MASTER THESIS

Mitogenomic analyses of the two cold-water octocorals Alcyonium digitatum and Primnoa resedaeformis

Alisa Kravtcova
BI309F MSc in MARINE ECOLOGY
Faculty of Biosciences and Aquaculture
May 2015

Acknowledgements

The presented thesis is a result of a Master of Science program at the Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway.

The running cost to the experimental part of the octocoral mitogenome sequencing was covered by Research Counsil of Norway FriPro: Cold-Water Coral Genomics (Steinar D. Johansen, UiT/UiN).

This study was conducted at the Marine Genomics research group. I thank heartily my supervisors - Professor Truls Moum, Professor Steinar Daae Johansen, and Dr. Åse Emblem for their help, inspiration and friendly working environment. Your enthusiasm made this project possible. I also thank members of Cold-Water Coral sequencing group for their spirit of science and knowledge that I experienced at Lofoten research seminar.

I am especially grateful to Henning Reiss, Katrin Reiss and Marc Silbelberger from Marine Ecology Unit for their incredible assistance in collecting of A. digitatum samples. A half of my thesis could not be done without you.

I show my gratitude to Marine Genomics group staff and its former member Spyros Kollias for their help in everyday lab routines.

I am grateful to senior engineer Tor Erik Jørgensen for his helpful advices and suggestions.
I warmly thank my groupmates for their help and creating a special atmosphere during this time. I also thank Master student and my colleague Arseny Dubin for critical reading and assessment of thesis as well as for new ideas and assistance. You were the Helpful Hedgehog all this time.

My most personal and deep gratitude is for my family and my boyfriend who were supporting me every single day. Thank you for your patience and your strong belief in me.

Alisa Kravtcova, May 2015.

Abstract

Mitochondrial genome sequencing is an active and productive field in current research of animal species. The application of Next-Generation Sequencing techniques has significantly improved the process retrieving valuable molecular data.

In this study, the mitogenomes from two cold-water octocorals from the north Atlantic region (Norwegian waters) were completely sequenced, using the IonTorrent PGM technology. While one species (Alcyonium digitatum,L. 1758) represents the shallow water soft corals, the other species (Primnoa resedaeformis, L. 1812) is a deep-sea gorgonian species. Thus, according to classic taxonomy these two octocoral species are expected to be distantly related.

The resulting mitogenomes are in the line with previous research of related species and are similar in gene content and order to the inferred ancestral type of mitogenome organization in octocorals. At the same time, several interesting sequence features were explored. Deviations from the common pattern among octocorals are expressed in nucleotide sequence heterogeneity and intergenic space structure.

Phylogeny analyses highlighted the relationships of these species based on whole mitogenome sequences of all available octocorals. Here, the two studied species group together, and forming a separate branch among octocorals. This observation is very surprising since Alcyonium digitatum and Primnoa resedaeformis represent soft corals and gorgonians, respectively. These interesting results provide a basis for further studies of mitochondrial genomes of cold-water octocoral variation in both species.

List of abbreviations

As	Antisense
atp6	F0 ATP synthetase complex, subunit 6 gene
atp 8	F0 ATP synthetase complex, subunit 8 gene
Bp	Base pair(s)
cox1	Cytochrome oxidase, subunit 1 gene
cox 2	Cytochrome oxidase, subunit 2 gene
cox 3	Cytochrome oxidase, subunit 3 gene
cob	Cytochrome b gene
DNA	Deoxyribonucleic acid
etc	et cetera
GTR	General Time Reversible
IGR	Intergenic region
IPTG	Isoprpyil β-D-1-thiogalactopyranoside
Kb	Kilobase(s)
ML	Maximum Likelihood
Met	Methionine
Msh-1 (mtMutS; mutS)	Mutation Supressor Homolog 1; mitochondrial mutation supressor gene
mtDNA	Mitochondrial DNA
nd1	NADH dehydrogenase, subunit 1gene
nd2	NADH dehydrogenase, subunit 2 gene
nd3	NADH dehydrogenase, subunit 3 gene
nd4	NADH dehydrogenase, subunit 4 gene
nd4L	NADH dehydrogenase, subunit 4L gene
nd5	NADH dehydrogenase, subunit 5 gene
nd6	NADH dehydrogenase, subunit 6 gene
NGS	Next-generation sequencing
Nt	Nucleotide(s)
ORF	Open reading frame
PCR	Polymerase chain reaction
RNA	Ribonucleic acid
RPM	Rounds per minute
rRNA	Ribosomal RNA
mm	Ribosomal large subunit gene
ms	Ribosomal small subunit gene
Sec	Second(s)
tRNA	Transfer RNA
$t \mathrm{nM}$	Transfer RNA (f-Met) gene
Xgal	5-bromo-4-chloro-3-indolyl- β-D-galactopyranoside

Table of contents
Acknowledgements 1
Abstract 2
List of abbreviations 3
Introduction 5
Cnidaria 5
Mitogenome research 6
Previous knowledge about octocoral mitogenomes 7
Idea and realization of the project 9
Materials and methods 11
Sample collections. 11
Nucleic acid isolation 11
PCR 12
Visualization by agarose gel 13
Sanger Sequencing 13
Ion Torrent sequencing protocols. 14
Bioinformatics 14
Molecular cloning 15
Phylogeny analysis 16
Results 18
Coral samples, preservations and extractions 18
PCR and Sanger sequencing 19
Ion Torrent PGM sequencing 20
Assembly and annotation of mitogenomes 20
Sequence feature analysis. 25
Mitotranscriptome 37
Molecular cloning 38
Phylogenetic analysis 39
Discussion 41
Octocoral mitogenomes 41
Phylogenetic assays 44
References/Bibliography 47
Appendix

Introduction

Cnidaria

Cnidaria is a taxon of special interest to biologist. The phylum Cnidaria is a basal group of animals that originated early in the metazoan evolution Proceedings of the National Academy of Sciences. Phylum consists of approximately 9000 species with main groups represented by Anthozoans, Cubozoans, Staurozoans, Hydrozoans and Scyphozoans. Despite of their ancestry, cnidarians exhibit high morphological plasticity and variability in the reproductive traits and life cycles (McFadden et al., 2001). They are simply organized animals with little bilateral symmetry. Some animals possess sack-like body and are sessile while others have an actively swimming medusa lifeform. While diverse life forms can be observed in this taxon, all animals inhabit marine environments with a few exceptions of freshwater-dwelling organisms (for instance, freshwater hydra H. oligactis).

In contempt of their morphological simplicity, cnidarians are the key species in some types of ecosystems. Particularly, corals shelter up to one-third of marine fauna species (Plaisance et al., 2011), provide unique conditions to microorganisms, and are hot points of biodiversity in marine and oceanic environments (Sunagawa et al., 2010).

Corals are among the most prominent organisms within this taxon. They form a class Anthozoa with two main assemblages - Hexacorallia and Octocorallia, respectively. Both groups consist mostly of colonial forms that participate in reef-building by creating dense beds on the ocean's floor. Therefore, both groups contribute to creation of important benthic ecosystems.

Mentioned subclasses are different in their morphology (Daly et al., 2007). Octocorals have eight-fold symmetry and simple tissue organization. They are composed of mesoglea, forming a dense matrix, and continuous epidermis, connecting the whole colony. An outer tissue, called coenenchyme, is often solidified. Body plan also includes eight mesenteries and eight tentacles. Colonies are polymorphic in their color. Animals prefer different habitats, but usually it is depths in the range of 3 to 50 m (Moen, 2004).

Hexacorallia is a well-studied group (63 complete mitogenome sequences available in GenBank) while the importance of Octocorallia was reflected in studies more recently (23 complete mitogenome sequences available in GenBank). Moreover, tropical species are best studied and described (Iguchi et al., 2012; Shinzato et al., 2011; Stanley Jr, 2003; Weis et al., 2008), thus species from another locations are interesting objects for further investigations.

Genomic studies of coral genomes are very promising in many respects: molecular techniques applied to species from unusual life conditions can result in obtaining new valuable information, molecular tools (such as primers, markers, etc.) and products (drugs, GFP-like proteins, toxins and venoms) as well as valuable information about diversity of basic animal groups.

Figure 1. A) An example of Alcyonium digitatum presented in yellow and white morphs
B) An example of a part of Primnoa resedaeformis

Photo: A) JC Schou B) Leo Shapiro Both images are taken from eol.org

Mitogenome research

The complete sequences of mitochondrial genomes have become a useful tool in current research on cnidarians (Chapman et al., 2010; Kayal and Lavrov, 2008). Compared to variably organized and complex nuclear genomes, mitogenome sequences are relatively easy to assemble and annotate. Moreover, the mitochondrial genome contains a stable set of genes and is readily amenable to comparative analyses. After first mitogenomes have been sequenced and assembled, a cascade of molecular data, describing mitochondrial DNA (mtDNA) organization and functioning, appeared. A variety of feature characteristics of the mitogenome has recently been uncovered, and these studies improved our basic knowledge of organelle genome (Emblem et al., 2014; Shao et al., 2012). The broad use of mtDNA makes it a suitable marker in population studies and phylogeny inferences in detecting SNPs, variability, and selective sweeps in coding sequences. Research on mitochondrial genome structure also contributes in exploring nuclear genomes since it represents a first step in the understanding of organism function at a basic level.

Application of Next Generation Sequencing (NGS) has revolutionized the current field of research (Miller et al., 2011). However, a combination of NGS and different techniques in mitogenome research is probably the most powerful approach. This because it, will ensure both efficient processing and quality of the sequences. Thus, NGS reads can be successfully combined and verified with techniques such as PCR, molecular cloning and Sanger sequencing (Johansen et al., 2010).

Such comprehensive data can be used to characterize marine populations, species and communities, as a basis of nature conservation strategies, and establishment of protected marine areas (Shinzato et al., 2011). This becomes more important as the anthropogenic impact on the environment is increasing. Marine habitats contain prominent ecosystems threatened by human induced exploitation (underwater mining, fishery, etc.), pollution, ocean acidification processes, and climate change (Hofmann et al., 2008). New molecular data will also facilitate blue biotechnology, bioprospecting and its vast propagations in pharmaceutics and therapy (Bruckner, 2002; Cho et al., 2009; Otero-González et al., 2010).

Therefore, the application of genomics supported by NGS in marine species research is of high priority.

Previous knowledge about octocoral mitogenomes

There are no complete nuclear genome sequences of octocorals up to date, but previous studies in other cnidarians revealed unexpected complexity of cnidarian nuclear and mitochondrial genomes (Beagley et al., 1995; Chapman et al., 2010). Indeed, specific features are abundant within this phylum in either genomes. Here, focus will be mainly on the mitogenome since it is an object of interest.

Anthozoan mitogenomes are usually organized in a circular DNA molecule with the size range from 16 to 25 Kb in hexacorals and 18-19 Kb in octocorals. Those species which have linear DNA can also have several mitochromosomes of different size. However, hexacoral and octocoral genomes have noticeable differences in both gene content and genome organization. Both genomes contain typical 13 essential protein-coding genes, coding for proteins involved in oxydative phosphorylation processes, 2 ribosomal RNA subunits and a transfer RNA (f-Met),
which is common for both subclasses. In addition, hexacoral genomes have homing endonuclease gene, another transfer RNA gene (Tryptophane) and group I introns.

Octocoral mitochondrial genome composition is highly conserved, but gene order is often rearranged. It consists of typical 14 protein-coding genes and specific gene msh-1 (Mutation Supressor Homolog 1; mtMutS), found only in octocorals. Genes are usually separated by intergenic regions (IGR) - short non-coding sequences of up to 100 nucleotides. Some more details are presented in the Table 1.

Table 1. Mitochondrion genome content in two Anthozoan subclasses

Mitogenome feature	Octocorallia	Hexacorallia
Size (Kb)	$18-19$	$16-25$
Topology	circular	circular
Protein coding genes	14	14
rRNA genes	2	2
tRNA genes	1	2
HEG	No	Yes
Introns	No	Yes
msh-1	Yes	No

Idea and realization of the project

The chosen species are very promising candidates for mitogenome sequencing study. Both species are common cold-water soft corals from the North Atlantic region, that belong to the Alcyonacea - the order in the Octocorallia subclass. While Alcyonium digitatum ("Dead men’s fingers") is a soft coral within the family Alcyoniidae found in shallow waters, Primnoa resedaeformis belongs to the deep sea gorgonian family Primnoidae. Taxonomically these species are expected to be distantly related octocorals, but little molecular data about are available in databases to challenge the relationship analysis.
The present study applied Ion semiconductor sequencing technology to mitogenome and mitotranscriptome sequencing of two octocoral species (Fig.2). For the purpose of verifying the results obtained by IonTorrent sequencing, we used Sanger sequencing amplified mtDNA regions.
Molecular cloning procedures were chosen as an additional approach that would also improve the resolution of the sequence. This technique is effective for verification of poorly resolved parts of the mitogenome since it is able to produce clean sequencing data and improved coverage of problematic DNA regions. Transcriptome sequencing output is used for verification of gene sequences as well as identifying abundant transcripts. Thus, we were able to obtain a high quality mitogenome sequence from both study species.

The acquired mitogenomes were used together with the set of available published octocoral mitogenomes species for the reconstruction of phylogenetic relations.
The use of Ion semiconductor sequencing has also a key advantage because a pool of whole genomic DNA reads that is created during preparation procedures. These reads can be used for the further studies.

Figure 2. Workflow scheme of experiments in the present study.

Materials and methods

Sample collections

Live P. resedaeformis samples were collected at a Lophelia pertusa reef at Nord-Leksa, Norway ($63^{\circ} 36^{\prime} \mathrm{N} ; 9^{\circ} 24^{\prime} \mathrm{E}$) at 150-200 m depth using the ROV Minerva, RV Gunnerus (NTNU, Trondheim). Samples were stored in absolute ethanol at $-20^{\circ} \mathrm{C}$ for DNA extraction. Samples for RNA extraction were homogenized in TRIzol and frozen at $-80^{\circ} \mathrm{C}$, or stored in RNAlater® RNA Stabilization solution (Life Technologies ${ }^{\mathrm{TM}}$) at $-20{ }^{\circ} \mathrm{C}$ in order to prevent RNA degradation.

Live A. digitatum samples were collected by scuba-divers at Mørkvedbukta Research station ($67^{\circ} 16^{\prime} \mathrm{N} ; 14^{\circ} 33^{\prime} \mathrm{E}$), Bodø, Norway at 3-5 m depth. Samples were preserved in absolute ethanol at $-20^{\circ} \mathrm{C}$ for DNA extraction. Samples for RNA extraction were frozen at $-80^{\circ} \mathrm{C}$, or stored in RNAlater ${ }^{\circledR}$ solution and frozen at $-20^{\circ} \mathrm{C}$ in order to prevent RNA degradation.

Nucleic acid isolation

Coral tissue samples ($2-5 \mathrm{mg}$) were mechanically homogenized in 2 ml MagNa Lyser Green Beads Tube (Roche) with Precellys 24 homogenizer (Bertin Technologies ${ }^{\mathrm{TM}}$) at 10000 rpm until complete homogenization. Total genomic DNA was extracted with Epicentre MasterPure ${ }^{\mathrm{TM}}$ Complete DNA and RNA Kit (Illumina ${ }^{\mathrm{TM}}$) and Urea protocol (see Appendix). Both protocols exploit broad range specificity Proteinase K. The Urea protocol also includes phenol/chloroform and chloroform/isoamyl extractions together with ethanol precipitation. The Epicentre kit contains manufactured protein precipitation agents.

Standard TRIzol protocol (Chomczynski, 1987), modified for cod (MG group) was used to extract total RNA from both fresh tissue and frozen samples. Standard requirements for work with RNA were considered as previously described (Nielsen, 2011). RNAseZap®Solution (Life Technologies ${ }^{\mathrm{TM}}$) was used to clean working surfaces from RNAses.

For the purpose of measuring the amount of nucleic acid in the probe and the purity of sample, several basic methods were used. Qubit ${ }^{\mathrm{TM}}$ dsDNA BR Assay kit (Invitrogen ${ }^{\mathrm{TM}}$) and High sensitivity RNA Assay kit (Invitrogen ${ }^{\mathrm{TM}}$) protocols were used directly after extraction procedures to assess approximate amount of material to work with.

Qubit ® 2.0 Fluorometer (Invitrogen TM) measurements are based on the fluorescence of the probe after binding with fluorescent agents. Nanodrop ${ }^{\circledR}{ }^{\circledR}$ ND-1000 (Thermo Fisher Scientific ${ }^{\mathrm{TM}}$) device was used to analyze concentration and purity of the sample. This device exploits a ratio of different wavelengths as a standard value of a pure sample. Agilent 2200 Tape Station System (Agilent Technologies) device was used to assess length of molecules and sample molarity after shearing and amplifying as well as other procedures, when proceeding to library and template preparations. Genomic DNA Screen Tape and High Sensitivity RNA Screen Tapes were used.

All measurements were done according to manufacturer's instructions and with negative control sample.

PCR

Only parts of protein coding genes of the studied species mitogenomes are available in online databases. Therefore, PCR primers were constructed using these sequences and also using multiple alignments of different octocoral species sequences. These octocoral-specific primers were combined randomly (except using forward and reverse primer for one gene in the same reaction) in PCR reactions. The strategy was to obtain amplification of different regions and find an overlapping reactions whose products would cover the whole mitogenome.

Primers used for PCR and Sanger sequencing reactions are listed in the Appendix B. PCR kit from TaKaRa (TaKaRa Bio Inc.) was used when preparing master mix. TaKaRa LaTaq Polymerase was chosen because of abilities to amplify long amplicons, as well as its proofreading properties (TaKaRa Bio Inc., 2004). Reaction mixture is presented in the Table 2. All preparation steps were performed on ice.

Table 2. Reaction mixture for PCR

Component	Amount, $\mu \mathrm{l}$
DNA sample	1
Primer, F	1
Primer, R	1
LA Taq Polymerase	0,2
dNTP mix	4
Mg2+ Buffer	2,5
Millipore water	15,3

Thermocycling conditions were as following: initial denaturation at $94^{\circ} \mathrm{C}$ for 5 minutes, 25 cycles of $94^{\circ} \mathrm{C}$ for 30 seconds, $55^{\circ} \mathrm{C}$ for 30 seconds, $72^{\circ} \mathrm{C}$ for 4 minutes and final elongation at $72^{\circ} \mathrm{C} 4$ minutes. Annealing temperatures were set according to the melting temperatures (Tm) of the primers. Reactions were run with a negative control in order to check for contamination.

Visualization by agarose gel

DNA fragments were separated on 1% agarose gel (1 g of Ultra-pure Agarose (Invitrogen ${ }^{\mathrm{TM}}$) per 100 ml of 0,5 TBE buffer) with SYBR® Safe (Invitrogen ${ }^{\mathrm{TM}}$) ($4 \mu \mathrm{l}$ per 100 ml). $1 \mathrm{~Kb}+$ DNA Ladder (Invitrogen ${ }^{\mathrm{TM}}$) was used to determine size of products. PCR products were mixed with Blue Bromophenol $6 x$ loading dye (1μ l of dye per $5 \mu \mathrm{l}$ of product) before loading into wells. Products were visualized using Gel Logic 200 Imaging system (Kodak ${ }^{\mathrm{TM}}$) and Safe Imager ${ }^{\mathrm{TM}}$. Qiagex II Gel Extraction Kit (150) (Agarose Gel Extraction protocol) (Qiagen) kit was applied for products purification from gel.

Sanger Sequencing

Successfully amplified products were Sanger sequenced (BigDye v.3.1) to verify sequences difficult to determine by IonTorrent. PCR primers were diluted 10 -fold for the use in sequencing reactions. The reaction mixture is presented in the Table 3. Thermocycling conditions were as follows: initial denaturation at $96^{\circ} \mathrm{C}$ for 5 minutes, 25 cycles of $96^{\circ} \mathrm{C}$ for 10 seconds, $50^{\circ} \mathrm{C}$ for 5 seconds, and $60^{\circ} \mathrm{C}$ for 4 minutes. Reaction was performed at the Molecular Biology Lab, UiN, Bodø and samples were shipped to UiT/UNN afterwards where were processed on a 3130 xl GeneticAnalyzer ${ }^{\circledR}$ (Applied Biosystems ${ }^{\mathrm{TM}}$).

Table 3. Reaction mixture for Sanger sequencing

Component	Amount, $\mu \mathrm{l}$
PCR product (gel extracted)	2
Big dye enzyme	1
Big dye Buffer 5x	1
Forward/Reverse primer	3
Nuclease-free water	3

Ion Torrent sequencing protocols

E-Gel® electrophoresis system was applied for size selection when preparing a template to further steps. E-Gel is a compact device that uses ready-made and stained E-Gel® SizeSelect ${ }^{\text {TM }}$ Agarose Gels (2\%), and works as a usual electrophoresis chamber. This procedure helps to select a part of library with desirable size.

Real-time quantitative PCR (qPCR) procedure was done in order to calculate the exact amount of molecules ligated with adapters from both ends. This procedure was done using StepOnePlus Real-Time PCR system (Life Technologies ${ }^{\mathrm{TM}}$) and Ion Library Taqman Quantitation kit.

Emulsion PCR was performed with Ion One Touch ${ }^{\mathrm{TM}} 2$ System with Ion PGM ${ }^{\mathrm{TM}}$ Template OT2 200- and 400 kits (Life Technologies ${ }^{\mathrm{TM}}$) and checked with Qubit Quantitation Assay (Life Technologies ${ }^{\mathrm{TM}}$) kit.

Whole genome sequencing was done by using Ion Torrent ${ }^{\mathrm{TM}}$ PGM and 316 v .2 sequencing chips. Ion Torrent Low Input Protocols were used because of low (50-100 ng) extraction output from nucleic acid isolation procedures. Sequence quality was assessed based on the sequencing run report and manual inspection of tracer.

Low Input RiboMinus ${ }^{\mathrm{TM}}$ Eukaryote System v2 kit (Ambion ${ }^{\mathrm{TM}}$) protocol and MicroPoly(A)Purist Kit protocol were used to purify samples from rRNA and enrich PolyA RNA, respectively. Ion Total RNA Seq kit v2 was used to convert RNA into cDNA by reverse transcription reaction and to prepare a template for further work. Ion One Touch ${ }^{\text {TM }}$ kits for 200and 400 bp and 316 v .2 sequencing chips were used. Quality control was performed by analyzing the sequencing summary. All procedures were performed according to user manuals from manufacturers.

Bioinformatics

FinchTV (Geospiza Inc.) was used for the quality score inspection of Sanger sequenced DNA fragments as well as the length.

CLC Genomics Workbench (Qiagen ${ }^{\text {TM }}$) software was used as a basic bioinformatic tool for further analyses. Mapping of all reads on mitogenome of the reference species sequences was done in order to sort out all nuclear reads. C. rubrum mitogenome was used as a reference for
P. resedaeformis and P. resedaeformis subsequently as a reference for A. digitatum. Both length and similarity fractions were set to be equal 0.8 in the purpose of increasing robustness. The resulted mitochondrial reads were used for further mitogenome de novo assembly based on overlapping parts of these reads. MITOS webpage assembly tool (http://mitos.bioinf.unileipzig.de/) and MITObim script (MITOchondrial Baiting and Iterative Mapping) (Hahn et al., 2013) were used for further verifications of genome assembly and annotation. The latter is a MIRA assembler based Perl-script that requires no mapping on a reference mitogenome. The cox1 gene was used as a setout for assembly with "--quick" option. Mapping of all protein coding genes from complete octocoral mitogenomes (see Appendix D) available in GenBank was done for detection of protein coding sequences. Multiple alignments with the same set of species and genes were built then to evaluate reading frames, assess quality of assembly and annotate a mitogenome. Reading frames were also verified with EMBOSS Transeq web page and CLC Workbench with all 6 reading frames and Mold Mitochondrial genetic code settings. European Bioinformatic Institute resources (ebi.ac.uk) and NCBI (ncbi.nlm.nih.gov) resources were also used to detect similarity between sequences (BLAST algorithms), and to translate sequences into proteins, obtain sequences from databases.

Molecular cloning

Cloning was performed for the purpose of amplification of irresolute regions detected after the assembly. In this study mutS gene sequence was cloned since this gene is very variable and needs auxiliary sequencing techniques. Primers were made based on PGM sequencing results and listed in the Appendix. These 10 -fold diluted PCR primers were used to amplify DNA fragments coding for mutS gene. PCR reaction conditions were the same as those for ordinary reaction (see PCR). Gel electrophoresis on 1% agarose gel was done then for excising products. Gel purification step was performed with Qiagen kit (see PCR). Samples were frozen in Eppendorf LoBind ${ }^{\circledR}$ Tubes (Eppendorf ${ }^{\mathrm{TM}}$) at $-20^{\circ} \mathrm{C}$ then until further procedures.

Topo® TA Cloning® kit for sequencing and One Shot® Top 10 Competent Cells (Life Technologies) were used to perform transformation reaction - an insertion reaction where amplified PCR product is introduced in bacterial genome by a vector. The amounts of PCR product in transformation reactions were 2 and $4 \mu \mathrm{l}$ in order to get the most suitable amount of colonies. All growth media were prepared according to user guides and manuals.

Kanamycin ($50 \mathrm{mg} / \mathrm{ml}$) was used as an antibiotic agent for selection of insert-containing vectors. Either reaction was made in a 50 ml tube filled with 45 ml of LB medium with $45 \mu \mathrm{l}$ of kanamycin added. Each reaction was triplicated on separate plates with amount of S.O.C. medium-combined cells of 50,100 , and $150 \mu \mathrm{l}$, respectively. $40 \mu \mathrm{l}$ of Xgal and $40 \mu \mathrm{l}$ of IPTG (100 mM) were added directly on agar plates. Ampicillin was used as antibiotic agent for negative control. To confirm insertion of gene into bacteria PCR was performed directly on bacteria clones using M13 primers. Standard 1\% agarose gel electrophoresis was performed to visualize the result.

White colonies were collected using a pipet tip and transferred into LB-medium and incubated in a Multitron Standard Incubation Shaker (Infors $\mathrm{HT}^{\mathrm{TM}}$) at 150 rpm in $37^{\circ} \mathrm{C}$ overnight. Cultures were transferred in Eppendorf LoBind ${ }_{\circledR}$ Tubes (Eppendorf ${ }^{\mathrm{TM}}$) and plasmids were purified with PureLink ${ }^{\circledR}$ Quick Plasmid Miniprep Kit (Invitrogen ${ }^{\mathrm{TM}}$) according to manufacturer's protocol.

Purified products were prepared to Sanger sequencing. Reaction mixture for Sanger sequencing reaction: $5 \mu \mathrm{l}$ of purified plasmid DNA, $3 \mu \mathrm{l}$ of $\mathrm{M}-13$ sequencing primer, $1 \mu \mathrm{l}$ of BigDye 5 x sequencing buffer (Applied Biosystems), $1 \mu \mathrm{l}$ of BigDye 3.1 enzyme and nucleotide mix (Applied Biosystems). Reaction was performed in GeneAmp 9700 thermocycler with following settings and then shipped to UiT/ UNN, Tromsø (see Sanger sequencing).

Phylogenenetic analysis

The present study focused on the relations of the species under investigation within the octocoral class. Two different datasets were used for estimating distance between the studied species and all available octocoral mitogenomes.

First dataset includes a concatenated alignment of all mutS genes+corresponding genes from the studied species. This approach was used for estimating distance between sequences of mutS gene since it is a specific sequence presented only in mitogenomes of octocorals.

Second dataset is a re-annotated mitogenome where the protein coding genes were sequentially concatenated in a following order: atp6 and atp8 genes, cox1-3 genes, nd 1-4, 4L, 5-6 genes,
mutS and cob. These reconstructed full-length mitogenomes were used in multiple alignments and building phylogenetic trees. Intergenic regions and ribosomal genes were omitted in analyses. C. granulosa was used as outgroup for both datasets since taxonomy of this species is somewhat contradictory and places this species outside Octocorallia. Alignments, distance and model tests and ML phylogenetic trees were done in the CLC Genomics Workbench (Qiagen ${ }^{\mathrm{TM}}$) software package as well as distance and model tests. Common model was $\mathrm{GTR}+\mathrm{G}+\mathrm{T}$. Bootstrapping value in ML trees was 1000 .

Results

Coral samples, preservations and extractions

Tentacles, epidermal tissue, and coenenchyme were used for nucleic acid extraction procedures. Both extraction methods were suitable for DNA isolation from the coral tissues but notable difference in the output was observed. The Epicentre kit was used for DNA extraction and further library preparation of P. resedaeformis samples. The Urea protocol was used for DNA extraction from A. digitatum samples because the Epicentre kit gave overshearing (Fig.3) of DNA and insufficiently short fragments (based on size-selection results).

Figure 3. Agarose gel analysis of total DNA isolated from A. digitatum with two different methods - the Epicentre kit (lanes A) and the Urea protocol (lanes B). DNA size ladder (L).

PCR and Sanger sequencing

Fragments of different sizes were amplified from DNA of both species, successful primer combinations are listed in the Appendix B. Most amplified products were obtained from P. resedaeformis DNA, and few were gained from A. digitatum DNA. The largest product sizes were fragments of 1.5 to 2 kb in length which were subjected to Sanger sequencing. A total of 41 DNA fragments were Sanger sequenced. Obtained sequences were in the range of 200 bp to 1200 bp in sizes, and cover different parts of protein coding regions and RNA genes. However, length and quality scores of reads were appropriate and sufficient only in 12 fragments amplified from P. resedaeformis DNA and 2 from A. digitatum. Sanger sequebces with low quality scores were removed. The most amplified regions are sequences between forward and reverse primers for $n d 4 L$, rns and $r n l$ genes.

We initially intended to cover the whole mitogenome with overlapping reactions, but this approach resulted only in amplification of several fragments of the mitogenome. However, sequenced fragments are identical to corresponding regions in the whole mitogenome sequences and give strong support to Ion Torrent sequencing results (Fig.4.).

Figure 4. Mapping of all Sanger sequenced fragments on linearized view of the mitogenome of P.resedaeformis

Ion Torrent PGM sequencing

DNA sequencing

Two new mitochondrial genomes were sequenced in this study. The complete mitogenome sequences are presented in Appendix D. Fragments of approximately 400 bp (Appendix C) were obtained during the size-selection procedure when preparing the P. resedaeformis libraries. The total number of reads obtained for P. resedaeformis was 2.8 million (2.765 .810) (Appendix C), which corresponds to a coverage of 146 times. Furthermore, the mitogenome was found to have a GC content of 36.6 \%. Fragments of approximately 400 bp were obtained during the size-selection procedure when preparing the A. digitatum libraries. The complete mitogenome was sequenced using 316 v 2 chip. Similar to that of P. resedaeformis, the A. digitatum sequencing generated 3.0 million reads (3.018.931) with a mitogenome coverage of 159 and GC content of 37%.

Mitotranscriptome sequencing

Sequencing of the P. resedaeformis transcriptome resulted in 25.947 reads with a mean read length of 67 bp . Furthermore, the chip 25%, the poly - clonality was 36% and usable reads only 18%. In comparison, the A. digitatum transcriptome sequencing was much more efficient. Here, 1.2 million (1.200.348) reads were obtained, with mean read length of 155 bp . Chip loading and usable reads were twice as much (54% and 35%, respectively), and the poly clonality significantly lower (28\%).

Assembly and annotation of mitogenomes

Contigs of 18.726 bp and 18.790 bp were obtained from P. resedaeformis and A. digitatum, respectively, and represent the complete mitogenomes. Assembly was also performed using the MITOBIM script, with identical results. However, assembly with MITOS gave somewhat different results that include duplicated genes and additional transfer RNA genes not found by the other approaches.

Assembly and annotation revealed surprising similarity between the two mitogenomes. The A. digitatum and P. resedaeformis mitogenomes are less than 19 Kb , which is a consistent among octocorals. Both mitogenomes contain 14 protein-coding genes (Fig. 5) - 7 Complex I genes (nad 1, 2, 3, 4, 4L, 5, and 6), one Complex III gene (cob), 3 Complex IV genes (cox 1, 2 and 3), 2 Complex V genes (atp6 and atp8) and a specific octocoral msh-1 (Mutation Supressor Homolog; mtMutS) gene. Protein-coding sequences are located on both strands and have a typical ancestral (Table 9) octocoral organization: cox1-rns - nd1 - cob - nd6 - nd3 - nd4L mutS - rnl - nd2 - nd5 - nd4 - trnM (as) - cox3 (as) - atp6 (as) - atp8 (as) - cox2 (as). Length of intergenic regions is 760 nucleotides in the mitogenome of A. digitatum and 648 nucleotides in those of P. resedaeformis and fall within the common range for octocorals (414 to 957 bp). The content percentage of the whole mitogenomes is presented in Table 4.

Table 4. Mitogenome composition in studied species

	A. digitatum,\%	P. resedaeformis,\%
Functional genes	74.8	75.2
RNA genes	15.85	16
IGRs	9.35	8.8

Table 5. Annotation of mtDNA genes and intergenic regions (IGRs) in A. digitatum and P. resedaeformis

Genes and IGRs	Acyonium doftatum postion	Size, nt (eat)	Sinulavia pecularis NC_018379 Slze, nt (aa)	Nacella hawainensis NC_ 026192 Siza, it (aa)	Sizent (an)	Primnou resedraformis. postion	Genes and IGRs
cox 1	$1-1592$	1582 (527) ATG/T	1582 (527) ATG/T	1597 (532) AGT/T	1582 (527)	1.1582	coxt
igr. 1	1582	0	0	- 6	0	1582	ligr-1
ms	1583-2624	1042	1051	1126	1052	1583-2634	ms
igr-2	2625-2666	42	47	-1	44	2635-2678	igr-2
ndl	2667-3635	969 (322) ATG/TAG	969 (322) ATG/TAG	$981(326)$ ATG/TAG	969 (322) ATGITAG	2679-3647	ndt
igr-3	3636-3686	51	27	144	54	3648-3701	igr-3
cob	3687-4853	1167 (388) ATG/TAA	1167 (388) ATGTAG	1161(386) ATG/TAG	1167 (388) ATG/TAG	3702-4868	cob
igr-4	4854-4880	27	40	22	40	4869-4908	igre4
nde	4881.5438	558(185) ATG/TAG	558(185) ATG/TAG	564 (187) ATG/TAG	558(185) ATG/TAG	4909.5466	ndo
igr. 5	5439-5481	43	55	43	43	5467.5509	igr. 5
nd3	5482-6847	366 (121) ATG/TAG	354 (117) ATG/TAG	354 (117) ATG/TAG	354 (117) ATGTAG	5510.5863	nd3
igr. 6	5848-5865	18	19	28	19	58645882	lgr- θ
nodic	5866-6159	294 (94) ATGTAA	294 (97) ATG/TAA	294 (97) ATC/TAA	294 (97) ATG/TAA	5883-6176	not 4
igr.7	6160-6172	13	13	28	13	6177-6191	igr-7
muts	6173-9115	2943 (980) ATG/TAA	2973 (990) ATGTAA	2937 (978) ATG/TAG	2970 (989) ATG/TAA	61909159	mutS
igr. 8	9116-9124	9	9	17	9	9160.9168	igro 8
mf	9125-11061	1937	1988	2211	1948	916911116	mf
igr-9	11062.11097	26	31	0	28	11117-11144	igr-9
nd2	11088.12449	1362 (453) ATG/TAG	1374 (457) ATGTAG	1149 (379) ATG/TAG	1374 (457) ATG/TAG	11145-12518	nd 2
$\mathrm{igr}-10$	12437-12449	-13	-13	-13	-13	12506-12518	igr- 10
nd5	12437-14254	1818 (ツ)5) ATG/TAG	1818 (605) ATGTAA	1872 (623) ATG/TAG	1818 (605) ATG/TAG	12506-14323	nd5
igr-11	14255-14493	239	96	43	97	14324-14420	lgr-11
noll	1449415941	1449 (482) ATG/TAA	1449 (482) ATG/TAA	1449 (482) ATG/TAA	1449 (482) ATG/TAA	14421-15869	no4 4
igr- 12	15942.15998	56	57	62	59	15870.15928	igr 12
trmM(as)	15999-16059	71	71	71	71	15929-15999	$t \mathrm{mM}(\mathrm{as})$
igr 13	16070-16106	37	39	44	36	16000-16035	igr. 13
$\operatorname{cos3}$ (as)	16107-16872	788 (261) ATG/TAG	786 (261) ATG/TAA	786 (261) ATG/TAG	786 (261)ATGTAG	16036-16821	cox3(as)
igr-14	16873-16954	62	64	47	64	16822-16885	lgr-14
atp 6	16955-17662	708 (235) ATG/TAA	708 (235) ATG/TAA	708 (235) ATGTAA	708 (235) ATETAA	16886-17593	atp 6
igr-15	17683-17685	23	24	20	23	17594-17616	lgr-15
atp8	17686-17901	216 (71) ATGTAG	216 (71) ATG/TAA	216 (71) ATGTAG	216 (71) ATG/TAG	17617-17832	atp 8
igr-16	17902-17922	21	22	22	21	17833-17853	ig. 16
cox 2	17923-18684	762 (251) ATG/TAG	762 (251) ATG/TAG	762 (251) ATG/TAG	762 (251) ATGTAG	17854-18815	cox2
igr-17	18685-18790	106	112	112	111	18618-18726	ligr-17
muDNA		18790	18742	18838	18726		mONA

Figure 5 A. Mitogenome organization in newly sequenced mitogenome of A. digitatum

A circular view of the A. digitatum mitochondrial genome
Blue, Complex I genes, Pink, Complex IV genes, Green, Complex V genes, Emerald, Complex III genes, Bright green, MutS gene, Yellow, rRNA genes. Genes on heavy and light strands are annotated on outer and inner circles, respectively.

Figure 5 B. Mitogenome organization in newly sequenced mitogenome of P. resedaeformis

A circular view of the P. resedaeformis mitochondrial genome
Blue, Complex I genes, Pink, Complex IV genes, Green, Complex V genes, Emerald, Complex III genes, Bright green, MutS gene, Yellow, rRNA genes. Genes on heavy and light strands are annotated on outer and inner circles, respectively.

Sequence feature analysis

Mitogenome

The major part of the mitogenome comprises protein-coding sequences. Since the function of these proteins is crucially important, there is a high degree of conservation in the nucleotide sequences. A comparison of available octocoral mitogenomes was done in order to detect variability in length nucleotide sequences of protein coding genes. Visual inspection of alignments revealed low variability in the nucleotide and protein sequences as well as in the length of genes.

Complex I genes (nad1, 2, 3, 4, 4L, 5, and 6)

The nd1 gene is conserved in both nucleotide and protein sequences. Only several nucleotides are found to be different from other octocorals, which give no difference in amino acid sequence since these are synonymous substitutions. The length of the gene is the same in A. digitatum and P. resedaeformis, and 3 nt (corresponding to one amino acid) shorter than in most of other species (Table 6).

Table 6. Length variability in Complex I genes

Species	$n d 1, n t$	$n d 2, n t$	$n d 3, n t$	$n d 4, n t$	$n d 4 L, n t$	$n d 5, n t$	$n d 6, n t$
Alcyonium digitatum	969	1362	366	1449	294	1818	558
Primnoa resedaeformis	969	1374	354	1449	294	1818	558
Acanella eburnea	981	1322	348	1449	294	1818	552
Antillogorgia bipinnata	972	1093	354	1449	294	1818	558
Briareum asbestinum	972	1164	354	1449	294	1818	558
Corallium elatius	972	1140	354	1449	294	1818	555
Corallium konojoi	972	1140	354	1449	294	1818	555
Corallium rubrum	972	1140	354	1449	294	1818	555
Dendronephthya castanea	972	1158	354	1449	294	1818	558
Dendronephthya gigantea	972	1039	354	1449	294	1818	558
Dendronephthya mollis	972	1158	354	1449	294	1818	558
Dendronephthya suensoni	972	1158	354	1449	294	1818	558
Echinogorgia complexa	972	1152	354	1449	294	1818	558
Euplexaura crassa	972	1158	354	1449	294	1818	558
Junceella fragilis	981	1122	354	1449	294	1818	555
Kcratoisidinac sp. BAL 208-1	981	1320	348	1449	294	1812	552
Narella hawaiinensis	981	1140	354	1449	294	1872	564
Paracorallium japonicum	972	1140	354	1449	294	1818	555
Paraminabea aldersladei	972	1140	354	1449	294	1818	549
Scleronephthya gracillimum	972	888	354	1449	294	1818	558
Sibagogorgia cauliflora	996	1140	354	1449	294	1842	555
Sinularia peculiaris	972	1374	354	1449	294	1818	558
Heiopora coerulea	981	1356	354	1461	294	1818	558
Renilla muelleri	981	1356	354	1449	294	1818	555
Stylatula elongata	981	1383	354	1449	294	1818	555

The nd2 gene is more variable in size and sequences (Fig. 7). Notable differences are found at the 5'-end of nucleotide alignment A. digitatum and P. resedaeformis. Both genomes contain a large region of 228 nucleotides that exceeds the gene sequences in most other octocorals. Moreover, this region is invariable between the studied species and is similar to those of more distantly related species (e.g. H. coerulea, S. elongata and R. muelleri). Gaps are found across the alignment as a result of a pronounced nucleotide variations in corresponding gene in other octocorals. The 3 '-end is also variable and is the only part of the alignment where there is a significant difference between A. digitatum and P. resedaeformis (409-416 aa positions in A. digitatum). The nd3 gene also reveals heterogeneity in the nucleotide sequence of A. digitatum which has 12 inserted nucleotides at the 5 '-end. This region is unique in comparison to other congeneric species. The protein alignment also reflects this difference (see Fig.6) while the other parts in both sequences show conservation in nucleotide and amino acid positions.

Figure 6. A variable 5'-end region in the protein sequence of nd3 gene in A. digitatum

```
                            |
        alcyonium_digitatum_nd3 MERNMEFKGI LILLIVSGTL
    primnoa resedgatum_nd3 MENMEFKGI
```



```
        sinularia_peculiaris_nd3 ME-..-FKGI LILLIVSGTL STLILGASYL LGYKQPDIEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
        narella_hawainensis_nd3 ME-...FKGI LILLIVSGTL SIIILGASYL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
paraminabea_aldersladei_nd3 ME....FKGI LILLIVSGTL SVLILGASYL LVNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
scleronephthya_gracillimum_nd3 ME-..FKGI LILLIVSGTL SILILGASYL LGYKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 6G
dendronephthya_castanea_nd3 ME-..-FKGI LILLIVSGTL SILILGASYL LGYKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
dendronephthya_gigantea_nd3 ME-..FKGI LILLIVSGTL SILILGASYL LGYKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
    dendronephthya_mollis_nd3 ME...-FKGI LILLIVSGTL SILILGASYL LGYKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
dendronephthya_suensoni_nd3 ME-..FKGI LILLIVSGTL SILILGASYL LGYKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
            junceella_fragilis_nd3 ME-\cdots-FKGI_LILLIVSGTL SIIILGASYL LGYKQPDIEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
            keratoisidinae_nd3 ME...-FKGI LILLIVSGTL SIIILGASYL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
    echinogorgia_complexa_nd3 ME...-FKGI LILLIVSGTL SILILGASYL LGYKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
    euplexaura crassa nd3 ME....FKGI LILLIVSGTL SILILGASYL LGYKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 6G
eudopterogorgia_bipinnata_nd3 ME....FKGI LILLIVSGTL SILILGASYL LGYKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
    acanella` eburnea_nd3 ME....FKGI LILLIVSGTL SI|ILGGASYL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
    sibogagorgia_cauliflora_nd3 ME...FKGI LILLIVSGTL SILILGASYL LGNKQPDKEK VSAYECGFDP FDNPGNPFSV RFFLIGILFL 66
    briareum_asbestinum_nd3 ME...-FKGI LILLIVSGTL SILILGASYL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
        Mareum_asbestinum_nd3 ME-\cdots.-FKGI LILLIVSGTL SILILGASYL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
            corallum_elatius_nd3 ME-\cdots.FGGI LILLIVSGTL SILILGASYL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
            corallium_konojoi_nd3 ME-..-FGGI LILLIVSGTL SILILGASYL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
paracorallium_japonicum_nd3 ME....FGGI LILLIVSGTL SILILGASYL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
    acorallium_japonicum_nd3 ME-..-FGGI LILLIVSGTL SILILGASYL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
```



```
            stylatula_elongata_nd3 ME-..-FKGI LILLIVSGTL SIIILGASVL LGNKQPDMEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
            renilla_muelleri_nd3 ME....FKGI LILLIVSGTL SIIILGASYL LGNKQPDIEK VSVYECGFDP FDNPGNPFSV RFFLIGILFL 66
                    consensus ME-.-FKKI LILLIVSGTL SILILGASYL LGNKQPDMEK VSVYECGFFDP FDNPGNPFSV RFFLIGILFL
            Conservation
```

The nd4 gene length and its amino acid sequence is consistent within octocorals, but some nucleotide variations are still observed. 31 nucleotide substitutions differ A. digitatum and P. resedaeformis from other octocorals though protein structure is very similar within this class.

The $n d 4 L$ gene length is the most conserved gene in both length and amino acid sequence among all the octocorals. However, some minor differences on the nucleotide level are still present, resulting on occasional synonymous substitutions.

The nd5 gene length differs scarcely within octocorals with common size slightly exceeding 1800 nucleotides. Some variable nucleotide positions are met in the gene sequence, but these result in very few amino acids substitutions. Two regions with large gaps are caused the presence of S. cauliflora and N. hawaiinensis.

Finally, the nd6 gene shows little and synonymous nucleotide variation resulting in similar amino acid sequences.

Full alignments can be examined in the Appendix E.

Figure 7. An example of the variable 5'-end region in $n d 2$ gene sequence (nucleotide-upper, protein-lower) in the studied species.

Complex III gene (cob)

One of longest genes among octocorals is cob which is 1167 in both Alcyonium digitatum and Primnoa resedaeformis (the longest among octocorals is found in C. rubrum and P. japonicum in 1194 bp). The nucleotide sequences have similarity between the studied species, but appear to contain more substitutions than other genes. 5'-end heterogeneity is seen in 6 nucleotide positions presented only in Alcyonium digitatum, Primnoa resedaeformis and S. peculiaris and thus making a gap in the nucleotide alignment. 38 nucleotide positions are variable and another

12 are the same in studied species, but different in another octocorals. Aminoacid variation is 16 positions and studied species differ between each other and 8 amino acid positions.

Full alignments can be examined in the Appendix E.

Fig. 8. 5'- heterogeneity in the nucleotide sequences of cob in the studied species

Complex IV genes (cox 1,2 and 3)

The studied species possess almost the shortest cox1 genes among octocorals (Table 7). The nucleotide sequence variation is due to 37 transition-transversion events in different positions throughout the gene sequence. Some of these positions contribute to amino acid variations forming a non-synonymous substitutions. As a result, amino acids with uncharged groups are replaced with amino acid with hydrophobic or charged groups. Most of the nucleotide variations fall outside the Folmer region (29-736 bp positions region used for barcoding) leaving it relatively conserved. The amino acid sequence remains conserved, but some heterogeneity is found at the 3'-end (Fig.9). Sequences in both species lack 5 terminal amino acid residues, which is not common for other species.

Figure 9. 3'-heterogeneity in the protein alignment of cox1 gene.

```
                |
            48
        alcyonium_digitatum_coxl
        primnoa_resedaeformis_coxlYEALAAERPFKGWATSPNSLEWSLSSPPAFHTYNELPFVYQRK-LSHGDDLNI। ............................ 527YEALAAERPFKGWSTSPNSLEWSLSSPPAFHTYNELPFVYQRK-LSHGDDLN527
```

sinularia_peculiaris_coxl YEALAAERPFEGWSTSPGSLEWSLSSPPAFHTYNELPFVYQRK-LSHGDDLN 527
YEALAAERPFKSWSTSSGSLEWSLDSPPAFHTYNELPFVYQSK-LSHGDDLNI ISTLLL 532
paraminabea_aldersladei_coxl

```531
```

YEALAAERPFEGWSTAPGSLEWSLSSPPAFHTYNELPFVYKGE-LIPGDTSYIIS-IGD scleronephthya_gracillimum_coxl YEALAAERPFKGWATSPGSLEWSLSSPPAFHTYNELPFVYQRK-LSHGDDLNI ISTLLL
532
dendronephthya_castanea_coxl EALAAERPFKGWSTSPGSLEWSLSSPPAFHTYNELPFVYQRK-LSHGDDLNI ISTLLL 532
dendronephthya mollis cox 1

```532
```

dendronephthya suēnsoni-coxl YEALAAERPFKGWSTSPGSLEWSLSSPPAFHTYNELPFVYQRK-LSHGDDLNIISTLLE 532
EALAAERPFKGWS TSPGSLEWSLSSPPAFHTYNELP FVYQRK-LSHGDDLNIISTLLL
junceella fragilis coxl 522
YEALAAERPFKGWSASP TSLEWS LDSPPAFHTYNE LP FVYQSS - NSLSN $\ldots \ldots$.
keratoisidina- coxl 532
echinogorgia complexa coxl YEALAAERPFKGWSTSPGSLEWSLSSPPAFHTYNELPFVYQRK-LSHGDDLNIISTLLL 532
euplexaura_crassa_coxl YEALAAERPFKGWS TSPGSLEWSLSSPPAFHTYNELPFVYORK-LSPGDDLNIISTLLL 532
pseudopterogorgia_bipinnata_coxl YEALAAERPFEGWSTSRGSLEWSLSSPPAFHTYNELPFVYQRK-LSHGDDLNI ISTLLL 532
acanella_eburnea_coxl YEALAAERPFKSWSTAASSLEWSLGSPPAFHTYNELPFVYQSK-FSPGDDLNI ISTLL 531
briagorgia_cauliora_cox1 YEALAAERPFEGWSASPSSLEWSLCSPPAFHTYNELPFVYQSK-LSHGDDLHVI................ 527
corallium_elatius_coxl YEALAAERPFEGWSTAPGSLEWSLSSPPAFHTYNELPFVYQSK-LSHGDDLHIISTLLL 532
corallium_konojoi_coxl YEALAAERPFEGWSTAPGSLEWSLSSPPAFHTYNELPFVYQSK-LSHGDDLHIISTLLL 532
corallium rubrum coxl YEALAAERPFEGWSTAPGSLEWSLSSPPAFHTYNELPFVYOSK-LSHGDDLHIISTLLL 532 532
paracorallium japonicum coxl YEALAAERPFEGWS TAPGSLEWSLSSPPAFHTYNELPFVYQSK-LSHGDDLHIISTIL
heliopora coerulea-coxl YEALAAERPFNGWSTSPSSLEWSLSSPPAFHTYNELPFVYQSK-LSPGDDLHI ISTLLLWPWGVYKATCSSNTCKAL 550

```renilla_muelleri_coxlConsensus Conservation
```

stylatula-elongata-coxl

YEALAAERPFKGWSTSPGSLEWSLSSPPAFHTYNELPFVYQSK-LSHGDDLNIISTLLL521
521

```\(\square\)
```

Incomplete termination codon found in COI gene sequences in both genomes indicating that this region undergoes polyA restoration (RNA editing) in order to be a functional mRNA.

The cox2 contains 11 variable positions in the nucleotide sequence that reside mainly in the 230-700 bp region of the gene. Several gaps are introduced in the nucleotide alignment of cox2 gene. They represent differences often found in the sequences of the Isidinae family species and other distantly related octocorals. However, most of the substitutions are synonymous and only two amino acids are different between A. digitatum and P. resedaeformis. Three other amino acids residues differ in the studied species from the other representatives of octocorals while the overall amino acid sequence is unchanged.

The cox3 has 24 variable nucleotide positions and each contributes to amino acid sequence change. Eight amino acid residues are different in the studied species and most of variation is represented by changing amino acid with hydrophobic group on those with positive.

Full alignments can be examined in the Appendix E.

Table 7. Length variability in Complex IV genes

Species	coxl, $n t$	cox2, nt	cox3, nt
Alcyonium digitatum	1582	762	786
Primnoa resedaeformis	1582	762	786
Acanella eburnea	1597	762	786
Antillogorgia bipinnata	1597	762	786
Briareum asbestinum	1582	762	786
Corallium elatius	1597	762	786
Corallium konojoi	1597	762	786
Corallium rubrum	1597	762	786
Dendronephthya castanea	1597	762	786
Dendronephthya gigantea	1597	762	786
Dendronephthya mollis	1597	762	786
Dendronephthya suensoni	1597	762	786
Echinogorgia complexa	1597	762	786
Euplexaura crassa	1597	762	786
Junceella fragilis	1569	762	786
Keratoisidinae sp. BAL 208-1	1597	762	786
Narella hawaiinensis	1597	762	786
Paracorallium japonicum	1597	762	786
Paraminabea aldersladei	1596	762	786
Scleronephthya gracillimum	1597	762	786
Sibagogorgia cauliflora	1597	762	786
Sinularia peculiaris	1582	762	786
Heiopora coerulea	1653	762	819
Renilla muelleri	1566	762	786
Stylatula elongata	1566	762	786

Complex V genes (atp6 and atp8)

The atp6 nucleotide sequence has a little nucleotide variability of 19 positions and gaps introduced by C. rubrum and P. japonicum. The amino acid sequence shows more conservation. Only 5 amino acids are variable and are replaced by amino acids with different side chain group only once.

The atp8 gene sequences are highly similar between Alcyonium digitatum, Primnoa resedaeformis and other octocoral species and differ with 3 amino acids. Length in both Complex V genes is highly conserved inside octocorals (Table 8).

Full alignments can be examined in the Appendix E.

Table 8. Length variability in Complex V genes

Species	atp6, nt	atp8, nt
Alcyonium digitatum	708	218
Primnoa resedaeformis	708	218
Acanella ebumea	714	218
Antillogorgia bipinnata	708	219
Briareum asbestinum	708	218
Corallium elatius	708	218
Corallium konojoi	708	218
Corallium rubrum	708	218
Dendronephthya castanea	708	218
Dendronephthya gigantea	708	218
Dendronephthya mollis	708	218
Dendronephthya suensoni	708	218
Echinogorgia complexa	708	218
Euplexaura crassa	708	218
Junceella fragilis	708	218
Keratoisidinae sp. BAL 208-1	717	218
Narella hawaiinensis	708	218
Paracorallium japonicum	708	218
Paraminabea aldersladei	708	218
Scleronephthya gracillimum	708	218
Sibagogorgia cauliflora	708	218
Sinularia peculiaris	708	218
Heiopora coerulea	708	218
Renilla muelleri	708	218
Stylatula elongata	708	218

mutS

This gene has the greatest variability in both nucleotide, protein alignments and size, as seen in the presented alignments. Sequencing revealed that Alcyonium digitatum possesses one of the shortest mutS genes among octocorals - 2943 bp (the shortest mutS genes are 2937 in Narella and 2940 in) and 2970 bp in P. resedaeformis.

Several gaps presented in the nucleotide sequence brought by distantly related species. Number of variable nucleotide positions is 115 . The amino acid sequence is also more variable than in other genes. A. digitatum amino acid sequence in mutS gene is shorter than those of P. resedaeformis and 52 amino acid positions are variable (Fig.10) and thus represent interesting features of mutS gene in studied species. Protein annotation revealed differences in the length of helices and sheets in the secondary structure (Appendix F) though overall structures remains recognizable in all octocorals.

Function of this gene is still putative and its description is addressed in the Discussion section.
Full alignments can be examined in the Appendix E together with predicted secondary structure scheme.

	940
alcyonium_digitatum_muts	HI INDKKFYTSALKYRKL INWE-I

Fig. 10. An example of a variable region in mutS protein alignment in octocorals.

rRNA genes

This group of genes is expected to have the most conserved nucleotide sequence throughout the mitogenome since their function is crucial to the organellar translation machinery. Multiple alignments support these expectation in general but several interesting features are discovered at the same time.

Length variation in rns is 28 nucleotides between A. digitatum and P. resedaeformis. Nucleotide sequences are very similar with only one region with pronounced variation (720-740 bp position). Several gaps are introduced into the alignment by N. hawaiinensis and B. asbestinum highlighting distance between species. Sequence of A. digitatum has several deletions in different regions across the sequence.

Fig. 11. A region of the sequence variability in rns.

Despite of expected level of similarity, nucleotide sequences of $r n l$ possess interesting features. First, there are several large gaps of 25-60 nucleotide positions in different regions of the gene. As it is presented in the alignment, these gaps brought mainly by distantly related species.

There are frequently occurred nucleotide positions that are deleted in the A. digitatum sequence.
A. digitatum has the shortest rnl sequence among the octocorals (1937 bp), and those corresponding gene in P. resedaeformis is 1948 bp .
tRNA f-Met sequence is highly conserved among octocorals. Only one nucleotide difference is found between (in the anticodon arm) in P. resedaeformis and A. digitatum, which is also reflected in a highly secondary structures (Fig.12).

Figure 12. Predicted secondary structure of tRNA f-Met in the studied species

A

B

Alcyonium digitatum tRNA f-Met

Primnoa resedaeformis tRNA f-Met

In general, variabilities in the gene sequences are mainly located in the 5'-end or 3'-end heterogeneities. These differences are by transitions - transversions events, as well as insertions and deletions. Most variations in nucleotide sequences include mutS, cob and nd2 genes. The longest gene is mutS in both mitogenomes. In P. resedaeformis it is 2970 bp and in A. digitatum, is 2943 bp and is the shortest mutS gene sequenced among octocorals. The shortest gene in the mitogenomes is atp8 subunit, which is 216 bp long in both newly sequenced genomes and also in all sequenced octocorals up to date. Gene length variation is most apparent in nd2 and mutS genes while other gene sequences remain more stable.

Codon usage is almost the same in both species with ATG as a start codon and TAA or TAG as a stop codon. The only protein coding sequence where stop codons are not the same is cob gene. Here, TAA is the stop codon in A. digitatum and TAG in P. resedaeformis. Codon usage in all other protein-coding genes is the same in both genomes (Table 5).

Overall genome organization is highly compact in both species - all genes are involved in oxidative phosphorylation (except mutS which origin and function is still under the discussion)
and are essential for performing key biochemical processes in the mitochondrion. A comparison of nucleotide sequences in coding regions revealed surprising level of similarity between A. digitatum and P. resedaeformis and a significant correlation with those of octocorals. Gene order matches Ancestral class (Table 9).

Table 9. Gene order classes in Octocorallia. The studied species are not followed by accession numbers.

Name	Classification	Size, nt	Geneorder class	Accession number
Alcyonium digitatum	Alcyonacea;Alcyoniina; Alcyoniidae;Alcyonium	18790	Ancestral	
Primnoa resedaeformis	Alcyonacea;Calcaxonia;Primnoidae;Primnoa	18726	Ancestral	
Acanella eburnea	Alcyonacea; Calcaxonia; Isididae; Acanella	18616	Keratoisidinae	NC_011016
Antillogorgia bipinnata	Alcyonacea; Holaxonia; Gorgoniidae; Antillogorgia	18733	Ancestral	NC_008157
Briareum asbestinum	Alcyonacea; Scleraxonia; Briareidae; Briareum	18632	Ancestral	NC_008073
Corallium elatius	Alcyonacea; Scleraxonia; Coralliidae; Corallium	18969	Konojoi	NC_022804
Corallium konojoi	Alcyonacea; Scleraxonia; Coralliidae; Corallium	18969	Konojoi	NC_015406
Corallium rubrum	Alcyonacea; Scleraxonia; Coralliidae; Corallium	18915	Konojoi	NC_022864
Dendronephthya castanea	Alcyonacea; Alcyoniina; Nephtheidae; Dendronephthya	18907	Ancestral	NC_023343
Dendronephthya gigantea	Alcyonacea; Alcyoniina; Nephtheidae; Dendronephthya	18842	Ancestral	NC_013573
Dendronephthya mollis	Alcyonacea; Alcyoniina; Nephtheidae; Dendronephthya	18844	Ancestral	NC_020456
Dendronephthya suensoni	Alcyonacea; Alcyoniina; Nephtheidae; Dendronephthya	18851	Ancestral	NC_022809
Echinogorgia complexa	Alcyonacea; Holaxonia; Paramuriceidae; Echinogorgia	19445	Ancestral	NC_020457
Euplexaura crassa	Alcyonacea; Holaxonia; Plexauridae; Euplexaura	18647	Ancestral	NC_020458
Junceella fragilis	Alcyonacea; Calcaxonia; Ellisellidae; Junceella	18724	Ancestral	NC_024181
Keratoisidinae sp. BAL 208-1	Alcyonacea; Calcaxonia; Isididae; unclassified Isididae	18923	Keratoisidinae	NC_010764
Narella hawaiinensis	Alcyonacea; Calcaxonia; Primnoidae; Narella	18838	Ancestral	NC_026192
Paracorallium japonicum	Alcyonacea; Scleraxonia; Coralliidae; Paracorallium	18913	Japonicum	NC_015405
Paraminabea aldersladei	Alcyonacea; Alcyoniina; Alcyoniidae; Paraminabea	19886	Ancestral	NC_018790
Scleronephthya gracillimum	Alcyonacea; Alcyoniina; Nephtheidae; Scleronephthya	18950	Ancestral	NC_023344
Sibagogorgia cauliflora	Alcyonacea; Scleraxonia; Paragorgiidae; Sibagogorgia	19030	Return to ancestral	NC_026193
Sinularia peculiaris	Alcyonacea;Alcyoniina; Alcyoniidae;Sinularia	18742	Ancestral	NC_018379
Heiopora coerulea	Helioporacea; Helioporidae; Heliopora	18957	Ancestral	NC_020375
Renilla muelleri	Pennatulacea; Sessiliflorae; Renillidae; Renilla	18643	Ancestral	NC_018378
Stylatula elongata	Pennatulacea; Subselliflorae; Virgulariidae; Stylatula	18733	Ancestral	NC_018380

IGR structure

Most intergenic regions (IGRs) show length and sequence similarity between A. digitatum and P. resedaeformis, but still several interesting features are noted.

First, igr-1 is zero nucleotides in length which appears as highly conserved feature among the octocorals and shared by both A. digitatum and P. resedaeformis. Another example of
resemblance in the intergenic region structure is igr-10. This region is in fact negative in both genomes (13 nt overlap between 3'-end of $n d 2$ and 5'-end of nd5 genes) and octocorals studied.

Then, the largest IGR is igr-11, separate nd5 and nd4. In A. digitatum it is 239 bp and in P. resedaeformis it consists of only 97 bp .

Mitotranscriptome

Mito - transcriptome sequencing gave different output for A. digitatum and P. resedaeformis. This may be because of different kits for rRNA depletion were used. Sequencing of P. resedaeformis resulted in low coverage (48 times and less) but a lot of transcripts of different genes gave nearly whole-mitogenome coverage. Most mapped transcripts correspond to ribosomal RNA subunits and cox genes (Fig.13). Some partial transcripts of cob, nd2 and 2 subunits are also present though these are fragmented and scarce.

