fig 8, a). 

Maximum δ15N for S sized zooplankton was recorded in the stations 126 & 135 (6.1 and 5.7‰ 

respectively). δ15N enrichment was highest for M and L sized zooplankton in station 132 over 

the Reykjanes  Ridge ( 7.5 and 9.6‰, respectively) . The isotopic spread among zooplankton 
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size groups at a single station ranged from 0.7% to 6.7%, with generally smaller spreads in the 

stations over the Iceland Basin and northwest Labrador Sea. 

 

 

 

  

 

 

 

 

 

 

 

 

3.5    TPs variation along the transect 

 

TPs estimated from the stable isotope analyses for small-sized zooplankton was ranged between 

1.7 and 2.3; these moderate TPs may indicating that the small-sized zooplankton in the upper 

layer along the transect was feeding  on omnivorous diet during the period of study. TPs 

estimated from the biovolume spectrum theory also yielded comparable, but slightly higher  

values than the isotopic estimations and ranging between 1.9 and 3.4 (Table 5, Fig. 9). TPs of 

small-sized zooplankton computed from both methods did not link to either of water mass 

characteristics or δ15N variations along the transect. Except the Labrador Sea, no significant TPs  

were found for the biovolume spectra of medium-sized zooplankton to compare those with the 

stable isotope estimations. TPs of medium-sized zooplankton estimated from the stable isotope 

Figure 8: δ15N variations of the small (S), medium (M) and large (L) sized zooplankton relation to the base line size 

fraction of  the 55 - 200 μm, a) along the transatlantic transect and, b) at each station. 
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analyses had relatively constant values throughout the area, ranging between 1.5 and 2.8. These 

moderate TPs indicating that these medium-sized zooplankton were also feed on more 

omnivorous diet. Moreover, the variation of TPs of medium-sized zooplankton was well 

consistent with the δ15N variations along the transect (p < 0.01) (Table 6). 

TPs of large-sized zooplankton estimated based on biovolume spectrum showed mark 

relationship with the water mass characteristics. Very high TPs were observed in western portion 

of the transect extending from the northern Irminger Basin to northwest Labrador Sea (5.5 - 6.3), 

where the LSSW was dominated. In contrast relatively moderate TPs were observed in eastern 

part of the transect extending from the Iceland Basin to southern Irminger Basin ( 2.5 - 3.9) and 

the dominate water mass was AtW. However, the results of  biovolume spectrum theory did not 

significantly correlated with the δ15N variations along the transect. On the other hand, TPs 

estimated from stable isotope for the large-sized zooplankton did not show any link to the water 

mass characteristics, but were significantly correlated to the δ15N variations along the transect (p 

< 0.001) . TPs of whole zooplankton community estimated based on biovolume spectrum theory 

also had a link to the water mass characteristics of the region. Relatively uniform and moderate 

TPs (ranging from 3.3 to 3.9) were observed in stations where the AtW was dominated. 

Relatively high TPs (ranging from 5.5 to 5.7) were observed in stations where the LSSW was 

dominated, but with a notable exception in station 137, where the community had moderate TP 

(3.4). Furthermore TPs did not correlate to the δ15N variations along the transect. In contrast, 

community trophic positions computed based on stable isotope analyses did not link to the water 

mass properties, but significantly correlated to the δ15N variations (p < 0.05). Further TPs were 

relatively constant throughout the region, ranging between 1.5 and 2.8. 
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Size class 

Trophic position (TP) 

126   127   132   133   134   135   137 

BST SIA   BST SIA   BST SIA   BST SIA   BST SIA   BST SIA   BST SIA 

S 2.3 2.3 

 

2.7 1.7 

 

1.9 2.1 

 

3.2 2.0 

 

2.9 2.0 

 

3.4 2.1 

 

2.0 2.2 

M n.s. 2.2 

 

n.s. 1.5 

 

n.s. 2.8 

 

n.s. 2.2 

 

n.s. 1.7 

 

1.6 2.2 

 

1.6 2.0 

L 3.9 2.7 

 

2.5 1.3 

 

3.2 3.5 

 

2.8 2.7 

 

5.5 2.4 

 

5.7 2.0 

 

6.3 2.5 

All 3.3 2.4   3.9 1.5   3.8 2.8   3.9 2.4   5.9 2.0   5.8 2.1   3.4 2.2 

Table 5: TPs of zooplankton community estimated based on biovolume spectrum  theory (BST) and stable isotope 

analyses (SIA) in stations along the transatlantic transect; March-April 2013.  In biovolume spectrum analyses, TPs 

were computed from slope of the biovolume spectra for S, M, L and whole zooplankton community (all) only if 

slopes were significant. n.s - not significant.  
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Figure 9: Variations of TPs; small, medium, large and whole zooplankton community (all), estimated from both 

biovolume spectrum theory (BST) and stable isotope analyses (SIA) in relation to the δ15N variations of stations along 

the transatlantic transect. 
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Size  BST   SIA 

 class r p - value 

 

r p - value 

S -0.1594 0.7329 

 

0.6338 0.1264 

M - - 

 

0.8746 0.0099 

L 0.0243 0.9587 

 

0.9547 0.0008 

All -0.0796 0.8654   0.8242 0.0225 

 

 

3.6 Comparison of TPs estimated from BST and SIA 

 

In general, the TPs computed from the biovolume spectrum theory had relatively high trophic 

indices for small, large and whole zooplankton community than those estimated from the stable 

isotope analyses (Fig. 10). However TPs of small-sized zooplankton computed based on the 

biovolume spectra did not significantly differ from those estimated based on stable isotope 

analyses (p > 0.05). But TPs of large-sized and whole (all) zooplankton community shows 

significant differences between the two methods with increased significant level towards the 

whole zooplankton community (p < 0.05 and 0.01 respectively) (Table 7). Further Mean Trophic 

Position Increament (MTPI) increased as small < large < whole (all) zooplankton community 

(1.2, 1.7 and 1.9 respectively). 
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Table 6: Correlation between TP and δ15N along the transect. No significant correlation was found for small-sized 

class either BST or SIA. There was a significant correlation between TP estimated from SIA and δ15N for medium, 

large and whole (All) zooplankton community.  

Figure 10: Increment of TPs estimated from BST  

relative to the TPs estimated from SIA for small, 

large and whole(All) zooplankton community  
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4. DISCUSSION 

The combination of TPs estimations using  biovolume spectrum theory with  stable isotope 

analyses, well resolved uncertainties of TPs estimations based on biovolume spectrum theory. 

The results of this study confirm that estimated TPs based on biovolume spectrum theory reliably 

describe the trophic relationships within the mesozooplankton community. Moreover, the study 

reveal that biovolume spectrum may compute relatively higher trophic indices for 

mesozooplankton size classes compared to direct sampling methods, e.g. stable isotope analyses,  

due to its ability to detect internal recycling of the biomass through microbial loop organisms. 

Findings of this study thus proved applying of biovolume spectrum theory to data obtained by 

LOPC as a high resolution method not only for estimation of TPs, but also to trace the influence 

of  microbial processes for the sustainability of  mesozooplankton communities in relation to  

different  environmental conditions. 

 

4.1 Hydrography and mesozooplankton abundance distribution 

Hydrographical properties of the study area revealed relatively low salinity and temperature over 

the Labrador Sea and southern-most part of the Irminger Basin. Further, there was a stratified 