Figure 13. Transcriptome sequence mapping of the P. resedaeformis mitogenome

Sequencing of the A. digitatum mito-transcriptome resulted in 130 times coverage. rns, rnl genes and some parts of cox1 and nd5 map the most of the transcripts (Fig. 14).

Figure 14. Transcriptome sequence mapping of A. digitatum mitogenome

Molecular cloning

Sequencing, assembly and annotation revealed a region of high variability. Though the gene sequence has no frame shifts, it was subjected to molecular cloning procedures with the intention of amplifying by genetically transformed E.coli and further verification by Sanger sequencing.

Transformation reaction was successfully performed and resulted in white colonies of genetically modified E.coli. Insertion of mutS gene was experimentally proved by PCR. Sanger sequenced fragments are in the range of 700-1000 bp. Mapping of fragments (see Fig. 15) on corresponding genomes gives strong support for Ion Torrent sequenced mitogenomes and this highly variable region, particularly.

Figure 15. An example of mapping of cloned and Sanger sequenced fragments of mutS gene on the mitogenome of P. resedaeformis. Products cover 5 '-end and 3 '-end of the gene sequence.

Phylogenetic analysis

1. Dataset 1: concatenated multiple alignments of mutS gene
2. Dataset 2: concatenated multiple alignments of re-annotated protein-coding sequence

Figure 16. Phylogenetic tree based on dataset 1: distance between mutS gene sequences in octocorals.

Figure 17. Phylogenetic tree based on dataset 2: distance between re-annotated protein coding sequences in octocorals.

As can be seen from the Figure 16, distance in the nucleotide sequence of mutS gene between P. resedaeformis and A. digitatum is small, suggesting that these species are related.

Figure 17 represents strong support for previous tree, where the studied species are grouped together. Tree topology is apparently similar, but branch lengths are changed.

Discussion

Octocoral mitogenomes

Two new mitogenomes of the octocoral species A. digitatum and P. resedaeformis were assembled and annotated based on the sequenced data produced by the current study. They were found to correspond closely in size, gene arrangement and gene sequences with previously sequenced octocorals. We explored sequence features of the two novel mitogenomes in comparison with other available octocoral mitogenome sequences.

We found a relatively low level of nucleotide variations among octocoral species in most of protein coding genes and rRNA genes. Such scant variability is in the line with several findings of recent studies. Most studies agree there is a result of a general tendency for mitogenome size reduction within Metazoa (Bernt et al., 2013; Osigus et al., 2013), economically organized mitogenomes are especially pronounced in Octocorallia.

Another plausible reason for the low level of variability could be the presence of an active mutS gene. The MutS gene seems to be a specific and obligatory gene for all octocoral mitochondrial genomes. Actively expressed mutS gene seems to prevent mutations by DNA mismatch repair, which would slow down evolutionary rates of the mitogenome in general. Based on the complete octocoral mitogenome sequences published so far, mutS seems to be actively expressed in all species.

Both origin and function of this gene are still under the discussion. However, in a comprehensive study researchers compared amino acid sequences of octocoral, bacterial and viral mutS-family proteins. As a result, horizontal gene transfer and non-eukaryotic origin of this gene was proposed. Functional gene product was strongly suggested by the authors due to the presence of all required domains and a deduced protein structure that indicates involvement in mismatch repair (Bilewitch and Degnan, 2011).

Paradoxically, this gene is also the most variable within the class harboring more nucleotide and amino acid variation that the remaining protein coding genes among octocorals. Thus, the mutS sequence has been shown to evolve faster than other parts of mitogenome of octocorals (France and Hoover, 2001; van der Ham et al., 2009). Strong positive selection for continued presence of $m t M u t s$ gene in the mitogenome deduced as an explanation of this phenomenon (Bilewitch and Degnan, 2011).

In the studied species, mutS gene also possess notable variability. The sequence of this gene in A. digitatum is almost the shortest within the class and differs significantly from the corresponding region in P. resedaeformis.

Another variable part of the mitogenomes is the nd2 gene sequence. As it was presented in the alignments, this region is also an example of outstanding variability expressed in large 5'heterogeneous part of the gene. It is also obvious from the alignment that the studied species are close in this sequence to more distantly related species - H. coerulea, S. elongata and R. muelleri. The protein alignment reflects these differences. The rest of the gene sequence is recognizable within the set of octocoral species.

These variable gene sequences are interesting topic for future research. Here, a gene product variability and structure can be studied within the class. Sequencing of several species of Alcyonium and Primnoa can be applied for studying gene sequence mobility and protein structure variability and function within the family.

Furthemore, our finding is the shortest cox1 genes that also possess incomplete termination codon T. It was documented in most species from Alcyonacea family in this region and seems to be common in these organisms (cox1 octocoral papers). Incomplete termination codon indicates posttranscriptional modifications such as polyA restore. Unfortunately, no transcript were sequenced from this region of the sequence. Therefore, it is a feature to be determined in further investigations.

In addition to previous findings, IGR structure and gene sequences are very similar in Alcyonacea family and remain relatively conserved within the class. Total sizes presented in the Results are within the common range (414 to 957 bp) of intergenic spacers for octocorals (McFadden et al., 2010). An interesting feature observed in the studied mitogenomes is the igr11 of A. digitatum. This igr is among the most variable regions in the intergenic space of octocoral mitochondrion. In A. digitatum demonstrates a distinguished size that exceeds the length of igr-11 in closely related species twice. Curiously, this region in P. resedaeformis does not show such deviation from congeneric species.

An interesting feature which could be detected here is a presence of repeated sequences that are pervasive across Metazoa mitogenomes (Nardi et al., 2012). They are believed to contribute to frequent appearance of mutation. Author, however, mentions, that a tendency to possess repeated sequences is met in groups with more flexible mitogenome lengths. Thus, they could
be expected in the mitogenomes of Hexacorallia rather than Octocorallia. Test of repeated sequences was not carried out, but described feature of A. digitatum is interesting to investigate thoroughly.

It would also be useful to explore igr content closely for the purpose of detection a replication origin. Though replication origin is not well documented in Cnidarians (Bernt et al., 2013), it is believed to reside in the igr-17 that separates cox2 and cox1 genes (Uda et al., 2011), where authors found a hairpin-forming sequence. Therefore, screening for secondary structure can lead to detection of this region.

Gene overlaps represent another remarkable feature of octocoral intergenic architecture and are believed to prevent rearrangement events (Brugler and France, 2008). Indeed, it was observed in igr-10 that can serve as an example of such features. This region is highly consistent within octocoral mitogenomes and "holds" nd2 and nd5 genes together by 13 nucleotides overlap. As a result, $n d 2$ and $n d 5$ genes are placed together in all mitogenomes within octocorals despite of gene order class. It is reflected in the overall mitogenome organisation where rearrangements do not change this region.

Evolutionary rates of octocoral genomes are suggested to be 5 times slower than rates of nuclear genome (Chen et al., 2009). Furthermore, when it comes to comparison with another groups of animals, a 50-100 times slower rates of mtDNA in octocorals are suggested (Hellberg, 2006). Lower evolutionary rates of mitochondrial protein coding genes are equilibrated by higher tendencies for gene rearrangements in the mitogenome (Uda et al., 2011). These rearrangements reflect evolutionary history of this phylum which is expressed in gene segments shuffling and duplication (Figueroa and Baco, 2014; Park et al., 2012). Given events are believed to appear at several times, with ancestral class as an initial state and konojoi and japonicum classes as variations of those. A new trend - return to ancestral state - was also described in mitogenome of S. cauliflora. Our investigations allow to define sequenced mitogenomes as matching Ancestral gene order class (Figueroa and Baco, 2014).

Nucleotide sequence alignment of both ribosomal RNA subunits show expected level of similarity. However, as presented in the alignments, sequences still possess regions with gaps and dissimilarities. Nucleotide variations are abundant in these genes, and this information can be successfully used for phylogenetic reconstructions. The use of rRNA genes in phylogenetic analyses is discussed in the next chapter.

Octocorallia. tRNA retention is documented within Cnidaria (Beagley et al., 1995; Flot et al., 2008). Within Octocorallia only tRNA fMet complement is presented in mitogenomes and obligatory for all representatives. This transfer RNA contains formyl-methionine - a start-codon that initiates translation of protein-coding genes. Other tRNAs are imported in the mitochondrion space by cytosolic transportation.

Mitotranscriptome sequencing revealed actively expressed genes. Genes with high coverage are validating annotation. However, coverage and quality of reads are moderate. This can be caused by kits used for the library preparation. More specific and sensitive isolation protocols and kits can be suggested for successful extraction of non-degraded RNA and library preparation process.

In the end, our data is in the line with previous knowledge and main tendencies of taxa of interest, although curious details revealed. There are also several suggestions that can improve further studies.

Mitochondria enrichment protocols can be proposed for more successful output from mtDNA extraction procedures. Dense sampling could also help in creation of representative dataset. Here, sampling for suborder and family representatives will highlight the reason of deviation from common patterns. Moreover, this strategy would allow detailed phylogenetic analyses and improve currently unresolved taxa. Particularly, sampling and mitogenome sequencing of species from Helioporacea, Pennatulacea and other groups will increase the resolution of analyses. Sampling of specimens of A. digitatum and P. resedaeformis would promote detecting of SNPs, selective sweeps, haplotype diversity and population structure characteristics.

Phylogenetic assays

Anthozoan subclasses have diverged 500 million years ago and are clearly separated in phylogenetic trees (Kayal et al., 2013). No intermediate groups between Octocorallia and Hexacorallia documented. Application of NGS revealed differences in the mitogenome content of this subclasses (Emblem et al., 2014). However, some nodes still remain unresolved in cnidarian tree of life and, particularly in octocorals (Park et al., 2011). Anthozoan phylogeny is an example of such group and its origin has also been questioned since mitogenome content became uncovered.

Paraphyly of this group was suggested by (Park et al., 2012). This study exploits large data set of protein coding genes and concludes that Octocorallia is rather a sister taxa to Medusozoa and Hexacorallia is likely to be divergent (Kayal et al., 2013). Osigus et al. (2013) also suggest Octocorallia to be a sister group to monophyletic Medusozoa and Hexacorallia grouping outside or together with sponges (Demospongiae and Homoscleromorpha). These recent studies exploit comprehensive datasets based on protein-coding sequeces of all (or nearly all) genes. This approach is beneficial.

Some studies suggest phylogenetic inferences based on one or several genes (Morris et al., 2012). However, this strategy is not successful. As was discussed earlier, octocoral mitogenomes are very special in their invariability. Because of these specific features of octocoral mitogenomes, it is not completely correct to use single gene sequence or even a combination of them, as was shown by McFadden et al. (2011). "Octocoral barcoding" based on cox1+mtMutS+igr1 was suggested by the authors in the attempt of applying barcoding approach in this group of animals. A combination of genes was used since the cox1 gene sequence is insufficiently variable in octocorals, and the mutS gene sequence is too variable, oppositely. This approach would be suitable in the absence of complete mitogenome sequences, but it would not reflect the whole set of relationships between species. Since more molecular data become available, the use of phylogeny inferences based solely on one (or few) gene sequence become incorrect.

Re-annotated and consequently concatenated mitogenomes are advantageous for the use in revealing phylogenetic relationships (Kayal et al., 2013). Although, higher levels of phylogenetic require an addition of rRNA genes and, in some cases, sequences of intergenic regions.

Nuclear genes are also used in the phylogenetic reconstructions. In Sánchez et al. (2003) 18S rRNA was added to mitochondrial 16S rRNA coding sequence. Different branching patterns were observed in the resulting trees, though topology was recognizable in general. This could be a result of an influence of different rates of sequence evolution in either genomes, as was discussed earlier. Despite in the given study phylogenetic analysis is based on a single gene sequence, usefulness of combining nuclear and mitochondrial gene sequences was shown. Involvement of nuclear genes would facilitate the phylogenetic analyses, but requires nuclear gene sequences and experience in interpretation of phylogenetic analyses.

In our analyses, A. digitatum and P. resedaeformis were used in the phylogenetic analyses and are grouped together in both phylogenetic trees. High bootstrap value gives strong support for the results. It is a remarkable result since species belong to the two different families Alcyoniina and Calcaxonia. It was suggested in Sánchez et al. (2003), these families could be polyphyletic, based on 16S sequences. However, if more coding sequences were used, the resulted phylogenetic analysis would be more robust. A good strategy for resolving phylogenetic uncertainties is to involve a combination of protein coding genes, ribosomal RNA subunits sequences, and intergenic regions. This can be an interesting topic for further studies. Moreover, if more sequenced mitogenomes of Calcaxonia were available, it would significantly improve phylogenetic tree resolution. Therefore, further studies are crucially important for adequate conclusions.

References/Bibliography

Beagley, C.T., Macfarlane, J.L., Pont-Kingdon, G.A., Okimoto, R., Okada, N.A., and Wolstenholme, D.R. (1995). Mitochondrial Genomes of Anthozoa (Cnidaria). In Progress in Cell Research (Elsevier), pp. 149-153.

Bernt, M., Braband, A., Schierwater, B., and Stadler, P.F. (2013). Genetic aspects of mitochondrial genome evolution. Molecular phylogenetics and evolution 69, 328-338. Bilewitch, J.P., and Degnan, S.M. (2011). A unique horizontal gene transfer event has provided the octocoral mitochondrial genome with an active mismatch repair gene that has potential for an unusual self-contained function. BMC Evolutionary Biology 11.

Bruckner, A. (2002). Life-saving products from coral reefs. Issues in Science and Technology XVIII.

Brugler, M.R., and France, S.C. (2008). The mitochondrial genome of a deep-sea bamboo coral (Cnidaria, Anthozoa, Octocorallia, Isididae): genome structure and putative origins of replication are not conserved among octocorals. Journal of Molecular Evolution 67, 125-136.

Chapman, J.A., Kirkness, E.F., Simakov, O., Hampson, S.E., Mitros, T., Weinmaier, T., Rattei, T., Balasubramanian, P.G., Borman, J., and Busam, D. (2010). The dynamic genome of Hydra. Nature 464, 592-596.

Cho, J.H., Sung, B.H., and Kim, S.C. (2009). Buforins: Histone H2A-derived antimicrobial peptides from toad stomach. Biochimica et Biophysica Acta (BBA) - Biomembranes 1788, 1564-1569.

Chomczynski, P.S., N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem.

Daly, M., Brugler, M.R., Cartwright, P., Collins, A.G., Dawson, M.N., Fautin, D.G., France, S.C., McFadden, C., Opresko, D.M., and Rodriguez, E. (2007). The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus.

Emblem, Å., Okkenhaug, S., Weiss, E.S., Denver, D.R., Karlsen, B.O., Moum, T., and Johansen, S.D. (2014). Sea anemones possess dynamic mitogenome structures. Molecular Phylogenetics and Evolution 75, 184-193.

Figueroa, D.F., and Baco, A.R. (2014). Octocoral mitochondrial genomes provide insights into the phylogenetic history of gene order rearrangements, order reversals, and cnidarian phylogenetics. Genome biology and evolution, evu286.

Flot, J.-F., Licuanan, W., Nakano, Y., Payri, C., Cruaud, C., and Tillier, S. (2008).
Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region. Coral Reefs 27, 789-794.

France, S.C., and Hoover, L.L. (2001). Analysis of variation in mitochondrial DNA sequences (ND3, ND4L, MSH) among Octocorallia (= Alcyonaria)(Cnidaria: Anthozoa). Bull Biol Soc Wash 10, 110-118.

Hahn, C., Bachmann, L., and Chevreux, B. (2013). Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic acids research, gkt371.

Hellberg, M.E. (2006). No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC evolutionary biology 6, 24.

Hofmann, G.E., O’Donnell, M.J., and Todgham, A.E. (2008). Using functional genomics to explore the effects of ocean acidification on calcifying marine organisms. Mar Ecol Prog Ser 373, 219-225.

Iguchi, A., Ozaki, S., Nakamura, T., Inoue, M., Tanaka, Y., Suzuki, A., Kawahata, H., and Sakai, K. (2012). Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis. Marine Environmental Research 73, 32-36.

Johansen, S.D., Emblem, Å., Karlsen, B.O., Okkenhaug, S., Hansen, H., Moum, T., Coucheron, D.H., and Seternes, O.M. (2010). Approaching marine bioprospecting in hexacorals by RNA deep sequencing. New Biotechnology 27, 267-275.

Kayal, E., and Lavrov, D.V. (2008). The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 410, 177-186.

Kayal, E., Roure, B., Philippe, H., Collins, A.G., and Lavrov, D.V. (2013). Cnidarian phylogenetic relationships as revealed by mitogenomics. BMC Evolutionary Biology 13.

McFadden, C.S., Benayahu, Y., Pante, E., Thoma, J.N., Nevarez, P.A., and France, S.C. (2011). Limitations of mitochondrial gene barcoding in Octocorallia. Molecular Ecology Resources 11, 19-31.

McFadden, C.S., Donahue, R., Hadland, B.K., and Weston, R. (2001). A molecular phylogenetic analysis of reproductive trait evolution in the soft coral genus Alcyonium. Evolution 55, 54-67.

McFadden, C.S., Sánchez, J.A., and France, S.C. (2010). Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integrative and Comparative Biology 50, 389-410.

Miller, D.J., Ball, E.E., Forêt, S., and Satoh, N. (2011). Coral genomics and transcriptomics - Ushering in a new era in coral biology. Journal of Experimental Marine Biology and Ecology 408, 114-119.

Moen, F.E., Cochrane, S., Pleijel, F. \& Svensen, E. (2004). Marine fish \& invertebrates of Northern Europe.

Morris, K., Herrera, S., Gubili, C., Tyler, P., Rogers, A., and Hauton, C. (2012). Comprehensive phylogenetic reconstruction of relationships in Octocorallia (Cnidaria: Anthozoa) from the Atlantic ocean using mtMutS and nad2 genes tree reconstructions. Biogeosciences Discussions 9, 16977-16998.

Nardi, F., Carapelli, A., and Frati, F. (2012). Repeated regions in mitochondrial genomes: Distribution, origin and evolutionary significance. Mitochondrion 12, 483-491.

Nielsen, H. (2011). Working with RNA. Methods in molecular biology (Clifton, NJ) 703, 1528.

Osigus, H.-J., Eitel, M., Bernt, M., Donath, A., and Schierwater, B. (2013). Mitogenomics at the base of Metazoa. Molecular Phylogenetics and Evolution 69, 339-351.

Otero-González, A.J., Magalhães, B.S., Garcia-Villarino, M., López-Abarrategui, C., Sousa, D.A., Dias, S.C., and Franco, O.L. (2010). Antimicrobial peptides from marine invertebrates as a new frontier for microbial infection control. The FASEB Journal 24, 1320-1334.

Park, E., Hwang, D.-S., Lee, J.-S., Song, J.-I., Seo, T.-K., and Won, Y.-J. (2012). Estimation of divergence times in cnidarian evolution based on mitochondrial protein-coding genes and the fossil record. Molecular Phylogenetics and Evolution 62, 329-345.

Park, E., Song, J.-I., and Won, Y.-J. (2011). The complete mitochondrial genome of Calicogorgia granulosa (Anthozoa: Octocorallia): Potential gene novelty in unidentified ORFs formed by repeat expansion and segmental duplication. Gene 486, 81-87.

Plaisance, L., Caley, M.J., Brainard, R.E., and Knowlton, N. (2011). The diversity of coral reefs: what are we missing? PLoS One 6, e25026.

Sánchez, J.A., Lasker, H.R., and Taylor, D.J. (2003). Phylogenetic analyses among octocorals (Cnidaria): mitochondrial and nuclear DNA sequences (lsu-rRNA, 16S and ssu-rRNA, 18S) support two convergent clades of branching gorgonians. Molecular phylogenetics and evolution 29, 31-42.

Shao, R., Zhu, X.-Q., Barker, S.C., and Herd, K. (2012). Evolution of extensively fragmented mitochondrial genomes in the lice of humans. Genome biology and evolution 4, 1088-1101.

Shinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K., Tanaka, M., Fujie, M., Fujiwara, M., Koyanagi, R., and Ikuta, T. (2011). Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476, 320-323.

Stanley Jr, G.D. (2003). The evolution of modern corals and their early history. Earth-Science Reviews 60, 195-225.

Sunagawa, S., Woodley, C.M., and Medina, M. (2010). Threatened corals provide underexplored microbial habitats. PLoS One 5, e9554.

Uda, K., Komeda, Y., Koyama, H., Koga, K., Fujita, T., Iwasaki, N., and Suzuki, T. (2011). Complete mitochondrial genomes of two Japanese precious corals, Paracorallium japonicum and Corallium konojoi (Cnidaria, Octocorallia, Coralliidae): notable differences in gene arrangement. Gene 476, 27-37.
van der Ham, J.L., Brugler, M.R., and France, S.C. (2009). Exploring the utility of an indelrich, mitochondrial intergenic region as a molecular barcode for bamboo corals (Octocorallia: Isididae). Marine Genomics 2, 183-192.

Weis, V.M., Davy, S.K., Hoegh-Guldberg, O., Rodriguez-Lanetty, M., and Pringle, J.R. (2008). Cell biology in model systems as the key to understanding corals. Trends in Ecology \& Evolution 23, 369-376.

Appendix A

Nucleic acid extraction protocols

DNA extraction protocols

Urea protocol

1) Add $500 \mu \mathrm{l}$ tissue Tissue lysis buffer in MagNalyser tube
2) Add small piece of tissue (half a pea or smaller)
3) Homogenize
4) Add $20 \mu \mathrm{l}(20 \mathrm{mg} / \mathrm{ml})$ proteinase K
5) Incubate in $55^{\circ} \mathrm{C} 1-2$ hours.
6) Transfer homogenate to new Eppendorf tube
7) Add $500 \mu \mathrm{l}$ of phenol/chloroform (basic pH), vortex well to mix
8) Spin 10000 rpm 10 min , transfer water phase to new tube
9) Do the extraction (add another portion of phenol-chloroform) again until the layer between the two phases is almost clear (first time it is often white and fat)
10) Extract one time with chloroform/isoamyl (same volume as the waterphase), vortex and spin
11) Transfer water phase again, precipitate the DNA in the water phase by adding $2,5 x$ volume of $100 \% \mathrm{EtOH}$ and $1 / 10$ volume 3M NaAc, mix
12) Put in $-20^{\circ} \mathrm{C}$ freezer for 1 hour
13) Spin down in cold centrifuge 13000 rpm 30 min .
14) Wash the pellet with $1 \mathrm{ml} 70 \% \mathrm{EtOH}$ (several times if much salt, pipet up-down, vortex, spin $\left.10 \min 4{ }^{\circ} \mathrm{C} 13 \mathrm{rpm}\right)$
15) Rehydrate the pellet in $20 \mu \mathrm{l}$ clean water or LowTE. Keep in -20 freezer

RNA extraction protocols

Standard TRIzol protocol, originally modified for cod, MG group ()

1. 500-700 $\mu \mathrm{l}$ Trizol in MagNalyser tube
2. Add small piece of tissue (half a pea or smaller)
3. Homogenize until fully homogenized
4. Add $0,2 x$ volume of cold chloroform, incubate on ice for 20 min, shake occasionally
5. Centrifuge at $4^{\circ} \mathrm{C} 20 \mathrm{~min} 9000 \mathrm{rpm}$
6. Transfer water phase to a new Eppendorf tube
7. Precipitate RNA by adding 1 x volume of cold isopropanol, incubate at $4^{\circ} \mathrm{C}$ for 1 hour
8. Centrifuge at 13000 rpm for 30 min
9. Remove supernatant carefully, wash with 1 ml cold $80 \% \mathrm{EtOH}$, centrifuge 5 min at 13000 rpm .
10. Remove all EtOH with a pipette carefully
11. Leave to dry for a few minutes and resuspend in water ($20 \mu \mathrm{l}$ or wanted volume).

Appendix B

PCR primers

Table A1 contains primers used in this study. Primers were used for amplification in PCR and sequencing by Sanger method. Primers constructed by Aase Emblem, UiN. Forward primers named F and reverse primers named as R, respectively.

Name	Sequence (5'->3'), length	Vol for $1001 \mu \mathrm{~mol}$	GC- content, $\%$	Use for PCR/ sequencing
Pre mutS_F	CTGCCATGAGTGGGCATAGTC(21)	233	57.1	P/S
Pre mutS_R	GACTATGCCCACTCATGGCAG (21)	302	57.1	P
Pre COI_F	GCAGTGGACATGGCCATATTCAG (23)	279	52.2	P/S
Pre COI_R	CTGAATATGGCCATGTCCACTGC (23)	288	52.2	P/S
Pre ND4_F	GGAGTTCTCACCTCAACTAG (20)	326	50	P/S
Pre ND4_R	CTAGTTGAGGTGAGAACTCC(20)	282	50	P/S
Pre ND4L_F	CTGTCGCAGCTGCCGAGTCTGC(2 2)	261	68.2	P/S
Pre ND4L_R	GCAGACTCGGCAGCTGCGACAG(2 2)	282	68.2	P/S
Pre CytB_F	GCTATCCCTTATGTAGGCACAG(2 2)	314	50	P/S
Pre CytB_R	CTGTGCCTACATAAGGGATAGC (22)	256	50	P
Pre ND1_F	GCCCGGGCATCGTACTAGCTG(21)	340	66.7	P
Pre ND1_R	CAGCTAGTACGATGCCCGGGC(21)	300	66.7	P
Pre CO2_F	GTCAGTGTTCCGAGCTATGTG(21)	342	52.4	P/S
Pre CO2_R	CACATAGCTCGGAACACTGAC(21)	247	52.4	P
Pre CO3_F	CAGTAACARGGGCACATCACGC(2 2)	292	54.5	P
Pre CO3_R	GCGTGATGTGCCCATGTTACTG(22)	352	54.5	P/S

Pre ND5_F	CTCCATAGCATCTGGCAACC(20)	258	55	P/S
Pre ND5_R	GGTTGCCAGATGCTATGGAG(20)	326	55	P/S
Pre ND2_F	GCGCTAAGATAGTAGCCCTG(20)	334	55	P
Pre ND2_R	CAGGGCTACTATCTTAGCGC(20)	294	55	P/S
Oct_SSU1_F	GACCTTGGGGAGTCTATAAG(20)	383	50	P/S
Oct_SSU1_R	CTTATAGACTCCCCAAGGTC(20)	328	50	P
Oct_SSU2_F	GGCAGCAGTAGAGAATCTTG(20)	368	50	P/S
Oct_SSU2_R	CAAGATTCTCTACTGCTGCC(20)	406	50	P
Oct_SSU3_F	GCATTAGGCGTTAAAGTATG(20)	442	40	P
Oct_SSU3_R	CATACTTTAACGCCTAATGC(20)	407	40	P/S
Oct_SSU4_F	CAAGTTAAGGATACGAGACGC(21)	255	47.6	P/S
Oct_SSU4_R	GCGTCTCGTATCCTTAACTTG(21)	421	47.6	P
Oct_Met_F	GAGTTGAACCTACATAACCAG(21)	372	42.9	P
Oct_Met_R	CTGGTTATGTAGGTTCAACTC(21)	367	42.9	P/S
Oct_LSU1_F	GAGATTCCGTACGTAGCGG(19)	342	57.9	P/S
Oct_LSU1_R	CCGCTACGTACGGAATCTC(19)	430	57.9	P
Oct_LSU2_F	CTTGGATGAGCTGTGGTTAGC(21)	313	52.4	P/S
Oct_LSU2_R	GCTAACCACAGCTCATCCAAG(21)	312	52.4	P/S
Oct_LSU3_F	CACTGAATGAGCTAGGAAACC(21)	328	47.6	P/S
Oct_LSU3_R	GGTTTCCTAGCTCATTCAGTG(21)	348	47.6	P
Oct_LSU4_F	CGTAATCAACTTCTGGCTGCTGC(23)	350	52.2	P/S
Oct_LSU4_R	GCAGCAGCCAGAAGTTGATTACG (23)	341	52.2	P/S
Pri_ND2_F	ACCGTTACTAAGTGCAGTCGG(21)	386	52.4	P
Pri_ND2_R	TCCGACTGCACTTAGTAACGG(21)	371	52.4	P/S
Pri_ND2b_F	AGGCAGATGGATAGAGTCCG(20)	381	55	P/S
Pri_ND2b_R	TCGGACTCTATCCATCTG(20)	387	55	P/S

Successful primer combinations

Table A2 contains successful combinations of PCR primers and lists the reactions whose products were subjected to Sanger sequencing.

Species	Primer F	Primer R	Sanger sequenced product
P. resedaeformis	PremutSF	PreND2R	DNA+PreND2R
P. resedaeformis	mutS F	PreND4LR	DNA+PreND4LR
P. resedaeformis	CytBF	PreND4LR	DNA+PreND4LR
P. resedaeformis	PreCOI F	PreND5R	DNA+PreND5R
P. resedaeformis	PreCOIF	PreND4LR	DNA+PreND4LR
P. resedaeformis	PreCO2F	PreCOIR	DNA+PreCOIR
P. resedaeformis	PreCOII F	Pre COIII R	
P. resedaeformis	PreND4F	PreND4L F	DNA+PreND4L F
P. resedaeformis	PreND5F	PreCO III R	
P. resedaeformis	PreND4LF	PreND2R	
P. resedaeformis	PreND4LF	PreND4R	
P. resedaeformis	LSU1 F	LSU4R	DNA+LSU1F, DNA+LSU4R
P. resedaeformis	LSU3F	PriND2bR	DNA+LSU3F
P. resedaeformis	SSU1 F	LSU4R	DNA+SSU1 F
P. resedaeformis	LSU4F	MetR	
P. resedaeformis	SSU2F	MetR	DNA+SSU2F
P. resedaeformis	SSU4F	SSU3R	DNA+SSU4F, DNA+SSU3R
P. resedaeformis	PriND2bF	LSU3R	
P. resedaeformis	SSU1F	LSU4R	
A. digitatum	OctLSU2F	OctND2R	DNA+OctLSU2F, DNA+OctND2R

PCR primers used for cloning

Table A3 includes primers used for molecular cloning. Primers are based on the IonTorrent assembled mitogenome regions. They were constructed by \AA. Emblem and ordered from Eurofins Genomics.

Name	Sequence (5'->3'), length	Vol for $100 \wedge$ mol	GC- content, $\%$	Use for PCR/ cloning
Pr_MutS_F	ACGTGGTACAATTGCTGTTC(21)	308	45	P/C
Pr_MutS_F2	CTGTCGCAGCTGCCGAGTCTG(21)	317	66.7	P/C
Pr_MutS_R	TCCTCATAGTCTAGTAAGATG(21)	312	38.1	P/C
Pr_MutS_R2	CGCTATCGCTCGCCGCT(21)	303	71.4	P/C

Appendix C

Sequencing run summary on P. resedaeformis DNA

Run Summary

Sequencing run summary on P. resedaeformis cDNA

Run Summary

Sequencing run summary on A.digitatum DNA
Run Summary

Sequencing run summary on A.digitatum cDNA

Run Summary

Appendix D

Alcyonium digitatum mitogenome sequence

ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTAT ATTTACTATTTGGTGCTTTTTCTGGAATGGCGGGGACAGCTTCGAGTATGTTAATACGGCT AGAACTGTCAGCTCCAGGTAGTATGTTAGGGGATGATCATCTATATAATGTAATTGTGAC ATCACATGCTTTATTAATGATTTTCTTCCTGGTAATGCCAGTAATGATTGGAGGATTCGGA AATTGGTTTGTACCAATTATGATTGGTGCACCCGATATGGCCTTTCCTAGATTAAACAATA TTAGTTTCTGGTTATTACCCCCTGCTCTAATACTATTAGTTGGTTCTATGTTTGTGGAACAA GGGGCAGGTACAGGCTGGACCGTTTATCCCCCACTATCAAGCATTCAAGCCCATTCAGGG GGAGCAGTGGATATGGCTATATTTAGTCTACATCTAGCTGGTGTATCTTCCATTTTAAGTT CTATCAACTTTATAACTACTATAATTAACATGAGGGTTCCTGGTATGAGTATGCATAGACT ACCTCTATTCGTATGGTCTGTATTAATTACAACAATATTGTTATTATTATCTTTACCAGTGT TAGCTGGTGCAATTACAATGTTATTGACAGATAGAAATTTTAATACAACATTCTTTGACCC TGCGGGAGGAGGAGATCCTATTTTATTCCAGCACTTATTCTGGTTTTTCGGACATCCTGAA GTCTATATATTAATTTTACCAGGATTTGGTATGGTATCTCAAATTATCCCAACATTTTCTG CTAAACAACATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGCAGTATT AGGATTTATTGTTTGGGCCCACCATATGTTCACCGTTGGTATGGATGTCGATACTCGTGCC TACTTTACTGCCGCCACTATGATTATTGCTGTTCCTACTGGAATTAAGATATTTAGCTGGC TAGCTACTATATATGGGGGAAGCCTACGGCTTGATACACCTATGTTGTGGGCTATTGGGT TTGTCTTCCTATTTACCATTGGTGGTTTAACTGGAGTTATATTAGCTAATAGTTCATTAGAT ATAGCATTACACGATACTTATTACGTAGTAGCTCACTTCCATTACGTGTTATCTATGGGGG CCATATTTGCTATATTTGGGGGTTACTACTATTGGTTTGGTAAAATTACAGGTTATAGTTA TAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATTGGAGTTAATTTAACTTTC TTCССССАACATTTCTTGGGTTTAGCCGGATTACCTAGAAGATACTCGGATTTCCCTGATG CCTATCAAGATTGGAACTTAATTAGTTCTTGCGGAGCTGTAGTGGCTCTAGTAGGAATTAT ATGGTTCATATACTTGTCTTATGAGGCATTAGCAGCCGAAAGACCATTTAAAGGCTGGGC AACTTCGCCTAACTCGTTAGAGTGGTCTTTATCTTCTCCGCCTGCTTTTCATACTTATAATG AATTACCGTTTGTCTATCAGCGTAAATTGAGTCATGGGGATGATTTAAATATTATTTCCAC ACTACTCCTTTGACCTTGGGGAGTTTATAAGGCAATGTGTTCTTCTAATACATGCAAGGCC

CTGAATAGGGTCCTACTGGTGAGGATAAAACGAGATATCTCGTTGACGTATTAGAATAGG TGGGATAGTGGCCCACCTGGTCGAAGATGCGTAGTATAGCCACACTTTCACTGAAACAAG GGGAAGACATTTTGGCAGCAGTAGAGAATCTTGTGCAATGGGTAAACGCTTGACACAGG GTTTCACACTGAGGTCTGTCTAACTAAGTGCCAGCAGACGCGGTTAAACTTAGAGGCCCA GTTTTTATTTCGCATTAGGCGTTAAAGTATGTAGTGAAGCATGAGAATAAAGTAAGGCCA ACCTCTTGGTAGCGGTAAAATGTTTGAAGCAAGAGTGGAAGTCCGAAGGTGGAGACTCCT TACTCCGTTCATGTACATCTTCATGAAATACGAAAGCTTGGATAGTAAACAGGATTAGAT ACCCTGGTAGTCCTCGCCCTAAACTTATACAATAGCTTTATTAGCAAATAACCTTATTGTA TGCCTGAATACTATGATCGCAAGATTGAAACTCAAAAGGCTTGGCTGTTCACTGTTTGAA TCAGAGGAGCGTGTAATTTAATACGATGATCCGCGTGTCACCTCACCTTTCCTTGAAAGC GGACTACCTTTATGGGTAGTCCGCTCAGGCATTGCATGGCCGTCGTCAGGATAACAATAA ATGTTATCCTTAACCCTATTATGGATTAAGTCAGGTGTCATGGTCTTTATGGAAAGGGATA TTATGCGCTACATTCTCCTATACAATATCACATTAAATTAGGAGGCGGCGATTCTCTGAAA CGGGAATCTTAAGTAGGATTTGATAGTAATCGGGAAGTAGAGCGTTCCGGTGAATTTTAA CCCAGTGTTAGCACAAATCGCCCGTCGTCCCCTTCAAGTTAAGGATACGAGACACCCCAC GCGGGGTTATCCCTCCTTTTCGAGAATGGGTAAGTCGTAACATAGTAAGGGTAAGGGAAC TTGTTCTTGGGCCAAGTTATGCGTTCAATACGTACTTGGCCGCCTCGTAATTAGGATATGA GTACTATTATTTCAATTATCTTTAAAACGCTTGCAATAATAATACCTCTATTAGTGGCTAT AGCTTATTTAACTTTAGCAGAAAGAAAGGTAATAGGGTATATGCAAGCACGAAAAGGAC CTAATGTAGTTGGTGTTTATGGACTATTACAGCCTTTAGCTGACGGATTAAAGTTATTCAC TAAAGAGATGGCTATTCCCAATCATGCTAATCTGTCGGTTTATATTGTAGCCCCGATTCTA TCGCTTACTTTAGCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCCGGTATTGTACTAGC TGATATTAATGTTGGTATCTTATACATCTTTGCTGTCAGTTCTATAGGGGTGTATGCTATTT TAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTTAGGGGCTATCAGAGCAGCAG CTCAAATGATTAGCTATGAAGTGTGTATAGGGCTTATTTTAATATCAGTAATATTATGTGC AGGTTCTCTTAATATCACTCAGATTGTTTTAGCTCAAGCCGAAATTTGGTATATAATACCT TTATTTCCAGCTGCTTTAATGTTTTTTGCTTCGGCATTAGCTGAAACTAATCGGGCTCCTTT TGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGATATAATGTAGAATATTCTAGTAT GTCATTTGCCCTATTCTTTTTAGCTGAATATGGCCATATTATTCTAATGAGCTGTTTGATAA GTTTATTGTTTTTAGGTGGTTGGACACCTTTTACAGGAATTCTAGGAATGGGTTGCTTAGC ССTTAAAACTACCGCAGTAGTGTTCGCATTTGTGTGGGTACGAGCTTCTTTCCCTAGAATG AGATATGACCAACTTATGTATCTATTATGGAAGTCTTACTTACCTTTCAGTCTTGGTTTAA TCGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGATGCAGTGCCTTGCTAGCATTTAGGGAG TACCCTATATTGGGTTGATGTACACAAGCTTCCTGAGCGCATGCATATGGAATCACCAAA CAAAATGTTACGAATAAGAACTCAACATCCAATACTCTCTATTGTGAATGGGGTACTGGT TGATCTGCCAGCCCCCTCTAATATTAGTTATTATTGGAATTTCGGTTCTTTGTTAGGACTTT GTTTAGCTATTCAATTGATTACCGGAATATTCTTAGCTATGCATTATTGCCCTGACGTTAG CTTAGCTTTTGACTCAATTTCCCATATTTTAAGAGACGTTAATTATGGTTTTATGTTAAAGT ATATTCATGCTAATGGAGCTTCATTATTCTTTCTCTGTGTATATATACACATGGGTAGAGG GCTCTATTATGGGAGCTACATGAAAATGGACGTTTGGAATATAGGGGTTATAATTTACGC AGTGATGATGATAACAGCCTTTTTAGGGTATGTATTACCTTGGGGACAAATGTCCTTTTGG GGAGCCACAGTTATAACTAACTTTTGTTCTGCTATACCCTATATAGGAACAGATATTGTTC AGTGGATTTGGGGAGGATTTAGTGTATCTAACGCAACTCTTACTCGTTTCTTCTCTTTACA TTATCTTTTTCСTTTTCTTATAATTGCATTAGCCTTATTACATATTATTAGTTTACACACAG CTGGGTCAAATAATCCTTTGGGGATTGACTCTAATATAGACAAAGTTACCTTTCATGTTTA TTATACTTATAAGGACTTGTTTGGTATGATGGTACTTAGCACTATTTTAGTTATATATTGTT ATTTTATGCCTAATGTATTAGGTGATCCTGAAAATTTCATTCAAGCTAATCCTTTGGTAAC TCCTGTTCATATACAACCAGAATGGTACTTCTTATTCGCATACGCCATACTACGCTCTATA CCCAACAAGCTTGGGGGGGTCTTGGCTATGGCATTTAGTATCTTGGTGTTATTTTTATTGC CCTTTGTTCATACTAGTAAATTAAGAGCTTTAACATTTAGGCCCTTAGGTAAAATAGCATT TTGGTTTTTAGTAGCTGATTTTGTTTTATTAACTTGGTTAGGAGCTAATGCAGTAGAGGAG CCGTATATTATGATTGGTCAATTTGCTTCTGTATACTACTTTTGCTACTTCTTAGTATTGAT CCCCTTGTTAGGGTGGGTAGAAACCAAATTGCTCCGCATGAAGTAATAAAGGTCTTGTTG GCCGAAGTGAAATATGAATAATCTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAG TCTTATGGTTATATCTACCCCGAATCCTGTTTATTCAGTATTCTGGTTAGTTATTGCCTTTG

TTAATGCTGCTGTTATGTTTATATCGTTGGGATTAGACTATATAGGCTTAATATTTATAAT TGTCTATGTGGGGGCTATCGCTATTTTATTCCTGTTCGTAATTATGTTAATTCAACAGCCC AATAAGGTAGATTCTCAAGATCACTCGCATTTTTTACCTGTAGGATTATCTGTTATATTCC TATTTTATAGTTTACTAACCAATAGCCCTAAATATATCAACAATCCTGTTATAGGATCTAG AACTAACATTGGGGCAATTGGAAGTCATCTTTATACAACTTATTATGAATTAGTATTAATT GCTAGTTTGGTGCTACTAGTCGCTATGATAGGGGCTATATTATTAGCTAAGCAGCCAAAT TCAССТТTTTtATATAATTCCCATGGTGAATCATTACGTAGTAGGCAAGATCTCTTCСTACA AATCAGCAGAGAGCACCTTTAGGTGCCTTCTGGCCAAGTGCTAAGGCACGTCTCCGCTTA GGAACATGGAGAGGAATATGGAGTTCAAAGGAATACTAATACTACTTATCGTTAGCGGA ACATTATCAATTCTAATTTTAGGGGCATCTTATCTATTAGGATATAAACAACCTGATATGG AAAAAGTGTCGGTCTATGAGTGTGGGTTTGATCCTTTTGATAACCCGGGGAATCCCTTCTC TGTTAGATTTTTCTTAATTGGTATCTTGTTTTTAATATTTGATCTTGAAATATCTTTTTTATT TCCCTGGGCTGTCACATATATGGGCTTACCTTTATTTGGATATTGGGTTGTTATGTTATTTT TATTTATCTTAACTTTAGGGTTAATTTATGAGTGGATAGAAGGAGGCTTAGAGTGGGAAA ACTAGCCCCTAATTGTATAGCGCATGTCCTATTTAATATTATCAATTGTCATCTTATTAAT CGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGCTAATGTGTGTAGAG CTAGTTTTACTGGCTTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTCTATACGCTTTTT GGTCAAATTTTTGCGATTGTGATTCTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAG CCATTATGGTTAACTATTACCGTTTACGTGGTACAATTGCTGTTCGAGCCTTAAATTTATT AAGAGGTTAACTCСTATTTCAAAATGAACCAGATCCCTATGCAATATTTCAACTTAGCGG AGGAGAATTATTCTAAGTATGGGTTATCAGTAATCCAGCTTATCCAAATTGGTAAGTTCT ATGAACTTTGGCATGAGCCCAATACTCCTAGCAGGCAACAAGCATACTCTCAAACCGAGT TATTAGCTGAGTCATCCATGCGAAGTCGGCCTTTGGGGGTAACGCCCCCCATTGAACAAG TTGCCTCGTTACTTGATATGAGAATAATATTACCCGGCAAAAGATCTTTGCTTCAAATGGG GTTTCСААСТТАТТСССТTAATAATCATCTAAGCACCTTGTTGGATAAAGGTTGGACTGTT ATAGTTATCGATGAATTAGTCACTGGTAAATCCGGGCCAAAACAACGCGCAGTATCTCAG GTTTATTCTCСTAGTTGTAATTTAGAGGACTGTTCGGAGTTATCCTATGTGTTATCAATTTA TTTTTCTCAAGACGACTTATTAGGTATTACTTTATTCTCAGCCATGAACGGGCATAGTATA ATGTTTCCTGTCTCTTGGGCGGACAGGGATAAAGTAGCCCGTTTATTAATCAGTTATCGTA TTAGAGAAATAGTAATTTGGGCAAACTCGGGGGCCGTCTCAGAGATTTTAATATATAATT TATTAATTGGTTATAATTTATTCCCCTCTGAACCCAATGCTAAAATTGAGGTTATGGGGGA AGTAATAAACAATTTACCGTGTTATTTATCTTATAGGTACGAAAATAATAATAAGGAGTG GCTTTTGCTCCATATTTATATGGGCATTAACGCAGAGTGGTTTAACAAAAATTATCAAGA ATATACCCTTAGTAAGATATTTCAAAGTACTTGAGCAGAAAATGTTAATCAGGCAAATCT AATTAGCCTTTTAGGAGTATTACAATTTATTAAAGATCGAAATCCTAATCTTATTAAGAAT СТТСААСТTСССGAGTGTTATAATTCTGTTGTTAGCCCCCTAAATTTAATACTATGTAATC GAGCAGAATATCAATTGGACTTATTGCCTAAGAGGGGGAAACTGGGTGGTTTACTTAGTC TAGTTGATTACTGTTCTACTGCAATGGGTAAAAGATTACTTAAATTCAGACTTCTTAACCC CATTACAGATCATTCTGAATTAAATCTTCGTTATGAGGAGATTGCTACATTTAAACAATTA TATAACAAGAAAATATTTGACAATTCCGAGTTAAAACACATTAAAGATTTATCTTCTTTAC ATCGTCAGTGAACAATATGTGCCTCGAGTGATACTACCTTGCCACCTAAAAAGTTAAGTC AAATTTACCATTCTTATTTGTCTGCTAATCAACTAATAAGTAAATTAACAAATAATATTCA ATTACCCССTTTAGTCGTGCCCCAATTAGAATTGCTAATTGAGGAAATAGGTCGAATTTTC CAGACAGATAATCTTTTAGGTGATTTTAAAGACGTATTACAGCCAACTGATAATCTAACT AAСТТСТTTGTACAACAACAAACTTTAAAGGCCCAACTTACAGAGTGGGGCGAACAGACT TCAAATATTGTGTTTCAAGATACAATTTCTATCAAAGCTGAATATTTTAATAAAGAGGCTt ATGССТТСТСТАТТТТАТСТАAAAAGTTAACTAAGTTAGAACAATATATGCCTGATAATTC AATTATGATATTGGGTAAAAGAGGAAGCCACCATATAATTACTAGTCCCACTATTCATAA AGTATCAATTGAATTAAATTTATTAGAAGAGCAAATTAATACTTATGTCAAACAGACTTA TAACCGGGAACTTAAAAGATTATATTTCAGTTATTCTGAGCTGTTTTTACCCTTAGAAAAT ATGATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATTGCGGCTATTAAATTCAATTATA CTAAACCTTGCTTAATACTAACTAAATCCCACCAGCCCCAACAAACCAAGGGGTTAATAG AAGCAATTAACCTGCGACACCCATTAGTAGAACAGTTAAACACTCAAGAAGAATGTGTA GCTCATAATATTAGTTTAGAGGATAAGGGAATGTTAATATTCTCAGTAAaTGGTGCGGGC AAATCTACTTTACTTAGAGCAATTGGAGTCAACGTAATCTTAGCTCAAGCAGGAATGTAT

GTAGCTGCAGATTCATTTAGGTTAAGACCTTATCACTATTTAATTACTCGTATTTTAGGGG GGGATGATCTTCATAAAGGCCAAGGTACTTTTGAGGTCGAAATGAGAGATCTTTCAACTA TATTAAAGCTAGCTAATTATAACAGTCTAATATTGGGGGACGAAATTTGTCATGGAACAG AAGTTAGTTCAGGAGCAGCAATATTAGCTGCAACAATTGAAAGATTAACAGCTGCACAA ACTAGTTTTGTTCTTTCTACTCATCTACATCAAGTTTGTTCTTTAATTGATTCACCAGTTCG GTACTATCATTTATCTGTTATTCAACAAGAAGATTTGGGCCTAATTTATGAACGTAAATTG AAGCCTGGACCCGGGCCCTCTCAATATGGCATTGAAGTTATGGGCCACATAATTAATGAT AAAAAATTTTATACAAGTGCTTTGAAATATCGTAAACTCATTAACTGGGAGCCACCATCC CGAAGTGAGTCTAGTTCTTTAACAGTTTTCCGTCCCTCTAAATATAATGCTCGAGTTTTTA TTGATTCGTGTGAAATATGCGGGGCTCCAGCGGAGGCTATCCACCACATTCAACCTAAGA ATCAACTAAAAAATCAACCCAAGAAATTATGTAATAGAAGGTCTAACTTGGTGCCCGTCT GCTCAAGCTGTCATTTAGATATTCATAGAAATAAGATCTCTATTTTAGGTTGGAGGGGGA CCCCAGGACATAAGAAATTATATTGGGTTTATCTTAATGAGTCTTTGGATAGTGGAACTG AGTAAAGTCTAGGGTCTATCGGTAAGGACGTGAAATACGAAATAACAAGGGAGAGACTT TGAACTTGTTTATCCTAACTGAAAAGGGTAAATTGAATAGTTAATTGAAACATCTTACTA GACTATGAGGAATACATCAACTGAGATTCCGTGCGTAGCGGCGAGCGATAGCGGAGAAT TGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTAT AGAGAAAGTACCGTGAGGGAAAGACTTAGAATTGGTTCTAAAAGTTACCTTTTGCATAAT GGGCCTGCAAGACAAAATTTGGCAAGCTTAAGTAGTAAATGAAGGCGTAGTGAAAGCAA GAGAAAAACTCGTCAGTCAAATTACCCGAAACCAAGTGATCTAACCATGGCCAGGTAGC TATGCTGACCGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAA ATACTAGTCGAACTTGGATAGCTGGTTCTCTACGAAACTTATCTTAGTAAGGCGCGCAGG TTATTCGCCCCCAAACCCGGGGGCCTGAATTACTGGTGTAGTAAGACTATGGCGATAAGG CCTCTAGTCAAGAGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGT ATAAAGAGGGTTCAACTTAGACAAACAGGAAGTAGGCTTGGAAACAGCCATCTGTACAG GAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAATC TGTAACTGAAATTCTGGAAGCCAGAATGCAACCGTAAGGAAGTATCAACTGGCTTGGTAG TAGAGCGTTCTGTAGGCACGATACGTGCACACCTCGTGAGATAAACAGAAGTGATAATGC AGGCATGAGTAGTACAAGATTCATTCCCAAATAATATATACAGCTTCTAAGGGCATTACG CCCGATGATTATAATTCTTGTACCTGTTCAGGAAAAATATTATGGTACGAAGTACCTTTAA CTGTTATTTATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGAACTCGGCAAAATAAG ATCTCGACTGTTTACCAAAAACATAGCTCTCTGCTAAAGGTTACTGAAGTATAGAGGGTG AATTCTGCCCAATGGTTGTATAGTGAAACTGAGGACTAACGTCTAAAGCGAAACCCAACT GAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAATAGCCAATTAATTGTT GGCGGGTATGAATGGAACCACGAGGATCTTACTGTCTCAAGAGAAAAGCCGATGAAATT ATAGTTGTAGTGAAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTA CTGGATACCGATAGCGTTAACTTAAAATGATCGATATAAGTATCCTAATTTTGAGTTAAT AATTTTTGTTGGTAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCG AGCTTATGGTATACAAAGCTATCACATTAGCCTGACAGTGAGGGGGACATCCCTAGCTGG CACAAGGACAAGTCCTATGTGGGCGATAATGACCCGATATTATTGTCCAAAATAAATATC GAAAGCGGATAAAAGCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATC GAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCTGGTGCTGTAGAAGGTACC TTAGGTTGGTCTGTTCGACCATGAAAACCGTACATGATTTGAGTTCAGAGCGTGGTGACA CAGCTCGGTTTCTATCTACAATGTTCAATCCCAACTTTTCTGAGTCCTAGTACGCAAGGAA TGGTCTCAGCGATGCTCGACTATATAGGCCCCATCGACGTAATCAACTTCTGGCTGCTGC AAAGAAGGAAAACAAAGGGTTTAGGGATTAATAAGGTTCACGAAAGTGACCTTCTCATA TACCATGTGGGTGCATAGCCCCTGGTATACTATGGAATTAACACTAGGGCTCATCATACT AATAGTGTTGACGTATGGATTAAAGGCCCCGACTTTAAGATTAGCTATGCTACTTGCGGG TGCTGTGGGGGCTGCTGGGCTATTAGCTGAGCCCCATCTACTATGTTGGACACAGGCTAT TAAGATGTTGGTGATGCTTAGTGGGTTAGCTATACTATGTATGCTGGACCATCGAACATC GCATCGATCAAGCTCTTTATTGATTTTATTAGTGATCTTAGGTAATTTATTACTTATTGGGT CAACAAATTTACTTTCTATATATTTAGCATTAGAAATGCAAACATTATGTATGTTTATCTT AGTGGCTTATAATAAAAACTCATTGTTATCGGCAGAAGCTGGGCTGAAATACTTCGTGTT AGGGGCACTATCTTCGGGGTTATTCCTGTTTGGTTGCGCCTTAATTTATGGCTCCACCGGA GAGTTTGACCTTCAATTTATTCGTATGAGTATAGTATCTTATGGAACATTAGCTGGTAAGT

GTCTTATTACTATTTCATTGTTATTTAAAGTATCTGCAGCCCCATTTCATATGTGGGCCCCC GATGTATATGAAGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAATTG GGTGTACTAGCCATTATAGTACAAATAGGCTTAAATGAAATGGGGTTATTAATAGCTGGA TTAATCTCTTTGATTGTCGGGGCTATAGGAGCTTTAAATCAAACTCGAATAAAAAGACTA CTAGCTTATAGTGGGATAAGCCATATGGGGTTTGTGTTGCTTGGAATAGCTATTGGGTCTA TAGAAAGTCTTCAGGCGAGTTTAATGTATATAGGTGCCTATATAATAACTCAAGTACTAC TTTGGTCTATAGTACTAATTATATCTCCTAAAAGAGATATGCTTATTGAATTTAGTGGTGT TTCAAGATTAAACCCAATGTTAGCATTAGCATTAGCTACAGGTTTATTGTCTACTGCAGGG ATTCССССТTTAATTGGGTTTTTAACTAAGTGGTATATTATCTTAGCAGCTGTTGGTCAAG GCTACTATCTTAGCGCTTTAATAGCTTTAGTCTGTTCCGTGATAGCTGGAGTTTATTACCTT AGATTAGTTAAAATTATGTTTTATCAACCTTTGTCGACGCCTTTAGTAATAACAAATATAC TAAATTCTCCCGCATCGGAGGAAACGGGTTTAGGCAAGGCAATATTAATAGGGGCAAGC TTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTCTTTCAGTTAACACATTTGAT TATTTTAGATTTATTCCCATGTATCTTCTAGTTATATTAATACCGTTACTAAGTGCAGTCGG AAGCGGACTAGGGGGTCGCTATTTAGGCAGAAAGGGGGCTGGCTTGTTAAGTTCTGTGTT GGTTCTCGCCAGTAGCCTTCTCTCTTTTGTATTATGTTATGAAATCCTTATTAATGGGTCTA CAGTATATATAGAGTTAGGCAGATGGATAGAGTCAGATTTACTAATAACTAACTTTGGCT TACAATTTGATATGGTAACAGCTGTAATGTTAATAGTAGTAACCACAATTAGCGGGTTAG TTCATGTCTATTCTACAAGTTATATGAGGGAAGACCCCCATTTACCTAGATTCATGAGCTA TCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAATTAT TTATTGGTTGGGAAGGTGTTGGTTTATGTTCTTACTTATTAATTAACTTTTGGTTTACCCGT ATACAAGCTAACAAGGCGGCAATTAAGGCAATGTTAATAAATAGAATAGGAGACATAGG ATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGATTACTGTAGTTTA TTCCCCGCTTTATCACCATCTTCAGCTTGTACTTGGATTTGTATATTACTAACTATAGGGG CCGTAGGAAAATCTGCCCAATTAGGGTTACATACTTGGTTGCCCGATGCTATGGAGGGTC CCACACCTGTTTCGGCCCTAATTCACGCAGCAACAATGGTAACAGCAGGAGTATTTTTAA TCATAAGATCAGCTCCTCTTTTTGATTACTCTCCAACTGCAACAATTATTGTGGGTTTAAT TGGCTCCTTAACTGCTTTCTTTGCAGCCACAGTAGGATTAGTCCAATCAGATATAAAAAA AGTTATTGCTTATTCTACTTGTAGTCAACTAGGATACATGGTAATGGCTTGTGGTACTTAT AGCTCTCTAAGTAGTTTATATCACCTACTAACTCATGCTTTCTTTAAGGCCTTATTATTCTT AGGGGCAGGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGG AATAATCCGGGGCTTACCTCTAACATATGTATTAATGTTGATTGGTTCATTGTCTTTAGCT GGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATATTAGAATTAACTTATAATA GTTATTGTTTAATATCTATTTATTGGTTAGCTTCAATTACAGCCTTCTTAACTGCTTTTTAT TCATTCCGATTAATATACTTAAGTTTTGTGGCTAAGCCTAATTTAACACGTATAAGCGCAC AGCACTTACAAGAAGCTGATTGGAACTTATTGGGTCCTTTATTAGTATTAGCAATAGGGA GTATCTTAGTTGGTTATTTCGCTCAAAATATGGTGTTTGCGCCAGGTATACGTCCCTTACC GCTTGTGCCCACAATAGTCTCTTTAGCACCAGTTATTATGTCCGTAACAGGGATATTACTA GTGTTTATACTTCGTCCATATATTATCTATTATATTACACGTCCTAGCATATATGGTTTCTT ATTTTATGCCTGGGAGTTTAATCAAATAGCAAATTATTATATTGGAAGCACAGTTTGGAA GTTTGGCCATATTGTCTCTTATCGTACTATAGATAGGGGGATTTTAGAGATTTTAGGCCCC ACTGGAATAGCCCAATTCATGGTTGATAGAACTAAAGAGTTAAGCAGTTTACAATCTGGT TTATTATTTAATTATGCATTAATGATATTAGTTGGAACAGCTATTGCACTTAAGTACTTAG TCCTAATTTAGACGTATGAAGAAAACCAGAAATTTTTATATAACTTATTGTAGATGAATA TTAGCTTTTTTATTGTGCCACCCTATAATATTTAGAGTAATAGGTGTAGTTATATGTGTGTT aATGTTTATAGTTGCAATAATGATACATCGTATGTATTTAGTCGGCATAATGGGCGGCTC ATGCGGGAGTATACCCCCGCCGAGTTTGCGGCGAGCAACTGGGTAGCGGACGCTGAGGT TCTATAATTATGATATTAGCTAGTGTTATAGGCTCTATCTTAATAAGTATAATAATAATAG CATTAATTCCAAGGGAAAATAGTATGAAACTACGCCAGCAAGCGTTAGAGTGGTCTCTGA TTACATTTGCTCTTTCTATTTTATTATTAGTTAACCTTCATCAAGAGGCTCAATTTCAACAG ATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCTATATTGTTTG CTATTGACGGGATCTCTATATTTTTTATTGTATTAAGTACTTTATTAACACCAATTTGTATT TTAGTAAGTTGGAATAGTATTAAGTTTCTTCTCAAGGAGTTTATTATGTGCCTTTTAGGTA TGGAATTATTATTAATTGGGGTATTCTCAACATTAGATCTGTTAATATTTTATGTGTTATTT GAGAGCATATTAATACCTATGTTCTTAATAATAGGAGTATGGGGAGCTCGGGCAGAGAA

GATAAAAGCTGCCTATTATTTCTTCTTTTATACTTTAGTTGGTTCAGTATTAATGTTACTTA GCATAGCGGTTATTTATAGGATAACAGGTACAACTGACTATTTATCTTTAACTAACATCСА GATTGATAGTAACATTCAAATTTGGTTATTTATAGGTTTCTTCCTTAGTTTAGCAGTTAAG ATACCAATGATACCCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCTCCTGTAGCTG GTTCAGTGATTCTAGCTGGAATATTATTAAAATTAGGGGGCTATGGATTCATTCGATTCGC TTGGCCCCTTTTCСССGAAGCAACAGAGTATTTAGCGCCAATCATACTAACGTTATCATTA ATAGCAGTGATATATGGGAGTTTAACTACTTGTAGACAGGTAGATGCGAAACGTTTGATA GCCTATTCCTCGGTAGCTCATATGGGAATAGTGACAATAGGTTTATTTACTCATACGATGG AGGGCTTAATAGCCTCCATATTCTTAATGATAGCTCATGGAGTGGTTAGCCCCGCTTTATT TATAGCAGTAACGTTGCTCTATGAGAGGCATCATACAAGGTTAATTAGATATTATAGGGG AGTAGTTATGACTATGCCTCTATTTTCTATAATATTTATGGTGTTTACTTTGGCTAATATTG CTGTTCСTCTTAGTTGTAACTTTGTTGGAGAGTTTTTATCCTTAGTAGCTGCTTTTTCTACT AGTACATCATTAGGTATTCTTACCTCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTAT ATTTATATAATAGAATTTGTTTTGGGCAACTTTCTCCATACTTAATATTTTCGAGAGATAT TAATAGACGAGAGTTTAATGGGCAATTACCGCTAATAGTAGCTATTGTATTATTGGGGAT AGTTCСАTACCССTTAATCGAGTTAGTTCGTGTATGTTTACCTAGATTTTTATAATTTTCCT CTTTACTGTACCTACTTGGTTTATATGTGTGTATATTTATTTTTAATAGTGGTAGGGGCAG GAGTTGAACCTGCATAATCAGATTATGAGTCTGAGAACTTACCGTTAGTTGACCCTACAA GCTGAGCTTAGCTAAGCACTATGTACCATGGTCGGGCTAAGAGCCCCACCAGTAAATACA TACATATAAAAACAACCAAACTACATCTACAAAATGCCAATACCAACTAGCAGCCTCAA AACCAAAATGATGATGACGAGTATAGTGATAACCTATTAGTCTAGCTAAACATACAGTCA AAAATATAGTTCCAATTATAACATGAAAACCATGAAAACCTGTGGCCATAAAAAAGGTT GAACCATATACGGAGTCTGAGATTGTAAAAGGCGCTTCGTAATACTCCATAGCTTGTAGG GCTGTAAACTGAACCCCAAGTATTACGGTACAAGTAAGTGATTGTATGGCTTCTAATCTTT GTCCGCTAACTATGGCGTGATGTGCCCATGTAACTGTTGCTCCTGAACTAAGTAATATAG CTGTATTTAATAGGGGCACAGAAAATGGGTCTAACACTTCTATACCAACAGGAGGCCAAA CAGCCCCCAATTCTATAGTGGGAGATAAACTACTGTGAAAGAAAGCCCAAAAGAACGCA AAAAAGAAGCAAACTTCAGAAGTAATAAAAAGGATCATACCATATCTTAATCCTCTTTTT AСТСТTTGAGTATGGAGTCCTTGAAAAGTGGCTTCTCTAATAACATCTCTCСАССАAACAA ACATTGTTAATATTAATACTATTGCCCCTAAATACATTATCCATGTATAACTATAATGAAA ATATAATACTGAGCCTACTGTAATCAGTAGTGCCCCAATTGCCCCTGTATAAGGCCATGG ACTAGGATCCACTAAATGATAAGGGTGATAAGCCTTACTCATGCTCCCCCGCGGGGAATC GAGCGGGACTAATACTCCTACCCAACAATTATTATAAGTATGGGTTAATGTAAATTTAGA GTATCATTTATGTATATGGTAGTTAACAGACAAAATACATATGCTTGAATCAGAGCCACG GCAATTTCTAGTATAGTTATAAAAACCATTACTAATATTGGGGCTAAGCTTAATACTAAC ATTCСАТТАСТАATCATTGCAAACCCAAAACTTGCTAATATAGCAAATAAAAGGTGCCCA GCCGATAAATTAGCAGCTAATCGAACACCTAAAGAGACTGCCCGGGAAAGATAGCTAAC TGTTTCAATTATAACTAATAGAGGGGCTAATAATAAAGGAGCCCCAGTAGGCATCATCAT TGAGGCAAAGTTCCAACGGTATTGTGTTATCCCCAATATTGTTACTGCTATTAAAATAGAT AAACTTAACCCGAAAGTAACAACAATGTGGGCAGTTGGAGTAAATACATAGGGAAATAG ACCTAACAGATTTAATCCAGCAATAAACGTAAATAGGGTTATAATAAGAGTAAAATATTG AGTTCССTTATTAGCTGTAGAATCTTTTACTAATCCTAAAAAGTGGGTATAAAGAATCTCT TGTATGGCCTGCAATCTTGTAGGTATTAATTTATATGAACAACTTCCTATTAATATTACAC TAAATAGGATAAGCATCATAATAGAAGAATTAGTAATTATCCCCCCAATTATCCGAACTA CATTAAATTGATCAAAGAAAGAAGCTGACATATTGAATATATGTAGGAATGGGCCTATCT GCGGAGGATATCTTGTAGTATAGCATATGCTCGATTAACCCCGAGTCCCTTAATAGGGGC TGCССССТСТTССТGTAGTATACTTCTTATACGTAAATTATTTTGAATTTTAGGTAAAATA AATAAACTCATAATACTATAAAGTGCTAACAAGATTATTAATGTCCAGCTATATTGAGTT AAATAAGCGGTTATATCTAAGTGAGGCATTATTCGATGATTAAAAGATCTCTAAAGATCA TCACATAATGAAGATAGCCAGCTGATATATTTATCCATGCTAACGGCTTCTATAACAATG GGCATAAAAGAGTGATTAGCGCCACATAACTCGGAACATTGACCATAAAATAATCCCGG TCTTTTAGCTAAAAATCCGGTTTGATTAAGACGTCCAGGCACAGCATCCATTTTCATAGCT AATGAAGGTACAGCAAATGAGTGAAGCACATCTGCCCCAGTAACTAAAACTCTTACATA AGTATCAACAGGAACAACCATTCTATTGTCAACCTCTAATAGTCGGAGATCGCCGGGTTC AAGGTCACTTGTAGGTATCATGTAAGAATCAAATTCTAAGGTACTATCTTCACCTAAAGT