Size  Mean TP MTPI Wilcox.test  Significant 

class BST SIA BST/SIA   p - value      level 

S 2.5 2.0 1.2 p = 0.1079 p > 0.05 

M - - - - - 

L 4.3 2.5 1.7 p =0.0178 p < 0.05 

All 4.3 2.2 1.9 p =0.0021 p <0.01 

Table 7: Results of Wilcoxon rank sum test performed to determine whether the TPs estimated from BST was 

significantly different from those estimated from SIA for small, large and whole (All) zooplankton community. TP 

increment and p-value increasing from small to whole zooplankton community. 
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water layer in the Labrador Sea, which extended down to 30 to 80 m. The Labrador Sea is the 

coldest Sea in the North Atlantic Ocean (Lazier et al., 2002). Also during the period of 

investigation observed temperatures in the Labrador Sea were lower than in the rest of  the study 

area, but higher  than those observed during winter conditions in the Labrador Sea (Yashayaev 

and Greenan, 2011). Thus, a major cause for the observed freshening of the surface layer and 

shallow mixed-layer in the Labrador Sea may have been the melting of Labrador Sea Ice with the 

increase of solar heating as the summer approaches (Wu et al., 2008). In the Labrador Sea there 

are two distinct periods within the seasonal cycle of water column stability: a stratification period 

and a convection period. Stratification (roughly May–December) is associated with a warming 

and an increase in salt content of the lower layer (200 - 1300 m) and a freshening of the surface 

layer (0 - 200 m). During convection (January–April), these trends are reversed (Straneo, 2006). 

During the period of this investigation, water properties were similar to the stratification period 

(CTD profiles, only upper 200 m are shown, Fig. 5) and thus further confirm that  the Labrador 

Sea was in a early spring situation during the sampling period (Wu et al., 2008). In contrast, all 

other stations over the Irminger Basin, Reykjanes Ridge and Iceland Basin remained in a winter 

situation with a deep mixed layer approximately extending down to 500 m depth (CTD profiles, 

not shown). However , the southern-most part of the Irminger Basin had water properties similar 

to the adjacent Labrador Sea. Talley and McCartney (1982)  noted that Labrador Sea water, that 

may occur in mid-depth in the Labrador Sea might potentially be advected into the Irminger 

Basin. I can therefore  be reasonably sure that observed similarity of water properties between 

the Labrador Sea and southern-most part of Irminger Basin  was due to the advective-transport of 

water. Labrador Sea surface water, which entered into the Irminger Basin, then underwent winter 

mixing and was distribute homogenously throughout the upper mixed-layer. Accordingly, the 

zooplankton distribution in the Labrador Sea corresponded to a early spring situation with high 
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abundances of mesozooplankton, whereas the Reykjanes Ridge and Iceland Basin 

mesozooplankton corresponded mostly to a winter situation with generally lower 

mesozooplankton abundances. However, even though the water column over the Irminger Basin 

remained in a winter situation, the observed relatively high mesozooplankton abundance further 

confirmed that mesozooplankton-enriched LSSW may have been advected into the Irminger 

Basin.  

 

The reason for observed high abundance of the mesozooplankton over the Labrador Sea may be 

due to the influx of a new generation of early copepodites stages from the April-June 

reproduction period (Labrador Sea monitoring group, 2006) into the upper layer. Previous 

studies in the eastern Labrador Sea have shown that peak abundances of early copepodites stages 

were reached in late May (Labrador Sea monitoring group, 2006) with an average of 8940 m-3 

individuals of Calanus finmarchicus in the upper 100 m. This study reported an average of 2884 

ind m-3 of small-sized zooplankton within upper 100 m. Moreover, zooplankton net samples have 

confirmed that C. finmarchicus was the dominant zooplankton species in the study area  (own 

observation). The relatively high zooplankton abundances indicate that the spring bloom in the 

LSSW had progressed. 

 

4.2 Interpretation of biovolume spectra 

 

The intercepts of the biovolume spectra in AtW over the Iceland Basin and Reykjanes Ridge 

were low, and comparable to the spectra obtained from a Atlantic water in Polar front  in the 

Barents Sea in April/May, while the intercepts of the biovolume spectra in the Labrador Sea and 

AtW over northern-most Irminger Basin were high,  but lower than those observed in a highly 

productive Polar front in Barents Sea in April/May  (Basedow et al., 2010). The biovolume 
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spectra thus indicating a potentially low productivity in the Iceland Basin and Reykjanes Ridge 

and a potentially higher productivity in the Labrador Sea and Irminger Basin. Hence, the spectra 

further confirm that the zooplankton community in AtW still remained in a winter situation but 

not in northern-most Irminger Basin. On the other hand elevated productivity in the LSSW over 

Labrador Sea indicating a pre-bloom situation. The observed enhanced productivity in the   

Irminger Basin   probably can be a situation with temporary enrichment in zooplankton 

abundances due to advective - transport of zooplankton enriched Labrador Sea surface water into 

the Irminger Basin.  

 

4.3 Baseline to quantify the TPs  based on stable isotope analyses 

 

The objective to define a baseline for the food web, is to reflect the isotopic signatures of the 

primary source of production (Cabana & Rasmussen 1994 ). Selection of an appropriate baseline 

to estimates trophic positio is one of the most complex task in the application of stable isotopes 

to trophic studies (Post, 2002). The complexity is more pronounced in plankton studies, as it is 

very difficult to isolate pure samples of primary producers (TL= 1) from plankton communities.   

Filterable seston may include a mixture of phytoplankton, primary consumers and non-living 

particles, each component having its own isotopic signature. Thus each represents a different 

trophic position within the food web (Muñoz, 2007). In the current study, I used the isotopic 

signature of the 55 - 200 μm size fraction as a baseline to estimate TPs of mesozooplankton size 

classes. However, microscopic examination revealed that this size fraction included a mixture of 

phytoplankton and primary consumers (bioseston). Therefore, a mean TP of 1.5 was assigned to 

the baseline size fraction by assuming a trophic position of 1 and 2 for phytoplankton and 

primary consumers respectively. However, using bioseston as a baseline is methodologically 

straightforward, but it is only applicable when mesozooplankton species feed non-selectively on 
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bioseston. Conversely, if  mesozooplankton species feed  selectively on particular seston 

group/groups, using bioseston as the baseline may cause erroneous calculations of 

mesozooplankton trophic position, because taxonomic groups in bioseton are isotopically distinct 

(e.g. phytoplankton, ciliates, flagellates) (Muñoz, 2007).  

 

4.4  δ15N trophic enrichment variability 

 

There is currently  more confidence in the use of δ15N as a trophic level indicator compared to 

δ13 C, because these isotopic changes per trophic level are larger (Fry and Quinones, 1994). It has 

been repeatedly documented that a wide variety of animals from  aquatic habitats are enriched in 

δ15N by  ̴ 1.5‰- 4.5‰ relative to their diet, with an overall average enrichment of  ̴ 3.4%o for 

animals in general (Montoya et al. 1990, 1992; Kling et al. 1992). However, in this study, the 

observed maximum stepwise enrichment of δ15N among size classes was 2.6‰. In addition the 

zooplankton community did not show any consistent stepwise enrichment of δ15N from small to 

large sized zooplankton. Based on the assumption of 3.4‰ per trophic level, a 4-level system 

(e.g. in this a study food chain including the base line size fractionated group (55 - 200 μm sized 

class)            small zoooplankton          medium zooplankton           large zooplankton) should 

result in an across food chain  δ15N increase of around (3.4‰ × 4) 13.6‰. While the observed  

isotopic spread (ranged between 0.7 and 6.7‰) is clearly below of 13.6‰, that was predicted by 

the assumption. There are some biological evidences to support observed lower stepwise δ15N 

enrichment (< 3.4‰)   and isotopic spread  in the study area. Firstly, Dunton et al.(1989) found 

that food webs where the bacterial processing of detrital matters is important, δ15N changes 

across trophic positions seem to be considerably smaller than 3.4 ‰, thus δ15N may not be a 

reliable tracers of trophic position at lower trophic levels in detritus-based food webs. However, 
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there are practical difficulties in measuring δ15N of phytoplankton and the microbial loop 