AGTTTGATAGTCTGAATACTCATAAGACCAATACCATTGATGACCTATGGCTTTTACTGTC ACACCGGGTTCTACTATCTCATCCATCAAATAAAGTAGTTTCAAAGAAGGGAATGCTATA AACACTAATATAATTGCTGGAATTATAGTCCAAACAATCTCTATTGTAACTCCTTCTATAA GATAGCGATGATAAGCTTGGCCTGTTAATCCTCTTATAATTAACCATAATACAGCTGTTAT AATAATAATTAAAATAAACATAATTTGGTTGTGAAGAAATAGAATCTCTTCCATAACAGG ACTAGCAGCATCTTGGAAGCTTAGTTGAAACGGCTCAGCCGCGTCACGTAGGAGCGAGG ССТСТАATAATGCATTAAATGGAGTTTTCATTCTTСTCTAGСССТGTTACTTTGCTGACAC AСССАAAAGCTTTCССАATTCGTATACGCCCAGAGTGTTCTTACCTACTTTAGATTACTTT TAATCTAGAGTAAGC

Primnoa resedaeformis mitogenome sequence

ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTAT ATTTAATATTTGGTGCTTTTTCTGGGATGGCGGGGACAGCTTCGAGTATGTTAATACGGCT AGAACTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAATGTAATTGTAAC AGCACATGCCTTATTAATGATTTTCTTCCTGGTAATGCCAGTAATGATTGGAGGATTCGGA AATTGGTTTGTACCACTTATGATTGGTGCACCCGATATGGCCTTTCCTAGATTAAACAATA TTAGTTTCTGGTTATTGCCCCCTGCTCTAATACTATTAGTTGGTTCTATGTTTGTGGAACAA GGGGCAGGTACAGGTTGGACCGTTTATCCCCCACTAGCAAGCATACAAGCCCATTCAGGG GGAGCAGTGGATATGGCTATATTTAGTCTACATCTAGCTGGTATATCTTCCATTTTAAGTT CTATCAACTTTATAACTACTATAATTAACATGAGGGTTCCTGGTATGAGTATGCATAGATT AССТСТАTTCGTATGGTCTGTATTAATTACAACAATATTGTTATTATTATCTTTACCAGTGT TAGCTGGTGCAATTACAATGTTATTGACAGATAGAAATTTTAATACAACATTCTTTGACCC TGCGGGAGGAGGAGATCCTATTTTATTCCAGCACTTATTCTGGTTTTTTGGCCATCCTGAA GTCTATATATTAGTTCTACCAGGATTTGGTATGGTATCTCAAATTATACCCACATTTTCTG CTAAACAACATATTTTTGGTTATTTAGGTATGGTCTATGCTATGGTTTCTATTGGAGTATT AGGGTTTATTGTTTGGGCCCACCATATGTTCACTGTTGGTATGGATGTCGATACTCGTGCC TACTTTACTGCTGCCACTATGATTATTGCTGTTCCTACTGGAATTAAGATATTTAGCTGGC TAGCTACTATACATGGGGGAAGCCTACGGCTTGATACACCTATGTTGTGGGCTATTGGGT TTGTCTTCСTATTTACCATTGGTGGTTTAACTGGAGTTATATTAGCTAATAGTTCATTAGAT ATAGCATTACACGATACTTATTACGTAGTAGCTCACTTCCATTATGTGTTATCTATGGGGG CCATATTTGCTATATTTGGGGGATACTACTATTGGTTCGGTAAAATTACAGGTTATAGTTA TAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTC TTCССССАAСАТTTCTTGGGCTTAGCCGGATTACCTAGAAGATACTCGGATTTCCCTGATG CTTATCAAGATTGGAACTTAGTTAGTTCTTGCGGAGCTATAATGGCCCTAGTAGGAATTAT ATGGTTCATATACTTGTCTTATGAGGCATTAGCAGCCGAAAGACCATTTAAGGGCTGGTC AACTTCGCCTAACTCGTTAGAGTGGTCTTTATCTTCTCСGССТGСТТТTСАТАСТТАТААТG AATTACCGTTTGTCTATCAGCGTAAATTGAGTCATGGGGATGATTTAAATATTATTTCCAC AСТАСТССТTTGAССТTGGGGAGTCTATAAGGCAATGTGTTCTTCTAATACATGCAAGGCC CTGAATAAGGGTCCTACTGGTGAGGATAAAACGGAGATTATCTCGGTTGACGTATTAGAA TAGGTGGGATAGTGGCCCACCTGGTCGAAGATGCGTAGTATAGCCACACTTTCACTGAAA CAAGGGGAAGACATTTTGGCAGCAGTAGAGAATCTTGTGCAATGGGTAAACGCTTGACA CAGGGTTTCACACTGAGGTCTGTCTAACTAAGTGCCAGCAGACGCGGTTAAACTTAGAGG CCCAGTTTTTATTTCGCATTAGGCGTTAAAGTATGTAGTGAAGCATGAGAATAAAGTAAG GCAAACCTCTTGGTAGCGGTAAAATGTTTGAAGCAAGAGTGGAAGTCCGAAGGTGGAGA СТССТТАСТССGTTCATGGCATATCTTCATGAAATACGAAAGCTTGGATAGCAAACAGGA TTAGATACCCTGGTAGTCCTTGCCCTAAACTTATACAATAGCTTTATTAGCAAATAACCTT ATTGTATGCCTGAATACTATGATCGCAAGATTGAAACTCAAAAGGCTTGGCTGTTCACTG TTTGAATCAGAGGAGCGTGTAATTTAATACGATGATCCGCGTGTCACCTTACCTTTCСТТG AAAGCGGACTATCTTTTGTAGGTAGTAGCCGCTCAGGCATTGCATGGCCGTCGTCAGGAT AACAATAAATGTTATCCTTAACCCTATTATGGATTAAGTCAGGTGTCATGGTCTTTATGGA

AAGGGATATTATGCGCTACATTCTCCTATACAATATACACAGTAAATTAGGAGGCGGAGA TTCTCTGAAACGGGAATCTTAAGTAGGATTTGATAGTAATCGGGAAGTAGAGCGTTCCGG TGAATTCTAACCCAGTGTTAGCACAAATCGCCCGTCGTCCCCTTCAAGTTAAGGATACGA GACGCCCCGCTGCGGGGTTATCCCTCCTTTTCGAGAATGGGTAAGTCGTAACATAGTAAG AGTAAGGGAACTTGTTCTTGGGCCAAGTGCGCGTTCAATACGTACTTGGCCGCCCTCCGT AATTAGGATGATGAGTACTATTATTTCAATTATCTTTAAAACGCTTGCAATAATAATACCT CTATTAGTGGCTATAGCTTATTTAACTTTAGCAGAAAGAAAGGTATTAGGGTATATGCAA GCACGAAAAGGACCTAATGTAGTTGGTGTTTATGGAATATTACAGCCTTTAGCTGACGGA TTAAAGTTATTCACTAAAGAGATGGCTATTCCCAATCATGCTAATCTGCCGGTTTATATTG TAGCCCCGATTCTATCGCTTACTTTAGCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCC GGTATTGTACTAGCTGATATTAATGTTGGTATCTTATACATCTTTGCTGTCAGTTCTATAG GGGTGTATGCTATTTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTTAGGGGC TATCAGAGCAGCAGCTCAAATGATTAGCTATGAAGTGTGTATAGGGCTTATTTTAATATC AGTCATATTATGTGCAGGTTCTCTTAATATCACGCAGATTGTTTTAGCTCAAGCCGAAATT TGGTATATAATACCTTTATTTCCCGCTGCTTTAATGTTTTTTGCTTCGGCATTAGCTGAAAC TAATCGGGCTCCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGATATAATGT AGAATATTCTAGTATGTCATTTGCCCTATTCTTTTTAGCTGAATACGGCCATATTATTCTA ATGAGCTGTTTGATAAGTTTATTGTTTTTAGGTGGTTGGACACCTTTCACAGGAATTCTAG GAATGGGTTGCTTAGCCCTTAAAACTACCGCAGTAGTATTCGCATTTGTGTGGGTGCGAG СТТСТТТСССТАGAATGAGATATGACCAACTTATGTATCTATTATGGAAGTCTTAСTTAСС TTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGATGCAGTGCCTT GCTAGCATTTAGGGAGATACCCCGATATTGGGGTTGATGTACACAAGTTTCCTGAGCGCA TGCATATGGAATCACCAAACAAAATGTTACGAATAAGAACTCAACATCCACTACTCTCTA TTGTGAATGGGGTACTGGTTGATCTGCCAACCCCTTCTAATATTAGTTATTATTGGAATTT CGGTTCTTTGTTAGGACTTTGTTTAGCTATTCAATTGATTACCGGAATATTCTTAGCTATGC ATTATTGCCCTGACGTTAGCTTAGCTTTTGACTCAATTTCCCATATTTTAAGAGACGTTAA TTATGGTTTTATGTTAAAGTATATTCATGCTAATGGAGCTTCATTATTCTTTCTCTGTGTAT ATATACACATGGGGAGAGGACTCTATTATGGGAGCTACATGAAAATGGACGTTTGGAAT ATAGGGGTTATAATTTACGCAGTGATGATGTTAACAGCCTTCTTAGGGTACGTATTACCTT GGGGACAAATGTCCTTTTGGGGAGCCACAGTTATTACTAACTTTTGTTCTGCTATACCCTA TATAGGAACAGATGTTGTTCAGTGGATTTGGGGAGGATTTAGTGTATCTAACGCGACTCT TAATCGTTTCTACTCTTTACATTATCTTTTTCСTTTTCTTATAGTTGGATTAGGCGTATTAC ATATTCTTAGTTTACACACAGCTGGGTCAAATAATCCTTTAGGGATTGACTCTAATATAGA CAAAGTTACCTTTCATGTTTATTATACTTATAAGGATCTGTTTGGTATGATGGTACTTAGC ACTATTTTAGTTATATATTGTTATTTTCTGCCTAATATATTAGGTGATCCTGAAAATTTCAT TCAAGCTAATCCTTTGGTAACTCCTGTTCATATACAACCAGAATGGTACTTCTTATTCGCA TACGCCATACTACGCGCTATACCCAACAAGCTTGGGGGGGTTTTGGCTATGGCATTTAGT ATTTTGGTGTTATTTTTATTGCCTTTTGTTCATACTAGTAAATTAAGAGCTTTAACATTTAG GCCTTTAGGTAAAATAGCATTTTGGTTTTTAGTGGCTGATTTTATTTTATTAACTTGGTTAG GAGCTAATGCAGTAGAGGAGCCTTATATTATGGTTGGTCAATTTGCTTCTTTATATTACTT TTGCTACTTCTTAGTATTGATCCCCTTGTTAGGGTGGGCTGAAACCAAATTGCTTCGCATG AAGTAGTATAAGAGATAGTATAGGTCATTGTTGGCCAAAGTGAAATATGAATAGTCTATT TATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACCCCGAATCCT GTTTATTCAGTATTCTGGTTAGTTATTGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTT GGGATTAGACTATATAGGCTTAATATTTATAATTGTCTATGTAGGGGCTATCGCTATTTTA TTCCTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTCTCAAGATCACTCGC ATTTTTTACCTGTAGGATTATCTGTTATATTCCTATTTTATAGTTTACTAACCAATAGCCCT AAATATATCAACAATCCTGTTATAGGATCTAAAACTAACATTGAGGCAATTGGAAGTCAT CTTTATACAACTTATTATGAATTAGTATTAATTGCTAGTTTGGTGCTACTAGTCGCTATGA TAGGGGCTATATTATTAGCTAAGCAGCCAAATTCACCTTTTTTATATAATTCCCATAGTGA ATCATTACGTAGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAGGTGCC TTCTGGCCAAGTGCTTACGCACGTCTCCGCTTAGGAACATGGAGTTCAAAGGAATACTAA TACTACTTATCGTTAGCGGGACATTATCAATTCTAATTTTAGGGGCATCTTATCTATTAGG ATATAAACAACCCGATATGGAAAAAGTGTCAGTCTATGAATGTGGGTTTGATCCTTTTGA TAACCCGGGGAATCCCTTCTCCGTTAGATTTTTCTTAATTGGTATCTTGTTTTTAATATTTG

ATCTTGAAATATCTTTTTTATTTCCCTGGGCTGTCACATATATGGGTTTACCTTTATTTGGA TACTGGGTTGTTATGTTATTTTTATTTATCTTAACTTTAGGGTTAATTTATGAGTGGATAGA AGGAGGCTTAGAGTGGGAAAACTAGCCTCTAATTGGTATAGCGCATGTCCTATTTAATAT TATCAATTGTCATCTTATTAATCGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAAT TATTATGCTAATGTGTGTAGAGCTAGTTTTACTGGCTTCTACTATTTTGCTTCTATTTGAAT CTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTTGCGATTGTTATTCTAACTGTCGCAGCT GCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAATTATTACCGTTTACGTGGTACAATTG CTGTTCGAGCCTTAAATTTATTAAGAGGTTAACTCCTAATTAAAAATGAACCAGATCCCT ATGCAATATTTCAACTTAGCGGAGGAGAATTATTCTAAGTATGGGTTATCAGTAATCCAG CTTATCCAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCCGATACTTCTAGTAGGCAAC AAGCATACTCTCAAGCTGAGTTATTAGCTGAATCATCCATGCGAAGTCAGCCTTTGGGGG TAACGCCCCCCATTGAACAAGTTGCCTCATTACTTGATATGAGAATAATATTGCCCGGTA AAAGATCTTTGCTTCAAATGGGGTTTCCAATTTATTCССTTACTACTCATCTAAGCACCTT ATTGGATAAAGGTTGGACTGTTATAGTTATCGATGAATTAGTCACTGGTAAATCTGGGCC AAAACAACGTGCAGTATCTCAGGTTTATTCTCCTAGTTGTAATTTAGAGGACTGTTCGGA GTTATCTTATGTGTTATCAATTTATTTTTCGCAAGACGACTTACTAGGTATTACTTTATTTT CAGTTATGAATGGGCATAGTATAATGTTTCCTGTCTCTTGGACGGACAGGGATAAAGTAG CCCGATTATTAATCAATTATCGTATTAGAGAAATAGTAATTTGGGCCAACTCGGGAGCCG GCTCAGAGATTTTAATAAATAAAATATATAATTTATTAATTGGTTGGAATTTATTTCCCTC TGAACCCAATGCTAAAATAGAGGTTATGGGAGAAGCACTAACCAACTTGCCGTGTTATTT ATCTTATAGGTACGAAAATAATAATAAGGAGTGGCTTTTGCTCCATATTTATATGGGCATT AATGCAGAGTGGTTTAACAAAAATTATCAAGAATATACCCTTAGTAAGATATTTCAAAGT ACTTGAACAGAAAATGTTAATCAGGTAAATCTAATTAGCCTTTTAGGAGTATTACAATTT ATTAAAGATCGAAATCCTAATCTTATTAAGAATCTTCAACTTCCCGAATGTTATAATTCTG TTGTTAGCCCCCTAAATTTAATACTATGTAATCGAGCAGAATATCAATTGGACTTATTACC TAAGAGGGGGAAACTGGGTGGTTTACTTAGTCTGGTTGATTACTGTTCTACTGCAATGGG TAAAAGACTACTCAAATTTCGACTTCTTAACCCTATTACAGATCATTCTGAATTAAATCTT CGTTATGAGGAGATTGCTACATTTAAACAATTACTTGACAAGAAAATATTTGACAATTCC GAGTTAAAACACATTAAAGATTTATCTTCTTTACATCGTCAATGGGCAATATGTGCCTCGA GTGATACTACCTTGCCACCTAAAAAGTTAAGTCAAATCTATCATTCTTATTTGTTTGCTAA TCAACTAATAAGTAAATTAATAAATAATAAATGAATTAATATTCAATTACCCCCTTCAGTT GGGCCCCAATTAGAATTGCTAATTGAGGAAATAGGCCGAGTTTTCCAGGCAGATAATCTT TTAGGTGATTTTAAAGACGTATTACAGCCAACTGATAATCTAACTAACTTCTTTGTACAAC AACAAACTTTAAAGGCCCAACTTACAGAGTGGGCGGAACAGACTTCAAATATTGTGTTTC AAGATACAATTTCTATCAAAGCTGAATATTTTAATAAAGAGGGTTATGССTTCTCTATTTT ACCTAAAAAGTTAATCAAGTTAGAACAATATCTGACTAATGCCTCTATATCTGATAATTC AATTATGATATTGGGTAAAAGAGGAAGCCACCATATAATTACTAGTCCCGCCATTCATAA AGTATCAATCGAATTAAATTTATTAGAAGAGCAAATTAATACTTATGTCAAACAGACTTA TAACCGGGAACTTAAAAGATTATATTTCAGTTATTCTGAGTTGTTTTTGCCCTTAGTAAAT ATGATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATTGCGGCTATTAAATTCAATTATA TTAAACCTTGTTTAATACTAGCTAAATCCCAACAAACCAAGGGTTTAATAGAAGCAATTA ACCTACGACACCCATTAGTAGAACAGTTAAACACTCAAGAAGAATGTGTAGCTCATAATA TTAGTTTAGAAGATAAGGGGATGTTAATATTCTCAGTAAATGGTGCAGGCAAATCTACTT TACTTAGAGCAATTGGAGTTAACGTAATCTTAGCTCAAGCAGGAATGTATGTAGCTGCAG ATTCATTTAGGTTAAGACCTTATCATTATTTAATTACTCGGATTTTAGGGGGAGATGATCT TCATAAAGGCCAAGGTACTTTTGAGGTCGAAATGAGAGATCTTTCAACTATATTAAAGCT AGCTAATTATAACAGTTTGATATTAGGGGACGAAATTTGTCATGGAACAGAAGTTAGTTC AGGAGCAGCAATATTAGCTGCAACAATTGAAAGATTAACAGCTGCACAAACTAGTTTCGT TCTTTCTACTCATCTACATCAAGTTTGTTCTTTAATTGATTCACCAGTTCGGTACTATCATT TATCTGTTATTCAACAAGAAGATTTGGGGCTAATTTATGAACGTAAATTGAAACCTGGAC CAGGGCCCTCTCAATATGGCATTGAAGTTATGGGCCACATAATTAATGATAAAAAATTTT ATACAAGTGCTTTGAAATATCGTAAACTTATTAATTGGGAGCCGTCATCCCGAAGTGAGC CTAATTCTTTAACAGTTTTCCGTCCTTCTAAATATAATGTTCGAGTTTTTATTGATTCGTGT GAAATATGCGGAGCTCCAGCGGAGGCTATCCACCACATTCAACCTAAGAATCAACTTAAA AGTCAACCCAGTAAATTATGTAATAGAAGGTCTAACTTGGTGCCAGTTTGTTCAAGCTGT

CATTTAGATATTCATAGAAATAAGATCTCTATTTTAGGTTGGAAGGGGACCCCAGGACAT AAGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGATAGTGGAACTGAGTAAAGTCTA GGGTCTATCGGTAAGGACGTGAAATACGAAATAACAAGGGAGAGACTTTGAACTTGTTT ATCCTAACTGAAAAGGGTGAATTGAATAGTTAATTGAAACATCTTACTAGACTATGAGGA ATACATCAACTGAGATTCCGTGCGTAGCGGCGAGCGATAGCGGAGGAATTGTCTCAAAC AGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGT ACCGTGAGGGAAAGACTTAGAATTGGTTCTAAAAGTTACCTTTTGCATAATGGGCCTGCA AGACAAAATTTGGCAAGCTTAAGTAGTAAATGAAGGCGTAGTGAAAGCAAGAGAAAAAC TCGTCAGTCAAATTACCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATGCTGACC GAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCG AACTTGGATATAGCTGGTTCTCTACGAAACTTATCTTAGTAAGGCGCCCCACGTTGATTCG CCCCCAAACCCGGGGGCTTGAATTACTGGTGTAGTAAGACTATGGCGATAAGGCCTCTAG TCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAA GAGGGTTCAACTTAGACAAACAGGAAGTAGGCTTGGAAACAGCCATCTGTACAGGAAAA CGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAATCTGTAAC TGAAATTCTGGAAGCCAGATGGCAACCGTAAGGAAGTATCAACTGGCTTGGTAGTAGAG CGTTCTGTAAGCACGGTACGTGCACACCTCGTGAGATAAACAGAAGTGATAATGCAGGC ATGAGTAGTACAAGATTCATTCCCAAATAAATATATACAGCTTCTAAGGGCATTACGCCC GATGGATTATAATTCTTGTACCTGTTCAGGAAAAATATTATGGTACGAAGTACCTTCAACT GTTATTTATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGAACTCGGCAAAATAAGAT CTCGACTGTTTACCAAAAACATAGCTCTCTGCTAAAGGCTACTGAAGTATAGAGGGTGAA TTCTGCCCAATGGTTGTATAGTGAAACTGAGGACTAACATCTAAAGCGAAACCCAACTGA ATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAATAGCCAATTAATTGTTGG CGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGAAAAGCCGATGAAATTAT AGTTGTAGTGAAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACT GGATACCGATAACGTTGACTTAAAATGATCGATACTAAGTATCCTAATTTTGAGTTAATA ATTTTTGTTGGTAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGA GCTTATGGTATACAAAGCTAATCACATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGG CACAAGGACGACGTCCTATGTGGGCGATAATGACCCGATATGATTGTCCAAAATAAATAT CGAAAGCGAATAAAAGCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATC GAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCTGGTGCTGTAGAAGGTACC TTAGGTTGGTCTGTTCGACCATGAAAACCGTACATGATTTGAGTTCAGAGCGTGGTGACA CAGCTCGGTTTCTATCTACAATGTTCAATCCCAACTTTTCTGAGTCCTAGTACGCAAGGAA TGGTCTCAGCGATGCTCGACTATATAGGCCCCATCGACGTAATCAACTTCTGGCTGCTGC AAAGAAGGAAAACAAAGGGTTTAGGGATTAATAAGGTGCACTTTCGTGGCACCTTCTCAT ATACCATGTGGGTGCATAGCCCCTGGTATACTATGGAATTAACACTAGGGCTCATCATAC TAATAGTGTTGACGTATGGATTAAAGGCCCCGACTTTAAGATTAGCTATGCTACTTGCGG GTGCTGTGGGGGCTGCTGGGCTATTAGCTGAGCCCCATCTACTATGTTGGACACAGGCTA TTAAGATGTTGGTGATGCTAAGTGGATTAGCTATACTATGTATGCTGGACCATCGAACAT CGCATCGATCAAGCTCTTTATTGATTTTATTAGTGATCTTAGGTAATTTATTACTTATTGGG TCAACAAATTTAATTTCTATATATTTAGCATTAGAAATGCAAACATTATGTATGTTTATCT TAGTGGCTTATAATAAAAACTCATTGTTATCGGCAGAAGCTGGGCTGAAATACTTCGTGT TAGGGGCACTATCTTCGGGGTTATTCCTGTTTGGTTGCGCCTTAATTTATGGCTCTACAGG AGAACTTGAACTTCAATTTATTCGTATGAGTATAGTATCTTATGGAACATTAGCTGGTAAG TGTCTTATTACTATTTCATTGTTATTTAAAGTATCTGCAGCCCCGTTTCATATGTGGGCCCC CGATGTCTACGAAGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATTGTGCCTAAATTG GGCGTACTAGCTATTATAGTACAAATAGGCTTAAATGAAATGGGGCTATTAATAGCTGGA TTAATCTCTTTGATTGTCGGGGCTATAGGAGCTTTAAATCAAACTCGAATAAAAAGACTA TTAGCTTATAGTGGGATAAGCCATATGGGGTTTGTGTTACTTGGAATAGCTATTGGGTCTA TAGAAAGTCTTCAGGCGAGTTTAATGTATATAGGTGCCTATATAATAACTCAAGTATTAC TTTGGTCTATAGTACTAATTATATCTCCTAAAAGAGACATGCTTATTGAGTTTAGTGGTGT TTCAAGATTAAACCCAATGTTAGCATTAGCATTAGCTACAGGTTTATTATCTACTGCAGGA ATTCCCCCTTTAATTGGGTTTTTGACTAAATGGTATATTATCTTAGCAGCTGTTGGTCAAG GCTACTATCTTAGCGCTTTAATAGCTTTAGTCTGTTCCGTGATAGCTGGAGTTTATTACCTT AGATTAGTTAAAATTATGTTTTATCAACCTTTGTCGACGCCTTTAGTAATAACAAATATAC

TAAATTCTCCACGTGGTAATGTAGCATCGGAGAAAACGGGTTTAGGCAAAGCAATATTAA TAGGGGCAAGCTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTCTTTCAGTT AACACATTTGATTATTTTAGATTTATTCCCATGTATCTTCTAGTTATATTAATACCGTTACT AAGTGCAGTCGGAAGCGGACTAGGGGGTCGCTATCTAGGCAGAAAGGGGGCTGGCTTGT TAAGTTCTGTGTTGGTTCTCGCCAGTAGTTTCCTCTCTTTTGTCTTATGTTATGAAATCCTT ATTAATGGGTCTACAGTATATATAGAGTTAGGCAGATGGATAGAGTCCGATTTACTAATA ACTAATTTTGGTTTACAATTTGATATGGTAACAGCTGTAATGTTAATAGTAGTAACCACAA TTAGCGGGCTAGTTCATGTCTATTCTACAAGTTATATGAGGGAAGACCCTCATTTACCTAG ATTTATGAGCTATCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATT ATGTGCAATTATTTATTGGTTGGGAAGGTGTTGGTTTATGTTCTTACTTATTAATTAACTTT TGGTTTACCCGTATACAAGCTAATAAGGCGGCAATTAAGGCAATGTTAATAAATAGAATA GGAGACATAGGATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGAT TACTGTAGTTTGTTTCCCGCTTTATCACCATCTTCAGCTTGTACTTGGATTTGTATATTATT AACTATAGGGGCCGTAGGAAAATCTGCCCAATTAGGGTTACATACTTGGTTGCCTGATGC TATGGAGGGCCCCACACCTGTTTCAGCCCTAATTCACGCAGCAACAATGGTAACAGCAGG AGTATTTTTAATTATAAGATCAGСTССТСТТTTTGATTAСТСТССААСТGСААСТАТТАТСG TGGGCTTAATTGGCTCCTTAACTGCTTTCTTTGCAGCTACAGTAGGATTAGTCCAATCGGA TATAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAACTAGGATACATGGTCATGGCTTGT GGTACTTATAGCTGTATAAGTAGTTTATATCACCTACTAACTCATGCCTTCTTTAAGGCCT TATTATTCTTAGGGGCAGGTTCAATAATTCATGCTCTTCTAGATGAACAAGATCTTAGGAA GATGGGGGGAATAATTCGGGGCCTACCTTTAACATATGTGTTAATGTTGATTGGTTCATTG TCTTTAGCTGGTTTTCССTATTTATCTGGATTTTACTCTAAAGATTTAATATTAGAATTAAC TTATAATAGTTATTGTTTAATATCTATTTATTGGCTAGCCTCAATTACAGCCTTCTTAACTG СТТTTTATTCATTCCGATTAATATACTTAAGTTTTGTGGCTAAGCCTAATTTAACACGTATA AGCGCACAACACTTACAAGAAGCTGATTGGAACTTATTGGGTCCTTTATTAGTATTAGCA ACAGGGAGTATCTTAGTTGGTTATTTTGCTCAAAATATGGTGTTTGCGCCAGGTATACGTC CСTTACCGCTTGTGCCCACAATAGTCTCTTTAGCACCAGTTATTATGTCCGTAACAGGGAT ATTACTAGTGTTTATACTTCGTCCGTATATTATCTATTATATTACACGCCCGAGCATATAT GGTTTCTTATTTTATGCCTGGGAGTTTAATCAAATAGCAAATTATTATATTGGAAGCACAG TTTGGAAGTTCGGCCATATTGTCTCTTATCGTACTATAGATAGAGGGATTTTAGAGATTTT AGGCCCCACTGGAATAGCCCAATTCATGGTTGACAGAACTAAAGAGTTAAGCAGTTTACA ATCTGGGTTATTATTTAATTATGCATTAATGATATTAGTTGGAACAGCTATTGCACTTAAG TACCTAGTCGTAAATTAGAAACAGGATGAAGGAAAGTTCTTTTCCAAGTCCGAAGTAATC TCCTAAGATAGGAGAAAACTAGCCGCAGGGTAGTGGTTGGTAATTATATATTAATATGAT ATTAGCTTGTATAGTGGGCTCTATATTAATAAGTATAGTAATAATAGCATTAATTCCAAG GGAAAATAGTATGAAACTACGCCAGCAAGCGTTAGAGTGGTCTCTGATTACATTTGCTCT TTСТАТТTTATTATTAGTTAACCTTCATCAAGAGGCTCAATTTCAACAGATAATAGAATTC AATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCTGTATTGTTTGCTATTGACGGGA TCTCTATATTTTTTATTATATTAAGTACTTTATTAACACCAATTTGTATTTTAGTAAGTTGG AATAGTATTAAGTTTCTTCTCAAGGAGTTTATTATGTGCCTTTTAGGTATGGAATTATTAT TAATTGGGGTGTTCTCAACATTAGATCTGTTAATATTTTATGTGTTATTTGAGAGCATATT AATACCCATGTTCTTAATAATAGGAGTATGGGGAGCTCGGGCAGAGAAGATAAAAGCTG ССТАТТАТТТСТТСТТTTATACTTTAGTTGGTTCAATATTAATGTTACTTAGCATAGCAGTT ATTTATAGGATAACAGGTACAACTGATTATTTATCTTTAACTAATATTCAGATTGATAGTA AСАТTСAAATTTGGTTATTTATAGGTTTCTTCСTTAGTTTAGCAGTTAAGATACCAATGAT ACCTTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCCCCTTTAGCTGGTTCAGTGATT CTAGCTGGAATATTATTAAAATTAGGGGGTTATGGATTCATTCGATTCGCTTGGCCTCTTT TCCCCGAAGCAACAGAGTATTTAGCACCAATCATACTAACGTTATCATTAATAGCAGTAA TATATGGGAGTTTAACTACTTGTAGACAGGTAGATGCGAAACGTTTGATCGCCTATTCTTC GGTAGCTCATATGGGAATAGTAACAATAGGTTTATTTACTCATACTATGGAAGGCTTAAT AGCCTCTATATTCTTAATGATAGCTCATGGAGTGGTTAGCCCCGCTTTATTTATAGCAGTA ACATTGCTCTATGAGAGGCATCATACAAGGTTAATTAGATATTATAGGGGAGTAGTTATG ACTATGCCTCTATTTTCTATCATATTTATGGTGTTTACTTTGGCTAATATTGCTGTTCCTCT TAGTTGTAACTTTGTTGGAGAATTTTTATCTTTAGTAGCTGCTTTTTCTACTAGTACATCAC TAGGTATTCTCACCTCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTATATAA

TAGAATTTGTTTTGGGCAACTTTCTCCGTACTTAATATTTTCGAGAGATATTAATAGACGA GAGTTTAATGGGCAATTACCGCTAATAGTAGCTATTGTATTATTGGGGATCGTTCCATACC CCCTGATCGAGTTAGTTCGTGTATGTTTGCCTAGATTTTTATAATTTTCCTCTTTCCTGTAC CTACTTGGTTTATATGTGTGTATCTATTTTGTTTTTAATAGTGGTAGGGGCAGGAGTTGAA CCTGCATAATCAGATTATGAGTCTGGGAACTTACCGTTAGTTGACCCTACAAGCTGAGCT TAGCTAAGCACTATGTACCATGGCGGGCTAAGAGCCCCACCAGTAAATACATACATATAA AAACAACCAAACCACATCTACAAAATGCCAATACCAACTAGCGGCCTCAAAACCAAAAT GATGATGACGAGTATAGTGATAACCTATTAGTCTAGCTAAACATACAGTCAAAAATACAG TTCCAATTATAACATGAAAACCATGAAAACCTGTGGCCATAAAAAAGGTTGAACCATATA CGGAGTCTGAGATTGTAAAAGGCGCTTCGTAATACTCCATAGCTTGTAGGGCTGTAAACT GAGCCCCAAGTATTACGGTACAAGTAAGTGATTGTATGGCTTCTAATCTTTGTCCGCTAAC TATGGCGTGATGTGCCCATGTAACTGTTGCTCCTGAACTAAGTAATATAGCTGTATTTAAT AGGGGCACAGAAAATGGGTCTAGCACTTCTATACCAACAGGAGGCCAAACAGCGCCCAA TTCTATAGTAGGAGATAAGCTACTATGAAAGAAAGCCCAAAAGAACGCAAAAAAGAAGC AAACTTCAGAAGTAATAAAAAGGATCATACCATATCTTAATCCTCTTTTTACTATTTGAGT ATGGTGCССТTGAAAAGTGGCСТСТСТААТААТАТСТСТССАССАААСАААСАТТGTTAAT ATTATTACTATTACCССTAAATACATTATCCATGTGTAACTATAATGAAAATATAATACTG AGCCTACTGTAACCAGTAGTGCCCCAATTGCCCCTGTATAAGGCCATGGACTAGGATCCA CTAAATGATAAGGGTGATAAGCCTTACTCATGGCTCCCCGGCGGGGAATCGAGCGGAGA CTAATACTCСТAСССАACAATTATTATAAGTATGGGTTAATGTAGATTTAGAGTATCATTA ATGTATATGGTAGTTAACAGACAAAATACATATGCTTGAATCAGAGCCACGGCAATTTCT AGTATGGTTATAAAGACCATTACTAATATTGGGGCTAAGCTTAATACTAACATTCСАTTA CTAATCATTGCAAACCCAAAACTTGCTAATATAGCAAATAAAAGGTGCCCAGCCGATAAA TTAGCAGCTAATCGAACACCTAAAGAGATTGCCCGGGAAAGATAGCTAACTGTTTCAATT ATAACTAATAGAGGGGCCAATAATAAAGGAGCCCCACTAGGCATCATCATTGAAGCAAA GTTCCAACGGAATTGTGTTATCCCCAATATTGTTACTGCTATTAAAATAGATAAACTTAGC CCGAAAGTAACAACAATATGGGCAGTTGGAGTAAATACATAGGGAAATAGACCTAATAG ATTTAATCCAGCAATAAACGTAAATAGGGTTATAATAAGAGTAAAATATTGAGTTCCCTT ATTAGCTGTAGAATCTTTTACTAACCCTAAAAAGTGGGTATAAAGAATCTCTTGTATAGC CTGCAATCTTGTAGGTATTAATTTATATGAACAACTTCCTATTAATATTACACTAAATAGG ATAAGCATTATAAGAGAAGAATTAGTAATTATCCCCCCAATTATCCGAACTACATTAAAT TGATCAAAGAAAGAAGCTGCCATATTGAATATATGTAGGAATGGGCCTATCTGCGGAGTA TATCTTGTAGTATAACATATGCTCGATCAACCCCGAGTCCCTTACTAGGGGCTGCCCCCTC TTCCTGTAGTATACTTCTTATACGTAAATTATTTTGAATTTTAGGTAAAATAAATAAACTC ATAATACTATAAAGTGCTAACAAGATTATTAATGTCCAGCTATATTGAGTTAAATAAGCG GTTATATCTAAGTGAGGCATTATTTGATAGTAAAAGATCTTCTAAAGATCATCACATAAT GAAGATAGCCAGCTGATATATTTATCCATGCTAACGGCTTCTATAACAATGGGCATAAAA GAGTGATTAGCGCCACATAACTCGGAACATTGACCATAAAATAATCCCGGTCTTTTAGCT AAAAATCCGGTTTGATTAAGACGTCCAGGCACAGCATCCATTTTCATAGCTAATGAAGGT ACAGCAAATGAGTGAAGCACATCTGCGCCTGTAACTAAAACTCTTACATAAGTATCAACA GGAACAACCATTCTATTGTCAACCTCTAATAGTCGGAGATCGCCGGGTTGAAGGTCACTT GTAGGTATCATGTAAGAATCAAATTCTAAGGTACTATCTTCACCTAAAGTAGTTTGATAG TCTGAATACTCATAAGACCAATACCATTGATGACCTATGGCTTTTACTGTTACACCGGGTT СТАСТАТСТСАТССАТСАAATAAAGTAGTTTCAAAGAAGGGAATGCTATAAACACTAATA TAATTGCTGGAATTATAGTCCAAACAATCTCTATTGTGACTCCTTCTATAAGATAGCGATG ATAAGCTTGACCTGTTAGTCCTCTTATAATTAACCATAATACAGCTGTTATAATAATAATT AAAATAAACATAATTTGGTTATGAAGGAATAGAATCTCTTCCATAACAGGACTAGCAGCA TCTTGGAAGTTTAGTTGAAATGGCTCAGCCGCGTCACGTAGGAGCGAGGCCTCTAATAAT GCATTAAATGGAGTTTTCATTCTTCTCTAGCССTGTTACTTTGCTGACACCCCAAAAGCTT TCCCAATTCCGTATATACGGCCCCAAGAGTGTTCTCACCTACTTTAGATTACTTTTAATCT AGAGTAAGC

Appendix E

Multiple nucleotide alignments of protein coding and rRNA genes of A. digitatum, P. resedaeformis and all available complete mitochondrial genome

Atp6 gene

Abstract

alcyonium_digitatum_atp6 mnoa_resedaeformis_atp6 sinularia_peculiaris_atp6 narella_hawaiinensis_atp6 paraminabea_aldersladei_atp6 scleronephthya_gracillimum_atp6 dendronephthya_castanea_atp6 dendronephthya_gigantea_atp6 dendronephthya mollis_atp6 dendronephthy__molis_atp6 junceella_fragilis_atp6 keratoisidinae_atp6 echinogorgia_complexa_atp6 euplexaura_crassa_atp6 euplexaura_crassa_atp6 acanellà eburnea_atp6 sibagogorgia cauliflora atp 6 corallium elatius atp6 corallium_konojoi_atp6 corallium_rubrum_atp6 aracorallium_japonicum_atp6 briareum_asbestinum_atp6 stylatula elongata atp6 renilla_muelleri_atp6 calicogorgia_atp6 rev Consensus alcyonium digitatum atp 6 primnoa resedaeformis_atp6 sinularia_peculiaris atp6 narella_hawaiinensis_atp6 cleronephthya_gracillimum_atp6 dendronephthya_castanea_atp6 dendronephthya_mollis_atp6 endronephthya_suensoni-atp6 junceella_fragilis_atp6 echinogorgia_complexa_atp6 euplexaüra_crassa_atp6 acanella_eburnea_atp6 gogorgia_cauliflora_atp6 corallium_elatius_atp6 corallium_konojoi_atp6 corallium_rubrum_atp6 briareum asbestinum_atp6 heliopora_coerulea_atp6 stylatula_elongata atp6 renilla_muelleri_atp6 calicogorgia_atp6 rev Conservation

GGGCACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGCCCCAATATTA GGGCACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGCCCCAATATTA GGGCACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGCCCCAATATTA GGGCACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGCCCCAATATTA GGGCACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGCCCCAATATTA GGGCACCTTTTATTTGCTATATTTGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGCCCCAATATTA GGACACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAATAATGGAATGTTAGTATTAAGCTTAGGTCCAATATTA GGGCACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTA GTTTTAAGCTTA GCCCCAATATTA GGACAC CTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTA GTCTTAAGCTTA GCCCCAATATTA GGACAC CTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTCTTAAGCTTAGCCCCAATATTA GGACAC CTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTA GTTTTAAGCTTAGCCCCAATATTA GGTCAC CTTCTATTTGCTATATTAGCAAGTTTTGGGTTTACAACGATTAATAACGGAATGTTATTATTAAGCTTAGGCCCAATATTA GGGCACCTTTTATTTGCTATATTAGCAAGTTTCGGGTTTGCAATGATTAGTAATGGGATGTTAGTATTAAGCTTGGGCCCAATATTA GGGCAC CTTTTATTTGCTATATTGGCAAGTTTTGGGTTCGCAATGATTAGTAATGGAATGTTAGTTTTAAGCTTAGCCCCAATATTA GGGCACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTCGCAATGATTAGTAATGGAATGTTAGTTTTAAGCTTAGCCCCAATATTA GGGCACCTITATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATHGAAGGAAGTAGTITAAGCTAGCCAATATA GGACACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGCTAGTATTAAGCTTAGGCCCAATATTA GGACACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGGCCCAGTATTA GGACACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGGCCCAGTATTA GGACACCTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGGCCCAATATTA GGGCACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGGCCCAATATTA GGGCACCTTYTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAATAATGGAATGTTAGTATTAAGCTTAGGCCCAATATTA GGTCACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTACAATGATTAATAATGGAATGTTAGTATTAAGCTTAGGTCCAATATTA GGACACCTTTTATTTGCTATATTAGCAAGTTTTGGGTTTACAATGATTAATAATGGAATGTTATTATTAAGCTTAGGCCCAATA GGGCAC CTTTTATTTGCTATATTAGCAAGTTTTGGGTTTGCAATGATTAGTAATGGAATGTTAGTATTAAGCTTAGGCCCAATATTA $620 \quad 640 \quad 660 \quad 680$

GTAATGGTTTTTATAACTATACTAGAAATTGCCGTGGCTCTGATTCAAGCATATGTATTTTGTCTGTTAACTACCATATACATAAAT 687 GTAATGGTCTTTATAACCATACTAGAAATTGCCGTGGCTCTGATTCAAGCATATGTATTTTGTCTGTTAACTACCATATACATTAAT 687 GTAATGGTTTTTATAACTATACTAGAAATTGCTGTGGCCTTAATTCAAGCATATGTATTTTGTCTGTTAACTACTATATACATTAAT 687 GTAATGGTTTTTATAACTTTACTAGAGATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT 687 GTAATGGTTTTTATAACTTTACTAGAAATTGCCGTGGCCCTGATTCAAGCATATGTATTTTGTTTGTTAACTACCATATACATTAAT 687 GTAATGGTTTTTATAACTTTACTAGAAATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTTTACTAACTACCATATACATTAAT 687 GTAATGGTTTTTATAACTTTACTAGAAATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTTTACTAACTACCATATACATAAT 687 GTAATGGTTTTTATAACTTTACTAGAAATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTTTACTAACTACCATATACATTAAT 687 GTAATGGTCTTTATAACTTTACTAGAGATCGCCGTGGCCCTGATTCAAGCATATGTATTTTGTCTGTTAACTGCTATATACATTAAT 687 GTAATGGTTTTTATAACTTTACTAGAGATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT GTAATGGTTTTTATAACTTTACTAGAAATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTCTGTTAACTACCATATACATTAAT GTAATGGTTTTTATAACTTTACTAGAAATTGCCGTGGCCCTGATTCAAGCATATGTATTTTGTCTGTTAACTACCATATACATTAAT GTAATGGTTTTCATAACTTTACTAGAGATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT GTAATGGTTTTTATAACTGTACTAGAGATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT 687 GTAATGGTATTTATCACTGTACTAGAGATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT 687 GTAATGGTATTTATCACTGTACTAGAGATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT 687 GTAATGGTTTTTATTACTGTACTAGAGATTGCCGTGGCCCTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT GTAATGGTTTTATTACTGTACTAGAGATTGCCGTGGCCCTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT GTAATGGTTTTTATAACTTTACTAGAGATTGCCGTGGCTTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCTATATACATTAAT GTAATGGTCTTTATAACTTTACTAGAGATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT GTAATGGTCTTTATAACTTTACTAGAGATCGCCGTAGCTTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT GTGATGATTTTTATTACTTTGCTAGAAATAGCAGTTGCTATGATTCAAGCTTATGTTTTTTGTCTTTTAACTGTCATTTACATAAAT 687 GTAATGGTTTTTATAACTTTACTAGANATTGCCGTGGCCTTGATTCAAGCATATGTATTTTGTCTGTTAACTGCCATATACATTAAT

^[GTAATGGTTTTTATAACTTTACTAGANA]

700
alcyonium_digitatum_atp6 GATACTCTAAATTTACATTAA 708 primnoa_resedaeformis_atp6 GATACTCTAAATCTACATTAA 708 sinularia_peculiaris_-atp6 GATAGTCTAAATCTACATTAA 708 narella_hawaiinensis_atp6 GATACTCTAAATCTACATTAA 708 paraminabea_aldersladei_atp6 GATACTCTAAATCTACATTAA 708 scleronephthya gracillimum_atp6 GATACTCTAAATCTACATTAA 708 dendronephthya castanea atp6 GATACTCTAAATCTACATTAA 708 dendronephthya gigantea atp6 GATACTCTAAATCTACATTAA 708 dendronephtha mollis atp6 GATACTCTAAATCTACATTAA 708 dendronephthy__molis_atp6 junceeगla_fragilis_atp6
keratoisidinae_atp6 echinogorgia_complexa_atp6 euplexaura_crassa_atp6 pseudopterogorgia_bipinnata_atp6 acanella_eburnea_atp6
sibagogorgia cauliflora atp6 corallium_elatius_atp6 corallium_konojoi_atp6 corallium_rubrum_atp6
paracorallium_japonicum_atp6
briareum_asbestinum_atp6 heliopora_coerulea_atp6 stylatula_elongata_atp6 renila_muelleri_atp6 calicogorgia_atp6 rev

Consensus
Conservation ATACTCTAAATCTACATTAA 708 GATACTCTAAATCTACATTAA 708 GATACTCTAAATCTTCATTAA 717 GATACTTTAAATCTACATTAG 708 GATACTCTAAATCTACATTAA 708 GATACTCTAAATCTGCATTAA 708 GATACTCTAAATCTTCATTAA 714 GATACTCTAAATCTACATTAA 708 GATAGTCTAAATCTACATTAA 708 at agttranatctacatTan 708 gatactctanatctacattaa
\qquad
alcyonium＿digitatum＿atp8 primnoa＿resedaeformis＿atpa sinularia＿peculiari＿＿atp8 araminabea aldersladei＿atp8 scleronephthya＿aracillimum＿atp 8 scleronephthya＿gracillimum＿atp8
dendronephthya castanea＿atp dendronephthy à gigantea atp 8 dendronephthya＿mollis atp8 dendronephthya＿suensoni＿atp8 junceella＿fragilis＿atp8 echinogorgia＿complexa＿atp8 euplexaura＿crassa＿atp8 pseudopterogorgia＿bipinnata＿atp8 acanella＿eburnea＿atp8 sibagogrgia＿cauliflora＿atp8 briareum asbestinum＿atp8
corallium＿elatius＿atp8 corallium＿elatius＿atp8
corallium＿konojoi＿atp8 corallium＿rubrum＿atp8 paracorallium＿japonicum＿atp8 heliopora＿coerulea＿atp8 stylatula＿elongata＿atp8 renilla＿muelleri＿atp8

Conservation
alcyonium＿digitatum＿atp8 primnoa＿resedaeformis＿atp8 sinularia＿peculiaris＿atp8 narella＿hawaiinensis＿atp8 scleronephthya＿gracillimum＿atp8 dendronephthya＿castanea＿atp8 dendronephthy＿＿＿gigantea＿atp8 dendronephthya＿mollis＿atp8
dendronephthya＿suensoni＿atp8 dendronephthya＿suensoni＿atp8 unceella＿fragilis＿atp8
keratoisidinae＿atp8 echinogorgia＿complexa atp8 euplexaura＿crassa＿atp8 euplexaura＿crassa＿atp8 acanella＿eburnea＿atp8 sibagogrgia＿cauliflora＿atp8
briareum asbestinum atp8 corallium＿elatius＿atp8 corallium＿konojoi＿atp8 corallium＿rubrum＿atp8 paracorallium japonicum＿atp
stylatula＿elongata＿atp8 renilla＿muelleri＿atp8

Consensus

TGCCTCACTTAGATATAACCGCTTATTTAACTCAATATAGCTGGACATTAATAATCTTGTTAGCACTTTATAGTATTATGAGTTTA 87 ATGCCTCACTTAGATATAACCGCTTATTTAACTCAATATAGCTGGACATTAATAATCTTGTTAGCACTTTATAGTATTATGAGTTTA ATGCCTCATTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACATTAATAACCTTGTTAGCACTTTATAGTATTATGAGTTTA ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACATTAATAACCTTGTTAGCACTTTATAGTATTATGAGTTTG 87
$A T G C C T C A C T T A G A T A T A A C C G C C T A T T T A A C T C A A T A T A G C T G G A C A T T A A T A A C C T T G T T A A C A C T T T A T A G T A T T A T G G G T T T G ~$
8
 ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACACTAATAATTTTGTTAGCACTTTATAGTATTATGAGTTTA ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACACTAATAATTTTGTTAGCACTTTATAGTATTATGAGTTTA ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACACTAATAATTTTGTTAGCACTTTATAGTATTATGAGTTTA ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACACTAATAATTTTGTTAGCACTTTATAGTATTATGAGTTTA ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACATTAATAACCTTATTAGCACTTTATAGTATTATGAGTTTA ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACATTAATAATCTTGTTAGCACTTTATAGTATTATGAGTTTG ATGCCTCACCTAGATATAACCGCTTATTTAACTCAATATAGCTGGACATTAATAATTTTGTTAGCACTTTATAGTGTTATGAGTTTA 8 ATGCCTCACTTAGATATAACTACTTATTTAACTCAATATAGCTGGACATTAATAATCTTGTTAGCACTTTATAGTATTATGAGTTTG ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACATTAATAATCTTGTTAGCACTTTATAGTATTATGAGTTTA ATGCCTCACTTAGATATAACCGCCTATTTAACTCAATATAGCTGGACATTAATAATTTTGTTAGCACTTTATAGTATTATGAGTTTG ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACATTAATAATCTTGTTAGCACTTTATAGTGTTATGAGTTTG ATGCCTCACTTAGATATAACCGCCTATTTAACTCAATATAGCTGGACATTAATAACCTTGTTAGCACTTTATAGTATTATGAGTTTG ATGCCTCACTTAGATATAACCGCCTATTTAACTCAATATAGCTGGACATTAATAACCTTGTTAGCACTTTATAGTATTATGAGTTTG ATGCCTCACTTAGATATAACCGCCTATTTAACTCAATATAGCTGGACATTAATAACCTTGTTAGCACTTTATAGTATTATGAGTTTG ATGCCTCACTTAGATATAACCGCCTATTTAACTCAATATAGCTGGACATTAATAACCTTGTTAGCACTTTATAGTATTATGAGTTTG ATGCCTCACTTAGATATAACTGCCTACTTAACTCAATATAGCTGGACATTAATAATCTTGTTAGCACTTTATAGTATTATGAGTTTG ATGCCTCACTTAGATATCACTGCTTATTTAACTCAATATAGCTGGACATTAATAACCTTGTTAGCTCTTTATAGTATTATGAGTTTG ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACATTAATAACCTTGTTAGCACTTTATAGTATTATGAGTTTG 87
ATGCCTCACTTAGATATAACTGCTTATTTAACTCAATATAGCTGGACATTAATAATCTTGTTAGCACTTTATAGTATTATGAGTTTG

TT TT TTATTTTACCTAAAATTCAAAAATAATTTACGTATAAGAAGTATACTACAGGAAAGAGGGGGGCAGCCCCTAGTAAGGGACTCGGGGGTT ATATTTACCTAAAATTCAAAATAACTTACGTATAAGAAGTATACTACAGGAAGAGGGGTCAGCCCCTAGTAAGGGACTCGGGGTT TTATTIACCTAAAATTCAGAATAACTTACGTATAAGAAGTATATTACAGGAAGAGGGGGCAGCC CCCAGTAGGGGGCTCGGGGTT TTTATTTTACCTAAAAATTCAAAAATAATTTACGTATAAGAAGTATATTACAGGAAGAGGGGGGCAGCCCCCAGTAGGGGGGCTCGGAGTT TTTATTTTACCTAAAAATTCAAAAATAATTTACGTATAAGAAGTATACTACAGGAAAGAGGGGGCAGCCCCTAGTAAGGGACTCGGGGTT TTAATTTTACCTAAAATTCAAAATAATTTACGTATAAGAAAGTATACTACAGGAAGAGGGGGCAGCCCCTAGTAAGGGACTCGGGGTT TTATTTTACCTAAAAATTCAAAATAAATTACGTATAAGAAGTATACTACAGGAAGAGGGGGCAGCCCCTAGTAAGGGACTCGGGGTT TATATTTTACCTAAAATTCAGAATAACTTACGTATAAGAAGTATACTACAGGAAGAGGGGGCGTCCCTTAGTAAAGGACTCGGGGT TATATTTTACCTAAAATTCAGAATAACTTACGTATAAGAAGTATATTACAGGAAGAGGGGGCAGCCCCCAGCAAGGGGCTCGGGGTT TTATTTTGCCTAAAATTCAAAATAATTTACGTATAAGAAGTATACTACAGGAAGAGGGGGCAGCTCCTAGTAAGGGACTCGGGGTC TTTATTTTACCTAAAATTCAAAATAATTTACGTATAAGAAGTATACTACAGGAAGAGGGGGCAGCCCCTAGTAAGGGACTCGGGGTC俗俗俗 TTATTTTACCTAAAATTCAGAATAACTTACGTATCAGAAGTATAATACAGGAAGAGGGGGCAGCCCCCGGTAGGGCTCGGT TTATTTTACCTAAAATTCAGAATAACTTACGTATCAGAAGTATATATACAGGAAGAGGGGGCAGCCCCCGGTAAGGGGCTCGGGGT TTATTTTACCTAAAATTCAGAATAACTTACGTATAAGAAGTATATTACAGGAAGAGGGGGCAGCCCCCGGTAAGGGGCTCGGGGT ITTATTTTACCTAAAATTCAGAATAACTTACGTATAAGAAGTATATTACAGGAAGAGGGGGCAGCCCCCGGTAAGGGGCTCGGGGTT TTATTTTACCTAAAATTCAGAATAACTTACGCATAAGAAGTATATTACAGGAAGAGGGGGCAGCCCCTAGTAAGGGGCTCGGGGTT TATATTTTACCTAAAATTCAGAATAACTTACGTATAAGAAGTATACTACAGGAAGAGGGGGCATCCCCTAGTAAGGGGCTCGGGGTT TATATTTTACCTAAAATTCAGAATAACTTACGTATAAGAAGTATACTACAGGAAGAGGGGGCCTCCCTTAGTAAGGGGCACGGGGTT TTATTTTACCTAAAATTCAGAATAACTTACGTATAAGAAGTATACTACAGGAAGAGGGGGCAGCCCCTAGTAAGGGGCTCGGGGTT

180

200 primnoa＿resedaeformis＿atp8 sinularia＿peculiaris＿atp8 narella＿hawaiinensis＿atp8 paraminabēa＿aldersladei＿atp8 scleronephthya＿gracillimum＿atp8 dendronephthya＿castanea＿atp8 dendronephthya＿gigantea＿atp8 dendronephthya＿mollis＿－atp8 dendronephthya＿suensoni＿atp8 junceella＿fragilis＿atp8 keratoisidinae＿atp8 echinogorgia＿complexa＿atp8 euplexaura＿crassa＿atp8 pseudopterogorgia＿bipinnata＿atp8 acanella＿eburnea＿－atp8 sibagogrgia＿cauliflora＿atp8 briareum＿asbestinum＿atp8 corallium＿elatius＿atp8 corallium＿konojoi＿atp8 corallium＿rubrum＿atp8 paracorallium＿japonicum＿atp8 heliopora＿coerulea＿atp8 stylatula＿elongata＿atp8 renillā＿muelleri＿atp8

Consensus
Conservation
alcyonium＿digitatum＿atp8 AATCGAGCATATGCTATACTACAAGATATCCTCCGCAGATAG－－ 216 GATCGAGCATATGTTATACTACAAGATATACTCCGCAGATAG－－216 AATAGAGCATATGCTATATTACAAGATATACTCCGTAAATAA－ 216 AATAGAGCATATACTATACTACAAGATATACTCCATAGATAG－ 216 AATAAAGCACATGCTATACTACAAGATATACTTCATAGATAG－ 216 AATCGAGCATATGCTATACTACAAGATATACTCCGTAGATAG－ 216 AATCGAGCATATGCTATACTACAAGATATACTCCGTAGATAG－ 216 AATCGAGCATATGCTATACTACAAGATATACTCCGTAGATAG－ 216 AATCGAGCATATGCTATACTACAAGATATACTCCGTAGATAG－ 216 AATCGAGCATATGCTATACTACAAGATATACTCCGTAGATAG -216 AATAAAGCATATACTATACTACAAGATATACTCCATAGATAG－ 216 AATAGAGCATATACTATATTACAAGATATACTCCATAGATAG－ 216 AATCGAGCATATGCTATACTACAAGATATACTCCGTAGATAA -216 AATCGAGCATATGCTATACTACAAGATATACTCCGTAGATAG－ 216 AATCGAGCATATGCTATACTACAAGATATACTCCGTAGATAAGC 218 AATAGAGCATATACTATATTACAAGATATACTCCATAGATAG－ 216 AATAAAGCATATGCTATACTACAAGATATACTCCATAGATAG－ 216 AATAAAGCATATGCTATACTACAAGATATACTCCATAAATAGGC 218 AATAAAGCATACGCTATACTACAAGATACACTCCATAGATAG－ 216 AATAAAGCATACGCTATACTACAAGATACACTCCATAGATAG－ 216 AATAAAGCATATGCTATACTACAAGATATACTCCATAGATAG－ 216 AATAAAGCATATGCTATACTACAAGATATACTCCATAGATAG－ 216 AATAGAGCATATACTATACTACAAGATATACTCCATAGATAG－ 216 AATAGAGCATACACTCTGCTACAAGATATACTCCACAAATAA－ 216 AATAGAGCATACACTTTATTACAAGATATTCTTCATAAATAG－ 216
AATAGAGCATATGCTATACTACAAGATATACTCCATAGATAG－－