organisms separately, thus TPs cannot be determined independently. Furthermore, there is little 

existing information about isotopic changes in these smaller organisms, which play an important 

role in marine planktonic food webs (Fry and Quinones, 1994). Secondly, in studies on benthic 

and kelp-associated communities, Kaehler et al. (2000) observed that those communities 

exhibited no discrete trophic levels (assuming 3 - 4‰ per trophic level), suggesting a higher 

degree of omnivory.  In the case of my study, both factors, i.e. a detritus-based food web and 

mesozooplankton omnivory could be the possible causes for the observed low stepwise trophic 

enrichment and isotopic spread across trophic levels. The hydrographical conditions prevailing in 

the study area (winter/early spring) during the  period of investigation may favor for both 

biological processes including recycling matter through the microbial loop organisms and 

triggering omnivorous feeding behavior of mesozooplankton community due to the scarcity of 

their most preferred prey items  (Kleppel, 1993; El-Sabaawi et al., 2010; Paulsen, 2013). In this 

study, 3.4 ‰ per trophic level was used to estimate TPs, a value typically used for the trophic 

studies (Vander Zanden and Rasmussen, 2001; Post, 2002)  as unawareness of precise isotopic 

enrichment between trophic levels. 

 

 

4.5 Spatial variability of  mesozooplankton δ15N 

 

The results confirmed the presence of  geographical differences in zooplankton δ15N, but did not 

show any longitudinal gradient (Fig. 8). The geographic differences were more pronounced at 

lower trophic levels among small zooplankton, which may feed on phytoplankton or microbial 

loop organisms, and reflected that a different zooplankton food web may have operated 

simultaneously in the study area (Hannides et al., 2009). For instance, the zooplankton 
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community δ15N  was the  highest at the  Reykjanes Ridge and the lowest in the Iceland Basin 

(station 127), but these differences were not large. This may reflect differences in the trophic 

structure and energy conversion efficiency or indicate the availability of  a δ 15N enriched 

nitrogen source at the Reykjanes Ridge, which may have been utilized by higher consumers of 

the region (Dunton et al., 1989).  

 

 

4.6  Comparison of trophic positions: biovolum spectrum vs stable isotope    

 

The approach to estimate TPs, based on stable isotope analyses showed community TPs of the 

study area ranging from 1.5 to 3.5, and thus within the range of primary and secondary 

consumers. However, TPs did not link with the water mass characteristics of the study area. In 

contrast, community TPs computed based on biovolume spectrum analyses ranged from 3.3 to 

5.9 and almost link to the water mass characteristics. The range of community TP was much 

higher than those generated by stable isotope analysis. Moreover, TPs of small and large sized 

mesozooplankton groups also had relatively high values for biovolume spectrum analysis (Table 

5). Several factors may explain the discrepancies between the two methods. These include : 1) a 

time lag between the two sampling methods, 2) differences in assimilation efficiencies of the 

mesozooplankton, 3) a responsiveness of the biovolume spectrum to the recycling processes 

driven by microbial community, that was not detected precisely by the stable isotope analyses.  

 

 

4.6.1 Time lag between the two sampling methods 

 

During the cruise,  net samples were not collected in synchrony with the LOPC deployment, 

which produced a time lag between the two sampling methods (Table 1). Time inconsistency   

may possibly cause zooplankton density disparities  between  sampling data obtained from two 
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methods. Time inconsistencies between samples are likely to be a major problem in advective 

environments with spatially heterogeneous populations, particularly zooplankton, since they are 

incapable of maintaining their position along with water movements (Speirs et al., 2004). In the 

current study, hydrographical data supported for  advective transport  of LSSW into the 

southern-most Irminger Basin, but provided no evidences of advection in other study regions. 

Unfortunately, there is no knowledge of spatial homogeneity/heterogeneity of zooplankton 

communities during the period of study. However, at all stations mesozooplankton abundances 

recorded by the LOPC were well proportionate with the plankton net samples (own observation). 