Cox1 gene
${ }^{20}$
${ }^{6}$
${ }^{30}$
alcyonium_digitatum_coxl primnoa_resedaeformis_cox
sinularia peculiaris cox
narella_hawaiinensis_cox1 paraminabea_aldersladei_cox1 scleronephthya_-gracillimum_cox1
dendronephthya_castanea_cox1 dendronephthya_castanea_cox1
dendronephthya_gigantea_coxl dendronephthya_mollis_cox1 dendronephthya_suensoni_cox1
junceella_fragilis_cox1 keratoisidinae_cox
echinogorgia_complexa_-cox1
euplexaura crassa_cox1 euplexaura_crassa_cox1
pseudopterogorgia_bipinnata_cox1
acanella_d acanella_eburnea_cox
sibagogorgia_cauliflora_cox1 corallium elatius_cox1
coll corallium konojoi-coxl corallium_rubrum_coxl paracorallium_japonicum_cox1 stylatula_elongata_coxl
\qquad
Consenvation
alcyonium_digitatum_coxl primnoa_resedaeformis_cox1
sinularia_peculiaris sinularia_peculiaris_cox1
narella_hawaiinensis_cox1 raminabea_aldersladei cox paraminabea_aldersladel_cox1
sclenephthya_gracillimum_cox1 dendronephthya_castanea_cox1 dendronephthy_-_gigantea_cox dendronephthya_mollis_cox
endronephthya suensoni-cox
junceella_fragilis_cox
echinogorgia_complexa_cox
euplexaüra_crassa_cox1
acanella_eburnea_ coxl
sibagogorgia_cauliflora_cox1
briareum_asbestinum_cox1
corallium_konojoi_cox1
corallium_rubrum_cox1
rallium japonicum_cox1
aracorallium_japonicum_cox
heliopora_coerulea_coxl
stylatula-elongata-cox1
renilla muelleri coxl
Consensus
Conservation
alcyonium_digitatum_cox1 sinularia peculiaris_coxl
narella_hawaiinensis narella_hawaiinensis pcleronephthya_gracillimum dendronephthya_castanea-cox1
dendronephthy_-gigantea-cox1 dendronephthya_mollis_cox1
dendronephthya_suensoni-cox1
junceella_fragilis_cox1
keratoisidinae cox1 Khinogorgia_complexa_-cox1
euplexaura crassa_cox1 erogorgia_bipinnata_cox1
acanelláaburnea_co acanella_eburnea_cox
ibagogorgia_cauliflora_cox
briareum asbestinum_cox
briareum_a_sbestinum_cox1
corallium_elatius_cox1
corallium_konojoi_cox1
corallium_rubrum_cox1
paracorallium_japonicum_cox1
heliopora_coerulea_cox1
heliopora_coerulea_cox1
stylatula_elongata_cox1
renilla_muelleri_cox1
Consensus
Conservation
cyonium_digitatum_cox imnoa_resedaeformis_coxl
sinularia_peculiaris_cox1
narella_hawaiinensis_cox1 paraminabe_a_aldersladei_cox dendronephthya_castanea_cox1
dendronephthy__gigante_cox1 dendronephthya_molis_-cox1 junceella_fragilis_cox
keratoísidinae_co echinogorgia_complexa_cox1
euplexaura crassa_cox1 euplexaura_crassa_cox1
pseudopterogorgia-bipinnata_cox1
acanella eburnea_cox1
acanella_eburnea_cox1
agogorgia_cauliflora_cox1
briareum_asbestinum_cox1
corallium_elatius_cox1
corallium_konojoi_cox1
corallium_rubrum_cox1
paracorallium_japonicum_cox1
heliopora_coerulea_cox1
heliopora_coerulea_cox1
stylatula_elongata_cox1
renilla_muelleri_cox1
Consensus Conservation ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGTGCTTTTTCTGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTAATATTTGGTGCTTTTTCTGG 86 ATGAACAAAATATCTTACACGTTGGCTATTTTCTACTAATCACAAAGGATATAGGTACTTTATATTTACTATTTGGGGCTTTTTCTGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATCGGTACTTTATATTTACTATTTGGAGCTTTTTCCGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGTGCTTTTTCTGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGTGCTTTTTCTGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGTGCTTTTTCTGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGTGCTTTTTCTGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGGGCTTTCTCCGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGAGCTTTTTCTGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACCTTATATTTACTATTTGGTGCTTTTTCTGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGTGCTTTTTCTGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGAGCTTTTTCTGG 86 ATGAATAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATCGGCACTTTATATTTACTATTCGGAGCTTTTTCCGG 86 ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGTGCTTTTTCTGG 86 ATGAATAAATATCTTACACGTTGGCTATTTTCTACTAACCATAAGGATATCGGCACTTTATATTTACTATTTGGAGCATTTTCCGG 8 86 ATGAATAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATCGGCACTCTATATTTACTATTTGGAGCTTTTTCCGG ATGAATAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATCGGCACTCTATATTTACTATTTGGGAGCTTTTTCCGG ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGGGCTTTTTCTGG ATGAACAAATATCTTACACGTTGGCTATTTTCTACTAATCATAAGGATATAGGTACTTTATATTTACTATTTGGTGCTTTTTCTGG
ATGGC ${ }^{100} 1$
 AATGGCAGGGACAGCTTCGAGTATGTTAATACGGCTAGAACTGTCCGCTCCAGGTAGTATGTTAGGGAGATGATCATTTATATAATG 172 AAT GGCGGGGACAGCTTCGAGTATGTTAATACGGCTAGAGCTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 1712 GATGGCGGGGACAGCTTCGAGTATGTTAATACGGCTAGAACTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAACG 172 GATGGCGGGGACAGCTTCAAGTATGTTAATACGCCTAGAACTGTCCGCCCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 GATGGCGGGGACAGCTTCAAGTATGTTAATACGCCTAGAACTGTCCGCCCCAGGTAGTATGTTAGGAGA TGATCATCTATATAATG 172 GATGGCGGGGACAGCTTCAAGTATGTTAATACGCCTAGAACTGTCCGCCCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 GATGGCCGGGACAGCTTCGAGTATGTTAATACGGTTAGAGCTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 AATGGCGGGGACAGCTTCGAGTATGTTAATACGGCTAGAACTGTCAGCTCCGGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 GATGGCGGGGACAGCTTCAAGTATGTTAATACGGCTAGAACTGTCAGCDCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 AATGGCGGGGACAGCTTCAAGTATGTTAATACGGCTAGAACTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 AATGGCGGGGACAGCCGCGAGTATGTTAATACGGCTAGAACTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 GATGGCCGGAACAGCTTCGAGTATGCTAATACGGCTAGAACTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 AATGGCGGGGACAGCTTCGAGTATGTTAATACGGCTAGAACTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 AATGGCGGGGACAGCTTCGAGTATGTTAATACGGCTAGAACTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG 172 AATGGCGGGGACAGCTTCGAGTATGTTAATACGGCTAGAACTGTCAGCTCCGGGCAGTATGTTAGGAGATGATCATCTATATAATG 172 AATGGCAGGGACAGCTTCGAGTATGTTAATACGGCTAGAACTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATTTATATAATG 172 AATGGCAGGGACAGCTTCGAGTATGTTAATACGACTAGAGCTATCAGCTCCAGGTAGTATGTTAGGAGATGATCATTTATATAATG 172 AATGGCAGGGACAGCTTCGAGTATGTTAATAAGACTAGAGCTATCGGCTCCAGGTAGTATGTTAGGAGACGATCATCTATATAATG 172 AAT GGC GGG GACAGCTTCGAGTATGTTAATACGGCTAGAACTGTCAGCTCCAGGTAGTATGTTAGGAGATGATCATCTATATAATG
 TGGTTGTGACATCACATGCTTTATTAAATGATTTTCTTCCTTGGTAATGCCAGAAAATGATCGGGGGGATTTCGGAAAATTGGTTTGTGC TGATTGTAACATCACATGCTTTATTAATGATTTTCTTCCTGGTAATGCCAGTAATGATAGGGGGATTCGGAAATT GGTTTGTAC TGATTGTGACATCACATGCTTTATTAATGATTTTCTTCCTGGTAATGCCAGTAATGATAGGGGGATTCGGAAATTGGTTTGTGCC TGATTGTGACATCACATGCTTTATTAATGATTTTCTTCCTGGTAATGCCAGTAATGATAGGGGGATTCGGAAATTGGTTTGTGCCA TGATTGTGACATCACATGCTTTATTAATGATTTTCTTCCTGGTAATGCCAGTAATGATAGGGGGATTCGGAAATTGGTTTGTGCCA TGATTGTAACATCACATGCTTTATTAATGATTTTCTTCCTGGTAATGCCAGTATTGATTGGGGGATTCGGAAATTGGTTTGTACC TGGTTGTAACATCACATGCTTTATTAATGATTTTCTTCCTGGTAATGCCAGTAATGATTGGGGGATTCGGAAATTGGTTTGTGCC TGGTTGTAACATCACATGCTTTATTAATGATCTTCTTCCTGGTAATGCCAGTAATGATTGGAGGATTCGGAAATTGGTTTGTGCCA
 TGATTGTAACAGCACATGCTCTATTAATGATTTTCTTCCTGGTAATGCCAGTAATGATTGGGGGATTCGGAAATTGGTTTGTACC TGATCGTAACAGCACATGCTTTATTAATGATTTTCTTCCTGGTAATGC CAGTAATGATTGGGGGATTCGGGAATTGGTTTGTGCCA TAATTGTAACAGCACATGCTTTATTAATGATTTTCTTCCTGGTAATGCCAGTAATGATTGGGGGATTCGGAAATTGGTTTGTGCC TGATTGTAACATCACATGCTTTATTAATGATTTTCTTCCTGGTAATGCCAGTACTAATTGGGGGATTCGGAAATTGGTTTGTACCA TAATTGTAACAGCACATGCTTTATTGATGATTTTCTTCATGGTAATGC CTATCCTGATTGGAGGATTCGGGAATTGGTTTGTACCA WNNNNNNNNNNNNNNNNNNNNNNNN $\stackrel{250}{260} \stackrel{300}{1} \stackrel{320}{1} \stackrel{340}{1}$ ATTATGATTGGTGCACCCGATATGGCCTTTCCTAGATTAAACAATATTAGTTTCTGGTTATTACCCCCTGCTCTAATACTATTAGT
CTTATGATTGGTGCACCCGATATGGCCTTTCCTAGATTAAACAATTATTAGTTTCTGGTTATTGCCCCCTGCTCTAATACTATTAGT
ATTATGATTGGTGCGCCTGATATGGCCTTTCCTAGATTAAACAATATTAGTTTCTGGTTATTACCACCTTCTCTAATACTATTGGT ATTATGATTGGTGCGCCTGATATGGCCTTTCCTAGATTAAACAATATTAGCTGATATGGCTTTTCCTAGATTAAACAATATCAGTTTCTGGTTATTACCACCTACCGCCTTCTCTAATACTACTATTGGT ATTATGATTGGGTGCGCCCGATATGGCCTTTCCTAGGATTAAACAAATATCAGTTTCTGGTTATTGCCGCCCCTCTCTAATACTATTGAC ATTATGATTGGTGCGCCCGATATGGCCTTTCCTAGATTAAACAATATCAGTTTTTGGTTATTACCGCCTTCTCTAATACTATTGGT ATTATGATTGGTGCGCCCGATATGGCCTTTCCTAGATTAAACAAATATCAGTTTTTGGTTATTACCGCCCTTCTCTAAATACTAATTGGT ATCATGATTGGTGCACCTGATATGGCCTTTCCTAGATTAAACAATATCAGTTTCTGGTTATTACCGCCTTCTCTAATACTATTGGT ATTATGATTGGGGCGCCCGATATGGCCTTTCCTAGATTGAACAATATCAGTTTCTGGTTATTACCACCTTCTTTAATACTATTGGC ATTATGATTGGTGCGCCCGATATGGCCTTTCCTAGATTAAATAATATCAGTTTCTGGTTATTACCACCTTCTTTAATACTATTGGC ATTATGATTGGTGCACCCGATATGGCCTTTCCCAGATTAAACAATATTAGTTTTTGGTTATTACCCGCCTTCTCTATTACTATTGA ATTATGATTGGTGCACCCGGATATGGCCTTTCCCCAGATTAAACAATATTAGTTTTTGGTTATTACCCGCCTTCTCTTTATCACTACTGAC ATTATGATTGGTGCACCCGATATGGCCTTTCCCCAGATTAAAACAATATTAGTTTTTGGTTATTACCCGCCTTCTCTAATACTATTGAAC ATTATGATTGGTGCACCTGATATGGCCTTTCCTAGATTAAACAATATCAGTTTCTGGTTATTACCGCCCTCTCTAATACTATTAGT ATTATGATTGGTGCACCTGATATGGCCTTTCCTAGATTAAACAATATCAGTTTCTGGTTACTACCACCTTCTTTAATCCTATTGAC 34 ATTATGATTGGTGCACCCGATATGGCCTTTCCTAGATTAAACAATATCAGTTTCTGGTTATTACCGCCTTCTCTAATACTATTGGT

alcyonium＿digitatum＿cox sinularia＿peculiaris cox narella＿hawaiinensis＿coxl eronephthya－gracillimum－cox dendronephthya＿castanea＿cox endronephthya＿gigantea＿cox phthya＿suensoni＿coxl keratoisidinae coxl euplexaura＿crassa＿co acanella＿ipinnata＿cox bagogorgia＿cauliflora－co reum＿asbestinum＿co
corallium＿elatius cox corallium＿konojoi＿cox1 orallium＿japonicum＿cox1 heliopora＿coerulea＿cox
stylatula elongata coxl renilla＿muelleri＿coxl

Conservation
alcyonium＿digitatum＿coxl sinularia＿peculiaris cox
narella＿hawaiinensis＿cox cleronephthya＿gracillimum－cox dendronephthya castanea cox dendronthy＿＿gigantea＿co
junceella frasi＿cox keratoisidinae＿coxl euplexaura＿crassa＿cox1 rogorgia＿bipinnata＿coxl bagogorgia＿cauliflora＿cox1 corallium elatius cox corallium＿konojoi＿coxl orallium＿japonicum＿cox1 heliopora＿coerulea＿cox1
stylatula elongata coxl renilla＿muellericocox

Conservation
alcyonium＿digitatum＿cox1 sinularia＿peculiaris＿coxl narella＿hawaiinensis＿cox1 cleronephthya＿gracillimum＿cox1 dendronephthya gigantea cox dendronephthya suensoni coxl junceella＿fragilis＿cox1 chinogorgia＿complexa＿cox1 acanelláabipinnata＿cox1 argorgia＿cauliflora＿cox corallium＿elatius＿cox1 corallium＿konojoi＿cox1 orallium＿japonicum＿coxl stylatula－elongata－cox1
renilla muelleri cox1

Consensus
alcyonium＿digitatum＿cox sinularia peculiaris－ sina＿ sleronephthya＿gracillimum＿cox1 ndronephthya gigantea cox onephthya＿suenson＿cox1 keella＿fragilis＿cox
nogorgia＿complexa＿cox1 euplexaura－crassa＿cox agogorgia＿cauliflora＿cox corallium＿elatius＿coxl corallium＿konojoi＿cox rallium japonicum＿cox1
helalata＿elongata＿cox
stylatula＿eland
Consensus
Conservation

[^1]CTATTTTATTCCAGCACTTATTCTGGTTTTTCGGACATCCTGAAGTCTATATATTAATTTTACCAGGATTTGGTATGGTATCTCAA CCATTTTATTCCAACATTTATTCTGGTTTTTTGGACATCCTGAAGTCTATATATTAATTCTACCAGGATTTGGTATGGTATCTCAA CTATTTTATTCCAGCACTTATTTTGGTTTTTTGGACATCCTGAAGTCTATATATTAATTCTACCAGGATTTGGTATGGTATCTCAA CTATTTTATTCCAGCACTTATTTTGGTTTTTTGGACATCCTGAAGTCTATATATTAATTCTCCCAGGATTTGGTATGGTATCTCAA CTATTTTATTCCAGCACTTATTTTGGTTTTTTGGACATCCTGAAGTCTATATATTAATTCTCCCAGGATTTGGTATGGTATCTCAA TATTTTATTCCAGCACCTATTCTGGTTTTTTGGGCACCCCGAAGTCTATATATTAATTCTGCCGGGATTTGGTATTGTATCTCAA CTATTTTATTCCAGCACTTATTCTGGTTTTTTGGGCACCCTGAAGTATATATATTAATTCTGCCGGGATTTGGTATTGTATCTCAA CTATTTTATTCCAGCACTTATTTTGGTTTTTTGGACATCCTGAAGTCTATATATTAATTTTACCAGGATTTGGTATGGTATCTCAA CTATTTTATTCCAGCACTTATTCTGGTTTTTTGGGCACCCTGAAGTCTATATATTAATTCTGCCGGGATTTGGTATTGTATCTCAA CAATTTTATTCCAGCACTTATTCTGGTTTTTTGGACACCCCGAAGTCTATATATTAATTCTGCCGGGATTTGGTATCATATCTCAA CAATCTTATTCCAGCACTTATTCTGGTTTTTTGGGCATCCTGAAGTCTATATATTAATTTTGCCAGGATTTGGTATGGTATCTCAA CAATTTTATTCCAGCACCTATTCTGGTTTTTTGGGCATCCTGAAGTCTATATATTAATTTTGCCAGGATTTGGTATGGTATCTCAAA CTATTTTATTCCAGCACCTATTCTGGTTTTTCGGGCACCCTGAAGTCTATATATTAATTCTACCGGGATTTGGTATTATATCTCAA

ATTATCCCAACATTTTCTGCTAAACAACATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGCAGTATTAGGAT ATTATACCCACATTTTCTGCTAAACAACATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGGAGTATTAGGAT ATTATTCCCACATTTTCTGCTAAACAGCATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGGAGTATTAGGATT ATTATACCCACATTTTCTGCTAAACAACATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGGAGTATTAGGAT ATTATACCCACATTTTCTGCTAAACAACATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGGAGTATTAGGAT ATTATACCCACATTTTCTGCTAAACAACATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGGAGTATTAGGAT ATTATACCCACCTTCTCTGCTAAACAGCATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGGAATATTAGGAT ATTATACCCACATTTTCTGCTAAACAACATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGGAGGATTAGGAT ATTATACCCACATTTTCTGCTAAACAACATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGCAGTATTAGGATT ATTATCCCCACATTTTCTGCTAAACAGCAGATTTTTGGTTATTTGGGTATGGTCTATGCTATGATTTCTATCGGAATATTAGGATT ATTATCCCCACATTTTCTGCTAAACAGCATATTTTTGGTTATTTGGGTATGGTCTATGCTATGATTTCTATCGGAATATTAGGAT ATTATCCCCACATTTTCTGCTAAACAGCATATTTTTGGTTATTTGGGCATGGTCTATGCTATGATTTCTATCGGAATATTAGGATT ATTATACCTACATTTTCTGCTAAACAGCATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGGAGTATTAGGAT ATTATACCCACATTTTCTGCTAAACAGCATATTTTTGGTTATTTAGGTATGGTCTATGCTATGATTTCTATTGGAGTATTAGGAT
soo

TATTGTTTGGGCCCACCATATGTTCACCGTTGGTATGGATGTCGATACTCGTGCCTACTTTACTGCCGCCACTATGATTATTGCTG俗 TATTGTTTGGGC CCATCATATGTTCACCGTTGGTATGGATGTTGATACTCGTGCCTACTTTACTGCAGCCACTATGATTATTGCTG TATTGTTTGGGC CCACCATATGTTCACCGTTGGTATGGATGTCGATACTCGTGCCTACTTTACTGCTGCCACTATGATTATTGCTG TATTGTTTGGGCCCACCATATGTTCACCGTTGGTATGGATGTCGATACTCGTGCCTACTTTACTGCTGCCACTATGATTATTGCTG TATTGTTTGGGCCCACCATATGTTCACCGTTGGTATGGATGTCGATACTCGTGCCTACTTTACTGCTGCCACTATGATTATTGCTG
 TATTGTTTGGGCCCACCATATGTTCACCGTTGGTATGGATGTCGATACTCGTGCCTACTTTACTGCCGCCACTATGATTATTGCTG TATTGTTTGGGC CCACCATATGTTTACCGTTGGTATGGATGTCGATACTCGTGCCTACTTTACTGCTGCCACTATGATTATTGCTG TATTGTTTGGGCCCATCATATGTTCACCGTTGGTATGGA TGTTGATACTCGTGCCTACTTTACTGCAGCCACTATGATTATTGCTG TATTGTTTGGGCTCATCATATGTTTACCGTTGGTATGGATGTGATACTCGTCCTACTTACTGCAGCCACTATGATTATTGCTG ATTGTTTGGGCTCATCATATGTTTACCGTTGGTATGGATGTCGATACTCGTGCCTACTTTACTGCAGCCACTATGATTATTGCTG ATTGTTTGGGCTCATCATATGTTCACCGTTGGTATGGATGTCGATACCCGTGCCTACTTTACTGCAGCCACTATGATTATTGCTG TATTGTCTGGGCTCATCATATGTTCACCGTTGGTATGGATGTTGATACTCGTGCCTACTTTACTGCAGCCACTATGATTATTGCTG TATTGTTTGGGCTCATCATATGTTCACTGTTGGTATGGATGTCGATACTCGTGCCTACTTCACTGCAGCTACTATGATTATTGCTG俗 TACCCCACCGGGATTAAGATATTTAGCTGGTTAGCTACTATATATGGGGGAAGCCCCGCGACTTGAGACACCTATGTTATGGGGCTATT 1032 TCCCACCGGTATTAAGATATTTAGCTGGCTAGCTACTATATATGGGGGAAGCTTGCGGCTCGATACACCTATGTTGTGGGCTATC 1032 TTCCTACCGGTATTAAGATATTTAGCTGGCTAGCTACTATATATGGGGGAAGCCTGCGGCTTGATACACCTATGTTGTGGGCTATT 1032 TTCCTACCGGTATTAAGATATTTAGCTGGCTAGCTACTATATATGGGGGAAGCCTGCGGCTTGATACACCTATGTTGTGGGCTATT 1032俗 TTCCCACCGGGATTAAGATATTTAGCTGGTTAGCTACTATATATGGGGGAAGCCCGCGACTTGATACACCTATGTTATGGGCTATT 1032 TTCCTACTGGCATTAAAATATTTAGTTGGTTAGCTACTATATATGGGGGAAGCCTACGGCTTGATACACCTATGTTGTGGGCCATT 1032 TCCTACTGGGATAAAGATATTTAGTTGGTTAGCTACCATATATGGGGGAAGCCTGCGGCTTGAGACACCTATGTTGTGGGCTATT 1032 TTCCCACCGGGATTAAGATATTTAGCTGGTTAGCTACTATATATGGGGGAAGCCCGCGACTTGATACACCTATGTTATGGGCTATT 1032 TTCCCACCGGGATTAAGATATTTAGCTGGCTAGCTACTATATATGGGGGAAGCCCGCGGCTTGACACCCCTATGTTGTGGGCTATT 1032 TTCCCACCGGAATTAAGATATTTAGCTGGCTAGCTACTATATATGGGGGAAGCCCGCGGCTTGACACCCCTATGTTGTGGGCTATT 1032 TTCCCACCGGGATTAAGATATTTAGCTGGCTAGCTACTATATATGGGGGAAGCCCGCGGCTTGACACCCCTATGTTGTGGGCTATT 1032 TCCCACCGGGATTAAGATATTTAGCTGGCTAGCTACTATATATGGGGGAAGCCCGCGGCTTGACACCCCTATGTUTG俗 ICCCACCGGGATTAAGATATTTAGCTGGCTAGCTACTATATATGGGGGAAGCCTGCGGCTTGATACACCTATGTTGTGGGCTATT

1.220
1.240
1.260
alcyonium_digitatum_cox1 primnoa_resedaeformis_-cox1 sinularia_peculiaris_cox araminabea_aldersladei_co scleronephthya_gracillimum_cox1 dendronephthya_castanea_cox1 dendronephthya_gigantea_cox1 dendronephthya_molisiscox1 junceella_fragilis_cox1 echinogorgia_complexa_coxl euplexaura_crassa_co pseudopterogorgia_bípinnata_cox1 acanella_eburnea_cox1 briareum asbestinum_cox corallium_elatius_cox1 corallium_konojoi_cox1 corallium_rubrum_cox1
paracorallium_japonicum_cox1 heliopora_coerulea_cox1
stylatula elongata_coxl stylatula_elongata_cox1
renilla muelleri coxl

Consensus
alcyonium_digitatum_coxl primnoa_resedaeformis_coxl sinularia_peculiaris_cox1
harella_hawaiinensis cox] araminabēa_aldersladei_-coxl cleronephthya_gracillimum_cox1 dendronephthya_castanea_cox1 endronephthya_gigantea_cox1 dendronephthya a ensoni cox^{1} junceella fragilis ${ }^{-}$coxl keratoisidinae_coxl
orgia_complexa_coxl euplexaura_crassa_coxl pseudopterogorgia_bipinnata_cox acanella_eburnea_coxl
\qquad
corallium_elatius_coxl corallium_konojoi_cox1 corallium_rubrum_cox paracorallium_japonicum_cox1 heliopora_coerulea_cox1
stylatula elongata coxl renilla_muelleri_coxl

Conservation
TTACAGGTTATAGTTATAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATTGGAGTTAATTTAACTTTCTTCCCCCAA 1290 TTACAGGTTATAGTTATAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCAA 1290 TTACAGGTTTTAGTTATAATGAGTTATATGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCAA 1290 TTACAGGTTTTAGCTATAATGAGTTATATGGTAAAATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCAA 1290 TCACAGGTTATAGTTATAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTTCCCCAA 1290 TTACAGGTTATAGTTATAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCAA 1290 TTACAGGTTATAGTTATAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCAA TTACAGGTTATAGTTATAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCAA TTACAGGTTATAGTTATAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAAATTTAACTTTCTTCCCCCAA TTACAGGTTTTAGTTATAATGAGTTATATGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCA TTACAGGTTATAGGTATAATGAGTTATACGGCAAGATCCATTTTTGGATTATGTTTATAGGAGTTAATTTAACTTTTTTCCCCCAAA 1290 TTACAGGTTATAGTTATAATGAATTATACGGTAAGATCCATTTCTGGATTATGTTTATTGGAGTTAATTTAACTTTCTTCCCCCAA 1290 TAACAGGTTATAGTTATAATGAATTATACGGTAAGATCCACTTCTGGATTATGTTTATCGGAGTTAAATTTAACTTTCTTCCCCCAA TTACAGGTTTTAGTTATAATGAGTTATATGGTAAGATACATTTTTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCAA TTACAGGTTTTAGTTATAATGAGTTATATGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCA TTACAGGTTTTAGCTATAATGAGTTATACGGTAAAATTCATTTTTGGATTATGTTTATCGGAGTTAATTTGACTTTCTTCCCCCAA TTACAGGTTTTAGCTATAATGAGTTATACGGTAAAATTCATTTTTGGATTATGTTTATCGGAGTTAATTTGACTTTCTTCCCCCAA TTACAGGTTTTAGCTATAATGAGTTATATGGTAAAAATCCATTTTTGGATTATGTTTATCGGAGTTAAATTTAACTTTCTTCCCCCAA TTACAGGCTTTAGTTATAATGAGTTATATGGTAAAAATCCATTTCTGGATTATGTTTATCGGAGTTAAATTTAACTTTCTTCCCCCAA TCACAGGTTATAGTTATAACGAACTATACGGTAAGATCCATTTCTGGATTATGTTTATCGGAGTTAATTTAACTTTCTTCCCCCAA

CATTTCTTGGGTTTAGCCGGATTACCTAGAAGATACTCGGATTTCCCTGATGCCTATCAAGATTGGAACTTAATTAGTTCTTGCGG 1376 CATTTCTTGGGTTTAGCCGGATTACCTAGAAGATACTCGGATTTCCCTGATGCTTATCAAGATTGGAACTTAGTTAGTTCTTGCGG 1376 CATTTCTTGGGTTTAGCTGGGTTGCCTAGAAGATACTCCGATTTCGCTGATGCTTATCAAGATTGGAACTTAGTTAGTTCTGGCGG 1376 CATTTCTTGGGCTTAGCTGGATTACCTAGAAGATACTCCGATTTCGCTGATGCTTATCGAGATTGGAACTTAGTTAGTTCTCTCGG 1376 CATTTTTTGGGTTTAGCCGGATTACCTAGAAGATACTCGGATTTTCCTGATGCCTATCAAGATTGGAACTTAGTGAGTTCTTGCGG 1376
 CATTTITTGGGTTTAGCCGGATTACCTAGAAGATACTCGGATTTTCCTGATGCCTATCAAGATTGGAACTTAGTGAGTTCTTGCGG 1376 CATTTCTTGGGTTTAGCTGGGTTACCTAGAAGATACTCCGATTTCGCTGATGCTTATCAAGATTGGAACTTAGTTAGTTCTTGCGG 1376 CATTTCTTGGGTTAGCTGGGTTGCCTAGAAGATACTCCGATTTCGCTGATGCTTATCAAGATTGGAACTTAGTTAGTTCTTGCGG 1376 CATTTCTTGGGTTTAGCCGGATTACCTAGAAAAATACTCGGATTTTCCTGATGCTTACCAAGATTGGAACTTAGTTAGTTCTTGCGG 1376 CATTTCTTGGGTTTAGCCGGATTACCTAGAAGATACTCGGATTTCCCTGATGCTTACCAAGATTGGAACTTAGTTAGTTCTTGCGG 1376 CATTTCTTGGGCTTAGCTGGATTACCTAGAAGATACTCCGATTTTGCTGATGCTTATCAGGATTGGAACTTAGTGAGTTCTTGCGG 1376 CATTTCTTGGGCTTAGCCGGATTACCTAGAAGATACTCCGATTTTGCTGATGCCTATCAGGGTTGGAACTTAGTAAGCTCTTGCGG 1376 CATTTCTTGGGCTTAGCCGGATTACCTAGAAGATACTCCGATTTTGCTGATGCCTATCAGGGTTGGAACTTAGTAAGCTCTTGCGG 1376 CATTTCCTGGGCTTAGCTGGATTACCTAGAAGATACTCCGATTTTGCTGATGCTTATCAGGATTGGAATTTAGTAAGTTCTTGCGG 1376 CATTTCCTGGGCTTAGCTGGATTACCTAGAAGATACTCCGATTTTGCTGATGCTTATCAGGATTGGAACTTAGTAAGTTCTTGCGG 1376 CATTTCTTGGGCTTAGCTGGGTTACCCAGAAGATACTCCGATTTCCCTGATGCTTATCAAGATTGGAACTTAGTTAGTTCTTGCGG 1376 CATTTCTTGGGCTTAGCTGGGTTACCTAGAAGATACTCTGATTTCCCTGATGCTTATCAAGACTGGAACTTAGTTAGTTCCTGCGG 1376 CATTTCTTGGGTTTAGCCGGATTACCTAGAAGATACTCCGATTTCCCTGATGCTTATCAAGATTGGAACTTAGTTAGTTCTTGCGG

Cox2 gene

alcyonium_digitatum_cox2 primnoa_resedaeformis_co ${ }^{\text {sind }}$
sinularia_ peculiaris $\operatorname{cox2}$
sinularia_peculiaris_co $\times 2$
narella_hawaiinensis_co 2 paraminabēa_aldersladei_co $\times 2$
scleronephthya_gracillimum_cox2 dendronephthya_castanea_cox2
dendronephthya_ dendronephthya_mollis_cox2 dendronephthya_suensoni-co 02
junceella fragilis co 20
junceella_fragilis_cox2
keratoísidinae_co 0×2 echinogorgia_complexa_cox2
euplexaura_crassa_cox2 pseudopterogorgia_bipinnata_cox2 bagogorgia_cauliflora_cox2
corallium_elatius_cox2 corallium konojoi-cox2 corallium_rubrum_cox2
orallium_japonicum_cox2
heliopora_coerulea_cox2
stylatula_elongata_cox2
renilla_muelleri_cox2
Consensus

Abstract

ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAGATAGTAGAACCCGGTGTGACAGTAAAAGCCATA 3 ATATTAGTGTTTATAGCATTCCCTTCTTTAAAACTACTTTATTTGATGGATGAGGTAGTAGAACCCGGTGTGACAGTAAAAGCCATA 348 ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAAGTAGTAGAGCCAGGTGTGACAGTAAAAAGCCATATA 348 348 ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTAATGGATGAAATAGTAGAACCAGGTGTGACAGTAAAAGCCATA 348 ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAGATA GTAGAGCCCGGTGTGACAGTAAAAAGCCATA ATACTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAGATAGTAGAACCCGGTGTGACAGTAAAAGCCATA ATACTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAGATAGTAGAACCCGGTGTGACAGTAAAAGCCATA ATACTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAGATAGTAGAACCCGGTGTGACAGTAAAAGCCATA 348 ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAAGTAGTAGAACCAGGTGTAACAGTAAAAAGCCATA 348 ATATTAGTCTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAGATAGTAGAACCCGGTGTGACAGTGAAAGCCATA ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAGGTAGTAGAACCCGGTGTGACAGTAAAAGCCATA ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTAATGGATGAGATAGTAGAACCCGGTGTGACAGTAAAAGCCATA ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTAATGGATGAAATAGTAGAACCAGGTGTGACAGTAAAAGCCATA ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTAATGGATGAAATAGTAGAACCAGGTGTGACAGTAAAAGCCATA ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTAATGGATGAAATAGTAGAACCAGGTGTGACAGTAAAAGCCATA ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTAATGGATGAAATAGTAGAACCAGGTGTGACA GTAAAAGCTATA ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTAATGGATGAAATAGTAGAACCAGGTGTGACAGTAAAAGCCATA ATA TTAGTGTTTATAGCATTTCCTTCTTTGAAACTACTTTATTTGATGGATGAAATAGTAGAACCAGGTGTAACAGTAAAAGCCATA

 ATATTAGTGTTTATAGCATTCCCTTCTTTGAAACTACTTTATTTGATGGATGAAATAGTAGAACCAGGTGTGACAGTAAAAGCCATAalcyonium_digitatum_cox2 nnoa_resedaeformis_cox2 arella_hawaiinensis araminabea_alderslas cleronephthya_gracillimum_cox2 dendronephthya_castanea_cox2 dendronephthya_mollis_cox2 junceella__fragilis_cox
keratoisidinae_co hinogorgia_complexa_co euplexaura_crassa_cox acanella_a_ innnata_co bagogorgia_caulflea_co briareum asbestiora_co corallium_elatius_cox orallium_konojoi_cox paracorallium_japonicum_co heliopora_coerulea_cox2
stylatula_elongata renilla_muelleri_co $\times 2$
Conservation
 alcyonium_digitatum_cox sinularia_peculiaris_co
minabēa aldersladeicleronephthya_gracillimum_cox2 dendronephthya_castanea_cox2 dronephthya_gigantea_cox2 dendronephthya_mollis_ junceella_fragilis
keratoisidinae echinogorgia_complexa_co euplexaura euplexaura_crassa_c acanella_eburnea_co bagogorgia_cauliflora_co briareum_ābestinum_cox2 corallium_konojoi_cox2 corallium_rubrum_cox
heliopora_coerulea_cox2
stylatula_elongata_cox2
renilla_muelleri_cox2
Consensus

cyonium_digitatum_cox2 primnoa_resedaeformis ${ }^{-}$ sinularia_peculiaris_co
paraminabēa_aldersladei_cox2 dendronephthya_castanea_cox2 dendronephthya_gigantea_cox2 dendronephthya_mollis_cox2 junceella_fragilis cox2 keratoísidinae-co
euplexaura crassa- co pseudopterogorgia_bipinnata_cox2 acanella_eburnea_cox
briareum_asbestinum cox corallium_elatius orallium konojoi cox corallium_rubrum-cox2 heliopora_coerulea_cox stylatula_elongata_cox
Consensu
Conservation
alcyonium_digitatum_cox2 sinularia peculiaris arella hawaiinensis - cox
\qquad cleronephthya_gracillimum_cox2 dendronephthya_castanea_cox2 dendronephthy__gigantea_cox dendronephthya_molis_cox2 junceella_fragilis_cox
echinogorgia_complexa_cox pseudopterogorgia_bipinnata_cox2 acanella_eburnea_cox
briareum asbestinum
corallium_elatius_cox
corallium_konojoi_cox2
corallium_rubrum_cox2
paracorallium_japonicum_cox2
heliopora_coerulea_cox2
stylatula_elongata
renilla muelleri-cox
Conservation GTTTTAGTTACTGGGGCAGATGTGCTTCACTCATTTGCTGTACCTTCATTAGCTATGAAAATGGATGCTGTGCCTGGACGTCTTAAT 609 GTTTTAGTCACAGGCGCAGATGTGCTTCATTCATTTGCTGTACCTTCATTAGCTATGAAAAATGGATGCTGTGCCTGGACGTCTTAAT 609 ATTCTAGTTACAGGGGCAGATGTGCTTCACTCATTTGCTGTGCCCTCATTAGCTGTTAAAATGGACGCTGTACCTGGGCGTCTTAAT 609 GTTTTAGTTACAGGCGCAGATGTGCTTCACTCATTTGCTGTACCTTCATTAGCTATTAAAATGGATGCTGTGCCTGGACGTCTTAAT 609 GTTTTAGTTACAGGCGCAGATGTACTTCACTCATTTGCTGTACCTTCATTAGCTATTAAAATGGATGCTGTGCCTGGACGTCTTAAT 609 GTTTTAGTTACAGGCGCAGATGTACTTCACTCATTTGCTGTACCTTCATTAGCTATTAAAAATGGATGCTGTGCCTGGACGTCTTAAT 609
 GTTCTAGTGACAGGGGCAGATGTGCTTCACTCATTTGCTGTTCCCTCACTAGCTGTTAAAATGGACGCTGTGCCTGGGCGCCTTAAT 609 ATTCTAGTTACAGGGGCAGATGTGCTTCACTCATTTGCTGTACCTTCATTAGCTGTTAAAAATGGACGCTGTACCTGGACGTCTTAAT 609 GTTTTAGTTACAGGCGCAGATGTGCTTCACTCATTTGCTGTGCCTTCATTAGCTATAAAAATGGATGCTGTGCCTGGACGTCTTAAT 609 GTTTTAGTTACAGGCGCAGATGTGCTTCACTCATTTGCTGTACCTTCATTAGCTATGAAAATGGATGCTGTGCCTGGCCGTCTAAAT 609 ATTCTAGTTACAGGGGCAGATGTGCTTCACTCATTTGCTGTCCCTTCATTAGCTGTTAAAAATGGACGCTGTACCTGGGCGTCTTAAT 609 GTTTTAGTTACAGGG GCAGATGTGCTTCATTCATTTGCTGTGCCCTCATTAGGTATTAAAATGGATGCTGTGCCTGGACGTCTTAAC 609 GTTCTAGTTACCGGGGCAGATGTGCTTCACGCATTTGCTGTGCCTTCATTAGGTATTAAAATGGACGCTGTACCTGGACGTCTTAAT 609 GTTCTAGTTACCGGGGCAGATGTGCTTCACGCATTTGCTGTGCCTTCATTAGGTATTAAAATGGACGCTGTACCTGGACGTCTTAAT 609 ATCCTCGTTACCGGGGCAGATGTGCTTCACGCATTTGCTGTGCCTTCACTAGGTATTAAAATGGACGCTGTACCCGGACGTCTTAAT 609 GTCCTCGTTACCGGGGCAGATGTGCTTCACGCATTTGCTGTGCCTTCACTAGGTATTAAAATGGACGCTGTACCCGGACGTCTTAAT 609 GTTCTAGTTACGGGGGCAGACGTGCTTCACTCATTTGCTGTACCCTCATTAGCTATTAAAAATGGATGCCGTACCTGGACGTCTTAAT 609
 GTTTTAGTTACAGGGGCAGATGTGCTTCACTCATTTGCTGTACCTTCATTAGCTATTAAAATGGATGCTGTGCCTGGACGTCTTAAT CAAACCGGATTTTTAGCTAAAAGACCGGGATTATTTTATGGTCAATGTTCCGAGTTATGTGGCGCTAATCACTCTTTTATGCCCATT 696 CAAACCGGATHTAGCTAAAAGACCGGGATTATTTTATGGTCAATGTTCCGAGTTATGTGGCGCTAATCACTCTTTTATGCCCATT 696 CAAACCGGATTTTTAGCTAAAAGACCAGGATTATTTTATGGTCAATGTTCCGAATTATGTGGCGCTAATCACTCTTTTATGCCCATT 696 CAAACTGGATTTTTAGTTAAAAGGCCGGGAATATTTTATGGTCAATGTTCCGAGTTATGTGGCGCTAATCACTCCTTTATGCCTATT 696 CAAACCGGATTTTTAGCTAAAAGACCGGGATTATTTTATGGTCAATGTTCCGAGTTATGTGGCGCTAATCACTCTTTTATGCCCATT 696 CAAACCGGGTTTTTAGCTAAAAGACCGGGATTATTTTATGGTCAATGTTCCGAGTTATGTGGTGCTAATCACTCTTTTATGCCCATT 696 CAAACCGGGTTTTTAGCTAAAAGACCGGGATTATTTTATGGTCAATGTTCCGAGTTATGTGGTGCTAATCACTCTTTTATGCCCATT 696 CAAACCGGGTTTTTAGCTAAAAGACCGGGATTATTTTATGGTCAATGTTCCGAGTTATGTGGTGCTAATCACTCTTTTATGCCCATT 696 CAAACTGGATTTTTAGTTAAAAGGCCGGGAATATTTTACGGTCAATGTTCCGAGTTATGTGGCGCTAATCACTCCTTTACGCCCATT 696 CAAACTGGATTTTTAGTTAAAAGGCCGGGAATATTTTACGGTCAATGTTCCGAGTTATGCGGCGCTAATCATTCCTTTATGCCCATT 696 CAAACCGGATTTTTAGCTAAAAGACCGGGATTATTTTATGGTCAATGTTCCGAGTTATGTGGCGCTAATCACTCTTTTATGCCCATT 696 CAAACCGGATTTTTAGCTAAAAGACCGGGATTATTTTATGGTCAATGTTCCGAGCTATGCGGCGCTAATCACTCTTTTATGCCCATT 696 CAAACCGGATTTTTAGCTAAAAGACCGGGAITA CAAACTGGATTTTTAGTTAAAAGGCCGGGAATATTTTATGGTCAGTGTTCCGAGCTATGTGGCGCTAATCATTCCTTTATGCCTATT 696 AAAACTGGATTTTTAGTTAAAAGACCGGGAATATTTTATGGTCAATGTTCCGAGTTATGTGGCGCDAATCACTCCTTTATGCCTATT 696 CAAACTGGATTTTTAGTCAAAAGGCCGGGAATATTTTATGGTCAGTGTTCCGGAGCTATGTGGCGCTAATCATTCCTTTATGCCTATT 696 CAAACTGGATTTTTAGTCAAAAGGCCGGGAATATTTTATGGTCAGTGTTCCGAGCTATGTGGCGCTAACCATTCCTTTATGCCTATT 696 CAAACCGGATTTTTAGTTAAAAGGCCGGGAATATTTTATGGTCAGTGTTCCGAGCTATGTGGCGCTAATCATTCCTTTATGCCTATT 696 CAAACCGGATTTTTAGTTAAAAGGCCGGGAATATTTTATGGTCAGTGTTCCGAGCTATGTGGCGCTAATCATTCCTTTATGCCTATT 696 CAAACTGGATTTTTAGTTAAAAGACCGGGAATATTTTACGGTCAATGTTCCGAGTTATGTGGCGCTAATCACTCCTTTATGCCTATT 696 CAAACCGGATTTTTAGTTAAAAGACCGGGAATATTTTATGGTCAATGTTCCGAGTTATGTGGCGCTAATCACTCCTTTATGCCCATT
435
435
435 ATG 435
ATG 435

alcyonium_digitatum_cox2 primnoa_resedaeformis_cox2
narella_hawaiinensis_cox2
paraminabea_aldersladei_cox2 scleronephthya gracillimum cox2 dendronephthya_castanea_cox2 dendronephthya_gigantea_cox2 dendronephthya_mollis_cox2 dendronephthya_suensoni_cox2 junceella fragilis_cox2 keratoisidinae_cox2 echinogorgia_complexa_cox2 euplexaura_crassa_cox2 pseudopterogorgia_bipinnata_cox2 acanella_eburnea_cox2
sibagogorgia_cauliflora_cox2 briareum_asbestinum_cox2 corallium_elatius_cox2 corallium_konojoi_cox2 corallium_rubrum_cox2 paracorallium_japonicum_cox2 heliopora_coerulea_cox2 stylatula_elongata_cox2 renilla_muelleri_cox2

Consensus
Conservation

GTTATAGAA GCCGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGATGATCTTTAG 762 GTTATAGAAGCCGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGATGATCTTTAG 762 GTTATAGAGGCCGTTAGCATGGATAGATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCGTGGATAAATATATCAGCTGGCTATCTTCATTATATGCTGATCTTTAA 762 GTCATAGAGGCTGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAGGCTGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAGGCTGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAGGCTGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAGGCTGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGTATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAA 762 GTCATAGAA GCCGTTAGCATGGATAGATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCATGGACAGATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCATGGATAAATATATTAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCGTGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAAGCTGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCGTGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCGTGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCGTGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCGTGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAA GCCGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTGTAGAAGCCGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG 762 GTTGTAGAAGCTGTTAGCATGGATAAATATATCAGCTGGTTATCTTCATTATGTGCTGATCTTTAG 762 GTTATAGAAGCCGTTAGCATGGATAAATATATCAGCTGGCTATCTTCATTATGTGCTGATCTTTAG

Cox3 gene

alcyonium_digitatim_cox3
mnoa_resedaeformis_cox3 sinularia_peculiaris_cox3 narella_hawaiinensis_co
 scleronephthya_gracilimum_co
dendronephthya_castanea_co
dendronephthya dendronephthya_gigantea_cox
dendronephthy__mollis_co dendronephthya_suensoni_cox keratoísidinae $c 0$
kina echinogorgia_complexa_co $\left.\begin{array}{l}\text { euplexaura_crassa_co } \\ \text { en }\end{array}\right]$ euplexaura_crassa_cox3 acanella_eburnea_cox3
ibagogorgia_cauliflora_cox
briareum_asbestinum cox corallium_elatius_co $\times 3$
corallium_konojoi_co $\times 3$ corallium_rubrum_cox3
orallum japonicum_cox3 heliopora_coerulea_cox3 stylatula_elongata_cox3
renilla_muelleri_cox
Conservation

${ }_{1}^{1}$ ATAGTATTAATATTAACAATGTTTGTTTGGTGGAGAGATGTTATTAGAGAAGCCACTTTTCAAGGACTCCATACTCAAAGAGTAAAA
ATAGTAATAATATTAACAATGTTTGTTTGGTGGAGAGATATTATTAGAGAGGCCACTTTTCAAGGGCACCATACTCAAATAGTAAAA 2
ATAACATTAATATTAACAATGTTTGTTTGGTGGAGAGATGTTATTAGAGAGGCCACTTTCCAAGGACACCATACTCAAATAGTAAAA 2
2俗
alcyonium_digitatim_cox3
noa_resedaeformis_cox3 sinularia_peculiaris_cox3 minab-a alderslade - cox eronephthya gracillimum dendronephthya_castanea_cox dendronephthya mollis
junceella_fragilis_cox3
hinogorgia_complexa_cox3
euplexaura_crassa_cox pseudopterogorgiarabipinnata_cox3 bagogorgia cauliflora_cox3 briareum_asbestinum_cox
corallium elatius corallium_konojoi_cox3 corallium_rubrum_cox3
\qquad
heliopora_coerulea_cox3
stylatula_elongata_cox3
renilla_muelleri_cox3
Conservation

alcyonium_digitatim_cox3 primnoa_resedaeformis_cox3
sinularia peculiaris $c o x 3$ narella_hawaiinensis_cox3 araminabea_aldersladei_cox3 scleronephthya_gracillimum_cox3
dendronephthya castanea_cox3 dendronephthya_gigantea_cox3 dendronephthya_mollis_cox3
junceella_fragilis_cox3
keratoisidinae_cox3
echinogorgía_complexa_cox3
euplexaura_crassa_cox3
pterogorgia_bipinnata_cox3
acanella_eburnea_cox3
briareum asbestinum_cox
corallium elatius $\cos _{3}$
corallium_konojoi_cox3
corallium_rubrum -cox3
paracorallum japonicum cox3
heliopora_coerulea_cox3
styatuia_elongata_cox3
renilla_muelleri_cox3
Consensus
Conservation
alcyonium digitatim_cox3 sinularia_peculiaris cox narella_hawaiinensis_cox paraminabea_aldersladei_cox3 scleronephthya_gracillimum_cox3 dendronephthyá gigante- - dendronephthya_mollis_cox3 junceella_fragilis_cox3
keratoisidinae_cox3
euplexaüra_crassa_cox pseudopterogorgia_bipinnata_cox3 acanella_eburnea_cox
sibagogorgia_cauliflora_cox corallium_elatius_cox3 corallium_rubrum_cox3
paracorallum japonicum_cox
heliopora_coerulea_cox3
stylatula_elongata_cox3
renilla_muelleri_cox
Consensus

GCTATATTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAAAGATTAGAAGCCATACAATCACTT 489 GCTATATTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAAAGATTAGAAGCCATACAATCACTT 489 GCTATATTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAAAAGATTAGAAGCCATACAATCACTT 489 GCTATATTGCTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAGAGACTAGAAGCCATACAAGCACTT
 GCTATATTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAAAGATTAGAGGCCATACAATCACT GCTATATTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAAAGATTAGAGGCCATACAATCACTG GCTATATTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAAAGATTAGAGGCCATACAAATCACTG GCCATATTGCTTAGTTCAGGGGCAACAGTTACATGGGCACATCATGCCATAGTTAGCGGGCAGAGATTAGAAGCCATACAATCACTT 489 GCTATACTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAGAGATTAGAAGCCATACAATCACTT 489 GCTATATTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAAAGATTAGAGGCCATACAATCACTT 489 GCTATATTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAAAGACTAGAAGCCATACAATCACTT 489 GCTATATTACTTAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAAAGATTAGAGGCCATACAATCACTT 489 GCTATATTACTCAGTTCGGGAGCAACAGTCACATGGGCACATCACGCCATAGTTGGCGGACAGAGACTAGAAGCCATACAAGCACTT 489 GCTATATTACTCAGTTCAGGAGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAGAGATTAGAAGCCATCCAATCACTT 489 GCTATATTGCTAAGTTCGGGAGCAACAGTTACATGGGCACATCACGCCATAGTTGGTGGACAAAGACTAGAAGCCATACAAGCACTT 489 GCTATATTGCTAAGTTCGGGAGCAACAGTTACATGGGCACATCACGCCATAGTTGGTGGACAAAGACTAGAAGCCATACAAGCACTT 489 GCTATATTACTTAGTTCGGGAGCAACAGTAACATGGGCACATCACGCCATAGTTGGCGGACAGAGACTAGAAGCCATACAAGCACTT 489 GCTATATTACTTAGTTCGGGAGCAACAGTAACATGGGCACATCACGCCATAGTTGGCGGACAGAGACTAGAAGCCATACAAGCACTT 489 GCTATATTACTTAGTTCAGGGGCAACAGTTACATGGGCACATCACGCCATAGTTAGCGGACAGAGATTAGAAGCCATACAATCACTT 522
 GCTATATTACTHGTG

Conservation
 ATGATGAGTACTATTATTTCAATTATCTTTAAAACGCTTGCAATAATAATACCTTTATTAGTGGCTATAGCTTATTTAACTTTAGCA
 GAAAGAAAGGTATTAGGGTATATGCAAGCAACGAAAAAGGACCTAAATGTAGTTTGGTGTTTATGGACTAGATATTACAGCCTTTACAGCTAGCTTYACTAGCTGACGGA GAAAGAAAGGTATTAGGGTATATGCAAGCACGAAAAGGACCTAATGTAGTTGGTGTTTATGGACTATTACAGCCTTTAGCTGATGGA GAAAGAAAGGTATTAGGATATATGCAAGCACGAAAAGGACCTAAATGTAGTTGGTGTCTGTGGACTATTACAGCCCCTTAGCTGATGGA GAAAGAAAGGTATTAGGGTATATGCAAGCACGAAAAGGACCTAATGTAGTTGGTGTTTATGGACTATTACAGCCTTTAGCTGACGGA GAGAGAAAGGTATTAGGGTATATGCAAGCACGAAAAGGACCTAATGTAGTTGGTGTCTATGGACTATTACAGCCTTTAGCTGACGGA GAGAGAAAGGTATTAGGGTATATGCAAGCACGAAAAGGACCTAATGTAGTTGGTGTCTATGGACTATTACAGCCTTTAGCTGACGGA GAAAGAAAGGTACTAGGTTATATGCAAGCACGAAAAGGACCTAATGTAGTTGGTGTTTATGGACTATTACAGCCTTTAGCTGATGGA GAAAGAAAGGTATTAGGGTATATGCAAGCACGAAAAGGGACCTAATGTAGTTGGTGTTTATGGGGCTGTTACAACCTTTAGCTGACGGA GAAAGAAAGGTATTAGGGTATATGCAAGCACGAAAAGGACCTAATGTAGTTGGTGTTTATGGACTATTACAGCCTTTAGCTGACGGA GAAAGAAAGGTATTAGGATATATGCAAGCACGGAAAGGACCTAATGTAGTTGGTGTCTATGGACTATTACAGCCGTTAGCTGATGGA GAAAGAAAGGTATTAGGATATATGCAAGCACGGAAAGGACCTAATGTAGTTGGTGTTTATGGATTATTACAGCCCTTAGCTGATGGA
 GAAAGAAAGGTACTAGGATATATGCAAGCACGGAAAGGACCCAATGTAGTTGGTGTCTATGGACTATTACAGCCTTTAGCTGATGGA GAAAGAAAGGTATTAGGGTATATACAAAGCACGAAAAGGACCTAATGTAGTTGGTGTTTATGGACTATTACAGCCTTTAGCTGATGGA GAAAGAAAGGTATTAGGGTATATGCAAGCACGAAAAGGACCTAATGTAGTTGGTATTTATGGACTATTACAGCCTTTAGCTGATGGA GAAAGAAAGGTATTAGGGTATATGCAAGCACGAAAAGGACCTAATGTAGTTGGTGTTTATGGACTATTACAGCCTTTAGCTGATGGA
alcyonium_digitatum_nd1
mnoa_resedaeformis_nd
sinularia_peculiaris_nd1
narella_hawaiinensis_nd
paraminabea_aldersladei_nd1 cleronephthya_gracillimum_nd dendronephthya_castanea_nd dendronephthya_molea_nd ephthya_suensoni_nd keratoisidinae_nd1
euplexaura crassa_nd euplexaura_crassa_nd1 acanella_eburnea_nd
briareum asbestinum nd corallium_elatius_nd corallium_rubrum_nd
paracorallium_japonicum_ndl stylatula_elongata_nd
renilla_muelleri_nd1
Consensus
alcyonium_digitatum_nd1 sinularia_peculiaris_nd
narella_hawaiinensis_nd paraminabea_aldersladei_nd1
cleronephthya_gracillimum_nd1 dendronephthya castanea-nd dendronephthyä gigantea- nd dendronephthya_mollis_nd1
junceella_fragilis_nd
norainand
euplexaura crassa_nd
rogorgia_bipinnata_nd
acanella_ eburnea_nd
agogorgia_cauliflora_nd
reum_asbestinum_nd corallium_elatius_nd orallium_konojoi_nd rallium japonisum_nd
heliopora_coerulea_nd1
stylatula-elongata-nd1
renilla muelleri nd
Conservation
\qquad
${ }_{1}^{180} \stackrel{200}{220}$ ${ }_{1}^{220}$
${ }^{260}$
CTGTCGGTTTATATTGTAGC
CCCGATTCTATCGCTTACTTT
 TTAAAGTTATTCTCCAAAGAGATGGTTATTCCCAATCATGCTAATTTATCGGTTTATATTGTAGCCCCGATTTTATCGCTTACCTTA 261 TTAAAGTTATTCTCCAAAGAGATGATTATTCCCAATCACGCCAATCTATCGGTTTATATTGTAGCCCCAATTCTATCACTTACCTTA 261 TTAAAATTATTCACTAAAGAGATGGCTATCCCCAATCATGCTAATCTGTCGGTTTATATTGTAGCCCCGATTCTATCGCTTACTTTA 261 TTAAAATTATTCACTAAAGAGATGGCTATTCCCAATCATGCTAATTTGTCGGTTTATATTGTCGCCCCGATTCTATCGCTTACTTTA 261 TAAAATTATTCACTAAAGAGATGGCTATTCCCAATCATGCTAATYTGTCGGTTTATATTGTCGCCCCGATTCTATCGCCTACITTA 261 ATAAAGTTGTTCTCCAAAGAGATGGTTATTCCCAATCATGCTAATCTCTCGGTTTATATTGTAGCCCCAATTCTATCGCTTACCTTA 261 TTAAAGTTATTCTCCAAAGAGATGGTTATTCCCAATCATGCTAATCTATCGGTTTATATTGTAGCCCCGATTTTATCGCTTACCTTA 261 TTAAAATTATTTACTAAAGAGATGGCTATTCCCAATCATGCTAATCTGTCGGTTTATATTGTAGCCCCGATTTTATCGCTTACTTTA 261 TTAAAATTATTTACTAAAGAGATGGCTATTCCCAATCATGCTAATTTGTCGGTCTATATTGTAGCCCCGATTCTATCGCTTACTTTA 261 TTAAAGTTATTCTCCAAAGAGATGGTTATTCCCAATCACGCTAATCTATCGGTTTATATCGTAGCCCCGATTTTATCACTTACCTTA 261 TTAAAGTTATTCACCAAAGAGATGGTTATTCCCAATCATGCTAATCTATCGGTTTATATTGTAGCCCCGATTCTATCGCTTACCTTA 261 TTAAAGTTATTCTCCAAGGAGATGGTTATCCCCAATCACGCCAATCTATCGGTTTATATTGTAGCCCCGATTCTATCACTTACCCTA TTAAAGTTATTCTCCAAAGAGATGATTATCCCCAATCACGCCAATCTATCGGTTTATATTGTAGCCCCAATTCTATCACTTACCTTA TTAAAGCTATTCTCCAAAGAGATGATTATCCCCAATCACGCCAATCTATCGGTTTATATTGTAGCCCCAATTCTATCACTTACCTTA ATAAAATTATTCTCCAAAGAGATGGTTATTCCTAATCACGCTAATCTGTCGGTTTATATTGTAGCCCCGATTCTATCGCTTACCTTA 261 TAAAATTATTCTCCAAAGAGATGATAATCCCTAATCATGCTAATCTGTCGGTTTATATTGTAGCCCCGATTITATCGCTTACCTTA 261 TTAAAGTTATTCTCCAAAGAGATGGTTATTCCCAATCATGCTAATCTGTCGGTTTATATTGTAGCC CCGATTCTATCGCTTACCTTA GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCCGGTATTGTACTAGCTGATATTAATGTTGGTATCTTATACATCTTTGCTGTC 345
GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCCGGTATTGTACTAGCTGATATTAATGTTGGTATCTTATACATCTTTGCTGTC 345 GCTTTTTTAGCTTGGGGGGTTATTCCTTTTAGCCCCTGGTATTGTACTAGCTGATATTAATGTTGGGTGTCTTATACATCTTTGCTATC 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCAGGCATTGTACTAGCTGATATTAATGTTGGAGTCTTATACATATTTGCTATT 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCAGGTGTCGTACTAGCTGATATTAATGTTGGAATTTTATATATATTTGCTATT 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCTGGGATTGTGCTGGCTGATATTAATGTTGGTATCTTATATATTTTTGCTATC 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCTGGGATTGTGCTGGCTGATATTAATGTTGGTATCTTATATATTTTTGCTATC 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCTGGGATTGTGCTGGCTGATATTAATGTTGGTATCTTATATATTTTTGCTATC 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCTGGGATTGTGCTGGCTGATATTAATGTTGGTATCTTATATATTTTTGCTATC 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCAGGTGTCGTGTTAGCTGATATTAATGTTGGAATCTTATACATATTTGCTATC 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCAGGTATCGTACTAGCTGATATTAATGTTGGGGTCTTATACATATTTGCTGTC 348 GCTTTTTTAGCTTGGGGAGTTATTCCTTTTAGCCCCGGTATTGTACTGGCTGATATTAATGTTGGTGTCTTATATATCTTTGCTATC 348 GCTTTTTTAGCTTGGGGGGCCATTCCTTTTAGCCCCGGTATTGTACTAGCTGATATTAATGTTGGTATCTTATATATCTTTGCTATC 348 GCTTTTTTAGCTTGGGGGGCCATTCCTTTTAGCCCCGGTATTGTACTAGCTGATATTAATGTTGGGTATCTTATATATCTTTGCTATC 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCAGGTATCGTACTAGCTGATATTAATGTTGGGATTTTATATGTATTTGCTGTT 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCGGGTGTCGTACTAGCTGATATTAATGTTGGAATCTTATACATATTTGCTATC 348 GCTTTTTTGGCCTGGGGGGTTATTCCTTTTAGCCCGGGTGTCGTACTAGCTGATATTAATGTTGGAATTTTATATGTATTTGCTATT 348 GCTTTTTTGGCCTGGGGGGTTATTCCTTTTAGCCCGGGTGTCGTACTAGCTGATATTAATGTTGGAATTTTATATGTATTTGCTATT 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCGGGCATCGTACTAGCTGATATTAATGTTGGAATTTTATATGTATTTGCTATT 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCAGGTATAGTACTAGCTGATATTAATGTTGGAATCTTATACATATTTGCTATT 348 GCCCTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCAGGTGTCGTACTAGCTGATATCAATGTTGGAATTTTATATATATTTGCTATC 348 GCCCTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCAGGTGTCGTACTAGCTGATATCAATGTTGGAATTTTATATATATTTGCTATC 348 GCTTTTTTGGCTTGGGGGGTTATTCCTTTTAGCCCAGGTATNGTACTAGCTGATATTAATGTTGGNATCTTATATATATTTGCTATC
${ }^{360}$
${ }_{1}^{330}$
400
420

noa_resedaeformis sinularia_peculiaris_nd a aldersladei endronephy_gracilimum dendronenephthya mollis nd junceella_fragilis_nd euplexia_coma_nd rogoraura_crassa_nd acanella_eburnea_nd um a a sbestinum orallium_konojoi nd rallium _heliopora_coerulea_nd renilla_muelleri_nd1
Consensus

 AGTTCTATGGGGGTGTATGCTATCTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTTAGGGGCTATCAGAGCAGCAGCT 435 AGTTCTATTGGGGTGTATGCTATTTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTTAGGGGCTATCAGAGCAGCAGCT 435 GTTCTA GTTCTATTGGGTGTATGCTATTTTAATGTCTGGTTGGGGAGTAATTCTAAATATGCATTCTTAGGGGCTATCAGAGCAGCAGCT 435 AGTTCTATTGGGGTGTATGCTATTTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTTAGGGGCTATCAGAGCAGCAGCT 435
GCTCTATGGGGGTGTATGCTATTTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTTAGGGGCTATCAGAGCAGCAGCT 435 AGTTCTATGGGGGTGTATGCTATCTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTTAGGGGCTATCAGAGCAGCAGCT 435 AGTTCTATGGGGGTGTATGCTATTTTAATGTCTGGTTGGGGGAAGTAATTCTAAAATATGCTTTTCTTAGGGGCCCATTAGAGCAGCAGCT 435 GTTCATAGGGGTGTATGCTATTTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTTAGGGGCCATCAGAGCAGCAGCT 435 AGTTCCATAGGGGTGTATGCTATTTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCGTTCTTAGGAGCTATCAGAGCAGCAGCT 435 AGTTCCATA GGGGTGTATGCTATTTTAATGTCCGGTTGGGGAAGTAATTCTAAAATATGCGGTTCTTAGGGGCTATCAGAGCAGCAGCT 435 AGTTCCATGGGGGTGTATGCTATTTTAATGTCTGGTTGGGGGAGTAATTCTAAATATGCGTTCTTAGGAGCTATCAGAGCAGCAGCT 435 GTTCTATGGGGGTGTATGCTATCTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTAGGGGCTATCAGAGCAGCCGCT 435 GGTTCTATAGGAGTGTATGCTATCTTAATGTCTGGTTGGGGAAGTAATTCTAAAATATGCATTCTTAGGGGCCCTTCAGAGCAGCAGCTT 435 AGTTCTATGGGGGTGTATGCTATTTTAATGTCTGGTTGGGGAAGTAATTCTAAATATGCATTCTTAGGGGCTATCAGAGCAGCAGCT

alcyonium_digitatum_nd1 primnoa_resedaeformis_nd
sinularia peculiaris_nd arella hawaiinensis araminabea_aldersladei nd cleronephthya_gracillimum_nd dendronephthya_castanea_nd dendronephthya_gigantea_nd dendronephthy__mollis_nd junceella fragilis nd keratoisidinae-nd echinogorgia_complexa-nd euplexaura_crassa_nd erogorgia_bipinnata_nd agogorgia__ebulfilio_nd briareum asbestinum_nd corallium_elatius nd corallium_konojoi_nd corallium rubrum nd paracorallium japonicum nd heliopora_coerulea_nd renilla_muelleri_nd

Consensus
Conservatio
alcyonium_digitatum_nd sinularia_peculiaris_nd narella_hawaiinensis_nd paraminabea_aldersladei_nd1 dendronephthya castanea-nd dendronephthyà gigantea- nd dendronephthya_mollis_nd junceella_fragilis_nd
keratoísidinae_nd
echinogorgia_complexa_nd
euplexa_
\qquad
acanelia_eburnea_nd
briareum_asbestinum_nd1
corallium_katiusoi_nd
corallium_rubrum_nd
aracorallium_japonicum_nd
stylatula_elongata-nd
renilla_muelleri_nd1
Consensus

540
560
580
TTAGCTCAAGCCGAAATTGGTATATAATACCTTTATTTCCAGCTGCTTTAATGTTTITTGCTTCGGCATTAGCTGAAACTAATCGG606 TTAGCTCAAGCCGAAATTTGGTATATAATACCTTTATTTCCCGCTGCTTTAATGTTTTTTGCTTCGGCATTAGCTGAAACTAATCGG 606 TAGCTCAAGCCGAAATTTGGTATATAATACCTTTATTTCCAGCTGCCTTAATGTTCTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCTCAAGCCGAAATTTGGTATATAATACCCTTATTTCCAGCTGCTTTAATGTTCTTTGCTTCGGCATTAGCTGAGACTAATCGG TTAGCTCAAGCCGAAATTTGGTATATAATACCTTTATTTCCGGCTGCTTTAATGTTTTTTGCTTCGGCATTAGCTGAAACTAATCGG TAGCTCAAGCCGAGATTTGGTATATAATACCTTTATTTCCAGCTGCTTTAATGTTTTTTTGCTTCGGCATTAGCTGAAACTAATCGG TAGCTCAAGCCGAGATTTGGTATATAATACCTTTATTTCCAGCTGCTTTAATGTTTTTTGCTTCGGCATTAGCTGAAACTAATCGG TAGCTCAAGCCGAGATTTGGTATATAATACCTTTATTTCCAGCTGCTTTAATGTTTTGCTTCGGCATTAGCTGAAACTAATCGG TCAGCTCAAGCCGAGATTTGGTATATAATACCTTTATTTCCAGCTGCTTTAAATGTTTTTTGCTTCGGCATTAGCTGAAAACTAATCGG TTAGCTCAAGCCGAAATTTGGTATATTATACCTTTATTTCCAGCTGCCTTAATGTTCTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCTCAAGCCGAAATTTGGTATATAATACCTTTATTTCCAGCAGCTTTAATGTTTTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCCCAAGCCGAAATTTGGTATATAATACCTTTATTTCCAGCTGCTTTAATGTTTTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCTCAAGCCGAAATCTGGTATATAATACCCCTATTTCCAGCTGCTTTAATGTTTTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCTCAAGCCGAAATTTGGTATATTATACCTTTATTTCCAGCTGCCTTAATGTTCTTTGCTTCGGCATTAGCTGAAACTAATCGG TAGCTCAAGCCGAAATTTGGTATATAATACCCTTATTTCCAGCTGCTTTAATGTTCTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCTCAAGCCGAAATTTGGTATATAATACCCCTATTTCCAGCTGCTTTAATGTTCTTTGCTTCGGCATTAGCTGAAAACTAAATAGG TTAGCTCAAGCCGAAATTTGGTATATAATACCCTTATTTCCAGCTGCTTTAATGTTCTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCTCAA GCCGAAATTTGGTATATAATACCCTTATTTCCGGCTGCTTTAATGTTCTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCTCAA GCCGAAATTTGGTATATAATACCCTTATTTCCGGCTGCTTTAATGTTCTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCTCAAGCCGAAATTTGGTATATAATACCTCTATTTCCAGCTGCCTTAATGTTTTTTGCTTCGGCATTAGCTGAAACTAATCGG TTAGCTCAGGCCGAAATTTGGTATATTGTACCTTTATTTCCAGCTGCTTTAATGTTCTTTGCTTCAGCATTAGCTGAAACTAATCGG TTAGCTCAA GCCGAAATTTGGTATATAATACCTTTATTTCCAGCTGCTTTAATGTTCTTTGCTTCGGCATTAGCTGAAACTAATCGG
\qquad
${ }_{1}^{620}$
GCTCCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGATATAATGTAGAATATTCTAGTATGTCATTTGCCCTATTCTTT 693 CTCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGATATAATGTAGAATATTCTAGTATGTCATTTGCCCTATTCTTT 693 GCTCCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGATATAATGTAGAATATTCTAGTATGTCGTTTGCCCTATTCTTT 696 GCTCCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTAGCTGGATATAATGTAGAATATTCTAGTATGTCGTTTGCCCTCTTTTTT 696 GCTCCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGATATAATGTAGAATATTCTAGTATGTCGTTTGCCCTATTCTTT 696 CTCCTTTTGATCTACCGAGGGAGAATCAGAGTAGATCTGATATAATGTCGAATATTCTAGCATGTCGTTTGCCCTATTCTTT 696 GCTCCTTTTGATCTTACCGAGGGAGAATCAGAGTTAGTATCTGGATATAATGTCGAATATTCTAGCATGTCGTTTGCCCTATTCTTT 696 GCTCCTTTTGATCTTACCGAGGGAGAATCAGAGTTAGTATCTGGATATAATGTAGAATATTCTAGCATGTCGTTTGCCCTATTCTTT 696 GCTCCTTTTGATCTTACTGAGGGAGAATCAGAATTAGTGTCTGGTTATAATGTAGAATATTCTAGTATGTCGTTTGCCCTCTTCTTT 696 GCTCCTTTCGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGTTATAATGTAGAATATTCTAGTATGTCGTTTGCCCTATTCTTT 696 GCTCCTTTTGATCTTACCGAGGGAGAA TCGGAA TTAGTATCGGGATATAATGTAGAA TATTCTAGTATGTCGTTTGCTCTATTTTTT 696 CTCCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGATATAATGTAGAATATTCTAGTATGTCGTTTGCTTTATTCTTT 696 GCTCCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTAGCTGGATATAATGTAGAATATTCTGGTATGTCGTTTGCCCTCTTTTTT 696 GCTCCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGGTATAATGTAGAATATTCAAGTATGTCGTTTGCCCTATTCTTT 696 GCTCCTTTTGACCTTACCGAGGGAGAATCAGAATTAGTAGCTGGATATAATGTTGAATATTCTAGTATGTCGTTTGCCCTCTTTTTT 696 GCTCCTTTTGATCTTACCGAAGGAGAATCAGAATTGGTAGCTGGATATAATGTAGAATATTCTAGTATGTCGTTTGCCCTCTTTTTT 696 CTCCTTT GCTCCTTTCGATCTAACCGAGGGAGAATCGGAATTAGTATCTGGTTATAATGTAGAATATTCTAGTATGTCGTTTGCCCTATTCTTT 696 GCTCCTTTCGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGTTATAATGTAGAATATTCTAGTATGTCGTTTGCTCTATTCTTT 696 GCTCCTTTTGATCTTACCGAGGGAGAATCAGAATTAGTATCTGGATATAATGTAGAATATTCTAGTATGTCGTTTGCCCTATTCTTT
alcyonium_digitatum_nd1 mnoa_resedaeformis_nd1
sinularia_peculiaris_nd narella hawainensis nd araminabea_aldersladei_nd1 sleronephthya_gracillimum_nd1 dendronephthy̆ya_castanea_nd dendronephthya suensoni kerato_idinilis_nd echinogorgia complexa-nd euplexaura_crassa_nd acanella_binnata_nd ibagogorgia cauliflora-nd briareum corallium corallium_elatius_nd corallium_konojoi_nd corallium_rubrum_nd paracoralium_daponicum_nd1
heliopora_coerulea_nd
and stylatula_elongata_nd renilla_muelleri_nd

Conservation

 TAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATGAGTTTATTGTTTTTAGGTGGTTGGGCACCTTTCACAGGAATTCTA 783 TAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATAAGTTTATTGTTTTTAGGTGGTTGGGCACCTTTTACAGGGATTCTA 783 TAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATAAGTTTATTGTTTTAGGTGGTTGGGCACCTTTTACAGGGATTC CTA 783 TAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATAAGTTTATTGTTTTTAGGTGGTTGGGCACCTTTTACAGGGATTCTA 783 TTAGCTGAA TACGGCCATATTATTCTAATGAGCTGTTTGATAAGTTTATTGTTTTTAGGTGGTTGGGCACCTTTTACAGGGAT TAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATGAGTTTATTGTTTTTGGGTGGTTGGGCACCTTTCACGGGAATTA TAGCTGAATACGGCCATATTATTCTAATGAGCTGTCTGATAAGTCTATTGTTTTTAGGTGGTTGGGCACCTTTTACAGGAATTC TTAGCTGAATACGGTCATATTATTTTAATGAGCTGTTTGATAAGTTTATTGTTTTTAGGAGGTTGGGCACCTTTTACAGGAATTCTA TAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATGAGTTTATTGTTTTTGGGTGGTTGGGCACCTTTCACGGGAATTATA TTAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATAAGTTTATTGTTTTTAGGTGGTTGGGCACCTTTCACAGGAATTCTA TAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATAAGTTTATTGTTTTTAGGCGGTTGGGCT

TTAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATAAGTTTATTGTTTTTGGGCGGTTGGGCACCTTTCGCGGGAATTTT

 TTAGCTGAATATGGCCATATTATTCTAATGAGCTGTTTGATAAGTTTATTGTTTTTAGGTGGTTGGGCACCTTTCGCAGGAATTCTA 7 TTAGCTGAATACGGCCATATTATTCTAATGAGCTGTTTGATAAGTTTATTGTTTTTAGGTGGTTGGGCACCTTTCACAGGAATTCTAalcyonium_digitatum_nd1 sinularia_peculiaris_nd narella_hawaiinensis_nd paraminabea_aldersladei_nd1
scleronephthya_gracillimum_nd1 scleronephthya_gracilimum_nd
dendronephthya_castanea_nd1 dendronephthya__gigantea_nd1 dendronephthya_mollis_nd1
dendronephthya suensoni-nd1 junceella_fragilis_nd
echinogorgia_complexa_nd1 pseudopterogorgia bípinnata_nd acanella_-eburnea_nd sibagogorgia_caulifiora_nd corallium elatius_nd corallium_konojoind corallium_rubrum_nd paracoralium_japonicum_nd heliopora_coerulea_nd1
stylatula-elongata nd1 renilla_muelleri_nd1

Conservation

${ }_{3}^{380}$
${ }_{1}^{900}$
$\stackrel{920}{1}$
${ }_{1}{ }^{2}$
CAACTTATGTATCTATTATGGAAGTCTTACTTACCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGA 953
acyonium_digitatum_nd1 primnoa_resedaeformis_ndl sinularia_peculiaris_nd1 paraminabea_aldersladei_ndl deronephthya_gracillimum_nd dendronephthya_castanea_nd dendronephthyigantea_nd dendronephthya_suansoni_nd junceella_fragilis_nd1 orgiato complexa_nd euplexaura crassa nd1 acanelláa eburnea_nd
ibagogorgia_cauliflora_nd riareum_asbestinum_nd1 corallium_latius_nd corallium-rubrum_nd paracorallium japonicum nd
heliopora coerulea-nd stylatula_elongata_nd
renilla_ muelleri_nd

Consensus
cyonium_digitatum_nd1
primnoa_resedaeformis_nd1
sinularia_peculiaris_nd1
raminabea_aldersladei_nd
paraminabea_aldersladel_nd dendronephthya castanea nd dendronephthya_gigantea nd dendronephthya_mollis_nd dendronephthya_suensoni_nd junceella_fragilis_nd1
hinogorgia_complexa_nd euplexaura_crassa_nd1 pseudopterogorgia_bipinnata_nd gogorgia cauliflorānd briareum asbestinum_nd orallium_elatius_nd1 corallium_konojoi_ndl corallium_rubrum_nd paracorallium_japonicum_nd
heliopora_coerulea_nd
stylatula_elongata_nd
renilla_muelleri_nd
Consensus

CCAACTTATGTATCTATTATGGAAGTCTTACTTACCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGA 953 CCAAC TTATGTATTTATTATGGAAGTCTTACTTACCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGA 956 CCAACTTATGTATCTATTATGGAAGTCTTATTTACCTTTCAGTCTTGGTTTAGTCGTTTTAGTTTCTGGTCTGCTGATAGGTTTGGG 956 CAACTTATGTATCTATTATGGAAGTCTTACTTACCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGA 956 CCAACTTATGTATTTATTGTGGAAGTCTTACTTGCCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGA 956 CAACTTATGTATTTATTGTGGAAGTCTTACTTGCCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGA 956 CAACTIATGTATTTATTGTGAAGTTACTTGCCTTTCAGTCTTGGTTAATCGTTTAGTTTCTGGCCTGTTGATAGGTTTAGA 956 CCAACTTATGTATCTATTATGGAAGTCTTATTTACCTTTCAGTCTGGGTTTAATTGTTTTAGTTTCTGGTCTGCTGATAGGTTTGGA 956 CCAACTTATGTATCTATTATGGAAGTCTTATTTACCTTTCAGTCTTGGTTTAGTCGTTTTAGTTTCTGGTCTGCTGATAGGTTTGGG 956 CCAACTTATGTATCTGTTATGGAAATCTTACTTACCTTTTAGTCTTGGTTTAATCGTTTTAGTTTCTGGCCTGTTGATAGGTTTGGA 956 CCAACTTATGTATCTATTATGGAAGTCTTACTTACCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGA 956 CCAACTTATGTATCTTTTATGGAAGTCTTACTTACCTTTTAGTCTCGGTTTAGTAGTTTTAGTTTCTGGCCTGTTGATAGGTTTAGA 956 CCAACTTATGTATCTATTATGGAAGTCTTATTTACCTTTCAGTCTTGGTTTAGTCGTTTTAGTTTCTGGTCTGCTGATAGGTTTGGG 956 CCAAC TTATGTATCTATTATGGAAGTCTTATTTACCTTTCAGTCTTGGTTTAATCGTCCTGGTTTCTGGTCTGCTGATAGGTTTGGA 957 CCAACTTATGTATCTATTATGGAAGTCTTATTTACCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGTCTGCTGATAGGTTTAGA 956 CCAACTTATGTATCTATTATGGAAGTCTTATTTACCTTTCAGTCTTGGTTTAATCGTCTTAGTTTCTGGTCTGCTGATAGGTTTGGA 956 CCAACTTATGTATCTATTATGGAAGTCTTATTTACCTTTCAGTCTTGGTTTAATCGTCTTAGTTTCTGGTCTGCTGATAGGTTTGGA 956 CAACTTATGTATCTATTATGGAAGTCTTACTTACCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGTCTGCTGATAGGTTTGGA 956 CCAACTTATGTATCTATTATGGAAGTCTTATTTACCTTTCAGTCTTGGTTTAGTAGTTTTAGTTTCTGGTCTGCTGATAGGTTTGGG 956 CCAACTTATGTACCTATTATGGAAGTCTTATTTACCTCTCAGTCTTGGTTTAGTCGTTTTAGTTGCTAGTCTGCTGATAGGTTTGGA 956 CCAACTTATGTACTTATTATGGAAGTCTTATTTACCTTTCAGTCTTAGTTTAATCGTTTTAGTTTCTAGTCTGCTGATAGGTTTGGA 956 CCAACTTATGTATCTATTATGGAAGTCTTACTTACCTTTCAGTCTTGGTTTAATCGTTTTAGTTTCTGGTCTGCTGATAGGTTTGGA

alcyonium_digitatum_ND2 primnoa_resedaeformis_ND2 sinularia_peculiaris_ND2 narella_hawaiinensis_ND2 paraminabea_aldersladei_ND2 cleronephthya_-gracillimum_ND2 dendronephthya_castanea_-ND2 dendronephthya_gigantea_ND2 dendronephthya_mollis_ND2 dendronephthya_suensoni_ND2 junceella_fragilis_ND2 keratoisidinae_ND $\overline{2}$ rev echinogorgia_complexa_ND2 euplexaura_crassa_ND2 eudopterogorgia_bipinnata-ND2 acanella_eburnea_ND $\overline{2} \mathrm{rev}$ sibagogorgia_caulifíora_ND2 briareum_asbestinum_ND2 corallium_elatius_ND2 corallium_konojoi_ND2 corallium_rubrum_ND $\overline{2}$ rev aracorallium_japonicum_ND2 rev heliopora_coerūlea_ND2 stylatula_elongata_ND2 renilla_muelleri_ND2 calicogorgia_granulosa_ND2 Consensus Conservation alcyonium_digitatum_ND2 primnoa_resedaeformis_ND2 sinularia_peculiaris_ND2 narella_hawaiinensis_ND2 paraminabea_aldersladei_ND2 scleronephthya_gracillimum_ND2 dendronephthya_castanea_ND2 dendronephthya_gigantea_ND2 dendronephthya_mollis_ND2 ndronephthya suensoni ND2 junceella_fragilis_ND2 keratoisidinae_ND $\overline{2}$ rev echinogorgia_complexa_ND2 euplexaura_crassa_ND2 seudopterogorgia_bipinnata_ND2 acanella eburnea ND 2 rev sibagogorgia_caulifTora_ND2 briareum_asbestinum_ND2 corallium_elatius_ND2 corallium_konojoi_ND2 corallium_rub $\bar{r} u m$ _ND $\overline{2}$ rev allium japonicum_ND2 heliopora_coerūlea_ND2 stylatula_elongata_ND2 renilla_muelleri-ND2 orgia granulosa-ND2 calicogorgia_granulosa_ND2

alcyonium_digitatum_ND2 sinularia pectliaris_ND narella_hawaiinensis_ND2 paraminabea_aldersladei-ND2 scleronephthya_gracillimum_ND2 scleronephthya_gracilimum_ND2
dendronephthya_castanea_ND2
dendronephthya dendronephthy__mollis_ND2
dendronephthya_suensoni_ND2 junceeतla_fragilis-ND2 keratoisidinae
KD
en
euporgia_comple pseudopterogorgia_bipinnata_ND2

alcyonium digitatum primnoa_resedaeformis_ND2
sinularia_peculiaris_ND2
narella_hawaiinensis_ND2
paraminab_a_aldersladei_ND2
scleronephthya_gracillimum_ND2
dendronephthya_castanea_ND2
dendronephthya_gigantea_ND2
dendronephthya_mollis_ND2
dendronephthya_suensoni_ND2
junceella_fragilis_ND2
keratoisidinae_ND2 rev
echinogorgia_complexa_ND2
euplexaura_crassa_ND2
pseudopterogorgia_bipinnata_ND2
acanella_-eburnea_ND2 rev
sibagogorgia_cauliflora_ND2
briareum_asbestinum_ND2
corallium_elatius_ND2
corallium_konoioi_ND2
corallium_rubrum_ND2 rev
paracorallium_japonicum_ND2 rev
heliopora_coerulea_ND2
stylatula_elongata_ND2
renilla_muelleri_ND2 mnoa rum_digitatum_ND2 sinularia_peculiaris_ND2 narella_hawaiinensis_ND2 scleronephthya_gracillimum_ND2 dendronephthỳ_castanea_ND
dendronephthya_ endronephthya_gigantea_ND2
dendronephthya mollis ND2 dronephthya_suensoni_ND2 keratoisid_fragilis_ND2 hinogorgia complexa ND2 pseudopterogorgia_bipinnata_ND2 acanella_eburnea_ND $\overline{2}$ rev briareum asbestinum ND2
corallium_elatius_ND2
corallium_konoioiND2 corallium_rubrum_ND $\overline{2}$ re paracorallium japonicum-ND2 rev
stylatula_elongata_ND2
stylatula_elongata_ND2
renilla_muelleri_ND2
calicogorgia_granulosa_ND2
Conservation
alcyonium_digitatum_ND2 sinularia peculiaris_ND2 arella hawainensis_ND2 paraminabea_aldersladei-ND2
cleronephthya_gracillimum_ND2 dendronephthya_castanea_ND2 dendronephthya_mollis ND dendronephthya_molis_ND2 junceella_fragilis_ND nogorgia complexa 2 rev euplexaura_crassa_ND2 acanella_eburnea_ND $\overline{2}$ rev corallium_elatius_ND
\qquad corallium_rubrum_ND $\overline{2}$ helioporicum_ND2 stylatula_coerulea_ND alicogorgia_granulesa_ND
Consensus
Conservation
GGGGCACTATCTTCGGGGTTATTCCTGTTTGGTTGCGCCTTAATTTATGGCTCCACCGGAGAGTTTGACCTTCAATTTATTCGTAT 506
 GGAGCACTATCTTCGGGATTGTTCCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT
GGGGCATTATCTTCGGGGTTATTCCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT
GGGGCACTATCTTCGGGGTTGTTCCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAGCTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTC CTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAGCTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTCCTGTTTGGTTGCGCCTTAATTTATGGCTCCACAGGAGAGCTTGAGCTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTC CTGTTTGGTTGCGCCTTAATTTATGGCTCCACAGGAGAGCTTGAGCTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTCCTGTTTGGTTGCGCCTTAATTTATGGCTCCACAGGAGAGCTTGAGCTTCAAATTATTCGTAT GGGGCACTTTCTTCGGGGTTGTTCCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTCCTGTTTGGTTGTGCCCTGATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTCCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTTCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGAAT GGGGCACTATCTTCGGGGTTGTTCCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTYCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTTCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT GGGGCACTATCTTCGGGGTTGTTTCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT GGGGC GTTATCTTCGGGGTTGTTC CTGTTTGGTTGTGCCCTAATTTATGGCTCTACAGGAGAGCTTGAACTTCAATTTATTCGTA GGGGCTCTATCTTCGGGGTTGTTTCTGTTCGGTTGCGCCCTAATTTATGGATCCACTGGAGAGCTTGTACTTCAATTTACTAGTAT 488 GGGGCACTATCTTCGGGGTTGTTCCTGTTTGGTTGTGCCTTAATTTATGGCTCCACAGGAGAGCTTGAACTTCAATTTATTCGTAT
GAGTATAGTATCTTATGGAACATTAGCTGGTAAGTGTCTTATTACTATTTCATTGTTATTTAAAGTATCTGCAGCCCCATTTCATA 592
 GAGTCTAATATCTTATGGAGCATTAGCTGGTAAGTGTCTTATTACTGTCTCATTATTATTTAAAGTGTCTGCAAGCTCCAATTTCATA 376 GAGCATAGTATCTTATGGGCTATTAGCTGGTAAGTGTATTATTACTATTTCATTGTTATTTAAAGTATCTGCAGCCCCATTTCATA 37 GAGCATAGTATCTTATGAGATATTAGCTGGTAAATGTTTTATTACTATCTCATTGTTATTTAAAGTATCTGCAGCCCCATTTCATA 376 GAGCATAGTATCTTATGAGATATTAGCTGGTAAATGTTTTATTACTATCTCATTGTTATTTAAAGTATCTGCAGCCCCATTTCATA 259 GAGCATAGTATCTTATGAGATATTAGCTGGTAAATGTATATGAGATATTAGCTGGTAAATGTTTTATTACTATCTCATTGTTATTTAAAGTATCTGCAGCCCCCATTTCATA 37 GAGTCTAATATCTTATGGAGCATTAGCGGGTAAGTGTCTTATTACTGTTTCATTATTATTTAAAGTGTCTGCAGCTCCATTTCATA GAGTCTAATATCTTATGGAGC------TGGTAAGTGTCTTATTACTATCTCACTATTATTTAAAGTGTCTGCAGCTCCTTTTCATA GAGTATAGTATCTTATGGGGTATTAGCTGGAAAGTGTCTTATTACTATCTCATTGTTATTTAAAGTATCTGCAGCCCCCATTCCATA GAGTCTAATATCTTATGGAGC----TGGTAAGTGTCTTATTACTATCTCACTATTATTTAAAGTGTCTGCAGCTCCTTTTCATA GAGTATAATATCTTATGGAGCATTAGCTGGTAAGTGTCTTATTACTGTCTCATTATTATTTAAAGTATCTGCAGCTCCATTTCATA GAGTGTAATATCTTATGGAGCATTAGCTGGTAAATGTCTTATTACTGTCTCATTATTATTTAAAGTATCTGCAGCTCCATTTCATA GGGTATAATATCTTATGGAGCATTAGCTGGTAAGTGTCTTATTACTATCTCATTATTATTTAAAGTATCTGCAGCTCCATTTCATA AAGTATAATATCTTATGGAGCATTAGCTGGTAAGTGTCTTATTACTATCTCATTATTATTTAAAGTATCTGCAGCTCCATTTCATA GAGTCTAATATCTTATGGAGCACTAGCTGGTAAGTGTCTTATTACTGTCTCATTATTATTTAAAGTATCTGCAGCTCCATTTCATA GAGTATAGTATCTTATGGAGCATTAGCTGGTAAGTGTTTTATTACTGTCTCATTATTATTTAAAGTATCTGCAGCTCCATTTCATA 5 574 $\begin{array}{rl}\text { GAGTATAATATCTTATGGAGCATTAGCTGGTAAGTGTCTTATTACTATCTCATTATTATTTAAAGTATCTGCAGCTCCATTTCATA } \\ 620 & 640\end{array}$
GTGGGCCCCCGATGTATATGAAGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAATTGGGTGTACTAGCCATT TGTGGGCCCCCGATGTCTACGAAGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATTGTGCCTAAATTGGGCGTACTAGCTATT GTGGGCCCCCGATGTCTACGAAGGGGCTC CAACTTGGGTAGCTGCGCTATTATCTATCGTGCCCAAATTGGGGGTACTAGCTATT 46 TGTGGGCCCCTGATGTATACGAAGGAGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAATTGGGGGTACTAGCTATT 462 GGTGGGCCCCCGATGTCTACGAGGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAACTGGGGGTACTAGCTATT 462 GTGGGCCCCCGATGTCTACGAGGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAACTGGGAGTACTAGCTATT 462 TGTGGGCCCCCGATGTCTACGAGGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAACTGGGAGTACTAGCTATT 345 TGTGGGCCCCCGATGTCTACGAGGGGGCTC CAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAACTGGGAGTACTAGCTATT 462 TGTGGGCCCCCGATGTTTATGAGGGGGCTCCAACTTGGGTGGCTGCGCTATTATCTATCGTGCCTAAATTAGGGGTACTAGCTATT 426 TGTGGGCCCCCGATGTATACGAAGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAATTAGGGGTACTAGCTATT GTGGGCCCCCGATGTCTACGAAGGGGCTCCAACTTGGGTAGCAGCGCTATTATCTATCGTGCCGAAATTAGGGGTGCTAGCTATT TGTGGGCCCCCGATGTATACGAGGGGGCCCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAATTAGGGGTACTAGCCATT TGTGGGCCCCCGATGTATACGAAGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAATTAGGGGTACTAGCTATT TGTGGGCCCCCGATGTCTATGAAGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAATTAGGGGTACTAGCTATT TGTGGGCCCCCGATGTATACGAAGGGGCTCCAACTTGGGTAGTTGCGCTATTATCTATCGTGCCCAAACTAGGGGTACTAGCTGT TGTGGGCCCCCGATGTATACGAAGGGGCTCCAACTTGGGTAGTTGCGCTATTATCTATCGTGCCCAAATTGGGGGTACTAGCTATT TGTGGGCCCCCGATGTATACGAAGGGGCTCCAACTTGGGTAGTTGCGCTATTATCTATCGTGCCCAAAATTGGGGGTACTAGCTATT TGTGGGCCCCCGATGTCTATGAGGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTACCTAAATTAGGGGCACTAGCTAT TGTGGGCTCCCGATGTATATGAAGGGGCTCCAACTTGGGTTGCTGCGCTATTATCTATCGTGCCCAAATTAGGGGTACTAGCTATT 687 TGTGGGCCCCCGATGTCTACGAAGGGGCTCCAACTTGGGTAGCTGCGCTATTATCTATCGTGCCTAAATTGGGGGTACTAGCTATT
alcyonium_digitatum_ND2 sinularia peculiaris_ND narella hawaiinensis paraminabea_aldersladei_ND2 paraminabea_aldersladei_ND2
scleronephthya_gracillimum_ND2 scleronephthya__gracillimum_ND2
dendronephthya_castane_-ND2 dendronephthy_-_gigante_-ND2
dendronephthya_mollis_ND2 dendronephthya_suensoni_ND2 junceelila fragilis_ND2
keratoisidinae keratoisidinae-ND $\overline{2}$ rev euplexaura_crassa_ND2
eus acanella_eburnea_na_ND2 sibagogorgorgia_cauliflora_ND2 briareum asbestinum_ND2
corallium elatiu_ND2 corallium_elatius_ND2
coralliu__konojoi_ND2 corallium_rubrum_ND 2 rev

rallium_japonicum_ND2 rev
heliopora_coerulea_ND2
stylatula elongata_ND2 stylatula_elongata_ND2
renilla_muelleri_ND2

cyonium digita alcyonium_digitatum_ND2
primnoa_resedaeformis_ND2
sinularia_peculiaris_ND2
narella_hawaiinensis_ND paraminabe_a_aldersladei-ND2
scleronephthya_gracillimum_ND2 dendronephthya_castanea_ND2 endronephthya_gigantea_ND2
dendronephthy__mollis_ND2 dendronephthya_suensoni_ND2 junceella_fragilis_ND
keratoisidinae euplexa_complexa_ND2 pseudopterogorgia_bipinnata_ND2 acanella_eburnea_ND 2 re briareum_asbestinum_ND corallium_elatius_ND2 corallium_rubrum ND D_{2}^{2} re paracorallium japonicum ND2 rev heliopora_coerulea_ND stylatula_elongata_ND2
renilla_muelleri_ND2 Consensus
Conservation
alcyonium_digitatum_ND2 primnoa_resedaeformis_ND2 narella_hawaiinensis_ND2 paraminabea_aldersladei_ND2 cleronephthya_gracillimum_ND2 dendronephthya_castanea_ND2 dendronephthya mollis_ND dendronephthya suensoni_ND2 junceeतla fragilis-ND2 Chinogorgia_complexa_ND2 euplexaura_crassa_ND2 pseudopterogorgia_bipinnata_ND2 acanella_eburnea_ND2 rev bagogorgia_cauliflora_ND2
briareum_asbestinum_ND2
corallium_elatius_ND2 corallium_rubrum_ND 2 rev paracorallium japonicum ND2 rev
hetiopora_coerulea_ND2
stylatula_elongata_ND2 styilla_muelleri_ND2
calicogorgia_granulosa_ND2
Conservation
alcyonium_digitatum_ND2 primnoa_resedaeformis_ND2
sinularia_peculiaris_ND2
narella hawaiinensis ND2 paraminabe_a_aldersladei-ND2 scleronephthya_gracillimum_ND2 dendronephthya_gigantea_ND2 dendronephthya_mollis_ND2 dendronephthya_suensoni_ND2
Junceella_fragilis_ND2
echinogorgia_complexa_ND2
euplexaura_crassa_ND2 pseudopterogorgia_bipinnata_ND2
sibagogorgia_cauliflora_ND2
briareum_asbestinum_ND2
corallium_elatius_ND2
corallium_rubrum_ND ${ }^{\text {chen }}$ rev
paracorallium japonicum_ND2 rev
heliopora_coerulea_ND2
stylatula_elongata_ND2
renilla muelleri_ND2
calicogorgia_granulosa_ND2
Consensus
Conservation

AGA GATATGCTTATTGAATTTAGTGGTGTTTCAAGATTAAACCCAATGTTAGCATTAGCATTAGCTACAGGTTTATTGTCTACTGC 1022 AGAGACATGCTTATTGAGTTTAGTGGTGTTTCAAGATTAAACCCAATGTTAGCATTAGCATTAGCTACAGGTTTATTATCTACTGC 1022 AGAGACATGCTTATTGAGTTTAGTGGTGTTTCAAGATTAAACCCAATGTTAGCATTAGCATTAGCTACAGGTTTATTGTCTACTGC 1022 AGAGATATGCTTATTGAGTTTAGTGGTATTTCAAGATTAAACCCAATCTTAGCATTAGCACTAGCTGCAGGTTTATTGTCTACTGC 806 AGA GACATGCTTATTGAATTTAGTGGTGTTTCAAGATTAAGCCCAATGTTAGCATTAGCATTAGCTACAGGTTTATTGTCTACTGC 806 AGAGACATGCTTATTGAATTTAGTGGTGTTTCAAGATTAAGCCCAATGTTAGCACTAGCATTAGCTACAGGTTTATTGTCTACTGC 806 AGA GACATGCTTATTGAATTTAGTGGTGTTTCAAGATTAAGCCCAATGTTAGCACTAGCATTAGCTACAGGTTTATTGTCTACTGC 689 AGA GACATGCTTATTGAATTTAGTGGTGTTTCAAGATTAAGCCCAATGTTA GCACTAGCATTAGCTACAGGTTTATTGTCTACTGC 806 AGA GACATGCTTATTGAATTTAGTGGTGTTTCAAGATTAAGCCCAATGTTAGCACTAGCATTAGCTACAGGTTTATTGTCTACTGC 806 AGA GATATGCTTATTGAGTTTAGTGGTGTTTCAAGATTAAACCCAATTTTGGCATTAGCATTAGCTGCAGGTTTATTGTCTACTGC 770 AGAGATATGCTTATTGAGTTTAGTGGTGTTTCAAGATTAAACCCAATCTTAGCATTAGCATTGGCTGCAGGTTTATTGTCTACTGC 986 AGAGACATGCTTATTGAGTTTAGTGGTGTTTCAAGATTAAGCCCGATGTTGGCATTAGCATTGGCTACAGGTTTATTGTCTACTGC 806 AGAGATATGCTTATTGAGTTTAGCGGTGTTTCAAGATTAAACCCCATGTTGGCATTAGCATTAGCTACAGGTTTATTGTCTACTGC 743 AGA GATATGCTTATTGAGTTTAGTGGT GTTTCAAGATTAAACCCAATCTTAGCATTAGCATTGGCTGCAGGTTTATTGTCTACTGC 989 AGA GATATGCTTATTGAGTTTAGCGGTATTTCAAGATTAAACCCAATCTTAGCATTAGCACTAGCTGCAGGTTTATTGTCTACTGC 806 AGA GATATGCTTATTGAGTTTAGCGGTCTTTCAAGATTAAACCCAATCTTAGCATTAGCATTAGCTGCAGGTTTATTATCTACTGC 806 AGAGATATGCTTATTGAGTTTAGCGGTATTTCAAGATTAAACCCAATCTTAGCATTAGCACTAGCTGCAGGTTTATTGTCTACTGC 806 AGAGATATGCTATTGAGTTAGCGGTATTTAAGATTAAACCCAATCTAGCATTAGCACTAGCTGCAGGTTTATTGTCTACTGC 806 AGA GATATGATTATTGAGTTTAGCGGTATTTCAAGATTAAACCCAATCTTAGCATTAGCACTAGCTGCAGGTTTATTATCTACTGC 806 AGA GATATGCTTATTGAGCTTAGTGGTGTTTCAAGGTTGAACCCAATTTTA GCATTAGCATTAGCTGCAGGTTTATTGTCTACTGC 1022 AAAGATATGCTTATTGAGTTTAGTGGTGTATCAAGATTAAACCCAATCTTAGCATTGGCTTTAGCTACAGGTTTATTGTCTACTGC 1031 GAGACATGCTTATTGAATTTAGTGGTGTTTCAAGATTAAGCCCAATGTTAGCAGTAGCATTAGCTACAGGTTTATTGTCTACTGC 806 AGA GATATGCTTATTGAGTTTAGTGGTGTTTCAAGATTAAACCCAATNTTAGCATTAGCATTAGCTACAGGTTTATTGTCTACTGC
alcyonium_digitatum ND2 mnoa_resedaeformis_ND
sinularia_peculiaris_ND narella_hawaiinensis_ND cleronephthya_-gracillimum dendronephthya_castanea_ND dendronephthya__gigantea_ND dendronephthya_mollis_ND junceella_fragilis $\underset{\text { junctoisidinae_ND2 }}{\text { jun }}$ echinogorgia_complexa_ND
euplexaura_crassa_ND pseudopterogorgia bīinnata-ND sibagogorgia_caulifIora_ND briareum_asbestinum_ND corallium_elatius_ND corallium rubrum $\mathrm{ND} \overline{2}$ rev paracorallium japonicum ND2 re heliopora_coerulea_ND2
stylatula_elongata_ND2 renilla_muelleri_ND
\qquad
Conservation
alcyonium_digitatum_ND2 rimnoa_resedaeformis ${ }^{\text {- }}$ ND
sinularia_peculiaris narella_hawaiinensis_ND paraminabēa_aldersladei_ND scleronephthya_gracillimum_N dendronephthya_castanea_ND dendronephthya_mollis ND
junceella_fragilis_ND
juta_s_
keratoisidinae ND $\overline{2}$ re echinogorgia_complexa_ND pseudopterogorgia_bípinnata_ND acanella_eburnea_ND $\overline{2}$ re sibagogorgia_cauliffora_ND briareum_asbestinum_
corallium elatius
\qquad corallium_rubrum_ND $\overline{2} \mathrm{re}$ paracorallium japonicum_ND2 re
heliopora_coerulea_ND2
stylatula_elongata_ND2 stylatula-elongata-ND
renilla_muelleri_ND calicogorgia_granulosa_ND

1.220
alcyonium_digitatum_ND2 primno sinularia pectuliaris_ND2 sinularia_peculiaris_ND2 araminabea aldersladei_ND cleronephthya_gracillimum ND dendronephthya_castanea_ND dendronephthya__gigantea_ND dendronephthya_mollis_ND2 dendronephthya suensoni_ND2 junceella fragilis-ND2 chinogorgia complexa ND2 euplexaura crassa-ND pseudopterogorgia_bīpinnata_ND2 acanella_eburnea_ND2 2 rev
briareum
corallium corallium katius_ND2
corallium rubrum $\overline{2} \overline{2}$ ND paracorallium japonicum ND2
stylatula_coerulea_ND2 stylatula_elongata_ND2 alicogorgia_granulosa_ND

Consensus
Conservation
alcyonium digitatum ND2 primnoa_resedaeformis ND2 sinularia_peculiaris ${ }^{-}$ND2 narella_hawaiinensis_ND leronephthya_gracillimum_ND dendronephthya_castanea_ND dendronephthya_gigantea_ND dendronephthya_mollis_ND junceella_fragilis ND2 keratoisidinae ND2̄ rev echinogorgia_complexa_ND2 euplexaura_crassa_ND pseudopterogorgia_bipinnata_ND acanella_eburnea_ND2 briareum asbestinum ND corallium_elatius_ND2 rallium_rubrum_ND $\overline{2}$ rev paracorallium japonicum ND2 rev heliopora_coerulea_ND stylatula_elongata_ND2
renilla_muelleri_ND
alicogorgia_granulosa_ND
alicogorgia_granulosa_ND
Consensus
1,300

1.240
(1)
1.260
 TCTCCACGAGTAATGTAGCATCGGAGAAAACGGGTTTAGGCAAAGCAATATTAATA 1272 TCTCCACGTG
 TCTCCACGTGGCAGCGTAGCACCGAGGAAACGGGCTTAGGCAAGGCAATATTAATA 105 TCTCCACGTGGCAGCGTAGCACCGGAGGAAACGGGCTTAGGCAAGGCAATATTAATA 939 TCTCACGTGGCAGCGTAGCACCGGAGGAAACGGGCTTAGGCAAGGCAATATTAATA 1056 TCTCCACGTGGCAGCGTAGCACCGGAGGAAACGGGCTTAGGCAAGGCAATATTAATA 1056 TCTCCACGCGGTAGCGTAGCAICGAAGGAGACGGGGTTGGGCAAGGC GATATTAATA 1020 TCTCCACGTGG.-....-....-.-AGCACCGGAGGAAACGGGCTTAGGCAAGGGCAATATTAATA 1210 TCTCCACGTGGCAGCGTAGCACCGGAGGAAGCGGGTTTAGGCAAGGCAATATTAATA 1056 TCTCCACATGGCAGTGTAGCACCGGAGAAAACGGGTTTAGGCAAGGCAATATTAATA 993 -CTCCACGTG...AGGGTTTGGGCAAGGCCCTCTTAATA 1221 TCTCCACGTG......................................AGGGTTGGGCAAGGCCATATTAATA 1038 CCTCCACAGGGGCGGCTAGTA-CGGGTTTGGGGGGCTAGGCAAGGCCATATTAATA 1062 CTCCACGTG TTTCCACGTGAAACAGGTTTGGGCAAGGCCATATTAATA 1038
 TCTCCACAAGGTAGCGTAGCATCGAAGGAGACAAGTTTGGGAAAGGCAATATTAATA 1254 TCTCCACATGGTAACGTAGCATTAAAGGAAACAGGTTTAGGCAAGGCTATATTAATA 128信 CTCCACGTGG - - - TAGCA - CGGAGGAAACGGGTTTAGGCAAGGCAATATTAATA

GGGCAAGCTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTCTTTCAGTTAACACATTTGATTATTTTAGATTTATT 1346 GGGGCAAGCTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTCTTTCAGTTAACACATTTGATTATTTTAGATTTATT 1358 GGGTAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTTTTTCAATTAACACATTTGATTATTTAGATHATT 135 GGGGTAAGTTTATATTTAGTATTAACAACTATAGTATGTCCTAGTTTGTTTTTTCAGTTAACACATTTGATTATTTTAGATTTATT 1124 -... 888 GGGGAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTCTTTCAGTTAACACATTTAATTATTTTAGATTTATT 1142 GGGGCAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTCTTTCAGTTAACACATTTAATTATTTTAGATTTATT 1025 GGGGCAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTCTTTCAGTTAACACATTTAATTATTTTAGATTTATT 1142 GGGGCAAGTTTATATTTAGTATTAACGATTATAGTCTGTCCTAGTTTGTTTTTTCAGTTAACACATTTGATTGTTTTAGATTTATT 1106 GGGGTAAGTTTATATTTAGTATTAACAATTATAGTATGTCCGAGTTTGTTTTTTCAGTTAACACATTTGATTATTTTAGATTTATT 1304 GGGGTAAGCTTATATTTAGTATTAACAATTATAGTGTGTCCTAGTTTGTTTTTTCAGTTAACACATTTAATTATTTTAGATTTATT 1136 GGGGCAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTCTTTCAGTTAACACATTTGATTATTTTAGATTTATT 1142 GGGGCAAGTTTATATTTAGTATTAACAATTATAGTGTGTCCTAGTTTGTTCTTTCAGTTAACACATTTGATTATTTTAGATTTATT 1079 GGGGGGAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTTTTCAGTTAACACATTTGATTATTTTAGATTTATT 1307 GGGGTAGTTATATTTAGTATTAACGATTATAGTATGTCTAGTTH GGGGTAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTTTTTCAGTTAACACATTTGATTATCTTAGATTTATT 1124 GGGGTAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTTTTTCAGTTAACACATTTGATTATCTTAGATTTATT 1124 GGGGTAAGTTTATATTTAGTTTTAACAATTATAGTATGTCCTAGTTTGTTTTTTCAGTTAACACATTTGATTGTTTTAGATTTATT 1124 GGGGTAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTTTTTCAGTTAACACATTTGATTATTTTAGATTTATT 1124 GGGGTAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGCTTGTTTTTTTCAGCTAACACATTTGATTATTTTAGATTTATT 1340 GGGGTAAGTTTATATTTAGTATTAACAATTATTGTATGTCCTAGTTTGTTTTTTCAGTTAACACATTTGATTGTTTTAGATTTATT 1367 GGGGCCAGTTTATATTTAGTGTTAACAATAATCTTATGTCCAAGTTTGTTTTTTCTGTTAACTCATTTAATAATTTTAGATTTATT 1142 GGGGTAAGTTTATATTTAGTATTAACAATTATAGTATGTCCTAGTTTGTTTTTTCAGTTAACACATTTGATTATTTTAGATTTATT

1.380		
cyonium_digitatum_ND2	CCCATGTATCTTCTAG	1362
mnoa_resedaeformis_ND2	CCCATGTATCTTCTAG	1374
sinularia_peculiaris_ND2	CCCATGTATCTTCTAG	1374
arella_hawaiinensis_ND2	TCCATGTATCTTCTAG	1140
aminabea_aldersladei_ND2	TCCATGTACCTTCTAG	1140
leronephthya_gracillimum_ND2	-------------1	383
dendronephthya_castanea_ND2	CCCATGTATCTTCTAG	1158
dendronephthya_gigantea_ND2	CCCATGTATCTTCT-	1039
dendronephthya_mollis_ND2	CCCATGTATCTTCTAG	1158
ndronephthya suensoni_ND2	CCCATGTATCTTCTAG	1158
junceella_fragilis_ND	TCCATGTATCTTCTAG	1122
keratoisidinae_ND2 rev	TCCATGTATCTTCTAG	1320
hinogorgia_complexa_ND2	CCCATGTATCTTCTAG	1152
euplexaura_crassa_ND2	CCCATGTATCTTCTAG	1158
dopterogorgia_bipinnata_ND2	CCCATGTATCTTCT-	1093
acanella_eburnea_ND2 rev	TCCATGTATCTTCTA	1322
sibagogorgia_cauliflora_ND2	TCCATGTATCTTCTAG	1140
iareum_asbestinum_ND2	CCCATGTATCTTCTAG	1164
corallium_elatius_ND2	TCCATGTATCTTCTAG	1140
corallium_konojoi_ND2	TCCATGTATCTTCTAG	1140
corallium_rubrum_ND $\overline{2}$ rev	TCCATGTATCTTCTAG	1140
rallium japonicum_ND2 rev	TCCATGTATCTTCTAG	
heliopora_coerulea_ND2	TCCATGTGTCTTCTAG	1356
stylatula_elongata_ND2	CCCATGTATCTTCTAG	1383
renilla_muelleri_ND2	TCCATGTATCTTCTAG	1356
calicogorgia_granulosa_ND2	CCCATGTATCTTCTAG	8
5	CCCATGTATCTTCTAG	

Nd3 gene

nium digitatum nd3	TTAGAGTGGGAAAACTAGC 367
noa resedaeformis ${ }^{\text {- }}$ - 3	TTAGAGTGGGAAAACTAG - 354
ūlaria_peculiaris_nd3	TTAGAGTGGGAAAACTAG - 354
narella_hawaiinensis_nd3	TTAGAATGGGAAAGCTAG - 354
inabea_aldersladei_nd3_rev	TTAGAGTGGGAAGGCTAG - 354
cleronephthya_gracillimum_nd3	TTAGAGTGGGAAAACTAG - 354
ndronephthya castanea-nd3	TTAGAGTGGGAAAACTAG - 354
dronephthya_mollis_nd3	TTAGAGTGGGAAAACTAG - 35
ndronephthya_suensoni_nd3	TTAGAGTGGGAAAACTAG - 354
ndronephthya_gigantea_nd3	TTAGAGTGGGAAAACTAG - 354
fragilis_nd3	TTAGAATGGGAAAATTAA
keratoisidinae_nd3	TTAGAATGGGGAAGCTAG - 348
inogorgia_complexa_nd3	TTAGAGTGGGAAAACTAG - 354
euplexaura_crassa_nd3	TTAGAGTGGGAAAACTAG - 35
dopterogorgia_bipinnata_nd3	TTAGAGTGGGAGAACTAG-35
sibogagorgia_cauliflora_nd3	TTAGAGTGGGAGGGCTAG - 35
acanella_eburnea_nd3	TTAGAATGGGAAAGCTAG - 348
briareum_asbestinum_nd3	TTAGAGTGGGAGAACTAG - 35
corallium_elatius_nd3_rev	TTAGAGTGGGAGGGCT
corallium_konojoi_nd3_rev	TTAGAGTGGGAGGGCTAG - 35
corallium_rubrum_nd3_rev	TTAGAGTGGGAGGGCTAG - 354
orallium japonicum_nd3_rev	TTAGAGTGGGAGGGCTAG - 35
heliopora_coerūlea_nd3	TTAGAATGGGAAAACTAA - 35
stylatula_elongata_nd3	TTAGAGTGGGAAAATTAA - 354
renilla_muelleri_nd3	TTAGAATGGGAAAATTAA - 354
Consensus	TTAGAGTGGGAAAACTAG
Conservation	

TAGAGTGGGAAAACTAG354THAGAATGGGAAAGCTAG354TTAGAGTGGGAAAACTAG354
TTAGAGTGGGAAAACTAG - 354TTAGAGTGG354TTAGAATGGGAAAATTAA -354348
TTAGAGTGGGAAAACTAG - 54354
TAGAGTGGGAGAACTAG354348
解354
GGCTAG - 354TTAGAGTGGGAGGGCTAG - 354TTAGAGTGGGAAATTAA354
354TTAGAGTGGGAAAACTAG
$N d 4$ gene

Abstract

alcyonium_digitatum_nd primnoaresedaeformis_nd sinularia_仵 sinularia_peculiaris_n narella_hawainensis_nd paraminabea_aldersladei_nd paraminabea_aldersladei_nd scleronephthya_gracillimum_nd dendronephthya_ castanea_nd dendronephthy___gigantea_nd dendronephthya_molis_nd dend phthya_suensoni-nd keratoisidinae nd4_-re echinogorgia_complexa_nd euplexaura_crassa_nd pseudopterogorgia_bipinnata_nd acanella_eburnea_nd__re sibolatanorgia_ caulifiora_nd sibogagorgia_cauliflora_n briareum asbestinum briareum_asbestinum_nd corallium_elatius_nd corallium_elatius_nd conojoi_nd CCA ACAAAGCGTTAAGAGTGGTCTCTGATTACATTTGCTCTTTCTATTTTATTATATTAGTTATACCTHCTCTTTCTATTTTATTATTAGTTAACCTTCATCAAGAGAGGCTCAAATTTCAAACTCAATTTCAAC CCAGCAAGCGTTGGAGTGGTCTCTGATAACATTTGCTCTTTCTATTTTATTATTAGTTAACCTTCATCAAGAAGGCTCAATTTCAAC CCAACAAGCGTTAGAGTGGTCTCTGATTACATTTGCTCTTTCTGTTTTATTATTAGTTAGCCTTCATCAAGAAAGCCCAAATTTCAAAC CCAGCAAGCGTTAGAGTGGTCTCTGATTACATTTGCTCTTTCTATTTTGTTATTAGTTAACCCTTCAATCAAGAAAGCTCAAATTTCAAAC CCAACAAGCGTTGGAGTGGTCTCTGATAACATTTGCTCTTTCTATTTTATTATTAGTTAACCTTCATCAAGAAGCTCAATTTCAAC CCAACAAGCGTTGGAGTGGTCTCTAATAACATTTGCTCTTTCTATTTTATTATTAGTTAACCTTCATCAAGAAGCTCAATTTCAAC CCAACAAGCGTTGGGAATGGTCTCTGATAACATTCGCTCTTTCTCTTTTATTACTAGTTAACCTTCAATCAAGAAAGCTCAAATTTCAAAC CCAGCAAGCATTGGAGTGGTCTCTGATAACATTTGCTCTTTCTATTTTATTATTAGTTAACTTTCATCAGGAAGCTCAGTTTCAAA CCAGCAAGCGTTGGAGTGGTCTCTGATAACATTTGCTCTTTCTCTTTTATTATTAGTTAACCTTCATCAAGAAGCTCAATTTCAAC CCAGCAAGCGTTGGAGTGGTCTCTGATAACATTTGCTCTTTCTATTTTATTATTAGTTAACCTTCATCAAGAAGCTCAATTTCAAC ${ }_{1}^{180}$ ${ }_{1}^{200}$ ${ }_{1}^{220}$ ${ }^{240}$ alcyonium_digitatum_nd4 sinularia_peculiaris_nd4 narella_hawaiinensis_nd4 paraminabēa_aldersladei-nd4 scleronephthya_gracillimum_nd4 dendronephthya_castanea_nd4 dendronephthya_gigantea_nd dendronephthya_mollis_-nd junceella fragilis nd4 keratoisidinae nd4 echinogorgia_compTexa_nd4 euplexaura_crassa_nd4 pseudopterogorgia_bipinnata_nd acanella_eburnea_nd4_rev sibogagorgia cauliflora_nd4 briareum_asbestinum nd corallium_elatius_nd4 corallium_rubrammonoi_nd4 aracorallium japonicum_nd4_rev heliopora_coerulea_nd stylatula_elongata_nd renilla_muelleri_nd4 Conservation cyonium_digitatum_nd4 sinularia_peculiaris_nd narella_hawainensis_nd paraminabea_aldersladei_nd dendronephthya_castanea_nd dendronephthya_gigantea_nd4 dendronephthya_mollis_nd junceella_fragilis_nd4 keratoisidinae nd4 rev chinogorgia_complexa_nd4 rogorgia__-rassa_nd pseudopterogorgia_bipinnata_nd acanella eburnea nd 4 re acanella_eburnea_nd4_re corallium_elatius_nd4 corallium_rubrum_nd_rey paracorallium_japonicum nd4_rev stylatula- elongata-nd renilla_muelleri_nd Conservation

AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCTATATTGTTTGCTATTGACGGGATCTCTATATTT 258 AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCTGTATTGTTTGCTATTGACGGGATCTCTATATTT 258 AGATAATAGAATTCAGCTGGGTGAGTACAATAGGCTGGTTTGAAGGTTCTCCTATATTATTTGCTGTTGACGGGATCTCTATATTT 258 AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCGATATTGTTTGCTATTGACGGGATCTCTATATTT 258 AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCGATATTGTTTGCTATTGACGGGATCTCTATATTT AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCAATATTGTTTGCTATTGACGGGATCTCTATATTT AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCAATATTGTTTGCTATTGACGGGATCTCTATATTT AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCAATATTGTTTGCTATTGACGGGATCTCTATATTT GATAATAGAATTCAGCTGGGTGAGTACAATAGGTTGGTTTGAAGGTTCTCCTATATTATTTGCTGTTGACGGGATCTCTATATTT aGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAAGTTCTCCAATATTGTTTGCTATTGACGGGATCTCTATATTT AGATAATAGAATTCAATTGGGTGAGTACTATAGGTTGGTTTGAAGGGTCTCCGATATTGTTTGCTATTGACGGGATCTCTATATTT AGATAAATAGAGTTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCGATATTGTTTGCTATTGACGGGATCTCTATATTT AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCTATATTGTTTGCTATTGACGGAATCTCTATATTT AGATAATTGAATTCAATTGGGTAAGTACAATTGGCTGGTTTGAAGGTTCTCCTATATTATTTGCTACTGACGGAATCTCTATATTC AGA TAATTGAATTCAATTGGGTAAGTACAATTGGCTGGTTTGAAGGTTCTCCTATATTATTTGCTACTGACGGAATCTCTATATTC AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAGGGTTCACCTATATTATTTGCTATTGACGGAATCTCTATATTT AGATAATAGAATCAATTGGGTAAGTACAATAGGTTGGTTTGAGGGTTCACCTATATTATTTGCTATTGACGGAATCTCTATATTT 25 AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCTATATTATTTGCTATTGACGGGATCTCTATATTT 258 AGATAATAGAATTCAATTGGGTAAGTACAATAGGTTGGTTTGAAGGTTCTCCTATATTATTTGCTATTGACGGGATCTCTATATTT 楊 TCATTATACTAAGTACTTTATTAACACCAATTTGTATTTTAGTAAGTTGGAATAGTATTAAGTTTCTTATTAAAGAGTTTATTAT TTCATTGTACTAAGTACTTTGTTAACACCAATTTGTATTTTGGTAAGTTGGGACAGTATAAAGTTTCTTGTTAAGGAGTTTATTAT TTCATTGTACTAAGTACTTTATTAACCCCTATTTGTATTTTAGTGAGTTGGGATAGTATTAAGTTTCTTGTTAAGGAGTTTATTAT TCATTGTACTAAGTACTTTATTAACCCCTATTTGTATCTTAGTAAGTTGGAATAGTATTAAGTTTCTTGTTAAGGAGTTTATTAA TCATTGTACTAAGTACTTTATTAACCCCTATTTGTATCTTAGTAAGTTGGAATAGTATTAAGTTTCTTGTTAAGGAGTTTATTA TCATTGTACTAAGTACTTTATTAACCCCTATTTGTATCTTAGTAAGTTGGAATAGTATTAAGTTTCTTGTTAAGGAGTTTATTAT TCATTGTACTAAGTACTTTATTAACACCAATTTGTATTTTGGTAAGTTGGGACAGTATTAAGTTTCTTGTTAAGGAGTTTATTAT TCATTGTACTAAGTACTTTATTAACCCCTATTTGTATCTTAGTAAGTTGGAATAGTATTAAGTTTCTAGTTAAGGAGTTTATTAT TTATTGTACTAAGTACTTATTAACACCAATTGTATHTAGTAGTTGGATAGTATTAAGTTTTTGTAAGGAGTTTATTTT TCATTGTCCTAAGTACTTTGTTAACACCAATTTGTATTTTGGTAAGTTGGGACAGTATAAAGTTTCTTGTTAAGGAGTTTATTAT TTATTGTACTAAGTACTTTGTTAACACCAATTTGTGTTTTGGTAAGTTGGAACAGTATCAAGTTCCTGGTTAAGGAGTTTATTAT TTTATTGTACTAAGTACTTTGTTAACACCAATTTGTATTTTGGTAAGTTGGCACAGTATTAAGTTTCTTGTTAAGGAGTTTATTAT TTATTGTACTAAGTACTTTGTTAACACCAATTTGTATTTTGGTAAGTTGGCACAGTATTAAGTTTCTTGTTAAGGAGTTTATTAI TTTATTGTACTAAGTACTTTGTTAACACCAATTTGTATTTTGGTAAGTTGGGACAGTATTAAGTTTCTTGTTAGGGAGTTTATTAT TTCATTATACTAAGTACTTTGTTAACACCAATTTGTATTCTGGTAAGTTGGGACAGTATTAAGTTTCTTGTTAAAAGAGTTTATCAT TTCATTGTACTAAGTACTTTGTTAACACCCATTTGTATTTTGGTAAGTTGGGACAGTATTAAAGTTTCTGGTAAAGGGAATTTATTAT TTCATTGTACTAAGTACTTTGTTAACACCAATTTGTATTTTGGTAAGTTGGAACAGTATTAAGTTTCTTGTTAAGGAGTTTATTAT

 GTTGGTTCAATATTAATGTTACTTAGCATAGCAGTTATTTATAGGATAACAGGTACAACTGATTATTTATCTTTAACTAATATTCA 602 GTTGGCTCAATATTAATGTTATTTAGCATAGCAGTTATTTATAGGATAACTGGCACAACTGACTACTTATCCTTAACTAACATTCA 602 GTTGGCTCAATACTAATGTTACTTAGTGTAGCAGTTATTTATAGAACAACGGGCACAACTGACTACTTATCCTTAACTAACATTCA 602 GTTGGTTCAATATTAATGTTACTTAGCATAGCAGTTATTTATAGAGTAACGGGCACAACCGACTACTTATCTTTAACTAACATTCA 602 GTTGGTTCAATATTAATGTTACTTAGCATAGCAGTTATTTATAGAATAACGGGCACAACCGACTACTTATCTTTAACTAACATTCA 602 GTTGGTTCAATATTAATGTTACTTAGCATAGCAGTTATTTATAGAATAACGGGCACAACCGACTACTTATCTTTAACTAACATTCA 602 (TGUCATAGCAGTTATTTATAGAATAACGGGCACAACCGACTACTTATCTTTAACTAACATTCA 602 TTGGCTCAGTATTAATGTTACTTAGCATAGCAGTTATTTATAGGATAACTGGCACAACTGACTACTTATCCTTAACTAACATTCA 602信 GTGGCTCAGATTAATGTTACTTAGCATAGCAGTTATTTATAGAATAACCGGCACAACTGACTACTTATCTTTAACTAACATTCA 602 TTGGCTCAGTATTAATGTTACTTAGCATAGCA GTTATTTATAGGATAACTGGCACAACTGACTACTTATCCTTAACTAACATTCA 60 GTTGGCTCAATATTAATGTTACTTAGCATCGCAGTTATTTATAGGATAACGGGCACAACTGACTACTTATCCTTAACTAACATTCA 602 GTTGGCTCAATATTAATGTTACTTAGCATAGCAGTTATTTATAGGATAACGGGCACAACTGACTACCTATCCCTCACTAACATTCA 602 TTGGCTCAATATTAATGTTACTTAGCATAGCAGTTATTTATAGGATAACGGGCACAACTGACTACCTATCCCTCACTAACATTCA 602 GTTGGCTCAATATTAATGTTACTTAGCATAGCAGTTATTTATAGGATAACGGGCACAACTGACTACTTATCCCTAACTAACATTCA GTTGGCTCAATATTAATGTTACTGAGCATAGCAGTTATTTATAGGATAACGGGCACAACTGACTACTTATCCCTAACTAACATTCA 602
 GTTGGCTCAATATTAATGTTACTTAGCATAGCAGTTATTTATAGGATAACGGGCACAACTGACTACTTATCTTTAACTAACATTCA
 GATAGTAACATTCAAATTTGGTTATTTATAGGTTTCTTCCTTAGTTTAGCAGTTAAGATACCAATGATAC 676
 ATACTTCAATACAAATTTGGTTATTTATAGGTTTCTTCCTTAGTTTAGCAGTTAAGATACCAATGATAC 67 -CCACTTCAATACAAATCTGGTTATTTATAGGCTTTTTCCTTAGTTTGGCAGTTAAGATACCAATGATGC 676 GATAATAACATTCAAATTTGGTTATTTGTGGGTTTCTTCCTTAGTTTAGCAGTTAAAATACCTATGATCC 67 GATAATAACATTCAAATTTGGTTATTTGTGGGTTTCTTCCTTAGTTTAGCAGTTAAAATACCTATGATCC 676 GATAATAACATTCAAATTTGGTTATTTGTGGGTTTCTTCCTTAGTTTAGCAGTTAAAATACCTATGATCC 676 CICAATACAAATTTGGTTATTTACAGGTTTCTTCCTTAGTTTAGCAGTTAAGATACCAATGGTAC 67 GATAGTAATATTCAAATTTGGTTGTTTATAGGTTTCTTCCTTAGTTTAGCAGTTAAGATACCAATGATAC 676 GATAGTAACACTCAAATTTGGTTATTTATAGGGTTTTTCCTTAGTTTAGCAGTTAAAATACCAATGATAC 676
 ACCCCTCAATACAAATCTGGTTATTTATTGGCTTCTTTCTTAGTTTAGCTGTTAAGATACCAATGATAC 676 ACCCCTCAATACAAATCTGGTTATTTATTGGCTTCTTTCTTAGTTTAGCTGTTAAGATACCAATGATAC 676 ACACTTCAATACAAATCTGGTTATTTATAGGCTTTTTTCTTAGTTTAGCAGTTAAGATACCAATGATAC 676 ATACTTCAATACAAATCTGGTTATTTATAGGTTTCTTCCTTAGTTTAGCAGTTAAGATACCAATGATCC 67 ATACTTCAATACAAATTTGGTTATTTATAGGTTTCTTCCTTAGTTTAGCAGTTAAGATACCAATGATAC
alcyonium＿digitatum＿nd4
mnoa resedaeformis $n d$ sinularia＿peculiaris＿nd narella＿hawaiinensis＿nd cleronephthya＿gracillimum nd sendronephthya＿castane＿＿nd endronephthya＿gigantea dendronephthya＿mollis nd dendronephthya suensoni－nd junceella＿fragilis ${ }^{-}$nd4 hinogorgia hinogorgia＿complexa＿nd
euplexaura crassa＿n pseudopterogorgia＿bipinnata＿nd
acanella＿eburnea nd 4 ＿r sibogagorgia＿cauliflora＿nd briareum as asestinum＿nd
corallium＿elatius＿nd corallium＿rubrum＿nd4－rev paracorallium＿japonicum＿nd4＿rev heliopora＿coerülea＿nd stylatula＿elongata＿nd
renilla＿muelleri nd