Moreover, the observed pattern of mesozooplankton TPs indicate that there should be a 

dependable factor to yield higher TPs for biovolume spectrum analyses, instead of random 

variations due to consequences of advection and zooplankton patchiness. 

 

4.6.2  Differences in assimilation efficiencies of the mesozooplankton 

 

In order to estimate TPs based on biovolume spectrum theory, a constant assimilation efficiency 

of 70% was used for all size classes. This may cause overestimation or underestimation of TPs 

because zooplankton assimilation efficiency depends on a number of factors including nutrient 

content in food, availability of organic compounds, food source, species, body weight, 

temperature and development stage (Mauchline,1998; Mayzaud et al.,1998; Almeda et al.,2011). 

For instance, Calanus pasificus assimilation efficiency can range from 68.5 to 85.4% for carbon 

and 73.9 to 92.5% for nitrogen ( Landry et al., 1984). The assimilation efficiency of herbivorous 

zooplankton is assumed to range from 60 to 70% (Pasternaki et al., 2002). For carnivores 

zooplankton, assimilation efficiency may be as high as 98% (Mauchline, 1998). However TPs 

estimations based on biovolume spectrum theory do not strongly depend on assimilation 
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efficiency, e.g. assuming assimilation efficiency varying by ±20%  would change trophic 

position only by 0.2.Thus, assimilation efficiency is not a reliable factor in explaining the 

observed trophic variations between biovolume spectrum and stable isotope analysis. 

 

 

4.6.3 Responsiveness of the biovolume spectrum to the recycling processes driven by 

microbial community 
 

The most reasonable and straightforward factor for the observed discrepancies of TPs 

estimations is that the biovolum spectrum can trace microbial loop linkages, which cannot be 

distinguished by stable isotope analyses due to methodological difficulties. According to 

equation 4 (section 2.8.1), the number of TPs estimated from the biovolume spectrum mainly 

depends on the slope of the spectrum, assuming that the assimilation efficiency is  constant for 

the all size classes. On the other hand, the slope of the spectrum is determined by the energy 

fluxes through the system (Platt and Denman, 1978; Zhou, 2006). Energy to the system can be 

supplied in two ways, 1) direct transfer from primary producers such as phytoplankton (new 

energy), and 2) internal recycling of dissolved organic matters (DOMs) by the microbial loop 

organisms (regenerated energy). A substantial amount of new energy by the primary producers 

may be lost from the system due to population metabolism while the energy propagates along the 

spectrum, resulting in a steeper slope of the spectrum. In a system with a feedback mechanism 

through the microbial loop, the system energy loss is low and may result in a flatter slope of the 

biovolume spectrum. Therefore, biovolume spectra with flatter slopes reflect a relatively high 

trophic number of the mesozooplankton community due to microbial loop linkages (Fig. 11) 

(Zhou, 2006).  
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* 

Figure 11 : Hypothetical representation of  marine pelagic planktonic food web, explaining the  reason for relatively higher TP computation by the 

biovolume spectrum analysis compared to stable isotope analysis 

*  Callanus spp. received energy from both primary producers and microbial loop organisms. But  stable isotope analysis could not trace these two energy 

source separately, therefore, by assuming classical trophic relationship of   Diatom  Ciliates   Callanus spp.  Chaetognaths, Callanus 

spp. received TP of 3 based on stable isotope analysis. However biovolume spectrum method can trace both energy sources seperately and compute TP of 

4 (average of 5 + 3). Therefore, biovolume spectrum can have higher TP with the increase of microbial loop linkages. 