Conservatio
alcyonium＿digitatum＿nd sinularia＿peculiaris＿nd arella＿hawaiinensis＿nd paraminabea＿aldersladei＿nd dendronephthya＿castanea＿nd endronephthya＿－＿gigantea＿－nd dendronephthya＿mollis n dendronephthya suensoni＿nd keratoisidinae＿nd4＿rev euplexaura＿complexa＿nd
pseudopterogorgia bipinnata＿nd acanella＿eburnea＿nd4＿re briareum＿asbestinum＿nd corallium＿elatius＿nd corallium＿rubrum nd4 paracorallium japonicum＿nd4＿rev heliopora＿coerulea＿nd stylatula＿elongata＿nd
${ }^{700}$

CCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCTCCTGTAGCTGGTTCAGTGATTCTAGCTGGAATATTATTAAAATTAGGG
${ }^{760}$ CTTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCCCCTTTAGCTGGTTCAGTGATTCTAGCTGGAATATTATTAAAAATTAGGG CTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCTCCGGTAGCTGGCTCAGTGATTCTAGCTGGAATATTATTAAAATTAGG CCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCTCCCTTTAGCTGGTTCAGTGATTCTAGCTGGAATACTATTAAAAATTAGGG CCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCTCCTTTAGCTGGTTCAGTGATTCTGGCTGGAATATTATTAAAATTAGGG CCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCTCCTTTAGCTGGTTCAGTGATTCTGGCTGGAATATTATTAAAAATTAGGG CCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCTCCTTTAGCTGGTTCAGTGATTCTGGCTGGAATATTATTAAAATTAGGG CTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCCCCGGTAGCTGGCTCAGTGATTCTAGCTGGAATATTATTGAAATTAGG CCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCTCCTTTAGCTGGTTCAGTGATTCTAGCTGGAATATTATTAAAATTAGGG CCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCCCCCCTAGCTGGCTCAGTGATTCTAGCTGGAATATTATTAAAATTAGGG CCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCCCCGGTAGCTGGCTCAGTGATTCTAGCTGGAATATTATTAAAAATTAGGC CCTTTCATATCTGGCTACCTCTTGCGCATGTTGAGGCCCCTTTGGCTGGCTCAGTGATTCTAGCTGGAATACTATTAAAATTAGGA CCTTTCAATATATCTGGCTACCTCTTGCGCATGTTGAGGCCCCTTTAGCTGGCTCAGTGATTCTAGCTGGAATACTATTAAAAATTGGG

 CCTTTCATATCTGGCTACCTCTTGCGCATGTTGAGGCCCCTTTAGCTGGCTCAGTGATTCTAGCTGGAATACTATTAAAAATAGGA CCTTTCATATATGGTTGCCTCTTGCGCATGTCGAGGCTCCTTTAGCTGGCTCAGTGATTCTAGCTGGAATATTATTAAAGTTAGG CCTTTCATATATGGTTGCCTCTTGCGCATGTTGAGGCTCCTGTAGCTGGTTCAGTGATTCTGGCTGGAGTATTACTAAAATTAGGA | 780 | 800 | 820 |
| ---: | :--- | :--- |
| 100 | | | GGCTATGGATTCATTCGATTCGCTTGGCCCCTTTTCCCCGAAGCAACAGAGTATTTAGCGCCAATCATACTAACGTTATCATTAAT 84 GGTTATGGATTCATTCGATTCGCTTGGCCTCTTTTCCCTGAAGCAACAGAGTATTTAGCAACCAATCATACTAACGTTATCGTTAA GGCTATGGATTCATTCGATTCGCTTGGCCTATTTTTCCTGAAGCAACAGAGTATTTAGCACCAATCATACTAACGTTATCATTAAA GGTTATGGATTCATTAGATTCGCTTGGACTATTTTCCCTGAAGCAACAGAGTATTTAGCACCAATCATATTAACATTATCATTAA GGTTATGGATTCATTAGATTCGCTTGGCCTCTTTTCCCAGAAGCAACAGAGTATTTAGCAACCAATCATATTAAACGTTATCATTAAAT GGTTATGGATTCATTAGATTCGCTTGGCCTCTTTTCCCAGAAGCAACAGAGTATTTAGCACCAATCATATTAACGTTATCATTAAAT GGTTATGGATTCATTAGATTCGCTTGGCCTCTTTTCCCAGAAGCAACAGAGTATTTAGCACCAATCATATTAACGTTATCATTAAT GGCTATGGATTCATTCGATTCGCTTGGCCTATTTTCCCTGAAGCAACCGAGTATTTAGCCCCAATCATACTAACGTTATCATTAAT GGTTATGGATTCATTCGATTCGCTTGGCCTCTTTTCCCAGAAGCAACAGAGTATTTAGCACCAATCATATTAACGTTATCATTAAAT GGTTATGGATTCATTCGATTCGCTTGGCCTCTTTTCCCCGAAGCAACAGAGTATTTAGCACCAGTCATACTAACGTTATCATTAA GGTTATGGGTTCATTCGATTCGCTTGGCCCCTTTTTCCCGAAGCAACAGAGTATTTAGCACCAATCATACTAACGTTATCATTAA GGTTATGGATTTATTAGATTCGCTTGGCCTATTTTCCCTGGAGCAACAGAGTATTTAGCACCAAATCATATTAATGTTATCATTAAAT GGTTATGGATTCATTAGATTCGCTTGGCCTATATTCCCCGAAGCAACAGAGTATTTAGCACCCAATCATATTAATGTTATCATTAA GGTTATGGATTCATTAGATTCGCTTGGCCTATTTTCCCTGAAGCAACAGAGTATTTAGCACCAATCATATTAATGTTATCATTAAT GGTTATGGATTCATTCGATTCGCTTGGCCTATTTTTCCCCGAAGCCAACAGAGTATTTAGCACCAATCATACTAACGTTATCATTAA GGTTATGGATTCATTCGATTCGCTTGGCCTATTTTCCCCGAAGCAACAGAGTACTTAGCACCAGTCATACTAACGCTATCCTTAAT GGTTATGGATTCATTCGATTCGCTTGGCCTATTTTCCCTGAAGCAACAGAGTATTTAGCACCAATCATATTAACGTTATCATTAAT

onservation
alcyonium＿digitatum＿nd4 sinularia peculiaris＿nd narella＿hawaiinensis＿nd paraminabēa＿aldersladei＿nd4 scleronephthya＿gracillimum＿nd4 dendronephthy＿＿castanea＿nd4 dendronephthya mollis nd dendronephthya suensoni nd junceella＿fragilis＿nd4 hinogorgia＿complexa＿nd4 euplexaura＿crassa＿nd4 pseudopterogorgia＿bipinnata＿nd bogagorgia＿cauliflora＿nd
briareum＿asbestinum＿nd4
corallium＿－katius＿nd corallium rubrum nd4 paracorallium japonicum－nd－
heliopora coerulea nd4 stylatula＿elongata＿nd4 renilla＿muelleri＿nd
Conservation
alcyonium＿digitatum＿nd4 primnoa＿resedaeformis＿nd4
sinularia peculiaris nd harella＿hawaiinensis＿nd4
araminabea＿aldersladei－nd4 cleronephthya＿gracillimum nd4 dendronephthya＿castanea＿nd4 dendronephthya＿gigantea＿nd drononephthya＿molis＿nd4 junceella＿fragilis＿nd4 hinogorgia complexa－nd euplexaura crassa＿nd pseudopterogorgia bipinnata nd acanella＿eburnea nd4－rev
bogagorgia cauliflora nd4 briareum＿asbestinum＿nd4
corallium＿konojoi＿nd corallium＿rubrum＿nd4＿re paracorallium japonicum＿nd4＿re
heliopora＿coerulea＿nd4
stylatula＿elongata＿nd
Consensus
Conservation AGCAGTGATATATGGGAGTTTAACTACTTGTAGACAGGTAGATGCGAAACGTTTGATAGCCTATTCCTCGGTAGCTCATATGGGAA 934 GCAGTAATATATGGGAGTTTAACTACTTGTAGACAGGTAGATGCGAAACGTTTGATCGCCTATTCTTCGGTAGCTCATATGGGAA 934 GCAGTGATATATGGGAGTTTAACTACTTGCAGACAGGTAGATGCGAAACGTTTGATAGCTTATTCCTCGGTAGCTCATATGGGAA 934 GCAGTAATATATGGGAGTTTAACTACTTGTAGACAGGTAGATGCGAAACGGTTGATAGCTTATTCCTCGGTAGCTCATATGGGAA 934 AGCAGTAATATATGGCAGTTTAACTACTTGCAGACAGGTAGATGCGAAACGTCTGATAGCCTATTCCTCGGTAGCTCATATGGGAA AGCAGTAATATATGGAAGTTTAACTACTTGCAGACAGGTAGATGCGAAACGTCTGATAGCCTATTCCTCGGTAGCTCATATGGGAA AGCAGTAATATATGGAAGTTTAACTACTTGCAGACAGGTAGATGCGAAACGTCTGATAGCCTATTCCTCGGTAGCTCATATGGGAA AGCAGTAATATATGGAAGTTTAACTACTTGCAGACAGGTAGATGCAAAACGTCTGATAGCCTATTCCTCGGTAGCTCATATGGGAA AGCAGTAATATATGGAAGTTTCACTACTTGCAGACAGGTAGATGCGAAACGTTTGATAGCTTATTCCTCGGTGGCTCATATGGGGA AGCAGTAATATATGGGAGTTTAACTACTTGCAGACAGGTAGATGCGAAACGTTTGATAGC CTATTCCTCGGTGGCTCATATGGGAA AGCAGTAATATATGGAAGTTTAACTACTTGCAGACAGGTAGATGCGAAACGTCTGATAGCCTATTCTTCGGTGGCTCATATGGGAA 934 AGCAGTGATATATGGGAGTTTAACTACTTGCAGACAGGTAGATGCGAAACGTCTGATAGCCTATTCCTCGGTGGCTCATATGGGAA 934 GGCAGTGATATATGGGAGTTTAACTACTTGCAGGCAGGTAGATGCAAAACGTCTGATAGCCTATTCCTCGGTAGCTCACATGGGAA 934 GGCAGTAATATATGGGAGTTTAACTACTTGCAGACAGGATGATGCGAAACGTTTGATAGCCTATTCCTCGGTGGCTCATATGGGAA 934 AGCAGTAATATATGGGAGTTTAACTACTTGTAGACAGGTAGATGCGAAACGTTTGATAGCTTATTCCTCGGTAGCTCATATGGGAA 934 AGCAGTAATATATGGGAGCTTAACTACTTGCAGACAGGTAGATGCGAAACGTTTGATAGCTTATTCCTCGGTAGCTCATATGGGAA 934 AGCAGTAATATATGGGAGTTTAACTACCTGTAGACAGGTAGATGCGAAACGTTTGATAGCTTATTCCTCGGTAGCTCATATGGGAA 934 AGCAGTAATATATGGGAGTTTAACTACCTGTAGACAGGTAGATGCGAAACGTTTGATAGCTTATTCCTCGGTAGCTCATATGGGAA 934 AGCAGTAATATATGGGAGTTTAACTACCTGTAGACAGGTAGATGCGAAACGTTTGATAGCTTATTCCTCGGTAGCTCATATGGGAA 934 AGCAGTAATATATGGGAGTCTAACTACTTGCAGACAGGTCGATGCGAAACGTTTGATAGCTTATTCCTCGGTAGCTCATATGGGAA 946 AGCAGTAATATATGGGAGTTTAACTACTTGTAGACAGGTAGACGCGAAACGTTTGATCGCCTATTCTTCGGTAGCTCATATGGGGA 934 AGCGGTAATATATGGGAGTTTAACTACTTGTAGACAAGTAGACGCGAAACGTTTGATAGCTTATTCTTCGGTAGCTCATATGGGAA 934 AGCAGTAATATATGGGAGTTTAACTACTTGCAGACAGGTAGATGCGAAACGTTTGATAGCCTATTCCTCGGTAGCTCATATGGGAA 960
$980 \quad 1,000$
1，020
TAGTGACAATAGGTTTATTTACTCATACGATGGAGGGCTTAATAGCCTCCATATTCTTAATGATAGCTCATGGAGTGGTTAGCCCC 1020 AGTAACAAGGITATTTACTCATACTATGGAAGGCTTAATAGCCTCTATATTCTTAATGATAGCTCATGGAGTGGTAGCCCC 1020 AGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTAATAGCTTCTATATTCTTAATGATAGCTCATGGAGTAGTTAGCCCA 1020 TGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTGATAGCTTCTATATTCTTAATGATAGCTCATGGAGTAGTTAGTCCA 1020 TAGTAACAATAGGCTTGTTTACTCATACGATGGAGGGTTTAATAGCCTCTATATTCTTAATGATAGCCCATGGAGTGGTTAGCCCT 1020 TAGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTAATAGCCTCTATATTCTTAATGATAGCCCATGGAGTGGTTAGCCCC 1020 AGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTAATAGCCTCTATATTCTTAATGATAGCCCATGGAGTGGTTAGCCCC 1020 TAGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTAATAGCCTCTATATTCTTAATGATAGCCCATGGAGTGGTTAGCCCC 1020 TAGTAACAA TAGGCTTATTTACTCATACGATGGAGGGTTTAATAGCCTCTATATTCTTAATGATAGCCCATGGAGTGGTTAGCCCC 1020 TAGTAACAATAGGCTTATTTACTCATACGATGGAGGGCTTAATAGCTTCTATATTCTTAATGATAGCTCATGGAGTAGTTAGTCCA 1020 AGTAA TAGTAACAATAGGGTTATTTACTCATACGATGGAGGGTTTAATAGCCTCCATATTCTTGATGATAGCTCATGGAGTAGTTAGCCCC TAGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTAATAGCCTCTATATTCTTAATGATAGCTCACGGGGTGGTTAGCCCC 1020 TAGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTAATAGCTTCTATATTCTTAATGATAGCTCATGGAGTAGTTAGCCCA 1020 TTGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTGATAGCTTCTATTTTCTTAATGATAGCTCATGGAGTAGTTAGTCCA 1020 TAGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTAATAGCTTCTATATTCTTAATGATAGCTCATGGAGTAGTTAGTCCA 1020 TTGTAACAATAGGCTTATTTACTCATACGATGGAGGGTCTGATAGCTTCTATATTCTTAATGATAGCTCATGGGGTAGTTAGTCCA 1020 TGTAACAATTGGCTTATTTACTCATACGATGGAGGGTCTGATAGCTTCTATATTCTTAATGATAGCTCATGGGGTAGTTAGTCCA 1020 TTGTAACAGTAGGCCTATTTACTCATACGATGGAGGGTTTGATAGCTTCTATATTCTTAATGATAGCTCATGGGGTAGTTAGTCCA 1020 TAGTAACAATAGGCTTATTTACTCACACGATGGAGGGTTTAATAGCTTCTATATTCTTAATGATAGCTCATGGAGTAGTTAGTCCA 1032俗 TAGTAACAATAGGCTTATTTACTCATACGATGGAGGGTTTAATAGCTTCTATATTCTTAATGATAGCTCATGGAGTAGTTAGCCCA
1.040
alcyonium_digitatum_nd4 sinülaria_peculiaris_nd narella_hawaiinensis_nd cleronephthya_gracillimum_nd dendronephthya_castanea_nd dendronephthya_molis_nd dendronephthya_mollis_nd junceella_fragilis nd keratoisidinae_nd4_rev euplexa_complexa_nd4 pseudopterogorgia_bipinnata_nd acanella_eburnea nd4 ${ }^{-}$re bogagorgia_cauliflora_nd areum_asbestinum_nd
corallium elatius_nd corallium_elatius_nd4
corallium_konojoi_nd corallium_rubrum_nd4_rev
rallium japonicum_nd4-red heliopora_coerulea_nd stylatula_elongata_nd
Consensu
alcyonium_digitatum_nd sinularia peculiaris nd
narella_hawaiinensis nd araminabea_aldersladei_nd cleronephthya_-gracillimum_nd dendronephthya_castanea_nd
dendronephthya_ gigantea_nd dendronephthya_mollis_nd junceella r soni_nd4 duena_ragiis_nd4 echinogorgia_complexa_nd euplexaura_crassa_nd4 pseudopteraella_eburnea_nd4_re ibogagorgia_cauliflora_nd briareum_asbestinum_nd corallium_konojoi_nd4 corallium_rubrum_nd4_re paracorallium_japonicum_nd4_re
heliopora_coerulea_nd stylatula-elongata_nd
onsensus
Conservation

Abstract

CTTTATTTATAGCAGTAACGTTGCTCTATGAGAGGCATCATACAAGGT

\section*{I}

CCTTTATTTATAGCAGTAACATTGCTCTATGAGAGGCATCATACAAGGTTAATTAGATATATTATAGGGGAGTAGTTATGACTATGCC 110 CTTTATTTATAGCAGTAACGTTGCTCTATGAGAGACATCATACAAGGTTAATTAGGTATTATAGGGGAGTAGTTATGACTATGCC 1106 CNTTATTNATAGCAGTGACANTGCTCTANGAAAGACATCATACAAGATTAATTAGATATTATAGAGGAGTAGTTATGACTATGCC 1106 CTTTATTTATAGCAGTAACACTGCTCTATGAAAGACATCATACAAGGTTAGTTCGATATTATAGAGGAGTAGTTATGACTATGCC 1106 GCTTTATTTATAGCAGTAACGTTGCTATATGAAAGACATCATACAAGGTTAATTAGGTATTATAGGGGAGTAGTTATGACTATGCC 1106 GCTTTATTTATAGCAGTAACGCTGCTCTATGAGAGACATCACACAAGGTTAATTAGGTATTATAGGGGAGTAGTTATGACTATGCC GCTTTATTTATAGCAGTAACGCTGCTCTATGAGAGACATCACACAAGGTTAATTAGGTATTATAGGGGAGTAGTTATGACTATGCC GCTTTATTTATAGCAGTAACGCTGCTCTATGAGAGACATCACACAAGGTTAATTAGGTATTATAGGGGAGTAGTTATGACTATGCC GCTTTATTTATAGCAGTAACACTGCTCTATGAAAGACATCATACAAGATTAATTAGATATTATAGAGGAGTAGTTATGACTATGCCC GCTTTATTTATAGCAGTGACATTGCTCTATGAAAGACATCATACAAGATTAGTTAGATATTATAGAGGAGTAGTTATGACTATGCC GCTTTATTTATAGCAGTAACATTACTCTATGAGAGACATCATACAAGGCTAATTAGGTATTATAGGGGAGTAGGTTATGACTATGCC GCTTAATTTATAGCAGTGACATTGCTCTATGAAAGACATCATACAAGATTAGTTAGATATTATAGAGGAGTAGTTATGACTATGCC GCTTTATTTATAGCAGTGACATTGCTCTATGAAAGGCATCATACAAGATTAGTTAGATATTATAGAGGAGTAGTTATGACTATGCC CTTTTATTTATAGCAGTAACATTGCTCTATGAGAGACATCATACAAGATTGGTTAGATATTATAGAGGAGTAGTTATGACTATGCC GCTTTA $A T T A T A G C A G T A A C A T T G C T C T A T G A A A G A C A T C A T A C A A A G A T T A G T T A G A T A T T A T A G G A G G A G T A G T T A T A T G A C T A T G C C$ GCTTTATTTATAGCAGTGACATTACTCTATGAAAGACATCATACAAGGTTAGTTAGATATTATAGAGGAGTAGTTATGACCATGCC GCTTTATTTATAGCAGTGACATTACTCTATGAAAGACATCATACAAGGTTAGTTAGATATTATAGAGGAGTAGTTATGACCATGCC GCTTTATTTATAGCAGTAACATTGCTCTATGAAAGACACCATACAAGATTAATTAAA TATTATAGAGGAGTAGTTATGACTATGCCC GCTTTATTTATAGCAGTAACATTGCTCTATGAAAGACATCATACAAGGTTAATTAGATATTATAGAGGAGTAGTTATGACTATGCC

 1.220
1.240
1.260

1.280

alcyonium_digitatum_nd4 primnoa_resedaeformis_ndd sarella___peculiaris_nd narella_hawaiinensis_nd paraminabea_aldersladei_nd dendronephthya castanea_nd dendronephthya gigantea-nd
dendronephthya_mollis $n d 4$ dendronephthya_suensoni_nd4 junceella_fragilis_nd4 hinogorgia_complexa_nd4 euplexaura_crassa_nd pseudopterogorgia_bipinnata_nd acanella_eburnea_nd4_rev briareum asbestinum nd corallium_elatius_nd4 corallium_konojoi_nd paracorallium japonicum_nd4_rev heliopora_coerulea_nd stylatula_elongata_nd
Consensus
Conservation
alcyonium_digitatum_nd4 primnoa_resedaeformis_nd4 sinularia_peculiaris_nd4 araminabea_aldersladei_nd scleronephthya_gracillimum_nd4 dendronephthya_castanea_nd dendronephthy_ igantea_nd dendronephthya_suensoni_nd junceella_fragilis_nd4 junceella fragilis_nd
keratoisidinae nd4
echinogorgia_complexa-nd4 euplexaura_crassa_nd4 pseudopterogorgia bipinnata nd acanella_eburnea_nd4_rev sibogagorgia_cauliflora_nd
briareum_asbestinum_nd4 coralium_elatius_nd4
corallium rubrum nd4- rev
paracorallium japonicum_nd4_rev
stylatula_elongata_nd4
renilla_muelleri_nd4
Consensustion

TAGTAGCTGCTTTTTCTACTAGTACATCATTAGGTATTCTTACCTCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 AGGAGTCCTTTCTACTAGTACATACTAGGTATTCTACTAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 AGTAGT AGTAGCTGCTTTCTACTAGTACATCATTAGGAGTTCTTACCTCATTACTATGGTCATAGCTGCTGCTTATTCGTTATATTTA AGTAGCTGCTTTTTCTACTAGTACATCATTAGGTATTCTTACCTCAACTAGCATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 AGTGGCTGCTTTTTCTACTAGTACATCATTAGGTATTCTTACCTCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 AGTACTACTAGTACATCATTAGGTATTCTTACCTCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 AGTGGCTGCTTTTTCTACTAGTACATCATTAGGTATTCTTACCTCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 AGTAGCTGCTTTTTCTACTAGTACATCATTAGGTATTCTTACCTCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 AGTAGCTGCTTTTTCTACTAGTACATCATTAGGGGCCCTAACTGCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 AGTAGCTGCTICTAGTACATCATTAGGAGTTCTCACCTCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278
 AGTAGCTCTHTA AGTAOCTGC AGTAGCTGCTTTTTCTACTAGTACATCATTAGGAGTTCTAACCTCATCTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA AGTAGCTGCTTTTTCTACTAGTACATCATTAGGGGTTCTTACCTCAACTAGTATGGTCATAGCTGCTGCCTATTCGTTATATTTA 1278 AGTAGCTGCTTTTTCTACTAGTACATCATTAGGAGTTCTTACCTCATCTAGTATGGTCATAGCTGCTGCTTATTCGTTATATCTA 1278 AGTAGCTGCTTTTTCTACTAGTACATCATTAGGAGTTCTTACCTCATCTAGTATGGTCATAGCTGCTGCTTATTCGTTATATCTA 1278 AGTAGCTGCTTTTTCTACTAGCACATCATTAGGAGTTCTTACCTCATCTAGTATGGTCATAGCTGCTGCTTATTCGTTATATCTA 127 AGTAGCTGCTTTTTCTACTAGCACATCATTAGGAGTTCTTACCTCATCTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 AGTGGCTCTITA TAGTGGCTGCTTTTTCTACTAGTACATCATTAGGAGTTCTTACCGCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA 1278 TAGTAGCTGCTTTTTCTACTAGTACATCATTAGGNGTTCTTACCTCAACTAGTATGGTCATAGCTGCTGCTTATTCGTTATATTTA
$\begin{array}{ccc}1,300 & 1,320 & 1,340 \\ 1 & 1 & 1.360 \\ \text { TATAATAGAATTTGTTTTGGGCAACTTTCTCCATACTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC } \\ 1364\end{array}$
$\begin{array}{ccc}1,300 & 1,320 & 1,340 \\ 1 & 1 & 1,360 \\ \text { TATAATAGAATTTGTTTTGGGCAACTTTCTCCATACTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC } \\ 1364\end{array}$
 ATAATAGAATTTGTTTTGGGCAACTTTCTCCGTACTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC 1364 TATAATAGAATTTGTTTTGGGCAACTTTCTCCATACTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAACGGGCAATTACC 1364俗 ATAATAGAATTTGTTTTGGGCAACTTCTCCATACTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATIACC 1364 ATAATAGAATTGTTTTGGGCAACTTCTCATATTTAATATTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATIACC 136 ATAATAGAATTTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC 1364 ATAATAGAATTTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC 136 ATAATAGAATCTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGACAATTGCC 1364 TATAATAGAATTTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC 1364 TATAATAGAATTTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTGCC 1364 TATAATAGAATTTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAACGGGCAATTACC 1364 TATAATAGAATCTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGACAATTGCC 1364 TATAATAGAATCTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC 1364 TATAATAGAATCTGTTTTGGGCAACTTTCTCCATACTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC 1364 ATAATAGAATCTGTTTGGGCAACTTCTCCATACTHATATCTCGAGAGATATIAATAGACGAGAGTTAATGGGCAATTACC 1364 ataatagaatctgrtutg ATAATAGAATCTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC 1364信 TATAATAGAATCTGTTTTGGACAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC 1364 ATAATAGGATCTGTTTCGGGCAACTTTCTCCATATTTAATATTTTCAAGAGATATTAATAGACGAGAGTTTCATGGGCAATTACC 1364 TATAATAGAATCTGTTTTGGGCAACTTTCTCCATATTTAATATTTTCGAGAGATATTAATAGACGAGAGTTTAATGGGCAATTACC
alcyonium digitatum_nd4 primnoa_resedaeformis_nd4 sinularia_peculiaris_nd4
narella_hawainensis nd4 paraminabea_aldersladei_nd scleronephthya_gracillimum_nd dendronephthya_castanea_nd dendronephthya_gigantea_nd dendronenephthya_mollis_nd4 keratoisidinae nd-
echinogorgia_complexa nd euplexaura_crassa_nd4 dopterogorgia_bipinnata_nd4 acanella_eburnea_nd4 rev bogagorgia_cauliflora_nd briareum_asbestinum_nd4 corallium_elatius_nd4 coralium_konojoi_nd parallin_obrum_nd_re heliopora coerulea_nd stylatula elongata renilla muelleri nd

Consensu

CTAATAGTAGCTAT TGTATTATTGGGGATAGTTCCATACCCCTTAATCGAGTTAGTTCGTGTATGTTTACCTAGATTTTTATAA 1449 GCTAATAGTAGCTATTGTATTATTGGGGATCGTTCCATACCCCCTGATCGAGTTAGTTCGTGTATGTTTGCCTAGATTTTTATAA 1449 CTAATAGTAGCTATTGTATTATTGGGGGTAATTCCATACCCCCTAATCGAATTAGTTCGTGTATGTTTGCCTAGATTTTTATAA 1449 GTTAATAGTAGCTATTGTATTATTGGGAATAGTCCCATACCCTTTAATCGAGTTAATTCGTGTATGTTTGCCTAGATTCTTGTAA 1449
 GCTAATAGTAGCTATTGTATTATTGGGGGTAGTTCCATACCCCCCTAATCGAGTTAGTTCGTGTATGTTTACCCAGATTATTAGTTCGTGTATGTTTGCCCAGATTTTTATAA 1449 GCTAATAGTAGCTATTGTATTATTGGGGGTAGTTCCATACCCCCTAATCGAGTTAGTTCGTGTATGTTTGCCCAGATTTTTATAA 1449 GCTAATAGTAGCTATTGTATTATTGGGGGTAGTTCCATACCCCCTAATCGAGTTAGTTCGTGTATGTTTGCCCAGATTTTTATAA 1449 GCTAATAGTAGCTATTGTATTATTGGGGGTAGTTCCATACCCCCTAATCGAGTTAGTTCGTGTATGTTTGCCCAGATTTTTATAA 1449 GTTAATAGTAGCTATTGTATTACTGGGAATAGTTCCATACCCTTTAATCGAGTTAATTCGTGTATGTTTGCCTAGATTCTTGTAA 1449 GTTAATAGTAGCTATTGTATTACTGGGAATAGTTCCATACCCTTTAATCGAGTTAATTCGTGTATGTTTGCCTAGATTCTTGTAA 1449 GCTAATAGTAGCTATTGTATTATTGGGGATAGTCCCATACCCCCTAATCGAGTTAGTTCGTGTATGTTTGCCCAGATTTCTATAA 1449 ACTAATAGTGGCTATTGTATTATTGGGGATAGTTCCATATCCCCTAATCGAGTTAGTTCGTGTATGTTTGCCTAGATTCTTATAA 1449 GTTAATAGTAGCTATTGTATTACTGGGAATAGTTCCATACCCTTTAATCGAGTTAATTCGTGTATGTTTGCCTAGATTCTTGTAA 1449 GTTAATAGTAGCTATTTTATTATTGGGGATAGTTCCATACCCCCTAATCGGGTTAGTTCGTGTATGTTTGCCTAGATTCTTATAA 1449 GTTAATAGTAGCTATTGTATTATTGGGGGTAGTTCCATACCCTCTAATCGAGTTAATTCGTGTATGTTTGCCTAGATTCTTATAA 1449 GTTAATAGTAGCTATTGTATTATTGGGGATAGTTCCATACCCCTTAATCGGGTTAGTTCGTGTATGTTTGCCTAGATTCTTATAA 1449 GTTAATAGTAGCTATTGTATTATTGGGGATAGTTCCATACCCCTTAATCGGGTTAGTTCGTGTATGTTTGCCTAGATTCTTATAA 1449 GTTAATAGTGGCTATTGTATTATTGGGGATAGTTCCACACCCCCTAATCGGGTTAGTTCGTGTATGTTTGCCTAGATTCTTATAA 1449 GTTAATAGTGGCTATTGTATTATTGGGGATAGTTCCACACCCCCTAATCGGGTTAGTTCGTGTATGTTTGCCTAGATTCTTATAA 1449 GTTAATAGTAGCTATTTTATTATTGGGTATAGTTCCATATCCCTTAATCGAGTTAGTTCGTGTATGTTTGCCTAGATTCTTATAG 1449 ATTAGTAGTAGCTATTTTATTATTGGGTCTAGTTCCATACCCCTTAATTGAATTAATTCGTGTATGTTTGCCTAGATTCTTATAA 1449 GCTAATAGTAGCTATTGTATTATTGGGGATAGTTCCATACCCCCTAATCGAGTTAGTTCGTGTATGTTTGCCTAGATTCTTATAA

Nd4L gene

alcyonium_digitatum_nd4L primnoa_resedaeformi_nd4L narella hawaiinensis_nd4L paraminabea_a $\overline{\text { In }}$ dersladei nd 4 L rev scleronephthya_gracillimum_nd4L dendronephthya_castanea_nd4L dendronephthya_gigantea_nd4L dendronephthya_mollis_nd4L ephthya_suensoni_nd4L
junceella fragilis nd4L keratoisidinae_nd4L echinogorgia_complexa_nd4L euplexaura_crassa_nd4L
acanella__eburnea_nd4L sibogagorgia_cauliflora_nd4L briareum_asbestinum_nd4L corallium_elatius_nd4 corallium_konojoi_nd4L_rev acacorallium japonicum_nd4L_rev
heliopora_coerūlea_nd4L stylatula_elongata_nd4L leri_nd4L
Consensus
Conservation
alcyonium_digitatum_nd4L primnoa_resedaeformis_nd4L narella___peculiaris_nd4L scleronephthya gracillimum_ dendronephthya castaneand dendronephthya_ gigantea-nd4L dendronephthya_mollis_nd4L dendronephthya_suensoni_nd4L junceella_fragilis_nd4L keratoisidinae_nd4L echinogorgia_complexa_nd4L erogorgia_bipinnata_nd4L acanella_eburnea_nd4L
sibogagorgia_cauliflora_nd4L
briareum asbestinum_nd4L corallium elatius nd $\bar{L} \mathrm{~L}$ _ corallium_konojoi_nd4L_rev corallium rubrum nd4L rev paracorallium japonicum nd4L rev heliopora_coerulea_nd4L stylatula_elongata_nd4L
renilla_muelleri_nd4L
Consensus

20
1
ATGTCCTATTTAATATTATCAATTGTCATCTTATTAATCGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGCTA ATGTCCTATTAATATATCAATTGTCATCTA ATGTCCTATTTAATATTATCAATTGTCATCTTATTAATTGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCTTATTTAATATTGTCAATTGTCATCTTATTAATCGGAATCTTAGGTATTATTCTTAATAGAAGCAACTTAATTATTATGTTA ATGTCTTATTTAATATTGTCAATTGTCATCTTATTAATCGGAATTTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA 87 ATGTCTTATTTAATATTGTCAATTGTCATCTTATTAATCGGAATTTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA 87 ATGTCTTATTTAATATTGTCAATTGTCATCTTATTAATCGGAATTTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCTTATTTAATATTGTCAATTGTCATCTTATTAATCGGAATTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCCTATTTAATATTATCAATTGTCATCTTATTAATTGGAATTTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCCTATTTAATATTATCAATTGTCATCTTATTAATTGGAATCCTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCTTATTTAATATTATCAATTGTCATCTTATTAATCGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGUA ATGTCTTATTTAATATTATCAATTGTCATCTTATTAATCGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGCTA ATGTCCTATTTAATATTATCAATTGTCATCTTATTAATTGGAATCCTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCCTATTTAATATTATCGATTGTCATCTTATTAATTGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCCTATTTAATATTATCAATTGTCATCTTATTAATCGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGCTA俗 ATGTCCTATTTAATATTATCAATTGTCATCTTATTAATTGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCTATTAATATTATCAATTGTCATCTTATTAATTGGAATTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCTATTTAATATTATCAATTGTCATCTTATTAATTGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ATGTCCTATTTAATATTATCAATTGTCATCTTATTAATTGGAATCTTAGGTATTATTTTTAATAGAAGCAATTTAATTATTATGTTA俗 ATGTCCTATTTAATATTATCAATTGTCATCTTATTAATCGGAATCTTAGGTATTATTCTTAATAGAAGCAATTTAATTATTATGTTA ${ }_{1}^{120}$
ATGTGTGTAGAGCTAGTTTTACTGGCTTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGCTAGTTTTACTGGCTTCTACTATTTTGCTTCTATTTGAATCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGCTAGTTTTACTGGCCTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTA GAGTTA GTTTTACTGGCCTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGTTAGTTTTACTGGCTTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGTTTTATACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGCTAGTTTTACTGGCCTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTTTACACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGCTAGTTTTACTGGCCTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTTTACACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGCTAGTTTTACTGGCCTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTTTACACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGCTAGTTTTACTGGCCTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTTTACACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGTTAGTTTTACTGGCCTCTACTGTTTTGCTTCTTTTTGAGTCTCGTGTGCTTTATACGCTTTTAGGTCAAATTTTT 174 ATGTGTGTAGAGTTAGTTTTACTGGCCTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTC 174 ATGTGTGTGGAGCTAGTTTTACTGGCCTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGCTAGTTTTACTGGCCTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTTTATACGCTTTTGGGTCAAATTTTT 174 ATGTGTGTAGAGCTAGTTTTACTGGCCTCTACTATTTTGCTTCTATTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT 1 ATGTGTGTAGAGTTAGTTTTACTGGCCTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAAATTTTT ATGTGTGTGGAGCTAGTCTTACTGGCCTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT ATGTGTGTA GAGTTAGTTTTACTGGCCTCTACTATTTTGCTTCTTTTTGGGTCTTGTGTGTTCTATACGCTTTTTGGTCAGATTTTT ATGTGTGTA GAGTTAGTTTTACTGGCCTCTACTATTTTGCTTCTTTTTGGGTCTTGTGTGTTCTATACGCTTTTTGGTCAGATTTTT 1 ATGTGTGTA GAGTTA GTTTTACTGGCCTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGTTCTATACGCTTTTTGGTCAAATTTTT ATGTGTGTAGAGTTAGTTTTACTGGCCTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGTTCTATACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAATTAGTTTTACTGGCTTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT 174 ATGTGCGTAGAGTTAGTTTTACTGGCTTCTACTGTTTTGCTTCTTTTCGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT 174 ATGTGTGTAGAGTTAGTTTTATTGGCTTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGCTCTATACGCTTTTTGGCCAAATTTTT 174 ATGTGTGTAGAGTTAGTTTTACTGGCCTCTACTATTTTGCTTCTTTTTGAGTCTCGTGTGCTCTATACGCTTTTTGGTCAAATTTTT
alcyonium_digitatum nd4L primnoa_resedaeformis_nd4L sinularia_peculiaris_nd4L paraminabea_a ITdersladei_nd $4 \bar{L}$ _rev scleronephthya_gracillimum_nd4L dendronephthya_castanea_nd4L dendronephthya_gigantea_nd4L dendronephthya_mollis_nd4L
junceella_fragilis_nd4L echinogorgia_complexa_nd4L euplexaura_crassa_nd4L pseudopterogorgia_bipinnata_nd4L acanella_eburnea_nd4L sibogagorgia_cauliflora_nd4L corallium_elatius_nd 4 L _rev corallium_konojoi_nd4L_rev
corallium japonicum-nd4L_rev heliopora_coerulea_nd4L stylatula_elongata-nd4L
renilla_muelleri_nd4L
Conservation
alcyonium_digitatum_nd4L primnoa_resedaeformis_nd4L sarella_hawaiinensis_nd4L paraminabea_aldersladei nd 4 L rev scleronephthya_gracillimum_nd4L dendronephthya_castanea_nd4L dendronephthya_gigantea_nd4L dendronephthya_suensoni_nd4L junceella_fragilis_nd4L echinogorgia_complexa_nd4L euplexaura_crassa_nd4L acanella bipinnata_nd4L ibogagorgia_cauliflora_nd4L corallium elatius nd 4 L rev corallium_konojoi_nd4L_rev corallium_rubrum_nd4L_rev paracorallium_japonicum_nd4L_reV heliopora_coerulea_nd4L renilla muelleri nd4

Consensus

GCGATTGTGATTCTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTGTTATTCTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAATTATTACCGTTTACGTGGTACAATT 261 GCGATTGTGATTCTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTATGATTTTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAATTATTACCGTTTACGTGGTACAATT 261 GCGATTGTGATTCTAACTGTCGCAGCTGCCGAATCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTGTAATTCTAACTGTTGCAGCTGCCGAATCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTGTAATTCTAACTGTTGCAGCTGCCGAATCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTGTGATTCTAACTGTTGCAGCTGCCGAATCTGCTATGGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTATGATTTTAACTGTCGCAGCTGCCGAGTCTGCTATCGGCTTAGCCATTATGGTTAACTATTACCGTTTACGCGGGACAATT 261 GCGATTATGATTTTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTGTAATTTTAACTGTCGCAGCTGCCGAATCTGCTATCGGGTTAGCTATTATGGTTAACTATTACCGATTACGTGGTACAATT 261 GCGATTGTGATTCTAACTGTCGCAGCCGCCGAATCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTGTAATTTTAACTGTCGCAGCTGCCGAATCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCAATTATGATTTTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCTATTATGATTTTAACTGTCGCAGCTGCTGAGTCCGCTATCGGCTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCTATTATGATTTTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCTATTATGATTCTAACTGTCGCAGCTGCTGAGTCCGCTATCGGCTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCTATTATGATTCTAACTGTCGCAGCTGCTGAGTCCGCTATCGGCTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCTATTATGATTCTAACTGTCGCAGCTGCTGAGTCCGCTATCGGCTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTATGATTTTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 GCGATTATGATTTTAACTGTCGCAGCTGCCGAGTCTGCTATCGGTTTAGCCATTATGGTTAACTATTACCGTTTACGTGGTACAATT 261 CTATTATGATTTTAACTGTCGCAGCTGCCGAGTCTGCTATAGGTTTAGCCATTATGGTTAACTATTACCGCTTACGTGGTACAATT GCGATTATGATTCTAACTGTC

280
GCTGTTCGAGCCTTAAATTTATTAAGAGGTTAA 294 GCTGTTCGAGCCTTAAATTTATTAAGAGGTTAA 294 GCTGTTCGAGCCTTAAATTTATTAAGAGGTTAA 294 GCTGTTCGAGCCCTAAAATTTATTAAGAGGTTAA GCTGTTCGAGCCTTAAATTTATTAAGAGGTTAA GCTGTTCGA GCCTTAAATTTATTAAGA GGTTAA CTGTTCGAGCCTTAAATTTATTAAGAGGTTAA 294 CTGTTCGAGCCTTAAATTTATTAAGAGGTTAA 29 CTGTTCGAGCCTTAAATTTATTAAGAGGTTAA 294 CTGTTCGAGCCTAAATTTATTAAGAGGTAA GCTGTTCGAGCCTTAAATTTATTAAGAGGTTAA 29 GCTGTTCGGGCCTTAAATTTATTAAGAGGTTAA 294 GCTGTTCGAGCCTTAAATTTATTAAGAGGTTAA GCTGTTAGAGCCTTAAATTTATTAAGAGGCTAA CTGTTAGAGCCTTGAATTTATTAAGGGGCTAA GCTGTTAGAGCCCTGAATTTATTAAGGGGCTA GCTGTTAGAGCCCTGAATTTATTAAGGGGCTAA GCTGTTAGAGCCCTGAATTTATTAAGGGGCTAA GCTGTTAGAGCCCTGAATTTATTAAGGGGCTAA GCTGTTCGAGCCTTAAATTTATTAAGAGGTTAA
GCTGTTCGAGCCTTAAATTTATTAAGAGGTTAA 294
GCTGTTCGAGCCTTAAATTTATTAAGAGGTTAA

NNOHNO OOCNO

${ }^{180}$
${ }^{200}$
${ }_{1}^{20}$

alcyonium_digitatum_nd
primnoa_resedaeformis_nds sinularia_peculiaris_nd5 harella_hawaiinensis_nds paraminabea_aldersladei_nd dendronephthya castanea_nd5 dendronephthy_ - gigantea_nds dendronephthya suensonijunceella_fragilis_nd5 keratoisidinae_nd5_re hinogorgia_complexa_nds euplexaura_crassa_nd5 pseudopterogorgia_bipinnata_nd acanella_eburnea_nd5_rev briareumia_cauliflora_nd5 briareum_asbestinum_nd corallium - katius_-_ corallium rubrum jo paracorallium japonicum_nd5_rev stylatula-elonga_renilla muelleri-nd5 Consensus
alcyonium_digitatum_nds sinularia peculiaris_nds narella_hawaiinensis_nds paraminabea_aldersladei_nds dendronephthya_gracilimum_nd dendronephthyä gigantea_ dendronephthya mollis dendronephthya suensoni-nd5 junceella fragilis nd5 keratoisidinae nd5 rev echinogorgia_complexa_nd5 euplexaura_crassa_nds acanella_eburnea nd5 sibogagorgia_cauliflora_nd briareum_asbestinum_nd5 corallium_konojoi_nd5 corallium_rubrum_nd5_rev heliopora coerūlea_nds stylatula elongata-
renilla muelleri nds
Consensus
${ }_{1}^{420}$
CTAGATTCATGAGCTATCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAAT CCTAGATTTATGAGCTATCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAA TTATGTGCAAT 406

 CTTAGATTTATGAGCTATCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAAT 406 CCTAGATTTATGAGCTATCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAA TTATGTGCAAT 406 CCTAGATTTAT GAGCTATCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAAT 406 CCTAGATTCATGAGCTACCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAAT 406 CCTAGATTCAT GAGTTATCTGTCTTTATTTACCTTTTTTATGTTAGTTTTAGTAACTAGTAATAATTATGTACAAT 406 CTAGATTCATGAGTTATCTGTCTTTATTCACCTTTTTTATGTATGTTTTAGTTACTAGTAATAATTATGTGCAAT 406 CTAGATTTATGAGCTATCTGTCTCTATTCACCTTTTTTATGTTGGTTTTAGTTACTAGTAATAATTATGTGCAAT 40 CCGAGATTTATGAGTTATCTGTCTTTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTACGTGCAAT 406 CCAGATTTATGAGTTATCTGTCTCTATTTACATTTTTTATGTTAGTTTTAGTTACTAGTAATAA TTATGTGCAAT 406 CCTAGATTCATGAGTTATCTGTCTTTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAA TTATGTGCAAT 406 CCCAGATTCATGAGTTATCTATCTTTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAAT 406 CTAGGTTTATGAGTTATTTGTCCTTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAACAATTATGTGCAAT 406 (CTAGGTTTATGAGTTATCTGTCTTTATTTACCTTTTTTATGTTAGTTTTGGTTACTAGTAACAA TTATGTGCAAT 406 CCTAGATTCATGAGTTATCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAAT 406 CCTAGATTCATGAGTTATTTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAAT 406 CCTAGATTCATGAGTTATCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAAT 406 CTAGATTTATGAGTTATCTGTCTCTATTTACCTTTTTTATGTTAGTTTTAGTTACTAGTAATAATTATGTGCAAT

ATTTATTGGTTGGGAAGGTGTTGGTTTATGTTCTTACTTATTAATTAACTTTTGGTTTACCCGTATACAAGCTAACAAGGCGGCA 492

 ATTTATTGGTTGGGAAGGTGTTGGTTTATGTTCTTACTTATTAATTAACTTTTGGTTTACCCGTATACAAGCTAATAAGGCGGCA 492 ATTTATTGGTTGGGAAGGTGTTGGTTTGTGTTCTTACTTATTAATTAACTTTTGGTTTACGCGTATACAAGCTAACAAGGCGGCA 492 TATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCA 492 TATTTATTGGTTGGGAAGGTGTTGGTTTATGTTCTTACTTATTAATTAACTTTTGGTTCACACGTATCCAAGCTAACAAGGCAGCA 492 TATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACGCGTATACAAGCTAATAAAGCAGCA 492 TATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACGCGTATACAAGCTAATAAAGCAGCA 492 ATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACGCGTATACAAGCTAATAAAGCAGCA 492 -ATTTATTGGTTGGGAAGGTGTTGGTCTGTGTTCCTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCA 492 TATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCA 492 TATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACGCGCATACAAGCTAATAAAGCAGCA 492 ATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACGCGTATACAGGCTAACAAGGCAGCA 492 ATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACGCGTATACAGGCTAACAAGGCGGCA 492 ATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCA 492 ATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCA 51 ATTTATCGGTTGGGAAGGTGTTGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAAGCGGCA 492 ATTTATTGGTTGGGAAGGTGTCGGTTTGTGTTCTTATTTACTGATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCT 492 TATTTATTGGTTGGGAAGGTGTCGGTTTGTGTTCTTATTTACTGATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCT 492 ATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCA 492 TATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCA 492 TATTTATTGGTTGGGAAGGTGTAGGCCTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCA 992 ATTTATTGGCTGGGAGGTGTAGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAATAAAGCAGCA 492 TATTTATTGGTTGGGAAGGTGTCGGTTTATGTTCTTATTTATTAATTAACTTTTGGTTTACACGTATACAAGCTAACAAGGCAGCA
$520{ }^{540}{ }_{1}^{560} 1$
|cyonium_digitatum_n sinularia_peculiaris_nd arella_hawaiinensis_n paraminabea_aldersladei_nd dendronephthya castanea- nd dendronephthya_gigantea_nd dendronephthy__molis_nd dendronephthya_suensoni_nd junceella_fragilis_nd
keratoisidinae nd5 inogorgia_complexa_nd euplexaura_crassa_nd ATTAAGGCAATGTTAATAAATAGAATAGGAGACATAGGATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGA 578 ITTAAGGCAATGTTAATCAATAGAATAGGAGATATAGGATTAATGTTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGA 578 ATTAAGGCAATGTTAATTAATAGAATAGGAGATATAGGATTAATGTTAGCTATCATATTAATCTGGAAAGAATTTGGGGTATTAGA 578 ATTAAGGCAATGTTAATCAATAGAATAGGAGATATAGGATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTCTTAGA ATTAAGGCAATGTTAATTAATAGAATAGGGGATATAGGATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGA ITTAAGGCAATGTTAATTAATAGAATAGGGGATATAGGATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGA ATTAAGGCAATGTTAATTAATAGAATAGGGGATATAGGATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGA ATTAAGGCAATGTTAATTAATAGAATAGGGGATATAGGATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGA TTAAGGCAATGCTAATTAATAGAATAGGAGATATAGGATTAATGTTAGCTATCATATTAATCTGGAAAGAATTTGGGGTATTAGA ATTAAGGCGATGTTAATTAATAGAATAGGAGATATAGGATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGA ATTAAGGCAATGTTAATCAATAGAATAGGAGATATAGGATTAATGCTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGA ATTAAGGCAATGCTAATCAATAGAATAGGAGATATAGGATTAATGTTAGCTATTATATTAATCTGGAAGGAATTTGGGGTATTAGA ATTAAGGCAATGCTAATTAATAGAATAGGAGATATAGGATTAATGTTAGCTATCATATTAATCTGGAAAGAATTTGGGGTATTAGA ATTAAGGCAATGTTTATTAATAGAATAGGAGATATAGGATTAATGTTAGCAATCATATTAATCTGGAAAGAATTTGGGGTATTAGA ATTAAGGCAATGTTAATTAATAGAATAGGAGATATAGGATTAATGTTAGCTATCATATTAATCTGGAATAAATTTGGTGTATTAGA ATTAAGGCAATGTTAATTAATAGAATAGGAGATATAGGATTAATGTTAGCTATCATATTAATCTGGAATAAATTTGGTGTATTAGA ATTAAGGCAATGTTAATTAATAGAATAGGAGATATAGGATTAATGTTAGCTATCATATTAATCTGGAAAAAAATTCGGGGTATTAGA ATTAAGGCAATGTTAATTAATAGAATAGGAGATATAGGATTAATGTTAGCTATCATATTAATCTGGAAAAAAATTCGGGGTATTAGA ATTAAGGCAATGCTAATTAACAGAATAGGAGATATAGGATTAATGTTAGCTATTATATTAATCTGGAAAGAATTTGGGGTATTAGA atTAAGGCAATGTTAATTAATAGAATAGGAGATATAGGATTAATGTTAGCTATNATATTAATCTGGAAAGAATTTGGGGTATTAGA
Conservation
acyonium_digitatum_nds sinularia peculiaris_nd arella_hawaiinensis_nd5 paraminabea_aldersladei_nds cleronephthya_gracillimum_nd dendronephthya_castanea_nd5
dendronephthya_ gigantea_nd dendronephthya_mollis nd dendronephthya_suensoni_nd
junceella_fragilis_nd keratoisidinae_nd5_re echinogorgia_complexa_nd rogorgia_bipinnata_nds pseudopterogorgia_bipinnata_nd
acanella_eburnea_nds_re ibogagorgia_caulifiora_nd5 briareum_asbestinum_nd5
corallium_elatius_nds orallium_konojoi_nd paracorallium_japonicum_nd5_re heliopora_coerulea_nd
stylatula_elongata_nd
enilla_muelleri_nd
Conservation TACTGTAGTTTGTTTCCCGCTTTATCACCATCTTCAGCTTGTACTTGGATTTGTATATTATTAACTATAGGGGCCGTAGGAAAAT 664 TTACTGTAGTTTGTTCTCCACCTTGTCTCCATCTTCAGCGTGTACTTGGATTTGTATCTTACTAACTATCGGGGCCATAGGGAAAAT 664 TTACTGTAGTTTGTTTTCCACCTTGTACCCATCTTCGGCGTGTACTTGGATTTGTATACTACTAACTATCGGGGCCATAGGAAAAT 664 TTACTGTAGTTTATTCTCCGCCTTATCATCATCTTCAGCTTGTACTTGTATTTGTATACTACTAACTATAGGGGCCGTAGGGAAAAT 664 TTACTGTAGTTTATTCTCCGCCTTATCATCATCTTCAGCTTGTACTTGTATTTGTATACTACTAACTATAGGGGCCGTAGGAAAAT 664 TTACTGTAGTTTATTCTCCGCCTTATCATCATCTTCAGCTTGTACTTGTATTTGTATACTACTAACTATAGGGGCCGTAGGAAAAT TACTAGTTATTTCGCCTTATCATCATCAGCTTTACTTITATTTGTATACTACTAACTATAGGGGCCGTAGGAAAAT TACTGTAGTTTGTTCTCCACCTTGTCTCCATCTTCAGCGTGTACTTGGATTTGTATATTACTAACTATCGGGGCCATAGGAAAAT TACTGTAGTTTATTCTCCGCCTTATCACCATCTTCAGCTTGTACTTGGATTTGTGTACTCCTAACTATAGGGGCCGTAGGAAAAT TAC GTAGTTTATTCTCCGCCTTATCACCATCTTCAGCTTGTACTTGGATTTGTATATTACTAACGATAGGGGCCGTAGGAAAAT TTACTGTAGTTTGTTCTCCACCTTGTCTCCATCTTCAGCGTGTACTTGGATTTGTATATTACTAACTATCGGGGCCGTAGGAAAAAT TTACTGTAGTTTATTCTCCACCTTGTATCCCTCTTCGGCGTGTACTTGGATCTGTATATTACTAACTATCGGGGCCATAGGAAAAT TATTGTAGTTTGTTCTCCACCTHTCCCCATCTTCA TTACTGTAGTTTGTTCTCCACCTTGTATCCATCTTCGGCGTGTACCTGGATTTGTATATTACTAACTATCGGGGCCATAGGAAAAT TTACTGTAGTTTATTCTCCACCTTGTATCCATCTTCGGCGTGTACTTGGATTTGTATATTACTAACTATCGGGGCCATAGGAAAAT TTACTGTAGTTTATTCTCCACCTTGTATCCATCTTCGGCGTGTACTTGGATTTGTATATTACTAACTATCGGGGCCATAGGAAAAT TTACTGTAGTTTGTTCCCCATCTTGTCTCCATCTTCAGCGTGTACTTGGATTTGTATATTACTAACTATAGGGGCCGTAGGAAAAT TACTGTAGTTTGTTCTCCACCTTGTCTCCATCCTCAGCTTGTACTTGGATTTGTATCTTACTAACTATAGGAGCCGTGGGAAAAT 664 TTACTGTAGTTTATTCTCCACCTTGTCTCCATCTTCAGCTTGTACTTGGATTTGTATATTACTAACTATAGGGGCCGTAGGAAAAT
$\stackrel{700}{1}$
${ }_{1}^{720}$
${ }_{1}^{760}$
alcyonium_digitatum_nds primnoa_resedaeformis nd5
sinularia peculiaris arella_hawaiinensis_nd5 paraminabea_aldersladei_nds cleronephthya_gracillimum_nd5 dendronephthya_castanea_nd dendronephthya_gigantea_nd dendronephthya_mollis_nd5 dendronephthya_suensoni_nd

Junceena-rragilisachinogorgia_complexa_nds euplexaura_crassa_nds pseudopterolla eburnea nd5 sbogagorgia_cauliflora_nds briareum asbestinum_nds corallium_kan_corallium_rubrum_nd5 ${ }^{\text {rev }}$ paracorallium_japonicum_nd5_re
heliopora_coerulea_n
stylatua_elongata_-

Conservation
alcyonium_digitatum_nds sinularia_peculiaris narella_hawaiinensis_n paraminabea_aldersladei_nd dendronephthya_ castane_ dendronephthyà gigantea-nd dendronephthy mollis dendronephthya suensoni nd
junceella_fragilis_nd5 nogorgia complexa_
euplexaüra_crassa_nd
pseudopterogorgia_bipinnata_nd acanella_eburnea_nd5_r sibogagorgia_cauliflora_nds
corallium_elatius_nd5 corallium_konojoi_nds corallium rubrum paracorallium japonicum nds rev heliopora_coerulea_nd5 stylatula_elongata_nd

Consensu
Conservation

TGCCCAATTAGGGTTACATACTTGGTTGCCCGATGCTATGGAGGGTCCCACACCTGTTTCGGCCCTAATTCACGCAGCAACAATG 75 TGCCCAATTAGGGTTACATACTTGGTTGCCTGATGCTATGGAGGGCCCCACACCTGTTTCAGCCCTAATTCACGCAGCAACAATG 75 CTGCCCAATTAGGGTTACATACTTGGTTGC CAGATGCTATGGAGGGCCCCACACCTGTTTCGGCCCTAATTCACGCAGCAACAATG 750 CTGCCCAATTAGGGTTACATACTTGGTTGCCAGATGCTATGGAGGGCCCCACACCTGTTTCAGCCCTAATTCACGCAGCAACAATG 750 CTGCCCAATTAGGGTTGCACACTTGGTTGCCGGATGCTATGGAGGGTCCCACACCTGTTTCGGCCCTAATTCACGCAGCGACAATG 750 CTGCCCAATTAGGGTTGCATACTTGGTTGCCGGATGCTATGGAGGGCCCCACACCTGTTTCGGCCCTAATTCACGCAGCGACAATG 750 CTGCCCAATTAGGGTTGCATACTTGGTTGCCGGATGCTATGGAGGGCCCCACACCTGTTTCGGCCCTAATTCACGCAGCGACAATG 750 CTGCCCAATTAGGGT TGCATACTTGGTTGCCGGATGCTATGGAGGGCCCCACACCTGTTTCGGCCCTAATTCACGCAGCGACAATG 750 CTGCCCAATTAGGGTTGCATACTTGGTTGCCGGATGCTATGGAGGGCCCCACACCTGTTTCGGCCCTAATTCACGCAGCGACAATG 750 TGCCCAATTAGGGTTACATACTTGGTTGCCAGATGCTATGGAGGGTCCCACACCTGTTTCGGCCCTAATTCACGCAGCAACAATG 75 TGCCCAATTAGGGTTGCATACTTGGTTGCCGGATGCTATGGAGGGTCCCACACCTGTTTCGGCCCTAATTCACGCAGCGACAATG 750 CTGCCCAATTAGGGCTACATACTTGGTTGCCGGATGCTATGGAGGGGCCCACACCTGTTTCGGCCCTAATTCACGCAGCAACAATG 750 CTGCCCAATTAGGGTTACATACTTGGTTGCCAGATGCTATGGAAGGGCCCACACCTGTTTCGGCCCTAATACACGCAGCAACAATG 750 CTGCCCAATTAGGGTTACATACTTGGTTGC CAGATGCTATGGAGGGTCCCACACCTGTTTCGGCCCTAATTCACGCAGCAACAATG 75 CTGCCCAATTAGGGCTACATACTTGGTTGCCAGATGCTATGGAGGGCCCCACACCTGTTTCAGCCCTGATTCACGCAGCAACAATG 774 TGCCCAATTAGGGTTACATACTTGGTTGCCAGATGCTATGGAGGGTCCCACACCTGTTTCGGCCCTAATTCACGCAGCAACAATG 750 TGGCCCAGTTAGGGCTACATACTTGGTTGCCTGATGCTATGGAGGGCCCCACACCTGTTTCAGCCCTAATTCACGCAGCAACAATG 750 CTGCCCAGTTAGGGCTACATACTTGGTTGCCTGATGCTATGGAGGGCCCCACACCTGTTTCAGCCCTAATTCACGCAGCAACAATG 75 TGCCCAATTAGGGCTACATACTTGGTTGCCAGATGCTATGGAGGGCCCCACACCTGTTTCAGCCCTAATTCACGCAGCAACAATG 75 CTGCCCAATTAGGGCTACATACTTGGTTGCCAGATGCTATGGAGGGCCCCACACCTGTTTCAGCCCTAATTCACGCAGCAACAATG 75 CTGCCCAATTAGGGTTACATACTTGGTTGCCAGATGCTATGGAGGGTCCTACACCTGTTTCGGCCCTAATTCACGCAGCAACAATG 750 TGCCCAATTAGGGTTACATACCTGGTTGCCAGATGCTATGGAGGGTCCTACACCTGTTTCGGCCCTAATTCACGCAGCAACAATG 750 CTGCCCAATTAGGGTTACATACTTGGTTGC CAGATGCTATGGAGGGCCCCACACCTGTTTCGGCCCTAATTCACGCAGCAACAATG
$\begin{array}{llll}780 & 800 & 820 & 840 \\ 1\end{array}$ GTAACAGCAGGAGTATTTTTAATCATAAGATCAGCTCCTCTTTTTGATTACTCTCCAACTGCAACAATTATTGTGGGTTTAATTGG 836 taACAGCAGGAGTATTTTTAATTATAAGATCAGCTCCCCTTTTTGATTACTCTCCAACTGCAACAATTATTGTGGGTTTAGTTGG GTAACAGCAGGAGTATTTTTAATTATAAGGTCCGCCCCCCTTTTTGATCATTCTCCAACTGCAACAATTATTGTGGGTTTAGTTGG 83 GTAACAGCAGGAGTATTTTTAATTATAAGGTCAGCTCCCCTTTTTGATCATTCTCCAACTGCAACAATTATTGTGGGTTTAGTTGG 836 GTGACAGCAGGGGTGTTTTTAATTATAAGATCAGCTCCCCTTTTTGATTATTCTCCAACTGCAACAATTATTGTGGGGCTAGTTGG GTGACAGCAGGGGTGTTTTTAATTATAAGATCAGCTCCCCTTTTTGATTACTCTCCAACTGCAACAATTATTGTGGGGTTAGTTGG 836 GTGACAGCAGGGGTGTTTTTAATTATAAGATCAGCTCCCCTTTTTGATTACTCTCCAACTGCAACAATTATTGTGGGGTTAGTTGG 836 GTGACAGCAGGGGTGTTTTTAATTATAAGATCAGCTCCCCTTTTTGATTACTCTCCAACTGCAACAATTATTGTGGGGTTAGTTGG 83 GTAACAGCAGGGGTCTTTTTAATTATAAGATCAGCTCCCCTTTTTGATCATTCTCCAACTGCAACAATAATTGTGGGTTTAGTGGG 836 TAACAGCAGGAGTATTTTTAATTATAAGGTCAGCCCCCCTTTTTGATCATTCTCCAACTGCAACAATTATTGTGGGTTTAGTTGG 836 GTGACAGCAGGGGTGTTTTTAATTATAAGATCAGCTCCCCTTTTTGATCACTCTCCAACTGCAACAATTATTGTGGGGTTAGTTGG 836 TTAACAGCGGGAGTGTTTTTAATTATAAGATCAGCTCCCCTTTTTGATTACTCTCCAACTGCAACAATTATTGTGGGTTTAATTGG 836 GTAACAGCAGGAGTGTTTTTAATTATAAGATCAGCCCCCCTTTTTGATTACTCTCCAACTGCAACAATTATTGTGGGTTTAGTTGG 8 8 GTAACAGCAGGAGTATTTTTAATTATAAGGTCAGCCCCTTTTTTTGATCACTCTCCAACCGCAACAATTATTGTGGGTTTAGTTGG 836 GTAACAGCCGGAGTATTTTTAATTATAAGGTCAGCTCCCCTTTTTGATCATTCTCCAACTGCAACAATTATTGTGGGTTTGGTTGG 86 TAACAGCCGGAGTATTTCTAATTATAAGGTCAGCTCCCCTTTTTGATCATTCTCCAACTGCAACAATTATTGTGGGTTTAGTTGG 83 GTAACAGCCGGAGTATTTCTAATTATAAGGTCAGCTCCCCTTTTTGATCATTCTCCAACTGCAACAATTATTGTGGGTTTAGTTGG 836 GTAACAGCCGGAGTATTCCTAATTATAAGGTCAGCTCCCCTTTTTGATCATTCTCCAACTGCAACAATTATTGTGGGTTTGGTTGG 836 GTAACAGCCGGAGTATTCCTAATTATAAGGTCAGCTCCCCTTTTTGATCATTCTCCAACTGCAACAATTATTGTGGGTTTGGTTGG 83 GTAACAGCGGGAGTATTTTTAATTATAAGGTCAGCTCCCCTTTTTGATCATTCTCCAACTGCAACAATTATTGTGGGTTTAGTTGG 836 GTAACAGCAGGAGTATTTTTAATTATAAGATCGGCCCCTCTTTTTGATCACTCTCCAACTGCAACAATTATTGTGGGTTTAGTGGG 836 GTAACAGCAGGAGTATTTTTAATTATAAGATCAGCTCCCCTTTTTGATCACTCTCCAACTGCAACAATTATTGTGGGTTTAGTTGG
alcyonium_digitatum_nd sinularia_peculiaris_nd narella_hawaiinensis_nd araminabea_aldersladei_nd5 dendronephthya_castanea_nd endronephthya_gigantea_nd dendronephthya_mollis_nd dendronephthya_suensoni_nd junceella_fragilis_nd inogorgia_compTexa_nd euplexaura_crassa_nds pseudopterogorgia_bipinnata_nd acanella_eburnea_nd5_re sriareum asbestinu_n corallium_elatius_nd corallium_konojoi_nds corallium_rubrum_nd5_rev paracorallium_japonicum_nd5_re heliopora_coerulea_n renilla_muelleri_nd
Conservation
alcyonium_digitatum_nds sinularia peculiaris_nds narella_hawaiinensis_nds paraminabea_aldersladei_nd5
cleronephthya_gracillimum_nd5 scleronephthya_gracilimum_nds
dendronephthya_castanea_nds dendronephthy__castanea_nd
dendronephthya_gigantea_nd dendronephthya_mollis_nd dendronephthya_suensoni_nds junceella_fragilis_nd
keratoisidinae_nd5_re echinogorgia_complexa_nd euplexaura_crassa_nd5 pseudopterogorgia_bipinnata_nd
acanella_eburnea_ns_re briareum_asbestinum_nds corallium elatius nd corallium_konojoi_nds corallium_rubrum_nd5_re paracorallium_japonicum_nd5_re
heliopora_coerulea_nd5
stylatula_elongata_nd5
renilla_muelleri_nds
Conservation
CTCCTTAACTGCTTTCTTTGCAGCTACAGTAGGATTAGTCCAATCAGATATAAAAAAAAAGATAAAAAAGTTATTGCTTTATTCTACTTGTAGTCAAC 922
CTCCTTAACTGCTTTCTTTGCAGCTACAGTAGGATTAGTCCAATCGGATATAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAAC 922
CTCCCTGACTGCTTTCTTTGCTGCCACAGTAGGATTAGTCCAATCGGATATAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAAT 922
CTCCTTAACTGCTTTTTTTGCAGCTACAGTAGGATTAGTCCAATCGGATATAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAAT
CTCCTTAACTGCTTTTTTTGCAGCTACAGTAGGATTAGTCCAATCGGATATAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAAT
CTCCTTAACTGCTTTTTTTGCAGCTACAGTAGGATTAGTCCAATCGGATATAAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAAT
CTCCTTAACTGCTTTTTTTGCAGCTACAGTAGGATTAGTCCAATCGGATATAAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAAT
CTCCCTAACGGCTTTCTTTGCTGCCACAGTAGGATTAGTCCAATCGGATATAAAAAAAAGGTTATTGCTTATTCTACTTGTAGTCAA
CTCTTTAACTGCCTTCTTTGCGGCTACAGTGGGATTAGTTCAATCGGACATAAAAAAAAGTTATTGCTTACTCTACTTGTAGTCAAC
CTCCTTAACTGCTTTCTTTGCAGCTACAGTAGGATTAGTCCAATCGGATATAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAA
CTCCCTAACTGCTTTCTTTGCTGCCACAGTAGGATTAGTCCAATCGGATATAAAAAAAAGTTATTGCTTATTCTACTTGGAGTCAAAT
CTCCTTAACCGCTTTCTTTGCTGCCACAGTAGGATTAGTCCAATCGGATATAAAAAAAAGTTATTGCCTATTCTACTTGTAGTCAAT
CTCCCTAACTGCTTTCTTTGCTGCCACAGTGGGATTAGTCCAATCGGATATAAAAAAAGGTTATTGCTTATTCAACTTGTAGTCAGT
TCCCTAACTGCTTTCTTTGCTGCCACAGTGGGATTAGTCCAATCGGATATAAAAAAAGGTTATTGCTTATTCTACTTGTAGTCAGT
CTCCCTAACTGCTTTCTTTGCTGCCACAGTGGGATTAGTCCAATCGGATATAAAAAAGGTTATTGCTTATTCTACTTGTAGTCAGT
CTCCTTAACTGCTTTCTTTGCTGCCACAGTAGGTTTAGTCCAATCGGATATAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAAT
CTCCTTAACTGCTTTCTTTGCTGCCACAGTAGGATTAGTCCAATCGGATATAAAAAAAGTTATTGCTTATTCTACTTGTAGTCAAT
$\begin{array}{r}980 \\ 1 \\ \hline\end{array}$
${ }^{1,000}$
1.020
TAGGATACATGGTAATGGCTTGTGGTACTTATAGCTCTCTAAGTAGTTTATATCACCTACTAACTCATGCTTTCTTTAAGGCCTTA 1008 TAGGATACATGGTCATGGCTTGTGGTACTTATAGCTGTATAAGTAGTTTATATCACCTACTAACTCATGCCTTCTTTAAGGCCTTA 1008 TAGGATACATGGTAATGGCTTGTGGTACTTATAGCTGTTTAAGTAGTTTATATCATCTACTAACTCATGCTTTCTTTAAGGCTTTA 1008 TAGGATACATGGTAATGGCCTGTGGTACTTATAGCTGTATAAGTAGTTTATACCACCTACTAACTCATGCTTTCTTTAAGGCTTTA 1008 AGGATACATGGTAATGGCCTGTGGTACTTATAGCTGTACAAGTAGTTTATATCATCTACTAACTCATGCTTTCTTTAAGGCTTTA 1000 AGGATATATGGTAATGGCTTGTGGCACTTATAGCTGTCTAAGTAGTTTATATCATCTATTAACTCATGCTTTCTTTAAGGCCTTA 1000 TAGGATATATGGTAATGGCTTGTGGCACTTATAGCTGTCTAAGTAGTTTATATCATCTATTAACTCATGCTTTCTTTAAGGCTTTA 1008 TAGGATATATGGTAATGGCTTGTGGCACTTATAGCTGTCTAAGTAGTTTATATCATCTATTAACTCATGCTTTCTTTAAGGCTTTA 1008 TAGGATATATGGTAATGGCTTGTGGCACTTATAGCTGTCTAAGTAGTTTATATCATCTATTAACTCATGCTTTCTTTAAGGCTTTA 1008 AGGATACATGGTAATGGCCTGTGGTACTTATAGCTGTCTAAGTAGTTTATATCATCTATTAACTCATGCTTTCTTTAAGGCTTTA 1008 TAGGATATATGGTAATGGCTTGTGGCACTTATAGCTGTCTAAGTAGTTTATATCATCTATTAACTCATGCTTTCTTTAAGGCTTTA 1008 TAGGATATATGGTAATGGCTTGTGGCACTTATAGCTGTTTAAGTAGTTTATATCACCTACTAACTCATGCTTTCTTTAAGGCTTTA 1008 TAGGATACATGGTAATGGCTTGTGGCACTTATAGCTGTCTAAGCAGTTTATATCACCTACTAACTCATGCTTTCTTTAAGGCTTTA 1008 TAGGATACATGGTAATGGCCTGTGGTACTTATAGCTCTATAAGTAGTTTATACCACCTACTAACTCATGCTTTCTTTAAGGCTTTA 1008 AGGATACATGGTAATGGCCTGTGGAACTTATAGCTGTATAAGTAGTTTATATCATCTACTAACCCATGCTTTCTTTAAGGCTTTA 1032 AGGATACATGGTGATGGCCTGTGGTACTTATAGCTGTATAAGTAGTTTATATCATCTACTAACCCATGCCTTCTTTAAGGCTTTA 100 TAGGATACATGGTGATGGCCTGTGGTACTTATAGCTGTATAAGTAGTTTATATCATCTACTAACCCATGCCTTCTTTAAGGCTTTA 1008 TAGGATACATGGTGATGGCCTGTGGTACTTATAGCTGTATAAGTAGTTTATATCATCTACTAACCCATGCTTTCTTTAAGGCTTTA 1008 TAGGATACATGGTGATGGCCTGTGGTACTTATAGCTGTATAAGTAGTTTATATCATCTACTAACCCATGCTTTCTTTAAGGCTTTA 1008 TAGGATACATGGTAATGGCTTGTGGCACTTATAGCTGTACAAGTAGTTTATATCATCTATTAACTCATGCTTTCTTTAAGGCTTTA 1003 TAGGATACATGGTAATGGCCTGTGGTACTTATAGCTGCCTAAGTAGTTTATATCACCTACTAACTCACGCTTTCTTTAAGGCTTTA 1008 TAGGATACATGGTAATGGCCTGTGGTACTTATAGCTGTATAAGTAGTTTATATCATCTACTAACTCATGCTTTCTTTAAGGCTTTA俗
alcyonium_digitatum_nd5 sinularia peculiaris nd narella_hawaiinensis_nd paraminabēa_aldersladei_nds scleronephthya_gracillimum_nd5
dendronephthya__ dendronephthyä gigantea_nds dendronephthya_mollis nd5 dendronephthya sursoni junceella fragilis nd5 keratoisidinae_nd5_rev
echinogorgia_complexa_nd euplexaura_crassa_nd5 pseudopterogorgia_-_ipinnata_nd acanella_eburnea_nd5_re briareum asbestinum_nd briareum asbestinum_nd corallium konojoinds corallium_rubrum nd5 rev paracorallium japonicum nds rev heliopora_coerulea_nd
stylatula elongata nd
renilla_muelleri_nds
Consensus
alcyonium_digitatum_nd5 primnoa_resedaeformis_nd
sinularia peculiaris_nd5 narella_hawaiinensis_nd5 araminabea aldersladei-nd5 sceronephthya_gracillimum nds dendronephthya_castanea_nds dendronephthya_mollis_nds dendronephthya_suensoni_nd junceella fragilis_nd5 echinogorgia_complexa_nds euplorgia bipisna_nds pseudopterogorgia_bipinnata_nds sibogagorgia_cauliflora_nd5 briareum_asbestinum_nds
corallium_konojoi_nd5 corallium_rubrum_nd5_rev paracorallium japonicum_nd5_re stylatula_-elongea_nd
renilla_muelleri_nds
Consensus
Conservation
1.040
$\begin{array}{ccc}1,040 & 1,060 & 1,080 \\ 1 & 1 & 1,100 \\ \text { TTATTCTTAGGGGCAGGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATCCGGGGCTTACC } \\ 1094\end{array}$
$\begin{array}{ccc}1,040 & 1,060 & 1,080 \\ 1 & 1 & 1,100 \\ \text { TTATTCTTAGGGGCAGGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATCCGGGGCTTACC } \\ 1094\end{array}$
 TTATTCTTAGGGGCAGGTTCAATAATTCATGCTCTTCTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATTCGGGGCCTACC 1094 TTATTCTTAGGAGCAGGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATCCGGGGCTTACC 1094 TTATTCTTGGGAGCAGGCTCAATAATTCACGCCCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATTAGGGGCCTACC 1094 TTATTCTTGGGGGCAGGCTCAATAATCCATGCCCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATTAGGGGCTTACC 1094 TTATTCTTGGGGGCAGGCTCAATAATTCATGCTCTTCTAGATGAACAAGATCTTAGGAAGATGGGGGGGATAATCCGGGGCTTACC 1094 TATTCTTGGGGGCGGGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGAAAAATGGGGGGGATAATCCGGGGCCTACC 1094 TTATTCTTGGGGGCGGGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGAAAAATGGGGGGGATAATCCGGGGCCTACC 1094 TTATTCTTGGGGGCGGGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGAAAAATGGGGGGGATAATCCGGGGCCTACC 1094 CTATTCTTGGGAGCAGGCTCAATAATTCATGCTCTTCTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATTAGGGGGCTACC 1094 TATTCTTGGGAGCAGGCTCAATAATTCATGCCCTTTTAGATGAACAAGATCTCAGGAAGATGGGGGGAATAATTCGGGGTCTGCC 1094 TATTCTTGGGGGCAGGCTCAATAATTCATGCTCTTCTAGATGAACAAGATCTTAGGAAGATGGGGGGGATAATCCGGGGCCTACC 1094 TATTCTTGGGGGCAGGCTCIATAATTCATGCTCTTCTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATCCGGGGTTTACC 1094 TATTCTTGGGGGCA GGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATCCGGGGCTTACC 1094 TATTCTTGGGAGCAGGCTCAATAATTCATGCCCTTTTAGATGAACAAGATCTCAGGAAGATGGGGGGA ATAATTCGGGGTCTGCC 1094信 TATTCTTGGGGGCAGGCTCAATAATTCATGCCCTTCTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAGTTAGAGGCTTACC TATTCTTGGGGGCAGGCTCAATAATTCATGCCCTTCTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAGTTAGAGGCTTACC 1094 TTATTCTTGGGGGCAGGCTCAATAATTCATGCCCTTCTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATTAGAGGCTTACC 109 TATTCTTGGGGGCAGGCTCAATAATTCATGCCCTTCTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATTAGAGGCTTACC 1094 CTATTCTTAGGAGCAGGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGGAATCATTAGGGGCCTACC 1094 TATTCTTGGGGGCAGGCTCAATAATTCATGCCCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATTAGGGGCCTACC 1094 TATTCTTAGGAGCTGGCTCAATAATTCACGCTCTTTTAGATGAACAAGATCTAAGGAAGATGGGGGGAATAATTAGGGCCCTACC 1094 TTATTCTTGGGGGCAGGCTCAATAATTCATGCTCTTTTAGATGAACAAGATCTTAGGAAGATGGGGGGAATAATTCGGGGCCTACC 1,120
CTAACATATM TCTAACATATGTATTAATGTTGATTGGTTCATTGTCTTTAGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TTTAACATATGTATTAATGTTGATTGGTTCCTTGTCTTTAGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TTTAACTTATGTATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TTTAACTTATATATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATGT 1180 TCTAACATATGTATTAATGTTGATTGGTTCATTGTCTTTAGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TTTAACATATGTATTAATGTTGATTGGTTCATTGTCTTTAGCTGGCTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TTTAACATATGTATTAATGTTGATTGGTTCATTGTCTTTAGCTGGCTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TTTAACATATGTATTAATGTTGATTGGTTCATTGTCTTTAGCTGGCTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 GTTAACTATATATTAATGTTGATTGGTTCATTCTT GTTAACTTATATATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCTGGGTTTTACTCTAAAAGATTTAAATAT 1180 TTTAACATATGTATTAATGTTGATTGGTTCATTGTCTTTAGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TCTAACATATGTATTAATGTTGATTGGTTCATTGTCTTTAGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTGATAT 1180 TTTAACATATGTATTAATGTTAATTGGCTCATTGTCTTTGGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TTTAACTTATATATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 CCTAACTTATATATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1204 TTTAACTTATATATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTCCCTTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TCTAACTTATATATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCCGGATTTTACTCTAAAGATTTAATAT 1180 TCTAACTTATATATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCCGGATTTTACTCTAAAGATTTAATAT 1180 CTAACTTATATATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAC 1180 CTAACTTATATATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAC 1180 TTTAACTTATGTCTTAATGTTGATTGGTTCATTGTCTCTGGCTGGTTTCCCCTATTTATCTGGGTTTTACTCTAAAGATTTAATAT 11180 GTTAACTTATATCTTAATGTTGATTGGTTCATTGTCTGTGGCTGGTTTCCCTTATTTATCTGGATTTTACTCTAAAGATTTAATAT 1180 TTTAACTTATGTATTAATGTTGATTGGTTCATTGTCTTTGGCTGGTTTTCCCTATTTATCTGGATTTTACTCTAAAGATTTAATAT
> alcyonium_digitatum_nds sinularia_peculiaris_nd narella_hawaiinensis_nd paraminabea_aldersladei_nd dendronephthya_castanea_nd dendronephthya_gigantea_nd unceella_fragilis_nd nogorgia complexa_nds euplexaura_crassa_nd

> Consensus

1.220
 1.24
 1.260
 1.20
 AGAATTAACTTATAATAGTTATTGTTTAATATCTATTTATTGGTTAGCTTCAATTACAGCCTTCTTAACTGCTTTTTATTCATTC AGAGTTAACTTATAATAGCTATTGTTTAATATCTATTTATTGGTTAGCTTCAATTACAGCTTTCTTAACTGCCTTTTATTCATTC TGGAATTAACTTATAATAGTTATTGTTTAATATCAATTTATTGGTTGGCTTCAATTACGGCCTTCTTGACCGCTTTTTATTCATTT TAGAATTAACTTATAATAATTATTGTTTAATATCTATTTATTGGTTAGCTTCAAATTACAGCCCTTCTTAACTGCTTTTTAATTCATTC GGAATTAACTTATAATAATTATTGTTTAATATCTATTTAATTGGTTAGCTTCAATTACAGCCTTCTTAACTGCTTTTTATTCATT TGGAATTAACTTATAATAATTATTGTTTAATATCTATTTATTGGTTAGCTTCAATTACAGCCTTCTTAACTGCTTTTTATTCATT TGGAATTAACTTATAATAGTTATTGTTTAATATCGATTTATTGGTTGGCCTCAATTACAGCCTTCTTAACTGCTTTTTATTCATTT TGGAATTAACTTATAATAGTTATTGTTTAATATCGATTTATTGGTTGGCTTCAATTACCAGCCTTCTTAACCGCTTTTTATTCATTT TAGAATTAACTTATAATAATTATTGCTTAATATCTATTTATTGGTTAGCTTCAATTACAGCCTTCTTAACTGCTTTTTACTCATTC AGAATTAACTTATAATAATTATTGTTTAATATCTATTTATTGGTTAGCTTCAATTACAGCTTTCTTAACTGCTTTTTATTCATTC TGGAATTAACTTATAATAGTTATTGTTTAATATCGATTTATTGGTTGGCTTCAATTACAGCCTTCTTAACCGCTTTTTATTCATTT TAGAATTAACTTATAATAGTTATTGTTTAATATCTATTTATTGGTTGGCTTCAATTACAGCTTTCTTAACTGCTTTTTATTCATTT TGGAGTTAACCTATAATAGTTATTGTTTAATATCGATTTATTGGTTGGCTTCAATTACAGCATTCTTAACCGCTTTTTATTCATTT TGGAGTTAACCTATAATAGTTATTGTTTAATATCGATTTATTGGTTGGCTTCAATTACAGCATTCTTAACCGCTTTTTATTCATTT TGGAGTTAACTTATAAATAGTTATTGTTTGATATCGATTTATTGGTTGGCTTCAAATTACAGCCTTCTTAACCGCTTTTTATTCATTT TGGAGTTAACTTATAATAGTTATTGTTTAATATCGATTTATTGGTTGGCCTCAATTACAGCCTTCTTAACTGCTTTTTATTCATTC TGGAATTAACTTATGATAGTTATTGTTTAATATCGATCTATTGGTTAGCCTCAATCACAGCCTTCTTAACTGCTTTTTATTCATTT
 \footnotetext{ 1266

 1266 1266 12661266 1266 1266 1266
1266 1266 1266 1290 1266
 1266}
alcyonium_digitatum_nd5 sinularia_peculiaris_nd5 narella_hawaiinensis_nd5 scleronephthya_gracillimum_nds dendronephthya_castanea_nd5 dendronephthya_mollis_nds dendronephthya_suensoni_nd5 junceella fragilis_nd5 echinogorgia_complexa_nd CGATTAATATACTTAAGTTTTGTGGCTAAGCCTAATTTAACACGTATAAGCGCACAGCACTTACAAGAAGCTGATTGGAACTTATT GGATTAATATACTTAAGTTTTGTGGCTAAGCCTAATTTAACACGTATAAGCGCACAACACTTACAAGAAGCTGATTGGAACTTAT CGATTAATATACTTAAGTTTTGTGTCTAAGCCTAATTTAACACATATAAGTGCACAACATTTACAAGAAGCTGATTGGAACTTATT GGATTAATATACCTAAGCTTCGTGTCTAAGCCTAATTTAACACGTATAAGCGCACAACACTTACAAGAAGCTGATTGGAACTTATT GGATTAATCTACTTAAGTTTTGTGTCTAAGCCTAATTTAACACGTATAAGCGCACAACACTTACAAGAAGCTGATTGGAACTTATI CGATTAATCTACTTAAGTTTTGTGTCTAAGCCTAATTTAACACGTATAAGCGCACAACACTTACAAGAAGCTGATTGGAACTTATT GGATTAATTCTACTTAAAGTTTTGTGTCTAAGCCTAATTTAACACGTATAAGCGCACAACACTTACAAGGAAGCTGATTGGAACTTAACACGTATAAGCGCACAACACTTACAAGGA GCTGATTGGAACTTATI CGATTAATCTACTTAAGTTTTTGTGTCTAAGCCTAATTTAACACGTATAAGCGCACAACACTTACAAGAAGCTGATTGGAACTTATT AGACTAATATACCTAAGCTTTGTGTCTAAGCCTAATTTAACACGTATGAGTGCTCAACACTTACAAGAAGCTGACTGGAACTTATT GATTAATATACCTAAGCTTCGTGTCTAAGCCTAATTTAACACGTATGAGCGCACAACATTTACAAGAAGCCGATTGGAACTTATT CGATTAATATATTTAAGTTTTGTGTCTAAGCCTAATTTAACACGTATGAGCGCACAACACTTACAAGAAGCTGATTGGAATTTATT CGATTAATATACTTAAGTTTTGTGTCTAAGCCTAATTTAACACATACAAGCGCACAACACTTACAAAGAAGCTGATTGGAACCTAATT CGATTAATATACCTAAGCTTCGTGTCTAAGCCTAATTTAACACGTATGAGCGCACAACATTTACAAGAAGCTGATTGGAACTTATT CGACTAATATACTTAAGCTTCGTGTCTAAGCCTAATTTAACACGCATGAGCGCACAACACTTACAAGGAAGCTGATTGGAACTTACT CGATTAATATACCTAAGCTTCGTGTCTAAGCCTAATTTAACACGTATAAGCGCACAACACTTGCAAGAAGCTGATTGGAACTTAT CGATTAATTTTCCTAAGCTTCGTGTCTAAGCCTAATTTAACACGTATAAGCGCACAACATTTACAAGGAAGCTGATTGGAAACTTACT CGATTAATTTTCCTAAGCTTCGTGTCTAAGCCTAATTTAACACGTATAAGCGCACAACATTTACAAGAAGCTGATTGGAACTTACT GGGTTAATATACTTAAGCTTCGTGTCTAAGCCTAATTTAACACGTATGAGCGCACAACACGTACAAGAAGCTGATTGGAACTTATT CGATTAATATACCTAAGCTTCGTGTCTAAGCCTAATTTAACACGTATGAGCGCGCAACACTTACAAGAAGCTGATTGGAACTTGTT

${ }^{1,380}$

1.400 1266
1352
13521352
1352 1352 1352
1352 1352
1352 1352
1352 1352
1352 1352 1352
1352 1352
1352 1352
1352 1376 acanella_eburnea_nd5_re briareum a_cauliflora_nd
corallium_elatius_nd5 corallium konojoi-nds paracorallium japonicum_nd5_rev heliopora_coerūlea_-nd stylatula_elongata_nds
renilla_muelleri_nds

Conservation
alcyonium_digitatum_nd5 primnoa resedaeformis nd5 sinularia_peculiaris_nd5 paraminabea_aldersladei_nds scleronephthya_gracillimum_nd5 dendronephthya_castanea_nd5 dendronephthya_gigantea_nd5 dendronephtiya_molis_nds
junceella fragili_nd5 keratoeisidinagilis_nd echinogorgia_complexa_nd5 euplexaura_crassa_nd5 pseudopterogorgia_bipinnata_nds
sibogagorgia cauliflora_nds
briareum asbestinum_nd5
corallium_elatius_nd5 corallium konojoi nd5
corallium_rubrum nd5 rev
paracorallium japonicum nd5-rev heliopora_coerulea_nd stylatula_elongata_nds

Consensus
Conservation
alcyonium_digitatum_nd5 primnoa_resedaeformis_nd5 sinularia_peculiaris_nd paraminabea aldersladei_nds scleronephthya_gracillimum nds dendronephthya castanea nd5 dendronephthya gigantea-nds dendronephthya mollis nd junceisuensoni_nd junceella_fragilis_nd echinogorgia_complexa_nd euplexaüra_crassa_nds pseudopterogorgia_bipinnata_nd acanella_eburnea_nd5_rev briareum asbestinum_nds corallium elatius nds corallium konojoi nds
corallium rubrum ${ }^{\text {d }}$ -paracorallium_japonicum_nd5-rev heliopora_coerulea nds stylatula elongata nds
renilla_muelleri_nds
Consensus

GGGTCCTTTATTAGTATTAGCAATAGGGAGTATCTTAGTTGGTTATTTCGCTCAAAATATGGTGTTTGCGCCAGGTATACGTCCCT 1438 GGGTCCTTTATTAGTATTAGCAACAGGGAGTATCTTAGTTGGTTATTTTGCTCAAAATATGGTGTTTGCGCCAGGTATACGTCCCT 1438 GGGCCCCCTATTAGTATTAGGGGCAGGGAGTATTTTAGTTGGTTATATAGCTCAAAATATGGTATTTGCGCCAGGTATACGTCCCT 1438 GGGCCCGCTATTAGTATTAGGGGCAGGGAGTATTTTAGTTGGTTACATAGCTCAAAATATGGTGTTTGCGCCAGGTGTGCGCCCAT 1438 GGGTCCTTTATTAGTATTAGCAGTAGGAAGTATATTAGTTGGTTATATCGCCCAAAATATGGTGTTTGCGCCAGGTATACGTCCCC 1438 GGGTCCTTTATTAGTATTAGCAGCAGGAAGTATATTAGTTGGTTATATTGCCCAAAATATGGTGTTTGCGCCGGGGATACGTCCCT 1438 GGGTCCTTTATTAGTATTAGCAGCAGGAAGTATATTAGTTGGTTATATTGCCCAAAATATGGTGTTTGCGCCGGGGATACGTCCCT 1438 GGGTCCTTTATTAGTATTAGCAGCAGGAAGTATATTAGTTGGTTATATTGCCCAAAATATGGTGTTTGCGCCGGGGATACGTCCCT 1438 GGGTCCTTTATTAGTATTAGCAGCAGGAAGTATATTAGTTGGTTATATTGCCCAAAATATGGTGTTTGCGCCGGGGATACGTCCCT 1438 GGGCCCCCTATTAGTATTAGGGGTGGGGAGTATTTTAGTTGGTTATCTAGCTCAAAATATGGTGTTTGCGCCAGGTGTACGTCCCT 1438 GGGCCCCCTATTGGGGCTTGGGGCGGGGAGTATTTTAGTTGGTTATATAGCTCAAAATATGGTATTTGCGCCAGGTATACGTCCCT 1438 GGGTCCTTTATTAGTATTAGCAGCAGGAAGTATATTAGTTGGTTATGTTGCCCAAAATATGGTGTTTGCGCCGGGGATACGTCCCT 1438 GGGTCCTTTATTAGTATTAGCAATAGGAAGTATTTTAGTTGGTTATATCGCTAAAAATATGGTGTTTGCGCCAGGTGTACGTCCCD 1438 GGGCCCCOTGTTAGTATTAGGGGCGGGGAGTATTTTAGTTGGTTATATAGCTCAAAATATGGTATTTGCGCCAGGTATACGTCCCT 1438 GGGCCCGCTATTAGTATTAGGGGTAGGAAGTATTTTAGTCGGTTACATAGCTCAAAATATGGTGTTTGCGCCAGGTGTACGCCCCT GGGCCCTTTATTAGTATTAGGGGTAGGAAGTATTTTAATTGGTTATATAGCTCAAAATATGGTGTTTGCGCCAGGTGTACGCCCCT 1438 GGGCCCGCTATTAGTATTAGGGGTAGGAAGTATTTTAGTTGGTTACATAGCTCAAAATATGGTGTTTGCGCCAGGTGTACGCCCCT 1438 GGGCCCGCTATTAGTATTAGGGGTAGGAAGTATTTTAGTTGGTTACATAGCTCAAAATATGGTGTTTGCGCCAGGTGTACGCCCCT 1438 GGGCCCGCTATTAGTATTAGGGGTAGGAAGTATTTTAGTAGGTTACATAGCTCAAAATATGGTGTTTGCGCCGGGTGTACGCCCCT 1438 GGGCCCGCTATTAGTATTAGGGGTAGGAAGTATTTTAGTAGGTTACATAGCTCAAAATATGGTGTTTGCGCCGGGTGTACGCCCCT 1438 AGCCCTTATTAGTATTAGGGGGAGGGAGTATTTTAATTGGTTATATAGCTCAAAATATGGTATTTGCGCCAGGTGTACGCCCCT 1438 GGGACCTTTATTAGTATTAGGGGCAGGGAGTATTTTAGTTGGTTATATAGCTCAAAATATGGTATTTGCGCCAGGTGTACGTCCCT 1438 GGGCCCTTTATTAGTATTAGGGGTAGGAAGTATTTTAGTTGGTTATATAGCTCAAAATATGGTGTTTGCGCCAGGTATACGTCCCT - l
1.480


```
            alcyonium_digitatum_nds TTAG 1818
        primnoa resedaeformis nd
            sinularia peculiaris_nds
            narella hawaiinensis_nd5
    paraminabea_aldersladei_nd5
scleronephthya_gracillimum_nd5
    dendronephthya_castanea_nd5
    dendronephthya gigantea_nds
        dendronephthya mollis nd
    dendronephthya suensoni nd
            junceella_fragilis_nd5
            keratoisidiñae nd5 rev
        echinogorgia_complexa_nd5
            euplexaura_crassa_nd5
pseudopterogorgia_bipinnata_nd5
            acanella_eburnea_nd5 rev
            sibogagorgia cauliflora nds
            briareum asbestinum nd
                    corallium_elatius_nds
                    corallium konojoi_nds
    corallium_rubrum_nd5_rev
paracorallium_japonicum_nd5_rev
            heliopora_coerulea_nd5
                stylatula_elongata_nd5
                    renilla_muelleri_nd5
                                    Consensus
                                    Conservation
```

TTAG 1818
TTAG 1818
TTAA 1818
TTAG 1872
TTAG 1818
TTAG 1818
TTAG 1818
TTAG 1818
TTAG 1818
TTAG 1818
CTAG 1818
TTAG 1818
$\begin{array}{ll}\text { TTAG } & 1812 \\ \text { TTAA } & 1818\end{array}$
TTAG 1818
TTAG 1818
TTAG 1812
TTAG 1842
TTAA 1818
TTAG 1818
TTAG 1818
TTAG 1818
TTAG 1818
TTAG 1818
$\begin{array}{ll}\text { TTAG } & 1818 \\ \text { CTAG } & 1818\end{array}$
TTAG

Nd6 gene

alcyonium_digitatum_nd6 primnoa_resedaeformis_nd6
sinularia_peculiaris_nd6
narella_nawainensis narella_hawaiinensis_nd6
paraminabea aldersladei nd scleronephthya_gracillimum_nd dendronephthya_castanea_nd6 endronephthya_gigantea_nd6 dendronephthya__mollis_nd
junceella_fragilis_nd6 echinogorgia_complexa_ndd euplexaura crassa_nd6
euplexaura_crassa_nd6 acanella_eburnea_nd6 sibogagorgia_cauliflora_nd6
briareum asbestinum nd6 corallium_asbestinum_nd6 corallum_elatius_nd6_rev corallium_rubrum_nd6_rev paracorallium japonicum_nde_
heliopora_coerulea_nd
stylatula_elongata_nd6
renilla_muelleri_nd6
Consensus
Conservation

ATGAATAATCTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACCCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTCTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACCCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTTTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTCATATCTACGCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTCTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACGCCGAATCCTGTTTATTCAGTA 87 ATA……-••••••- ATAATATCCTTAGGAATAGTTGGGGCTAGTTTTATGGTTATATCTACGCCGAATCCTGTTTATTCGGTA 72 ATGAATAGCTTATTTATCATAATATCCTTAGGAATAGTTGTAGCTAGTTTTATGGTTATATCTACGCCGAATCCTGTTTATTCAGTA 8 ATGAATAGCTTATTTATCATAATATCCTTAGGAATAGTTGTAGCTAGTTTTATGGTCATATCTACGCCGAATCCTGTTTATTCAGTA 87 ATGAATAGCTTATTTATCATAATATCCTTAGGAATAGTTGTAGCTAGTTTTATGGTCATATCTACGCCGAATCCTGTTTATTCAGTA 8 ATGAATAGCTTATTTATCATAATATCCTTAGGAATAGTTGTAGCTAGTTTTATGGTCATATCTACGCCGAATCCTGTTTATTCAGTA 87
ATGAATAGCTTATTTCTCATAATATCCTTAGGAATAGTTGTAGCTAGTTTTATGGTCATATCTACGCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTCTATTTATGATATTCTCCTTAGGAATAGTTGGGGCTAGTCTTATGGTTATATCTACCCCGAATCCTGTTTATTCGGTA 87 ATGGATAGTCTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACGCCGAATCCTGTTTATTCAGTA 87 ATGAATAGCTTATTTTATATAATATCCTTAGGAATAGTTGGAGCTAGTTTTATGGTTATATCTACGCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTCTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACGCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTCTATTTATAATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACGCCAAATCCTGTTTATTCAGTA 87 ATGAATAGTCTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACGCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTTTATTTATCATTATATCCCTAGGAATAGTTGGAGCTAGTTTTATGGTGATATCTACCCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTCTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACGCCGAATCCTGTTTATTCAGTA 87 GTGAATAGCCTATTTATAATGATATCCTTAGGAATAGTTGGAGCTAGTTTTATGGTGATATCTACCCCGAATCCTGTTTATTCAGTA 87 GTGAATAGCCTTTTTATAATGATATCCTTAGGAATAGTTGGAGCTAGTTTTATGGTGATATCTACCCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTTTATTTACAATAATATCCCTAGGAATAGTTGGAGCTAGTTTTATGGTGATATCTACCCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTTTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACGCCAAATCCTGTTTATTCAGTA 87 ATGAATAGTCTATTTATGATATTCTCCTTAGGAATAGTTGGGGCTAGTCTTATGGTTATATCTACCCCGAATCCTGTCTATTCAGTA 87 ATGAATAGTCTATTTATGATATTCTCCTTAGGAATAGTCGGGGCTAGTCTTATGGTTATATCTACCCCGAATCCTGTTTATTCAGTA 87 ATGAATAGTCTATTTATGATATTCTCCTTAGGAATAGTTGGAGCTAGTCTTATGGTTATATCTACGCCGAATCCTGTTTATTCAGTA
${ }^{100}$
${ }_{120}^{120}$
140
1
1
${ }^{160}$
TTCTGGTTAGTTÁ ${ }^{\prime}$ GCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGGATTAGACTATATAGGCTTAATATTTATAATTGTC 174 TTCTGGTTAGTTATTGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGGATTAGACTATATAGGCTTAATATTTATAATTGTC 174 TTTTGGTTAGTTATTGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGGATTAGATTACATAGGCTTAATATTTATAATTGTC 174 TTCTGGTTAGTTATAGCCTTTGTTAATGCTGCTGTTATGTTTATATCATTGGGATTAGACTACATAGGCTTAATATTTATAGTTGTA 159 TTCTGGTTAGTTATTGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGGATTAGACTACATAGGCCTAATATTTATAATTGTC 174 TTCTGGTTAGTTATTGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGAATTAGACTACATAGGCCTAATATTTATAATTGTC 174 TTCTGGTTAGTTATTGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGAATTAGACTACATAGGCCTAATATTTATAATTGTC 174 TTCTGGTTAGTTATTGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGAATTAGACTACATAGGCCTAATATTTATAATTGTC 174 TTCTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCATTGGGATTAGACTATATAGGCTTAATATTTATAATTGTG 174 TTCTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCATTGGGATTAGACTATATAGGCTTAATATTTATAATTGTC 174 TTTTGGTTAGTTATTGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGGATTAGACTATATAGGCCTAATATTTATAATTGTT 174 TTCTGGTTAGTTATTGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGGACTAGACTATATAGGCTTAATATTTATAATTGTC 174 TTTTGGTTAGTTATTGCCTTTGTTAATGCTGCTATTATGTTTATATCGTTGGGATTAGACTATATAGGCTTAATATTTATAATCGTC 174 TTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCATTGGGATTAGACTATATCGGCTTAATATTTATAATTGTC 174 TTCTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCCTTGGGATTGGACTATATAGGCTTAATATTTATAATTGTG 174 TTCTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCATTGGGATTAGACTATATAGGCTTAATATTTATAATTGTT 174 TTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCCCTGGGATTAGACTATATAGGCTTAATATTTATAATTGTG 174 TTCTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCCTTGGGATTAGACTATATAGGCTTAATATTTATAATTGTG 174 TTCTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCCTTGGGATTAGACTATATAGGCCTAATATTTATAATTGTG 174 TTCTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCATTGGGATTAGACTATATAGGCTTAATATTTATAATTGTC 174 TTCTGGTTAGTTATCGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGGATTAGACTATATAGGCTTAATATTTATAATTGTG 174 TTCTGGTTAGTTGTCGCCTTTGTTAATGCTGCTGTTATGTTTATATCATTGGGATTAGACTATATAGGCTTAATATTTATAATTGTA 174 ITCTGGTTAGTTATNGCCTTTGTTAATGCTGCTGTTATGTTTATATCGTTGGGATTAGACTATATAGGCTTAATATTTATAATTGTC
alcyonium_digitatum_nd6 primnoa_resedaeformis_nd6 sinularia_peculiaris_nd6 narella_hawaiinensis_nd6 paraminabea_aldersladei_nd
scleronephthya gracillimum_nd dendronephthya_castanea_nd dendronephthya_gigantea_nd dendronephthya_mollis_nd6
junceella fragilis nd keratōisidinae_nd echinogorgia complexa-nd euplexaura_crassa_nd6 erogorgia bipinnata-nd acanella_eburnea_nd6 sibogagorgia_cauliflora_nd6 briareum_asbestinum_nd6 corallium_elatius_nd5_rev corallium_konojoi_nd6_rev rallium japonicum_nds-re
heliopora_coerulea_nd6
stynilla muelleri_nd
Consensus
Conservation TATGTGGGGGCTATCGCTATTTTATTCCTGTTCGTAATTATGTTAATTCAACAGCCCAATAAGGTAGATTCTCAAGATCACTCGCAT 261 TATGTAGGGGCTATCGCTATTTTATTCCTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTCTCAAGATCACTCGCAT 261 TACGTAGGGGCTATCGCTATTTTATTTCTGTTCGTAATTATGTTAATTCAACAGCCTAATAAAGTAGATTCTCAAGATCATTCGCAT 261 TACGTAGGGGCTATCGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTCTCAGGATCACTCGCAT 246 TATGTGGGGGCTATCGCTATTTTATTCCTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTATATTCTCAAGATCATTCGCAT 261 TATGTGGGGGCTATCGCTATTTTATTCCTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTATATTCTCAAGATCACTCGCAT 261 TATGTGGGGGCTATCGCTATTTTATTCCTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTATATTCTCAAGATCACTCGCAT 261 TATGTGGGGGCTATCGCTATTTTATTCCTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTATATTCTCAAGATCACTCGCAT 261 TATGTGGGGGCTATCGCTATTTTATTCCTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTATATTCTCAAGATCACTCGCAT 261 TACGTAGGAGCTATCGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTCTCAGGATCACTCGCAT 261 TATGTAGGGGCTATTGCTATTTTATTTTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAAGTAGATTCTCAAGATCACTCGCAT 261 TATGTAGGGGCTATCGCTATTTTATTCCTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTCTCAAGATCACTCACAT 261 TATGTGGGGGCTATCGCGATTTTATTCCTGTTTGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTCTCAAGATCACTCGCAT 261 TACGTAGGAGCTATCGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTCTCAGGATCACTCGCAT 261 TACGTAGGAGCTATTGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTATCAGGATCACTCGCAT 261 TACGTAGGAGCTATCGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTCTCAGGATCACTCGCAT 261 TACGTAGGAGCTATCGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTATCAGGATCACTCGCAT 261 TACGTAGGAGCTATCGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTATCAGGATCACTCGCAT 261 TACGTAGGAGCTATTGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTATATTATCAGGATCACTCGCAT 261 TACGTAGGAGCTATCGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAACCTAATAAGGTAGATTCTCAGGATCACTCGCAT 261 TACGTAGGAGCTATTGCTATTTTATTTTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAAGTAGACTCTCAGGATCACTCGCAT 261 TATGTAGGAGCTATTGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAAGTAGATTCTCAGGATTACTCGCAT 261 TACGTAGGAGCTATCGCTATTTTATTCTTGTTCGTAATTATGTTAATTCAACAGCCTAATAAGGTAGATTCTCAGGATCACTCGCAT

alcyonium_digitatum_nd6 primnoa_resedaeformis_nd6
sinularia_peculiaris_nd6
narella hawainensis_nd paraminabea_aldersladei nd scleronephthya_gracillimum_nd dendronephthya_castanea_nd endronephthya_gigantea_nd6 dendronephthya_molis_nd6
dendronephthya_ suensoni nd6
junceella_fragilis_nd 6 echinogorgia_complexa_nd6 euplexaura_crassa_nd6 pseudopterogorgia_bipinnata_nd6 acanella_eburnea_nd6 sibogagorgia_cauliflora_nd6 briareum_asbestinum_nd6 corallium_elatius_nd6_rev corallium rubrum nd _re paracorallium japonicum nd heliopora_coerulea_nd6 stylatula_elongata_nd6 renilla_muelleri_nd

Conservation TTTTACCTGTAGGATTATCTGTTATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATCAACAAT TTTTACCTGTAGGATTATCTGTTATATTCTTATTTTATAGTTTACTAACCAATAGCCCTAAATATATCAGCAAT. - .-...........CCT 339 TTCTTACCTGTAGGATTATCTGTGATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATCAGCAGTACCCACAGTCCT 348 TCTTACCTGTAGGATTATCTGTAATATTCCTATTTTATAGTTTACTAACCAATAACCCTAAAGACATAAGCAGTACCCACAATCCT 333 TTTTACCTGTAGGATTATCTGTTATATTCCTATTTTCTAGTTTACTGACCAATAGCCCCAAATATATCAGCAAT TTTTTACCTGTAGGATTATCTGTTATATTCCTATTTTCTAGTTTACTCACCAATAGCCCGAAATATATCAGCAAT TTTTACCTGTAGGATTATCTGTTATATTCCTATTTTCTAGTTTACTCACCAATAGCCCGAAATATATCAGCAA TTTTACCTGTGGGATTATCTGTTATATTCCTATTTTCTAGTTTACTCACCAATAGCCCGAAATATATCAGCAAT TCTTACCTGTAGGATTATCTGTAATATTCCTATTTTATAGTTTACTCACCAATAGCCCTAAATATATCAGCAAT TTCTTACCTGTAGGATTATCTGTGATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATCAGCAAT TTTTTACCTGTAGGATTATCTGTTATATTTTTATTTTATAGTTTACTAACTAATAGCCCTAAATATATCAGCAAT TTTTTACCTGTAGGATTATCTGTTATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATCAGCAAT TTTTACCCGTAGGATTATCTGTTATATTTTTATTTTATAGCCTACTAACCAATAGCTCTAGGTATATTAGCAAT TTCTTACCTGTAGGATTATCTGTGATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATCAGCAAT TTTTTACCTGTAGGATTATCTGTAATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATCAGCGA TCTTACCTGTGGGATTATCTGTGATATTCCTATTTTATGGTTTACTAACCAATAGCCCTAAATATATCAGCAAT TTTTTACCTGTAGGATTATCTGTAATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATTAGCAAT TTTTACCAGTAGGATTATCTGTAATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATTAGCAAT TTTTACCAGTAGGATTATCTGTAATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATTAGCAAT TTCTTACCTGTGGGACTATCTGTGATATTCCTATTTTATGGTCTACTAACTAATAGCCCTAAATATATCAGCAAT TTCTTACCTGTGGGATTATCTGTGATATTCCTATTTTATGGCTTACTAACCAATAGCCCCAAATATATCAGCAAT TTCTTACCTGTAGGATTATCTGTAATATTCTTATTTTATAATTTACTAACCAATAGCCCTAAATATATCAGCAAT TTTTTACCTGTAGGATTATCTGTTATATTCCTATTTTATAGTTTACTAACCAATAGCCCTAAATATATCAGCAA
alcyonium_digitatum_nd6 CTACTAGTCGCTATGATAGGGGCTATATTATTAGCTAAGCAGCCAAATTCACCTTTTTTATATAATTCCCATGGTGAATCATTACGT 513
primnoa_resedaeformis_nd sinularia_peculiaris_nd6 narella_hawaiinensis_nd6 paraminabea_aldersladei_nd6 scleronephthya_gracillimum_nd6 dendronephthya_castanea_nd dendronephthya_gigantea_nd6 dendronephthya mollis nd dendronephthya suensoni nd junceella_fragilis_nd6 keratoisidinae nd
echinogorgia complexa-nd euplexaura_crassa_nd6 pseudopterogorgia bipinnata- nd acanella_eburnea_nd6 sibogagorgia_cauliflora_nd briareum_asbestinum_nd6 corallium_elatius_nd6_rev corallium_Konojoi_nd6_rev corallium_rubrum_nd6_re paracorallium japonicum nd6 re heliopora_coerulea_nd stylatula_elongata nd renilla muelleri nd

Consensus
Conservation CTACTAGTCGCTATGATAGGGGCTATATTATTAGCTAAGCAGCCAAATTCACCTTTTTTATATAATTCCCATAGTGAATCATTACGT 513 CTACTAGTCGCTATGATAGGGGCTATATTATTAGCTAAGCAGCCAAATTCACCTTTTTTATATAATTCTCATGGTGAATCATTACGT 513 CTACTAGTCGCCATGGTCGGGGCTATATTATTAGCTAAGCAGCCAAATACACCTTCTTTATATAATTCCCACGTAGAGA---TACGG 519 CTACTAGTAGCCATGGTTGGGGCTATATTATTAGCTAAGCAGCCAAGTACACCTTCTTTATATAATTCCCACGTAGAGG---GACGT 504 CTACTAGTAGCTATGATAGGGGCCATATTATTAGCCAAGCAACCAAATTCACCTTTTTTATATAATTCCCATGGTGAATCATTACGT 513 ITACTAGTAGCTATGATAGGGGCCATATTATTAGCCAAGCAACCAAATTCACCTTTTTTGTATAATTTCTATGGTGAATCATTACGT 513 TTACTAGTAGCTATGATAGGGGCCATATTATTAGCCAAGCAACCAAATTCACCTTTTTTGTATAATTTCTATGGTGAATCATTACGT 513 TTACTAGTAGCTATGATAGGGGCCATATTATTAGCCAAGCAACCAAATTCACCTTTTTTGTATAATTTCTATGGTGAATCATTACGT 513 TTACTAGTAGCTATGATAGGGGCCATATTATTAGCCAAGCAACCAAATTCACCTTTTTTGTATAATTTCTATGGTGAATCATTACGT 513 CTACTAGTCGCCATGGTAGGGGCTATATTAATAGCTAAGCAGCCAAATACACCTTCTTTATATAATTCCAACGTAGATA---TACGT 510 CTACTAGTCGCCATGGTCGGGGCTATATTATTAGCTAAGCAGCCAAATACACCTTCTTTATATAATTCCCACGTAGAGA-.-TACGT 510 CTACTGGTCGCTATGATAGGGGCTATATTATTAGCTCAACAGCCAAATTCACCTTTTTTATATAATTCTCATGGTGAATCATTACGT 513 CTACTAGTCGCTATGATAGGGGCTATATTATTAGCTAAGCAGCCAAATTCACCTTCTTTATATAATTCCCATGGTGAATCATTACGT 513 CTACTAGTCGCTATGATAGGGGCGATATTATTAGCTAAGCAGCCAAATTCACCTTTTTTATATAATTCCCATGGTGAATCACTACGT 513 CTACTASTCGCCATGGTAGGGGCTATATTATTAGCTAAGCAGCCAAATACACCTTCTTTATATAATTCCCACGTAGAGA---TACGT 510 CTACTAGTCGCCATGGTCGGGGCTATATTATTAGCTAAGCAGCCAAATACACCTTCTTTATATGATTCCCACGTAGAAAA---TACGT 510 CTACTAGTCGCCATGATAGGGGCCATATTATTAGCTCAGCAGCCAAATACACCTTCTTTATATAACTCCCATGGAGTGCCATCACGT 513 CTACTAGTCGCCATGGTAGGGGCTATATTATTAGCTAAGCAGCCAAGTACACCTTCTTTATACGATTCCCACGTAGAAA---CACGT 510 CTACTAGTCGCCATGGTAGGGGCTATATTATTAGCTAAGCAGCCAAGTACACCTTCTTTATACGATTCCCACGTAGAAA---CACGT 510 CTACTAGTCGCCATGGTAGGGGCTATATTATTAGCTAAGCAGCCAAATACACCTTCTTTATACGATTCCCACGTAGAAA---TACGT 510 CTACTAGTCGCCATGGTAGGGGCTATATTATTAGCTAAGCAGCCAAATACACCTTCTTTATACGATTCCCACGTAGAAA---TACGT 510 CTACTAGTCGCCATGGTCGGGGCTATATTATTAGCTAAGCAACCAAGTACACCTTCTTTATATAACTCCCACGGTGAATCATTACGT 513 CTACTAGTCGCCATGGTAGGAGCTATATTATTAGCTCAGCAGCCAAATACACCTTCTTTATATAACTCCAACGAAGAGT---TACGT 510 CTACTAGTTGCCATGGTAGGAACTATATTATTAGCCCAGCAGCCAAATACACCTTCTCTATATAATTCGAACGTAGAGT-.-TACGC 510 CTACTAGTCGCCATGGTAGGGGCTATATTATTAGCTAAGCAGCCAAATACACCTTCTTTATATAATTCCCACGGAGAATCATTACGT

AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG 558 AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG 558 AGTAAGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAAAGCACCTTTAG ATAGGCAAGATCTCTTCCTGCAAATCAGCAGAAAGCACCTTTAA 564 AGTAGGCAAGATCTCTTCCTGCAAATCAGCAGAAAGCACCTTTAA 549 AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG 558 AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG 558 AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG 558 AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG 558 AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG AGTAGGCAA--CCTCTTCCTACAAATCAGCAGAAAGC-CACCTAG AGTAGGCAAGATCTCTTCCTACAAATCACCAGAGAGCACCTTTAG AGTAGGCAGGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG AGTAGGCAA--CCTCTTCCTACAAATCAGCAGAAAGC-CACCTAG AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG AGTAGGCAAGATCTCTTCCTGCAAATCAGCAGAAAGCACCTTTAG AGTAGGCAAGATCTCTTCCTGCAAATCAGCAGAAAGCACCTTTAG AGTAGGCAAGATCTCTTCCTGCAAATCAGCAGAAAGCACCTTTAG AGTAGGCAAGATCTCTTCCTGCAAATTAGCAGAAAGCACCTTTAG AGTAGGCAAGATCTATTCCTACAAATCAGCAGAAAGCACCTTTAG AGTAGGCAAGATCTCTTCCTACAAATAAGCAGAAAGCACCTTTAG AGTAGGCAAGATCTCTTCCTACAAATCAGCAGAGAGCACCTTTAG

MutS gene

alcyonium_digitatum_mutS primnoa_resedaeformis_muts sinularia_peculiaris_muts narella_hawaiinensis_muts scleronephthya_gracillimum_muts dendronephthya_castanea_muts dendronephthya_gigantea_muts dendronephthya_mollis_muts junceella_fragilis_muts keratoisidinae_muts rev echinogorgia_complexa_muts euplexaura_crassa_muts pseudopterogorgia_bipinnata muts acanella_eburnea_muts rev sibagogorgia_cauliflora_mutS corallium_ konojoin_ muts corallium_rubrum_muts rev corallium_rubrum_mutS rev heliopora_coerūlea_muts stylatula_elongata_muts renilla_muelleri_muts

Consensu
alcyonium_digitatum_muts imnoa_resedaeformis_muts sinularia_peculiaris_muts narella_hawaiinensis_muts paraminabea_aldersladei_muts scleronephthya_gracillimum_mutS dendronephthya_ gigantea_muts dendronephthya_mollis_muts dendronephthya_suensoni_muts junceella_fragilis_muts chinogorgia_complexa_muts euplexaura_crassa_muts briareum_asbestinum_muts acanella eburnea múts rev sibagogorgia caulifora muts corallium elatius muts corallium konojoi muts corallium_rubrum_mūts rev paracorallium_japonicum_muts rev heliopora_coerulea_muts styatula_elongata_muts
renilla muelleri muts

Consensus
Conservation
primnoa_resedaeformis_muts sinularia_peculiaris_muts narella_hawaiinensis_muts paraminabea aldersladei muts scleronephthya_gracillimum_muts dendronephthya_castanea_muts
dendronephthya dendronephthya mollis muts dendronephthya suensoni_muts junceella_fragilis_muts
echinogorgia complexats rev euplexaura crassa_muts briareum_asbēstinum_muts pseudopterogorgia_bipinnata_muts
acanella_eburnea_muts rev corallium elatius muts
caula_mats corallium_elatius_muts
corallium konojoi muts corallium_rubrum_mūts rev paracorallium_japonicum_muts rev heliopora_coerulea_muts
stylatula_elongat_muts stylatula_elongata_muts
renilla_muelleri_muts

Conservation
alcyonium_digitatum_muts primnoa_resedaeformis_muts narella_hawaiinensis_muts paraminabea_aldersladei_muts scleronephthya_gracillimum_muts
dendronephthya_castanea_muts dendronephthya__gigantea_muts dendronephthya_mollis_muts dendronephthya suensoni_muts junceella_fragilis_muts
keratoisidinae_muts rev chinogorgia_complexa_muts euplexaura_crassa_muts bseudopterogorgia biasinnata_muts acanella eburnea múts rev sibagogorgia_cauliflora_muts corallium_elatius_muts corallium_rallium_konojoi_muts corallium_rubrum_muts rev
paracorallium japonicum muts rev heliopora_coerūlea_muts
stylatula_elongata_muts
renilla_muelleri_muts
Consensus

AAGTATGGGTTATCAGTAATCCAGCTTATCCAAATTGGTAAGTTCTATGAACTTTGGCATGAGCCCAATACTCCTAGCAGGCAAC 136 AAGTATGGGTTATCAGTAATCCAGCTTATCCAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCCGATACTTCTAGTAGGCAAC 136 AAGTATGGATTATCAGTAATCCAGCTTATCCAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCTGATACTTCTAGTAAGCAGC AAGTGTGGGTTATCCGTAATCCAGCTTATCCAGATTGGTAAGTTCTATGAAATTTGGCATGAGCCTGATGTTCCTAGTATACAAC TAAGTATGGATTATCAGTAATACAGCTTATACAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCTTGATGTTCCTAGTATACAAAC TAAGTATGGATTATCAGTAATACAGCTTATACAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCTGATACTCGTAGTAAGCAA TAA GTATGGATTATCAGTAATACAGCTTATACA GATTGGTAAGTTCTATGAACTTTGGCATGAGCCTGATACTCGTAGTAAGCAAC TAAGTATGGATTATCAGTAATACAGCTTATACAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCTGATACTCGTAGTAAGCAAC TAA GTATGGGGCATCAGCAATCCAGCTTATCCAGATTGGTAAGTTCTATGAACTTTGGCATGAGCGTGATGTTTCTTGTATACAAC TAAGTATGGGTTATCAGTAATCCAGCTTATCCAGATTGGTAAGTTCTATGAACTTTGGCATAAGCCTGATGTTCCTAGTATACAA TAAGTATGGGTTATCAGTAATCCAGCTTATACAAATTGGTAAGTTCTATGAACTTTGGCATGAGCCTGACACTCCTAGTAGGCAAC TAAGTATGGATTGTCAGTCATCCAGCTTATCCAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCTGACACTCCTAGTTGTCAAC TAAATATGGGTTATCAGTAATCCAGCTTATCCAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCCGATGTTCCTAGTATACAAC TAAGTATGGATTATCGGTAATCCAACTTATTCAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCTGATACTCCTAGTGTGCAAC TAAGTATGGGTTATCAGTAATCCAGCTTATCCAGATTGGTAAGTTCTATGAACTTTGGCATAAGCCTGATGTTCCTAGTATACAAC TAAGTATGGGCTATCAGTAATTCAGCTTATACAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCGGATGTTCCTAGTATACAAC TAAGTATGGGCTATCAGTGATTCAGCTTATACAGATTGGTAAGTTCTATGAACTCTGGCATGAGCCGGATGTTCCTAGTATACATC TAAGTATGGGCTATCAGTAATTCAGCTTATACAGATTGGTAAGTTCTATGAACTTTGGCATAAGCCGGATGTTCCTAGTGTACAAC TAA GTATGGGTTATCAGTAATCCAGCTTATACAGATTGGCAAGTTCTATGAACTTTGGCATGAGCCCGATGTTCCTAGTATACAAC TAAGTATGGGTTATCAGTAATCCAGTTTATCCAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCTGATGCTCCTTGTATACAG TAATTACGGGCTATCAGTAATCCAGCTTATTCAAATTGGTAAGTTTTATGAACTTTGGCATGAGCCTGATGCTCCTTGTATACAGC TAAGTATGGGTTATCAGTAATCCAGCTTATACAGATTGGTAAGTTCTATGAACTTTGGCATGAGCCTGATGCTCCTAGTATACAAC
$180{ }^{200}{ }^{200}$
AAGCATACTCTCAAACCGAGTTATTAGCTGAGTCATC
AAGCATACTCTCAAGCTGAGTTATTAGCTGAATCATC AAGCATACTCTCAAGCTGAGTTATTAGCTGAATCATC GAGCATACTCTCAAGCCGAGTTATTAATGGAGTCATC AAGCATACTCTCAAGCTGAGTTATTAGTTGAGTCTATACCAACT AAGCATACTTTCAAGCCGAGTTATTAGTTGAGTCATC AAGCATACTTTCAAGCCGAGTTATTAGTTGAGTCAT AAGCATACTTTCAAGCCGAGTTATTAGTTGAGTCATC AAGCATACTTTCAAGCCGAGTTATTAGTTGAGTCAT AAGCATATTCTCAAGCTGAGCTATTAGCTGAGTCGCCCCCGC AAGCATACTCTCAAGCTGAGTTATTAGTTGAGTC-AAGCATACTCTCAAGCCGAGTTATTAGTTGAGTCAT AAGCATACTCTCAAGCCGAGTTATTAGTTAAGTCAT AAGCATACTCTCAAGCCGAGTTATTAGTTGGGCCATC
AAGCATACTCTCAAGCTGAGTTATTAGTTGAGTCGCCGATACCA AAGCATACTCTCAAGCTGAGTTATTAGTGGAGTCGCCTATACCA AAGCATACTCTCAAGCTGAGTTATTAGTGGAGTCGCCTATACCA AAGCATACTCTCAAGCTGAGTTATTAGTTGAGTCGCCTATACCA AAGCATACTCTCAAGCTGAGTTATTAGCTGAGTCGTCTATACCA AAACATATTCTAAAGCTGAATTACTAGCTGAGTTGGCCCCTC

CATGCGAAGTCGGCCTTTGGGGGTAACGCCC 204 CATGCGAAGTCAGCCTTTGGGGGTAACGCCC 20 agCatactctcangle gagt tattagttgagicntc