 

(a: Cherrier et al., 1996; b: Baines and Pace, 1991; c, f: Fuhrman, 1999; d: Steward et al., 1996; e: Middelboe et al., 2003; g: Turner et al., 2001; h: 

Castellani et al.,2005a; h, J: Duró and Saiz, 2000; k: Feigenbaum & Maris 1984  a: Strom and Morello, 1998; b: Saito et al., 2006; c: Jeong et al., 2010; d: 

Mayor et al.,2006; e: Irigoien et al.,1998; f: Harris et al.,2000; g, I: Castellani et al.,2008) 
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4.6.3a Modeling approach to trace microbes driven recycling processes 

 

In this study, I have observed that the mean trophic position increment (MTPI, section 2.9) of the 

mesozooplankton size classes increased as small < large < All (Table 7). Further, MTPI was 

more pronounced in LSSW than in AtW (Table 8). Therefore, based on differences in MTPI and 

the slopes of the biovolume spectra in relation to the different water masses  in the study area, a 

hypothetical model was developed to explain those observed variations.  

 
 

 

 

 

 

 

 

 

 

 

 

Model interpretation 

The model is  based on  the assumption that, MTPI occurred entirely due to the internal recycling 

of the matter by microbial loop organisms. As a result, the Mean Trophic Position Increment 

(MTPI) can be proportionate to the number of microbial loops within the system and slope of the 

given spectrum (according to equation 4). Based on different slopes observed for the biovolume 

spectra, 3 possible scenarios were proposed, 

Size 

class 

LSSW     AtW   

Mean TP MTPI 

 

Mean TP MTPI 

BST SIA BST/SIA 

 

BST SIA BST/SIA 

S 2.5 2.1 1.2 

 

2.5 2.0  1.3a 

M - - - 

 

- - - 

L 5.8 2.5 2.3 

 

2.8 2.6  1.1b 

All 5.0 2.1 2.4 

 

3.7 2.3 1.6 

a & b - according to the hypothytical model ( scenario 1) microbial loop can be link to the small size class. 

Thus, these small zooplankton may fed by both new and regenerated energy   and  yield relatively a flatten 

slope. Therefore, MTPI is higher for that portion of the spectrum, but when this energy propogate along the 

spectrum and reach  the large zooplankton, a considerable amount of energy may be lost , resulting in a 

relatively steeper slope and low MTPI for large- sized zooplankton. In this particular situation MTPI changed 

as S >L < All. 

Table 8: MTPI for small (S), large (L) and whole (All) zooplankton community in LSSW and AtW. MTPI is more 

pronounced in LSSW due to many microbial linkages. 
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Scenario 1: This can be applied to a spectrum with a relatively  steep biovolume spectrum 

slope. In this, microbial processes are at minimum. However, few microbial loops can be 

linked to the base of the spectrum (small size class), but not at medium or large size 

classes. Therefore, energy lost from the system is high. This scenario could be applied to 

the observed biovolume spectra with steeper slopes in AtW of the study area (stations 

126,127,132 and 133). 

Scenario 2: The biovolume spectrum slope is relatively flat and microbial processes are at 

maximum. Microbial loops can be linked to any part of the spectrum. Due to feedback 

mechanisms by microbial loops, energy loss from the system is at minimum and biomass 

recycling internally several time. This scenario fits to the observed spectra with flat slopes 

in  LSSW in the northwest Labrador Sea (station 135) and southern-most part of the 

Irminger Basin (station 134) 

Scenario 3: Biovolume spectrum slope is steeper as scenario 1, but few microbial loops can 

occur and alter certain parts of the biovolume spectrum, thus a relatively flat slope results 

for that particular part due to the additional energy supply from the regenerated energy. This 

can be the prevailing situation in station 137 in the Labrador Sea, which has a steeper slope 

for the entire biovolume spectrum, and a flatter slope for the spectrum of large size class.  

Here, small and medium sized zooplankton utilized energy only from primary producers 

(fed herbivorously), therefore the slope was steepest for that part of the spectrum. Large 

Figure 12: Hypothetical model used to illustrate, 1) observed TP deviations between the biovolume spectrum 

analysis and stable isotope analysis, 2) relationship between shape of the spectrum Vs microbial loop linkages. 

Minimum number of microbial loops have been used  to simplify data interpretation and presentation. 

Energy source 

  Source 1 - New energy 

  Source 2 - Regenerated energy 
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zooplankton depended on both new and regenerated energy, thus the biovolume spectrum 

slope was flat in that size range. 

 

This hypothetical model well explained the observed variations in the biovolume spectra and TPs 

in relation to different water masses in the study area. According to the model, the LSSW had  

high microbial activities, where the AtW had relatively  low microbial activities. Paulsen (2013) 

also noted that microbial components are more dominant in the pelagic system, during pre-bloom 

conditions and lower during winter in the subpolar North Atlantic Ocean. Therefore, predictions 

by the model on microbial activities in relation to the two water masses,  fit well with previous 

findings. However, the model is based on limited data and few environmental scenarios. Hence, 

in the future, it would be desirable to test the validity of the model by more comprehensive study 

including different environmental conditions. 

 

 

4.7 Trophic mismatch and related consequences  

The results of this study showed that the LSSW maintained a relatively a high zooplankton 

biomass, even though phytoplankton biomass remained very low during the study period. This 

can be likely due to timing and trophic mismatch of marine plankton, e.g. asynchrony between 

the spring phytoplankton bloom and emergent of new generation of early copepodites stages in 

to the surface mixed layer. Edwards and Richardson (2004) also noted a mismatch between 

trophic levels and functional groups due to the consequences of ongoing climate changes. Fuel to  

maintain high zooplankton biomass in the LSSW, there should be another reliable energy source 

despite energy from primary producers, thus suggesting a microbial loop dominated zooplankton 

food webs in LSSW during the pre-bloom condition as predicted by the  model. Paulsen (2013) 

also emphasis the importance of nano-sized microorganisms as a consistent food source of 
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copepods during the pre-bloom period in Subpolar North Atlantic Ocean. However, high grazing 

pressure by the mesozooplankton can be a another possible reason for the observed low 

phytoplankton biomass in the LSSW, but observed relatively flatter slopes of the bivolume 

spectra in the region confirmed availability of recycling processes, driven by microbial 

community. 

 

4.8 Trophic structure of the study area: what determined by the two methods 

Overall, this study elucidate that the biovolume spectrum can yield higher TP due to presence of 

microbial loop linkages. The results of hypothetical model illustrates microbial loops based 

planktonic food webs were  more pronounced in LSSW during the pre-bloom condition. Stable 

isotope analyses showed a lack of stepwise δ15N enrichment among zooplankton size classes as 

observed in  previous studies (Montoya et al. ,1992; Fry and Quinones, 1994), thus indicated 

only a modest change in trophic position across the size classes of the mesozooplankton 

community. This small TP change is consistent with the idea of zooplankton omnivory in 

unstructured food web (Isaacs, 1972; Fry and Quinones, 1994). However, stable isotope analyses 

were not suited to detect microbial based trophic dynamics in the mesozooplankton community, 

because of practical difficulties to measuring isotopic signature of microbes and primary 

producers separately  (Fry and Quinones, 1994). In contrast, biovolume spectrum analyses is 

more perceptive to  source of energy flux through the system. As a result, biovolume spectrum 

method can potentially trace the trophic dynamics in mesozooplankton community fueled by 

both new (priamary producers) and regenerated energy (microbial loop) 
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5. CONCLUSIONS 

This study demonstrated for the first time, that the combined usage of biovolume spectrum and 

stable isotope analyses provided a powerful approach to assess the relationship  between trophic 

dynamics of the mesozooplankton community and the microbial loop in relation to different 

environmental conditions. It also illustrate that biovolume spectrum theory was a reliable method 

to describe trophic relationships of planktonic ecosystems. Moreover, the hypothetical model 

developed in this study provided a baseline to evaluate a potential influence of microbial 

processes in order to determine the trophic structure of the mesozooplankton community. 

However, the results highlights the need for a more comprehensive study including trophic 

relationship covering many environmental scenarios to have a more complete view of trophic 

coupling between mesozooplankton and microbial loop organisms. 
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