TTATTCCCTTAATAATCATCTAAGCACCTTGTTGGATAAAGGTTGGACTGTTATAGTTATCGATGAATTAGTCACTGGTAAATCCG 373 TTATTCCCTTACTACTCATCTAAGCACCTTATTGGATAAAGGTTGGACTGTTATAGTTATCGATGAATTAGTCACTGGTAAATCTG 373 TTATTCCCTTACTACTCATATAGGCACCTTGTTGGATAAAGGTTGGACTATTATAGTTATTGATGAATTAGTCACTGATAAATCGG 376 TTATTCTCTTACTACTCATATAAGTACTTTGTTGGATAAAGGTTGAACTATCATAGTTATTGATGAATTAATCACTGGTAAATCAG TTATTCCCTTACTACCCACCTAAGTACCTTGTTGGATAAAGGTTGGACTGTTATAGTTATCGATGAATTAGTCACTGGTAAATCGG 37 TTATTCCCTTACTACCCACCTAAGTACCTTGTTGGATAAAGGTTGGACTGTTATAGTTATCGATGAATTAGTCACTGGTAAAATCGG 373 TTATTCCCTTACTACCCACCTAAGTACCTTGTTGGATAAAGGTTGGACTGTTATAGTTATCGATGAATTAGTCACTGGTAAATCGG 373 TTATTCCCTTACTACCCACCTAAGTACCTTGTTGGATAAAGGTTGGACTGTTATAGTTATCGATGAATTAGTCACTGGTAAATCGG TTATTCCCTAACTACTTATCTAGGCAACCTTGTTGGATAAAGGGTTGGACTATTATAGTTATTGATGAATTAGCCACTGAGAAA TTATTCCTTTACTACTCATCTAAGTACCTTGCTGGATAAGGGTTGGACTGTTATAGTTATCGATGAATTAGTCACTGGTAAATCTG 373 TTATTCCCTCGCTACTCATCTAAGTACCTTGTTGGATAAAGGTTGGACTGTTATAGTTATTGATGAATTAGTCACTGGTAAATCCG 373 TTATTCCCTTACTACCCATCTAAGTACTTTGTTGGACAAAGGTTGGACTGTTATAATTATTGATGAATTAGTCACTGGTAAA CTATTCTCTAACTACTTATCTAAGCACCTTGTTGGATAAAGGTTGGACTATTATAGTTATTGATGAATTAGCCACTGATAAATT CTATTCTCTTACTACTCATATAAGAACCTTGCTGGATAAAGGTTTAACTATTGTAGTCATTGATGAATTAGTCACTGGTAAATCA ATATTCCCTTACTACTCATATAAGTACCTTGTTGGATAAAGGTTTAACTATTATAGTTATTGATGAATTAGTCACTGGTAAATCA

CTATTCTCTTACTACTTATTTAAGCACCTTGTTAGATAAAGGTTGGACTATTATAGTTATTGATGAATTAGTCACTGGTAAAATCAG 370
374

620
660

680
alcyonium_digitatum_muts primnoa_resedaeformis_muts
sinularia_peculiaris_muts narella_hawaiinensis_muts paraminabea_aldersladei_muts
cleronephthya_gracillimum_muts dendronephthya_castanea_muts dendronephthy___gigantea_muts dendronephthya_mollis_muts
dendronephthya_ suensonimuts
junceella_fragilis muts
keratoisidinae muts rev
echinogorgia_complexa_muts euplexaura_crassa_muts briareum_asbestinum_muts pseudopterogorgia_bipinnata_muts
sibagogorgia_cauliflora muts
corallium_elatius_muts corallium_konojoi-muts coralium_rubrum_muts rev helioporacum_muts rev
stylatula_elongata_muts
renilla_muelleri muts
Consensus
alcyonium_digitatum_muts primnoa_resedaeformis_muts narella_hawaiinensis muts araminabea_aldersladei_muts cleronephthya_gracillimum_muts dendronephthya_castanea_muts dendronephthya_mollis_muts dendronephthya suensoni muts
junceella_fragilis_muts
echinogorgia_complexa_muts euplexaura_crassa_muts pseudopterogorgia bipinnata_muts acanella_eburnea_muts rev sibagogorgia_cauliflora_muts corallium_elatius_muts corallium paracorallium coralimbrum_muts rev allium_japonicum_muts rev
heliopora_coerulea_muts
heliopora_coerulea_muts
stylatula_elongata_muts
renilla_muelleri_muts
Consensus

CTCAGCCATGAACGGGCATAGTATAATGTTTCCTGTCTCTTGGGCGGACAGGGATAAAGTAGCCCGTTTATTAATCAGTTATCGTA 58 TTCAGTTATGAATGGGCATAGTATAATGTTTCCTGTCTCTTGGACGGACAGGGATAAAGTAGCCCGATTATTAATCAATTATCGTA 5 TTCAGCCATGAATGGGCATAGTATAATGTTTCCTGTCTCTTGGACGGACAGGGACAAAGTAGCCCGGTTATTAATCAGTTATCGTA 58 TTCTGCCATGAGTGGGCATAGTCTAATGTTTCCTGTCTATTGGGCCGACAGAGACAAAGTGGCTCGATTACTAGTCAGCTATCGTA 583
TTCAGCCATGAATGGACATAGTATAATGTTTCCTGTCTACTGGGTAGACAGAGACAAAGTAGCTCGACTATTAATTAGTTATCGTA 595 TTCAGCCATGAGTGGGCATAGTATAATGTTTCCCGTCTCTTGGGCGGACAGAGACAAAGTAGCDCGGTTATTAATTAGCTATCGTA 586 TTCAGCCATGAGTGGGCATAGTATAATGTTTCCTGTCTCTTGGACGGACAGAGACAAAGTGGCCCGGTTATTAATTAGCTATCGTG 583 TTCAGCCATGAGTGGGCATAGTATAATGTTTCCTGTCTCTTGGACGGACAGAGACAAAGTGGCCCGGTTATTAATTAGCTATCGTG 583 TTCAGCCATGAGTGGGCATAGTATAATGTTTCCTGTCTCTTGGACGGACAGAGACAAAGTGGCCCGGTTATTAATTAGCTATCGTG 583
TTCAGCCATGAGTGGGCATAGTATAATGTTTCCTGTCTCTTGGACGGACAGAGACAAAGTGGCCCGGCTATTAATTAGCTATCGTG 583 TTCAGCCATGAATGGACATAGCATAATGTTTCCTGTATATTGGGCAGACAGAGACAAAGTGGCTCGACTATTAATCAGCTATCGTA 58 TTCTGCCATGAATGGGCACAGTATAATGTTTCCTGTCTATTGGGCCGACAGAGATAAAGTGGCTCGACTACTAATCAGTTATCGTA 613 TTCGGCCATGAATGGGCATAGTATAATGTTTCCTGTCTCTTGGGCGGACAGAGACAAAGTAGCTCGGTTATTAATCAGTTATCGTA 583 TTCAGCCATGAATGGGCATAGTATAATGTTTCCTGTCTCTTGGGCGGACAGGGACAAAGCAGCTCGGCTATTAATCAGTTATCGTA 58 58 TTCAGCCATGAATGGACATAGTATAATGTTTCCTGTCTATTGGGTCGACAGAGACAAAGTAGCTCGATTATTAATCAGCTATCGTA 619 TTCTGCCATGAATGGGCACANTATAATGTTTCCTGTCTATTGGGCCGACAGAGATAAAGTGGGCTCGACTACTAATCAGTTATCGTA 613 TTCAGC CATGAATGGACATAGTTTAAT GTTTCCTGTCTATTGGGACGATAGAGACAAAGTAGCTCGATTATTAATTAGTTATCGTA 592 TTCAGCCATGAATGGACATAGTATGATGTTTCCTGTCTATTGGGACGATAGAGACAAAGTAGCTCGATTGTTAATCAGTTATCGTA 592 TTCAGC CATGAATGGACATAGTATGATGTTTCCTGTCTATTGGGACGATAGAGACAAAGTAGCTCGATTGTTAATCAGTTATCGTA 592 TTCAGCCATGAATGGCCATAGTATAATGTTTCCTGTCTATTGGGTCGATAGAGACAAAGTAGCTCGATTATTAATTAGTTATCGTA 592 TTCAGCCATGAATGGCCATAGTATAATGTTTCCTGTCTATTGGGTCGATAGAGACAAAGTAGCTCGATTATTAATTAGTTATCGTA 592 TTCAGCTATGAATGGGCATAGTACCATGTTTCCTGTCTATTGGGTTGACAGAGACAAAGTAGCTCGATTACTAATCAGTTATCGTA 573 TTCAGCCATGAGTGGACATAGTGTTATGTTTCCTGTCTATTGGGAAGACAGAGACAAAGTAGCTCGATTATTAATCAGCTACCGTA 592 TTCAGC CAT GAATGGGCATAGTATAATGTTTCCTGTCTATTGGGCGGACAGAGACAAAGTAGCTCGATTATTAATCAGTTATCGTA

TTAGAGAAATAGTAATTTGGGCAAACTC TTAGAGAAATAGTAATTTGGGCCAACTC TTAAAGAGGTAGTAATTAGGGCGGACTC TTAAAGAGGTAGTAA TTTGGGCGGACT TTAGAGAAAAAAGTAATTTGGGTAAACTT TTAGAGAAATAGTAATTTGGGTAAACT TTAGAGAAATAGTAATTTGGGTAAACT TTAGAGAAATAGTAATTTGGGTAAACT TTAAAGAGGTGGTAATTAGGGCGGACT TTAGAGAAATAGTAATTTGGGCAAACGC TTAGAGAAATAGTAATTTGGGCAAACT TTAGAGAAATAGTAATTTGGGTAGACTC TTAAAGAGGTAATAA TTAGGGCGGACTC TTAAAGAGGTAGTTATTTGGGCGGACCT TTAAAGAGGTAGTTATTTGGGCGGACCT TTAAAGAGGTAGTAA TTTGGGCGGACCT TTAAAGAGGTAGTAATTTGGGCGGACC TTAAAGAGGTAGTAATTTGGGCGGACT TTAAGGAAGTATTAATATGGGC-........
${ }_{1}^{720}$

 GGGAGCCGGCTCAGAGATTTTAATAAATAAAATATATAAT GGGGGTITGGCTTAAATATCTTAATAAATAAAGATATATAAC GGAGCCCGATTCAGGGAT-.-ACTAAATAAGATCTATGGT GGAAGCTGGCCTATATATTTTAATAAATAAAATATATAAT 654 GGGGGTTGGCTTAGATATTTTAACAAATAAAATATATAAT 65 GGGGGTTGGCTTAGATATTTTAACAAATAAAATATATAAT 65 GGGGGTTGGCTTAGATATTTTAACAAATAAAATATATAAT GGGGGACAATCCAGGGAT---ACTAAATAAGATATATGGT GGAGGCCAATTCTGGGAT-.-ACTAAATAAGATATATGAT AGGGGTTGGCTCAGAGATTTTAATAAATAAGGTATATCAT CGGGGTTGGCTCAGAGATTTTAATAAATAAAAATATATAAT 651 AGGGGCTGGCTCAGAGATTTTAA TTAATTAAAAATATATAAT 651 GGAGGCCAATTCTGGGAT.--ACTAAATAAGATATATATGAT 651 GGGGGCCGATTCAGGGAT--ACTAAATAAGATATATGGT 657 GGGGGCTTAACTCAGGGAT-.-ACTAAAATAAGATATATGGGT 657 GGGGGCTAACTCAGGGAT-- -ACTAAATAAGATATATGGT 65 GGGGGCCAAATTCAGGAAT---ACTAAAATAAGATATATATGGT GAGGGCCAATTCAGGCAT.-. -ATTGAATAAAATATATGGT GGGGGCCGACCCAGGAAT.--ACTAAATAAGATATATGGT GgGgGCCGACTCAGGGAT. GGGGGCCGACTCAGGGAT
actanatanantatatggt actaAatangatatatgat
alcyonium_digitatum_mutS rimnoa_resedaeformis_muts sinularia_peculiaris_muts narella_hawaiinensis_mutS paraminabea_aldersladei_muts
scleronephthya_gracillimum_muts dendronephthya_castanea_muts dendronephthya_gigantea_muts dendronephthya suensoni-muts junceella_fragilis muts keratoisidinae_múts rev
echinogorgia_complexa_muts euplexaūra_crassa_muts
briareum asbestinum muts briareum_a asbestinum_muts acanella eburneata_muts sibagogorgia_cauliffora muts corallium elatius muts corallium_konojoi_muts corallium rubrum muts rev paracorallium_japonicum_muts rev heliopora_coerulea_muts stylatula_elongata_muts
renilla_muelleri_muts
Consensus
alcyonium_digitatum_muts primnoa_resedaeformis_mutS
 narella_hawaiinensis_muts sleronephthya_aldersladei_muts dendronephthya_castanea_muts dendronephthya_ gigantea_muts dendronephthya mollis ${ }^{-}$muts dendronephthya_suensoni_muts juncee\la_fragilis_muts
echinogorgia complexa muts euplexaura crassa_muts briareum_asbestinum_muts pseudopterogorgia_bipinnata_muts
sibagogorgia_cauliflora_muts corallium_elatius_muts corallium_konojoi_muts corallium_rubrum_muts rev heliopora coeruleats rev stylatularenilla_ muelleri_muts Consensus

TTATTAATTGGTTGGAATTTATTTCCCTCTGAACCCAATGCTAAAATAGAGGTTATGGGAGAAGCACTAACC
TTATTAATTGGTTGGAATTTATTCCCCTCTGAACCTAATGCTAAAAATTGAAGTTATGGGAGAAGTACTAACC
TTA TTAATTGGTTGGAATTTATTCCCTTCTGAGCCGAATGTTGAAATTGAAGTTATGGGGGAAACATTAACCC---CCTCAGGGGG TTGTTAATTGATTGGAACTTATTTCCCTCTGAGCCCAATGCTAAAATTGAGGTTATGGGAGAAGCACTAACCTTGTTAATTGATTGAAATTTATTCCCCTCTGAGCCCAATGCTAAAATTGAAGTTATGGGAGAAACACTAACC
TTGTTAATTGATTGAAATTTATTCCCCTCTGAGCCCAATGCTAAAATTGAAGTTATGGGAGAAACACTAACC
TTGTTAATTGATTGAAATTTATTCCCCTCTGAGCCCAATGCTAAAATTGAAGTTATGGGAGAAACACTAACC
TTGTTAATTGATTGAAATTTATTCCCCTCTGAGCCCAATGCTAAAAATTGAAGTTATGGGAGAAACACTAACC TTATTAATTGGTTGGAATTTATTCCCTTCTGAACCTAATGCTAAAAATTGAAGTTATGGGCAGT-
TTATTAATTGGTTGGAATCTATTCCCCCTTGAACCTAATGCCATAATGCTAAGATTGAAGTTATGGAGGAC-1.-........
TTATTAATTGGTTGTAATTTATTCCCCCCTGAACCCAATGTCAAAATTGAAGTTATGGGAGAA GCACTACC
TTATTAATTGGTTGGAGTCTATTCCCCTCTGAGCCCAACGCTAAAATTGAAGTTATGGGAGGAGCACTAACC TTA TTAATT GGTTGGAATTTATTCCCCTCTGAACCTAATGCCATAATTGAAGTTATGGAGGAC TA TTAATAGGTTGGAATTTATTC CCTTCTGAGCCTAATGTTGAAATTGAGGTTATGGGGGAAACATTAACCC TATTAATTGCTTGGAATTTATTTCCTTCTGAGCCTAATGTGGAAATTGAAGTTATGGGGGAAACATTAACCC TTATTAATTGGCTGGAATTTATTCCCTTCTGAGCCTAATGTTGAAAATTGAAGTTATGGGGGAAACATTAACCC TTATTAATTGGCTGGAATTTATTCCCTTCTGAGCCTAATGTTGAAATTGAAGTTATGGGGGAAACATTAACCC TTATTAATTGATTGGAATTTATTCCCCTCTGAACCTAATGCTAGAATTGAAGTTATGGGGGAAACATTACCTGAGATGACCA
 TTATTAATTGGTTGGAATTTATTCCCCTCTGAGCCTAATGCTAAAATTGAAGTTATGGGGGAAACACTAACC -AATTTACCGTGTTATTTATCTTATAGGTACGAAAATAATAATAAGGAGTGGCTTTTGCTCCATATTTATATGGGCATTA 793 AACTTACCGTGTTATTTATCTTATAAGTACGAAAATAATAATAAGGAGTGGCTTTTGCTCCATATTTATATAGGCATTA 802 --GCTTATCGTGTTATTTATCTTATAGGTACGAAAATGATAATAAGGAGTGGCTTTTGCTTCATATTTATTTAGGCATTA 80 AACTTGCCGTGTTATTTATCTTATAGGTACGAAAATAGATAATAAAGGAGTGGCTTTTGCTTCATATTTATTTGGGTATTA 829 AACTTGCCGTGTTATTTATCTTATAGGTACGAAAATAATAATAAGGAGTGGCTTTTGCTCCATATTTATACGGGCATTA 805 AACTTGCCGTGTTATTTATCTTATAGGTACGAAAATAATAATAAGGAGTGGCTTTTGCTCCATGTTTATGTGGGCATTA 802 AACTTGCCGTGTTATTTATCTTATAGGTACGAAAATAATAATAAGGAGTGGCTTTTGCTCCATGTTTATGTGGGCATTA 802 AACTTGCCGTGTTATTTATCTTATAGGTACGAAAATAATAATAAGGAGTGGCTTTTGCTCCATGTTTATGTGGGCATTA 802 - CCGCGTTATTTATCTTATAGGTACGAAAATGATAATAAAGAGTGGCTTTTGCTTCATATTTATTTGGACATTA 784 AACTTGCCGTGTTATTTATCTTATAGGTACGAAAATGATAATAAGGAGTGGCTTTTACTTCATATTTATTTGGGCATTA 814 AACTTACCGTGTTATTTATCTTATAGGTACGAAAATAATAATAAGGAGTGGCTTTTGCTACATATTTATATGGGCATTA 802 CTTATCGGACCTATCGTGTTATTTATCTTATAGATACGAAAATGATAATAAGGAGTGGCTTTTGCTTCATATTTATTTGGACATTA 87 GATTTACCGTGCTATTTATCTTATAGGTATGAAAACAATAATAAGGAGTGGCTTTTGCTCCATATTTATATGGGCATTA 802 CATAG-.-.-CCCCCGGTTATTTATCTTATAGGTACGAAAGTGATAATAGGGAGTGGCTTTTGCTTCATATTTATTTGGGCATTA - CCCCCGGTTATTTGTCTTATAGGTACGAAAGTGATAGTAGGGAGTGGCTTTTGCTTCATATTTATTTGGGCATC - CCCCCGGTTATTTATCTTATAGGTACGAAAGTGATAATGGGGAGTGGCTTTTGCTTCATATTTATTTGGGCATTA 82 -- CCCCCGGCTATTTATCTTATAGGTACGAAAGTGATAATGGGGAGTGGCTTTTGCTTCATATTTATTTGGGCATTA 820 CCGGTTATTTATCTTACAGGTACGAGAATGATAATAAAGAGTGGCTTTTGCTTCATATTTATTTGGGCATTA 796都
alcyonium_digitatum_muts primnoa_resedaeformis_muts sinularia_peculiaris_muts
narella_hawaiinensis_muts paraminabea_aldersladei_muts dendronephthya castanea_muts dendronephthya__gigantea_muts dendronephthya_mollis_muts dendronephthya_suensoni_muts junceella_ fragilis_muts
keratoisidinae_muts rev
echinogorgia_complexa_muts
euplexaura_crassa_muts briareum_asbestinum_muts pseudopterogorgia_bipinnata_muts
sibagogorgia_cauliflora_muts corallium_elatius_muts coralliam_konojoi_muts corallium_rubrum_muts rev
paracorallium japonicum muts rev heliopora_coerulea muts
styla stylatula_elongata_muts
renilla_muelleri_muts
Consensus
alcyonium_digitatum_muts primnoa_resedaeformis_muts narella_hawaiinensis_muts paraminabea_aldersladei muts scleronephthya_gracillimum_muts dendronephthy__castanea_muts dendronephthya mollis_muts dendronephthya suensoni-muts
junceella_fragilis_muts chinogorgia_complexa_muts euplexaura_crassa_muts dopterogorgia_bipinnata_muts acanella_eburnea_muts r sibagogorgia_cauliflora_muts
corallium elatius muts corallium konojoi_muts corallium_rubrum_muts rev paracorallium_japonicum_muts rev heliopora_coerulea_muts
stylatula_elongata_muts stylatula_elongata_muts
renilla muelleri_muts
onservation

${ }^{960}$

$980 \quad 1.000$
$980 \quad 1.000$
${ }^{1.020}$
ACGCAGAGTGGTTTAACAAAAATTATCAAGAATATACCCTTAGTAAGATATTTCAAAGTACTTGAGCAGAAAATGTTAATCAGGCA 879 ATGCAGAGTGGTTTAACAAAAATTATCAAGAATATACCCTTAGTAAGATATTTCAAAGTACTTGAACAGAAAATGTTAATCAGGTA 888 ACGCAGAGTGGTTGAACAAAAAATTATCAAAGATATACCCTTAGTAAAAATATTTTCAAAGTACTTGGGACAGAAAAATGTTACGGAAGATGTCAATCAGGCA 88 ACGAAGAGTGGTTTAACAAAAATTATCAAAAATATACCCTTAGTAAAATATTTCAAAGCACTTGGACGGAAGATGTCAATCAGGTA 915 ACGCAGAGTGGTTTAACAAAAATTATCAAAAATATACCCTTAGTAAGATATTTCAAAGTACTTGGACAGAAAATGTTAATCAGGTA 88 ACGCAGAGTGGTTTAACAAAAATTATCAAAAATATACCCTTAGTAAGATATTTCAAAGTACTTGGACAGAAAATGTTAATCAGGTA B8 ACGCAGAGTGGTTTAACAAAAATTATCAAAAATATACCCTTAGTAAGATATTTCAAAGTACTTGGACAGAAAATGTTAATCAGGTA 88 ACGAAGAGTGGTTTAACAAAAATTATCAAAGAATATACCCTTAGTAAAATATTTCAAAAGCACTTGGACGGGAAAATGTCAATCAGGTA 870 ACGCAGAGTGGTTTAGCAAAAATTACCAAGAATATACCCTTAGTAAGATATTTAAAAAGTACTTGGACAGAAAATGTTAATCCGGTA 88 ACGCAGAGTGGTTTAACAAAAATTATCAAGAATATACCCTTAGTAAGATATTTCAAAGTACTTGGACAGAAAAATGTTAATCAGGTA ACGAAGAGTGGTTTAATAAAAACTATCAAGAGTACACCCTTAGTAAAATATTTCAAAGCATTTGGACGGAAGATGTCAATCAGGTA ATGAAGAGTGGTTTAACAAAAAATTATCAAGAATATACCCTTAGTAAAATATTTCAAAGCACTTGGACGGAAGATGTCAATCAGGTA ACAAAGAGTGGTTTAACAAAAATTATCAAAAATATGCCCTTAGTAAAATATTTCAGAGCACCTGGACGGAAGATGTCAATCAGGCC ACAAAGAGTGGTTTAACAAAAATTATCATAAATATACCCTTAGTAAAATATTTCAAAGCACTTGGACGGAAGATATCAATCAGGTA ACAAGGAATGGTTTAATAAAAAATTATCAAGAATATACTCTTAGTAAAATATTTCAAAGCACTTGGACGGAAGATGTCAATCAGGT ACGAAGAGTGGTTTAACAAAAATTATCAAGAGTATACCCTTAATAAAATATTTCAAAACACTTGGGCGGATGATCTCAATCAGGTA 86 ACGAAGAGTGGTTTAACAAAAATTATCAAGAATATACCCTTAGTAAAATATTTCAAAGCACTTGGACGGAAGATGTCAATCAGGTA

AATCTAATTAGC CTTTTAGGAGTATTACAATTTATTAAAGATCGAAATCCTAATCTTATTAAGAATCTTCAACTTCCCGAGTGTTA 965 ATTTAATTAGTCTTTTAGGAGTATTACAATTTATTAAAGATCGAAATCCTAATCTTATTAAGAATCTTCAACTTCCTGAGTGTTA AATCTAATTAGCCTCTTGGGAACATTACAATTTATTAAAGATCGAAATCCTAATCTTATTAAGAAATCTCCAACTTCCTGAATGTTA AATCTAATTAGCCTTTTAGGAGCATTACAGTTTATTAACGATAGAAATCCTAATCTGATTAAGAACCTTCAACTTCCCGGAGTGTTA AATTTAATTAGC CTTTTAGGAGTATTACACTTTATTAACGATCGAAATCCTGATCTTATTAAAAACCTCCAGCTCCCCGAGTGTTA AATTTAATTAGCCTTTTAGGAGTATTACACTTTATTAACGATCGAAATCCTGATCTTATTAAAAACCTCCAGCTCCCCGAGTGTT AATTTAATTAGCCTTTTAGGAATATTACAATTTGTTAAAGATCGAAATCCTAATTTTATTAAGAACCTTCAACTTCCTGAGTCTTA AATTTAATTAGCCTTTTAGGGAGTATTACAATTTATTAAAAGATCGAAAATCCAAAATCTTATTAAAGAAACCTTCAACCTTCCCGGAGTGTCA AATCTAATTAGCCTTTTAGGAGTATTACAATTTATTAAAAGATCGAAATCCTAATCTTATTAAGAACCTTCAACTTCCCGGAGTGTTA AATTTAATTAGCCTTTTAGGAGTATTGCAATTTATTAAAGATAGAAATCCTAATCTTATTAAGAATCTCCAACTTCCCGAGTGTTA AATATAATTAGCCTTTTAGGAATATTAAAATTTATTAAAGATCGGAATTCTAATTTTATTAAGAATCTCCAACTTCCTGAGTGTT
 AGTATAATTAGC CTTTTAGGAATATTAAAATTTATTAAAGATCGAAATTCTAATTTTATTAAGAATCTCCAACTTCCTGAGTGTTA AATTTAGTTAGCCTTCTAGGAGTATTACAATTTATTAAAGATCGAAATCCTAATTTTATTAATAATCTCCAACTTCCTGAGTGTTA AACATAATTAGCCTTTTAGGAATATTACAATTTGTTAAAGACCGAAATCCTAATCTTATTAAGAACCTACAACTTCCTGAGTCTTA AATTTAATTAGCCTTTTAGGAATATTACAATTTATTAAAGATCGAAATCCTAATCTTATTAAGAATCTCCAACTTCCTGAGTGTTA

Abstract

${ }_{1}^{1.120}{ }_{1}^{1.140}{ }_{1}^{1.160} \quad 11_{1}^{1.180} \quad 1.200$ alcyonium_digitatum_muts sinularia peculiaris_muts narella_hawaiinensis_muts paraminabea_aldersladei_muts dendronephthya castanea-muts dendronephthya__gigantea_muts dendronephthya_mollis_muts dendronephthya_suensoni_muts junceella_fragilis_muts keratoisidinae muts rev echinogorgia_complexa_muts euplexaura_crassa_muts dopterogorgia_bipinnata_muts acanella_eburnea_muts rev sibagogorgia cauliflora muts corallium_elatius_muts corallium_konojoi_muts corallium_rubrum_muts rev paracorallium_japonicum_muts rev heliopora_coerulea_muts stylatula elongata renilla_muelleri_muts

Consensus Conservation alcyonium_digitatum_muts mnoa_resedaeformis_muts sinularia_peculiaris_muts narella_hawaiinensis_muts paraminabēa_aldersladei_muts scleronephthya_gracillimum_muts dendronephthya_castanea_muts dendronephthya__gigantea_muts dendronephthya_mollis_muts phthya_suensoni_muts junceella_fragilis_muts keratoisidinae-muts rev euplexaura crassa-muts briareum_asbestinum_muts acanella_eburnea múts rev sibagogorgia_cauliflora_muts corallium konojoi muts corallium_rubrum_mūts rev paracorallium_japonicum_muts rev heliopora_coerulea_muts stylatula-elongata-muts

Conservation primnoa_resedaeformis_muts sinularia_peculiaris_muts araminabea_aldersladei_muts cleronephthya_gracillimum muts dendronephthya_castanea_muts dendronephthya_gigantea_muts dendrononephthya_mollis_muts junceella fragilis muts keratoisidinae_muts rev echinogorgia_complexa_muts briareum_asbestinum_muts pseudopterogorgia_bipinnata_muts acanella_eburneamuts rev sibagogorgia_cauliflora_muts corallium_elatius_muts corallium rubrum muts rev coralilium_rubrum_muts rev paracorallium_japonicum_muts rev heliopora_coerulea_muts stylatula_elongata_muts renilla_muelleri muts

Conservation alcyonium_digitatum_muts primnoa_resedaeformis_muts narella_hawaiinensis_muts paraminabea_aldersladei_muts cleronephthya_gracillimum_muts dendronephthya_castanea_muts dendronephthya mollis muts dendronephthya suensoni muts junceella_fragilis_muts echinogorgia_complexats rev euplexaura crassa_muts briareum_asbestinum muts dopterogorgia_bipinnata_muts acanella_eburnea_muts rev corallium elatius_muts corallium_konos_muts corallium_rubrum muts rev paracorallium japonicum muts rev heliopora_coerulea_muts stylatula_elongata_muts

Consensus

TAATTCTGTTGTTAGCCCCCTAAATTTAATACTATGTAATCGAGCAGAATATCAATTGGACTTATTGCCTAAGAGGGGG TAATTCTGTTGTTAGCCCCCTAAATTTAATACTATGTAATCGAGCAGAATATCAATTGGACTTATTACCTAAGAGGGGG TAATTCTGTTGTTAGTCCTTTAAATTTAATATTATGTAATCGAGCAGAATATCAATTGGACTTATTGCCTAAGAGGGGG TAATTCTGTTGTTAGCCCCCTAAATTTAATACTATGTAATCGAGCAGAATATCAATTGGACTTATTACCTAAAAAAGGGG TAATTCTGTTGTTAGCCCCTTAAATTTAATACTATGTAATCGAGCAGAATATCAATTGGACCTATTGCCTAAAAGGGGGCAATTCTGCTGTTAGCCCCCTAAACTTAATATTATGTAATCGAGCAGAATATCAATTGGACTTATTGCCTAAGGGAGGA CAATTCTGCTGTTAGCCCCCTAAACTTAATATTATGTAATCGAGCAGAATATCAATTGGACTTATTGCCTAAGGGAGGA CAATTCTGCTGTTAGCCCCCTAAACTTAATATTATGTAATCGAGCAGAATATCAATTGGACTTATTGCCTAAGGGAGGA CAATTCTGCTGTTAGCCCCCTAAACTTAATATTATGTAATCGAGCAGAATATCAATTGGACTTATTGCCTAAGGGAGGA TAGTTCTATTGTTAGCCCCCTAAATTTAATACTGTGTAATCGAGCAGAATATCAATTGGACTTATTACCTAAAAAGGGGG TAATTCTGTTATTAGCCCCCTAAACTTAATATTATGTAATCGAGCAGAATACCAAATTGGACTTATTGCCTAAGAAAGGGA TGATTCTGTATTAGCCCCTTAAATTTAATACTATGTAATCGAGCAGAATATCAATTGGACTTATTGCCTAAGAGGGGA TAATTCTGTTATTAGCCCCCTAAACTTAATATATTATGTGTAATCCGAGCAGAATATATCAATTGGACTAGATATCAATTGAACTTAGTGCCTAAAAGGGGGGG TAGTTCTATTGTTAGCCCCCTAAATTTAATACTGTGTAATCGAGCAGAATATCAATTGGACTTATTACCTAAAAAGGGG TAATTCTGTTGTTAGCCCCTTAAATTTGATACTATGTAATCGAGCAGAATATCAATTGGACCTATTGCCTAAAAAGGG. TAATTCTGTTGTTAGCCCCTTAAATTTGATACTATGTAATCGAGCAGAATATCAATTGGACCTATTGCCTAAAAAGGG TAATTCTGTTGTTAGCCCCCTAAATTTAATACTATGTAATCGAGCAGAATATCAATTGGACCTATTGCCTAAAAAGGG TAATTCTGTTGTTAGCCCCTTAAATTTAATACTATGTAATCGGGCAGAATATCAATTGGACCTATTGCCTAAAAAGGG TAATTCTGTTGTTAGCCCTTTAAATTTAATACTATGTAATCGAGCCGAGTATCAATTGGACTTATTGCCTAAAAAAGGG TAATTCTGTTGTTAGCCCTTTAAATTTAATGCTATGTAATCGAGCCGAGTATCAATTGGACTTATTATCTAAAAAGAA. TAATTCTGTTGTTAGCCCCCTAAATTTAATACTATGTAATCGAGCAGAATATCAATTGGACTTATTGCCTAAAAAGGG ${ }^{1.220}$ tGGGTGGTTTACTTAGTCTAGTTGATTACTGTTCTACTGCAATGGGTAAAAGATTACTTAAATTCAGACTTCTTAACCCCATTACA 1134 TGGGTGGTTTACTTAGTCTGGTTGATTACTGTTCTACTGCAATGGGTAAAAAGACTACTCAAATTTCGACTTCTTAACCCTATTACA 1143 TGGGTGGTTTACTTAATCTGGTTGATTATTGTTCTACTGCAATGGGTAAAAGACTTTTCAAATTTAGACTTCTTAATCCTATTACA 1143 TGGGTGGTTTACTTAATCTGGTTGATTACTGTTCTACTGCAATGGGTAAAAGACTACTCAAATTCAGACTTCTTAGCCCTATCACA 1149 TGGGCGGTTTGCTTAGTTTGGTTGATTACTGTTCTACTGCAATGGGTAAAAGACTACTCAAATTCAGACTTCTTAACCCCATTACA TGGGCGGGCTACTTAGTTTGGTTGATTACTGTTCTACTGCAATGGGTAAAAGACTACTTAAATTCAGACTTCTTAACCCCATTACA TGGGCGGGCTACTTAGTTTGGTTGATTACTGTTCTACTGCAATGGGTAAAAGACTACTTAAAATTCAGACTTCTTAACCCCAT TGGGCGGGCTACTTAGTTTGGTTGATTACTGTTCTACTGCAATGGGTAAAA GACTACTTAAATTCAGACTTCTTAACCCCA TGGGCGGTTTACTTAATCTAATTGATTACTGTTCTACTGCAATGGGTAAAAGATTACTTAAAATTCAGACTTCTTAACCCTATCA TTGGGGGTTTACTTAATATGATTGATTATTGTTCTACTGCAATGGGTAAAAGACTACTCAAATTCAGACTTCTTAACCCTAT TGGGGTGGTTTACCTAGCCTGGTTGATTTCTGTTCTACTGCAATGGGTAAAAGACTACTTAAAATTTAGACTCCTTAACCCCAAT TGGGTGGTTTACTTAATCTAGTTGATTACTGTTTTACTGCAATGGGTAAAAGATTACTCAAATTCAGACTTCTTAACCCCGT TGGGTGGGTTACTTAGTTTGGTTGATTTTTGTTCGACGGCAATGGGTAAAAGACTACTTAAATCCAGACTTCTTAACCCCATTA TGGGGGGTGTACTTAATGTGGTTGATTACTGTTCTACTGCAATGGGTAAAAGGCTACTCAAATTCAGACTTCTCAACCCTATCACA GGGGCGGTGTACTTAGTCTGGTTGATTACTGTTCTACTGCAATGGGTAAAAGGCTACTCAAATTTAGACTTCTCAACCCTATCACA 1161 TGGGCGGTGTACTTAGTCTGGTTGATTACTGTTCTACTGCAATGGGTAAAAGGCTACTCAAATTTAGACTTCTCAACCCTATCACA 1161 TGGGTGGGGTACTTAATTTGGTAGATTACTGTTCTACTGCAATGGGTAAAAGGCTACTCAAATTCAGACTTCTCAACCCTATCACA 1161 TGGGTGGTTTACTTAATCTGATTGATCATTGTTCTACTGCAATGGGTAAGAGACTGTTCAAATTCAGACTTCTTAACCCTATTACA 1137 TGGGTGGTTTACTTAATCTGATTGATTACTGTTCTACTGCAATGGGTAAAAGACTACTCAAATACAGACTTCTTAACCCTATCACA 1125 TGGGTGGTTTACTTAATCTGGTTGATTACTGTTCTACTGCAATGGGTAAAAGACTACTCAAATTCAGACTTCTTAACCCTATNACA 1.300 1.320 ${ }^{1.340}$ 1.360

GATCATTCTGAATTAAATCTTCGTTATGAGGAGATTGCTACATTTAAACAATTATATAACAAGAAAATATTTGACAATTCCGAGTT 1220 GATCATTCTGAATTAAATCTTCGTTATGAGGAGATTGCTACATTTAAACAATTACTTGACAAGAAAATATTTGACAATTCCGAGTT 1229 GATTATTCTGAATTAAATCTTCGTTATAAGGAGATTGCTATATTTAAACAATTACTTGACAAGAAAATATTTGACAATTTCGAGTT 1229 GATTATTCTGAACTAAATCTTCGTTATGAGGAGATTGCTACATTTAGACAATTACTTGATAAGCAAGTGTTTAATAACTCCGAGTT 1256 GATTGTTTTGAATTAAATCTCCGTTATGAGGAGATTGCTACATTTAAACAATTAATTGACAAGAAAATATTTGACAACTCCGAGTT 1232 GATTATTATGAATTAAATCTCCGTTATGAGGAGATTGCTACATTTAAACAATTAATTGACAAGAAAATATTTGACAATTTCGAGTT 1229 GATTATTATGAATTAAATCTCCGTTATGAGGAGATTGCTACATTTAAACAATTAATTGACAAGAAAATATTTGACAATTTCGAGTT 1229 GACTATTCTGAACTAAAATCTTCGTTATGAGGGAGATCGCAACATTTAAACAAATTACTTGACAAGAAAATATTTGACAACTCCGAGTT 1229 GATTATTCTGAATTGAATCTTCGTTATGAGGAGATTGCTACATTTAAACAATTACTTGATAAGCGAATATTTGATAACTCCGAGTT 1224 GATTGTTGTGAATTAAATCTTCGTTATAAGGAAATTGCTACATTTAAACAATTAATTGACAAAAAAAATATTTGACAACTCCGAGTT 12299 GACTATTCTGAATTAAATCTTCGTTATGAGGAGATTTCTACATTTAAACAATTACTTGATAAGCAAATCTTTGATAACTCCGAGT GATCATTATGAATTAAACCTTCGTTATGAGGAGATTGCCACATTTAAACAATTAATTGACAAGAAAACATTTGACAATTCCGAGTT GATTATTCTGAATTAAATCTTCGTTATGAGGAGATTGCTACATACATTTAGACAATTTACTTGATAAGCAAAATATTGAATATTTGATAACTCCGAGT GAGAATTCTGAATTAAATCTTCGTTATGAGGAGATAGCTACATTTAGACAATTACTTGATAAGCAAATATTTAATAACTCCGGGCT GAGAATTCTGAATTAAATCTTCGTTATGAGGAGATAGCTACATTTAGACAATTACTTGATAAGCAAATATTTAATAACTCCGGGCT GATTATTCTGAATTAAATCTACGTTATGAGGAGATTGCTACATTTAGACAATTACTTGATAAGCAAAATATTTAATAACTACTCCGAGTT GATTGTTCTGAACTAAATCTTCGTTACAAGGAAGTTGCTACTTTTAAACAGTTACTCGATAAGCAAAAATATTTGATAACTCCGATTI GATTATTCTGAATTAAATCTTCGTTATGAGGAGATTGCTACATTTAAACAATTACTTGATAAGCAAATATTTGATAACTCCGAGTI AAAACACATTAAAGATTTATCTTCTTTACATCGTCAGTGAACAATATGTGCCTCGAGTG AAAACACATTAAAGATTTATCTTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG AAAACAAATTAAAGATTTATCCTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG AAAACAAATTAAAGATTTATCCTCTTTACACCGTCAGTGGGCAATATGTGCCTCGAGTG AAAAACACATTAAAGATTTATCTTCTTTACATCGTCAATGGGCAAATATGTGCTTCGAGTG AAAACACATTAAAGATTTATCTTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG AAAACACATTAAAGATTTATCTTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG AAAACACATTAAAGATTTATCTTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG AAAACAAATTAAAGATTTATCCTCTTTGCATCGTCAATGGGCGATATGTGCCTCGAGTG AAAACAAATTAAAGATTTATCCTCTTTACATCGTCAATGGGCAATATGTGCCTCTAGTG AAAACACATTAGAGA TTTATCTTCTTTACATCGTCAATGGGTAATATGCGCATCCAGTG AAAACACATTAAAGATTTATCTTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG AAAACAAATTAAAGATTTATCCTCTTTACATCGTCAATGGGCGATATGTGCCTCGAGTG AAAACACATTAAAGATTTATCTTCTTTACATCGTCAATGAGCAATATGTGCCTCGAGTG AAAACAAATTAAAGATTTATCCTCTTTACATCGTCAATGGGCAATATGTGCCTCTAGTG AAAACAAATTAAAGACTTATCCTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG AAAACAAATTAAAGATTTGTCCTTTTTACATCGTCAGTGGGCAATATGTGCCTCGAGTG AAAACAAATAAAAGATTTATCCTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG AAAACAAATAAAAGATTTATCCTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG AAAACAAATTAAAGATTTATCCTCTTTACATCGTCAATGGGCTATATGTGCCTCGAGTG AAAACAAATTAAAGACTTATCCTCTTTACATCGTCAATGAGCAATATGTGCTTCGAGTGTTAATGCGACAGATACTACCTTGTGGC 1294 AAAACAAATTAAAGATTTATCCTCTTTACATCGTCAATGGGCAATATGTGCCTCGAGTG > atactaccttg . ATACTACCTTG AGACTATCTTG ATACTACCTTG ATACTGCCTTG ATACTGCCTTG ATACTGCCTTG ATACTACCTTG ATACTACCTTG GTACTAC CTTG AGACTACCTTG ATACTACTTTG ATACTACCTTG aTACTACCTTG ATACTGCCCTG ATAATACCCTG ATAATACCCTG ATACTACCTTG

alcyonium_digitatum_muts sinularia_peculiaris_muts narella_hawaiinensis_muts paraminabea_aldersladei_muts scleronephthya_gracillimum_muts
dendronephthya castanea_muts dendronephthya__gigantea_muts dendronephthya_mollis_muts dendronephthya_suensoni_muts junceella fragilis_muts
echinogorgia_complexa_muts euplexaura_crassa_muts briareum_asbestinum_muts pseudopterogorgia_bipinnata_muts acanella_eburnea_muts rev sibagogorgia_cauliflora_muts corallium_konojoi_muts corallium_rubrum_muts rev paracorallium_japonicum_muts rev stylatula_coerulea_muts renilla_muelleri_muts
alcyonium_digitatum_muts primnoa_resedaeformis_muts sinularia_peculiaris_muts
arella_hawaiinensis_muts araminabea_aldersladei_muts cleronephthya_gracillimum_muts dendronephthya_castanea_muts dendronephthya mollis muts dendronephthya_suensoni_muts junceella_fragilis_muts keratoisidinae muts rev euplexaura crassa_muts briareum_asbestinum_muts pseudopterogorgia bipinnata muts acanella_eburnea_muts rev sibagogorgia_cauliflora_muts corallium_elatius_muts corallium_rubrum_muts rev paracorallium_japonicum_muts rev heliopora_coerulea_muts
stylatula_elongata_muts renilla_muelleri_muts
CCACCTAAAAAGTTAAGTCAAATTTACCATTCTTATTTGTCTGCTAATCAACTAATAAGTAAATTAACAAATAATAA-TCCCCTAAAAAGTTAAGTCAAATTTATCATTCTTATTTGTTTGCTAATCAGTTAATAAGTAAATTGATAAATAATAA 1376 CCAC CTAAAAAGTTGAATCAAATTTACCACTCTTATTTGTCTGCTAATAAATTAATAAGGTCATTACTTCCTTTATTAC…- 1384 CTACCTAAAAAGTTGAATCAAATTTACCGCTCTTATTTGTCTGCTAATAAATTAATAAGGTCATTACTTCCTTTAAACCTAC CCACCTAAAAAGTTAAGTAAAATTTACCATTCTTATTTGTTTGCTAGTCAACTAATAAGTAAGTTAACAAATAATAAAT CCACCTAAAAAGTTAAGTAAAATTTACCATTCTTATTTGTTTGCTAGTCAACTAATAAGTAAGTTAACAAATAATAAA

1381 CCACCTAAAAAGTTGAATCAAATTTATCACTCTTATTTGTCTGTTAGTAAATTAATAAGGTCGCTACTTCCTTTATTACGGTCC 1378 CCCCCTAAAAAGTTGAGTCAAATTTACCATTCTTATTTGTTTGCTAGTCAACTAATAAGTAAATTAATAAGTAGTGAAAA. . . 1378 1365
1393 CCAC CTAAAAAGTTGAATCAGATTTACCACTCTTATTTGTCTGCTAATAAATTAATAGGGTCATTACTTCGCTACGCCCCAC CCACCTAAAAAGTTGAGTCAAATTTACCATTCTTATTTGTTTGCTAGTCAACTAATAAGTAAATTAATAAGTAATAAAT - CCAC CTAAAAAGTTAAATCAAATTTACTACTCCTATTTGTCTGCTGATAAATTAATAAGGTCATTACTTCCTTTATTAC CCTCCTAAAAGGTTGAATCAGATTTACCGCTCTTATTTGTCTGCTAATAAACTAATAAGGTCGTTACTTCCTTTAGACCTGC CCTC CTAAAAGGTTGAATCAGATTTACCGCTCTTATTTGTCTGCTAATAAACTAATAAGGTCGTTACTTCCTTTAGACCTGC CCACCTAAAAAAGTTGAAATCAGATTTTACCGCTCTTATTTGTCTGCTAGTAAAATTAATTTAGGTCATTACTTCCTTTAGACCTGC TGCCACCTAAAAAGTTGAATCAAAATTTATCACTCCTATTTGTCTGCTAAAAGATTGATAAGGTCTTTACTCCCTTTATTACGACCC -. 1366
-.1453
-.1378 1378 1390 1399
1399 1399 1399
1399 ACCGCCTAAAAAGTTAAATCAAATTTACCACTCTTATTTATCTGCTAATAAATTTATAAGGTCTTTGCTTCCTTTATTACGATTT 138
alcyonium_digitatum_muts primnoa_resedaeformis_muts sinularia_peculiaris_muts
harella hawainensis paraminabea_aldersladei_muts scleronephthya_gracillimum_muts
dendronephthya_ dendronephthya_castanea_muts
dendronephthya_gigantea_muts dendronephthya_mollis_muts dendronephthya_suensoni_muts
junceella fragilis_muts echinogorgia complexats rev euplexaura crassa-muts briareum_asbestinum_muts pseudopterogorgia_bipinnata_muts acanella_eburnea_muts rev corallium elatius muts corallium konojoi-muts corallium rubrum muts rev paracorallium_japonicum_muts rev
heliopora_coerulea_muts renilla_muelleri_muts

Consensus alcyonium_digitatum_muts primnoa_resedaeformis_muts
sinularia_peculiaris_muts narella_hawaiinensis muts araminabea_aldersladei_muts cleronephthya_gracillimum_muts dendrophy_castanea_muts dendronephthya mollis_muts dendronephthya suensoni-muts junceella fragilis muts hinogorgia_complexa_muts buplexaura_crassa_muts dopterogorgia bipinnata-muts
acanella_eburnea_mūts rev
sibagogorgia_cauliflora_muts corallium_elatius_muts corallium rum_konojoi_muts paracorallium japonicum_muts rev heliopora_coerūlea muts
stylatula_elongata muts
renilla_muelleri_muts
Consensus
Conservation

AGAATCGTTAATTGAAGAAAT 1439 AGAA TCGTTAATTGGGGAGAT 1430 AGAATTGTTAATTGAGGAAA AGAATCGCTAATTGAGGAAA aGAATCGCTAATTGAGGAAA AGAATCGCTAATTGAGGAAAT 1439 AGAATCGCTAATTGAGGAAAT 1439 AGAGCCATTAATTGAGGAACT 1430 AGAA TCGTTAATTGGGGAGAT 1442 AGAGTCGCTAATTGAGGAAAT 1439 AGAATCGTTAATTGAGGAAAT 1527 AAAATCGCTAATTGAGGAAAT 1439 AGAGTT -AGAGTTGTTAATTGAGGAAAT 1448 AGAATGTTAAT 1448 aganttgrtanttgag ganat 1448 AGAATTGTTAATTGAGGAAAT 1448 AGAATCGCTGATTGAAGAAAT 1442

```
\begin{tabular}{ll} 
AGAATCGTTAATTGAGGAAAT \\
\hline AGAATCGTTAATTGAGGAAAT \\
1439
\end{tabular} agantcgttanttgagganat
GAGCGCATACCGCTTCAACTGCCCCTTTCAGTTGGACCTCAAATT
GAGCGCATACCGCTTCAACCGCCCCTTTCAGTTGGACCTCAATT
TGGCAATTGAACATTTGGCAGTGGTACCTCAATT
```

 GAATCGTTAATTGAGGAAAT
 GAATTAATATTCAATTACCCCCTTCAGTTGGGCCCCAATT --AACTGCCCCCC--AATCGGCCCTCAATT
GAATTAATATTCAATTACCCCCCTCAGTCGGGCCCCAACT
GAATTAATGTTCAATTACCCCCCTCAGTCGGGCCCCAACT
aA TtaATGTTCAATTACCCCCCTCAGTCGGGCCCCAACT
CCCCGGCACCTGGCAATCGAGCCCCTGGCAGCTGGACCTCAATT

- GTATAAATATTCAAATTGCCCCCCTTTAATTGGGCCCCAATT

GAATTAATATTCAATTACCCCCCTCAGTCGGACCTCAATTGGAAAATTGTAGGGTGCAA

- GAATTAATATTCAATTACCCCCCTCAGTCGGGCCCCAATT -AACTGCCCCCTTCAGTCGGACCTCAGAT -AACTACCCCCTTCAATCGGGCCCCAATT AACTGCCCCCTTTCAATCGGGCCCCAGGTT

GAATCGTTAATTGAGGAAA

1.640

${ }^{1.660}$
${ }^{1.650}$
${ }^{1.720}$
AGGTCGAATTTTCCAGACAGATAATCTTTTAGGTGATTTTAAAGACGTATTACAGCCAACTGATAATCTAACTAACTTCTTTGTAC 1504 AGACCGAGTTTTCCAAGTAAATAATCTTTTAGGTGATTTTAAAGATATATTACAGCCAACTGATAATTTAACTAATTTACTTGCA AAATAGATTTTCCAGGTCGATAATCTTTTGGCAGATTTTAAAGACATATTGCAACCAACTGATAATCTAACTAACCTCCTCGTA AAATAGATTTTTTCAAGTAGATAACCTTTCGGGAGATTTCAAAGACATATTACAGCCAACTGATAATCTAACTAACCTCCTCGAAC AGGCCAAGTTTTCCAGGTAAATAGCCTTTTAGGTGATTTTAAATATGTATTACGGCCAACTGAGAATTTAACTAACCTCCTTGCA
 AGGCCGAGTTTTCCAGGTAGATAGCCTTTTAGGTGATTTTAAATATGTATTACGGCCAACTGATAATTTAACTAACCTCCTTGCA AGGCCGAGTTTTCCAGGTAGATAGCCTTTTAGGTGATTTTAAATATGTATTACGGCCAACTGATAATTTAACTAACCTCCTTGCAC AGAAAGAGTTTTTCAGGTAAAGAATCTTTTGGGGGACTTAAAAGACATATTACAACCCACTGACAACCTAACTAACCTTCTTGCAC
ATCTCTATTTTTTCAGGTAGATAATCTTTTGGGAGATTTTAAATACATATTGCAACCAACTGACAATCTAACTAGCCTCCTCGTAC ATCTCTATTTTTTCAGGTAGATAATCTTTTGGGAGATTTTAAATACATATTGCAACCAACTGACAAATCTAACTAGCCTCCTCGTA AGGCCGAGTTTTCCAGGTAGATAGTCTCACAGGTGATTTTAAAGATGTATTACAACCATCTGATAATTTAACCAACCTCTTTGCA AGATAGATTTTTCCAGGTAGATAATCTTTTGGGAAATTTCAAAGATATATTACAGCCAACTGATAATCTAACTAATCTCTTCGCAAC ATCTCTATTTTTTCAGGTAGATAATCTTTTGGGAGATTTTAAATACATATTGCAACCAACTGACAATCTAACTAGCCTCCTTGTA AGATCGATTTTTTCAGGTAGATAACCTTTTGGGAGATATCAAAGACATATTACAGCCAACTGATAATCTAACTAACCTCCTCTTA AGACCGATTTTTTCGGGTAGATAACCTTTTGGGAGATTTCAAAGATATATTACAGCCAACCGATAATCTTACTAATCTCCTCGTAC AGATCGATTTTTTCGGGTAGATAACCTTTTGGAAGATTTCAAAGACATACTACAGCCAACCGATAATCTAACTAACCTCCTCGTAC AGATCGATTTTGCCGGGTAGATAATCTTTTAGGAGATTTCAAAGATATATTACAACCAACTGATAAATCTAACTAACCTCCTCGTAC AAAGATATTTTTCCAGGTAGATAATCTTCTGGGAGATTTAAAAGACATATTACAACCAACGGACGACCTAACTAGCCTTCTCGTACC 152 AGGCCAATTTTTCCAAGTAGATAATCTTTTGGGAGATTTAAAATATATATTACAACCAACGAACAATCTAAITAACCTICTAGAAC 1525
 AACAACAAACTTTAAAGGCCCAACTTACAGAGTGGGGCGAACAGACTTCAAATATTGTGTTTCAAGATACAATTTCTATCAAAGCT 1590 AACAACAAACTTTAAAGGCCCAACTTACAAAATGGGCCGAACAAACTTCGAATATTGTATTTCAAGATACAATTTCTATAAAAGCT 1602 AACAACAAACTTTAAAGGCCCAACTTGCAGAGTGGGCCGAACAAACTTCTAATATTGTATTTCAGGATACAATTTCTATCAAAGCT 1629 AACAACAAATTTTAGGGGCCCAACTTACAGAGTGGGCCGAACAGACTTCAAATATTGTGTTTCAAGACACAATTTCTATTAAAGCT 1614 AACAACAAATTTTAAGGGCCCAACTTACAGAGTGGGCCGAACAGACTTCAAATATTGTGTTTCAAGACACAATTTCTATTAAAGCT 1611 AACAACAAATTTTAAGGGCCCAACTTACAGAGTGGGCCGAACAGACTTCAAATATTGTGTTTCAAGACACAATTTCTATTAAAGCT 1611 AACAACAAAATTTTAAGGGCCCAACTTACAGAGTGGGCCGAACAGACTTCAAATATTGTGTTTCAAGACACAATTTCTATTAAAGCT 1611 AACAACAAACTTTAAAGGCCCAACTTACAGAATGGGCCGAACAAACTTCGAATGTTGTATTTCAAGATACAATTTCTATCAAAGCT 1614 AACAACAAATGTTAAGGGCCCAACTTACAGAGTGGGCCGAACAGACTTCAAATATTGTGTTTCAAGATACAATTTCTATTAAAGCG 1611 AACAACAAATTTTGGGGGCCCAACTTACAGAGTGGGCTAAACAGACTTCAAATATTGTGTTTCAAGATACAATTTCTATTAAAGCT 1599 AACAACAAATTTTGGGAGCCCAACTTACAGAGTGGGCCGAACAGACTTCAAAATATTGTATTTCAAGATACAATTTCTATTAAAGCT 1695 AACAACAAACTTTAAAGGCCCAACTTACAGAATGGGCCGAACAAACTTCGAATATTGTATTTCAAGATACAATTTCTATCAAAGCT 1611 AACAACAAACTTTAAAGGCCCAACTTACAGAGTGGGCCGAACAAACTTCTAATATAGTATTTCAGGATACAATTTCTATCAAAGCT 1620 AACAACAAACTCTAAAGGCCCAACTTACAGAGTGGGCCGAACAAACTTCTAATACTGTATTTCAAGACACAATTTCTATCAAAGCT 1620 AACAACAAACTCTAAAGGCCCAACTTACAGAGTGGGCCGAACAAACTTCTAATATTGTATTTCAAGATACAATTTCTATCAAAGTT 1620 AACAACAAATTTTAAAGGCCCAACTTACAGAATGGGCCGAACAAACTTCAAATATTGTATTTCAAGATACAGTTTCTATCAAAGTT 1614 AACAACAAACTTTAAAGAGCCAACTTACAGAGTGGGCCGAACAAACTTCGAATGTTGTATTTCAAGATACAATTTCTATCAAAGCT 1614 AACAACAAACTTTAAAGGCCCAACTTACAGAGTGGGCCGAACAAACTTCAAATATTGTATTTCAAGATACAATTTCTATCAAAGCT

1504
1525

1525 1516 1516

 15161543 1543
1528 1528
1525 1525
1525 1525
1525
1516 1516
1528
1525 1525
1513 1513 1525
1525 1525
1534 1534
1534 1534

1.220 1.8
1.840
1.860
${ }^{1.830}$
alcyonium_digitatum_muts sinularia_peculiaris_muts narella_hawaiinensis_muts paraminabe_a_aldersladei_muts scleronephthya_gracillimum_muts
dendronephthya castanea_muts dendronephthya_gigantea_mutS dendronephthya_mollis_muts junceella_fragilis_muts keratoisidinae muts rev echinogorgia_complexa_muts biareum asbestinum_muts dopterogorgia_bipinnata_muts sibagogorgia_caulifTora_muts corallium_elatius_muts corallium rubrum muts paracorallium japonicum_muts rev
heliopora_coerulea_muts
stylatula_-elongata_muts
renilla_muelleri_muts
Consensus
alcyonium_digitatum_muts sinularia_peculiaris_muts narella_hawaiinensis_muts paraminabea_aldersladei_muts scleronephthya_gracillimum_muts dendronephthya_ _castanea_muts dendronephthya_mollis_muts junceella_fragilis_muts keratoisidinae muts rev echinogorgia_complexa_muts briareum_asbestinum_muts pseudopterogorgia_bipinnata_mut acanella_eburnea_mūts rev corallium elatius_muts corallium konojomuts corallium_rubrum_mūts rev paracorallium_japonicum_muts rev
heliopora_coerulea_muts stylatula-elongata-muts
renilla_ muelleri-muts

Consensus
alcyonium_digitatum_muts primnoa_resedaeformis_muts narella_hawaiinensis_muts paraminabea_aldersladei_muts
cleronephthya_gracillimum muts dendronephthya_castanea_muts dendronephthya_gigantea_muts dendronephthya_mo_milis_muts junceella fragilis muts keratoisidinae muts rev echinogorgia_complexa muts euplexaura_crassa_muts pseudopterogorgia bipinnata_muts acanella_eburnea_muts rev sibagogorgia_cauliflora_muts
corallium_elatius_muts corallium rubrumojoi_muts paracorallium japonicum_muts rev heliopora_coerulea_muts
renilla_muelleri_muts
Consensus alcyonium_digitatum_muts primnoa_resedaeformis_muts sinularia_peculiaris_muts araminabea aldersladei muts cleronephthya -gracillimum muts dendronephthya_castanea_muts dendronephthya_gigantea_muts dendronephthya_mollis_muts junceella fragi_muts keratoisid_ fraglis_muts
echinogorgia_complexa_muts euplexaura_crassa_muts pseudopterogorgia bipinnata muts
acanella_eburnea_muts rev bagogorgia_cauliflora_muts
corallium elatius muts corallium_konojoi_muts corallium_rubrum_muts rev paracorallium_japonicum_muts rev heliopora_coerūlea_muts stylatula_elongata_muts
renilla_muelleri_muts

Consensus
Conservation
 GAA TATTTTAATAAAGAGGGTTATGCTTTTTCTATTTTATCTAAAAAGTTAACTAAGTTAGAATATTACATGACTAATGCCTCTAT 1688 GAATATTTCAGTAAGGAGGGTTATGCCCTCTCTATTTTATCTAAAAAGCTAGCTAAGTTAGAGCGTTATTTGGCTAATTCCTCTGT 1688 GAATATTTTAATAAAGAGGGTTATGCTTTCGCTATTTCATATAAAAAAGTTAGCTAAGTTAGAACATTACATGACTAAATGCCCCCCAT 171700

 GAATATTTTAGTAAAGAGGGCTATGCTTTCGCTATTTCGTATAAAAAGTTAGTTAAGTTAGAACATTACATGACTAACGCCCCCAT 1697 GAATATTTAGTAAGGAGGGCTATGCCCTCTCTATTTTATCTAAAAAGTTAGCAAAATTAAATCGCTACTTGGCTGGCCCTGCCTC 1688 GAGTGTTTTAATAAAGAGGGTTATGCTTTTTCTATTTCATCTAAAAAGTTAACTAAGTTAGAGCATTACATGGCTAGCGCCTCTAC 1697 GAGCGTTTTAATAAAGAGGGTTATGCTTTTTCTATTTTATCTAAAAAGTTACCTAAGTTAGAACATTACATGTCTAGCGCCTCTAT 1685 GAATATTTCAGTAAGGAGGGGTATGCCTTCTCTATTTTGTCTAAAAAAGTTAGCTAAGTTAGAGCACTACTTCACTA-1--CCGCTGT 1778 GAATATTTCAGTAAGGAGGGTTATGCCTTCTCTATTTTATCTAAAAAAG-1/-1/-1TAGAGCGTTACTTAGCTAATACCTCTGT 1688 GAACACTTCAACAAGGAGGGTTATGCCTTTTCTATCTTATCCAAAAAATTGGCCAGGTTAGAACGTTACTTGGCTAACACCCCTGT 1706 GAACACTTCAACAAGGAGGGTTATGCCTTTTCTATCTTATCCAAAAAAATTGGCCAGGTTAGAACGTTACTTGGCTAACACCCCCTGT 1706 GAACATTTCAACAAGGAGGGTTATGCCTTTTCTATTTTATCTAAAAAGTTGGCCAGGTTAGAACGTTACTTGGCTAACACCCCTGT 1706 GAATATTTTAGTAAGGAGGGCTATGCCTTCTCTATTTTATCTAAAAAAGTAGCTAAGTTAAATCGT-----GTTAAAGCCCC-1-1 169 GAATATTTTAATAAGGAGGGTTATGCCTTCTCTATTTTATCTAAAAAAGTTAGCTTAAGTTAGAICACATTACTTGACTCTCTACGACCTCTA
${ }^{1.900}$ GCCTGAT ATCTGAT.
ATCTAAT-
AACTG.
AACTGAC. AACTG-AACTGAC.-
GTCTGAT
GTCCGAT
GTCCGAT
GTCCGAT.
GTCCGAT. GTCCGAT ACCTGATAACTACTTCTAAC. AACTACTTCTAAC
ATCTAGT-...... AACTGAC AACTGAC AACTGAC AACTGAC.................................

AATTCAATTATGATATTGGGTAAAAGAGGAAGCCACCATATAATTACTAGTCCCACTATTCATA 1732 AATTCAATTAT GATATTGGGTAAAAGAGGAAGCCACCATATAATTACTAGTCCCGCCCATTCATA 1768 1768 ACCCCTATTATTATATTGGGTAAAAGAGGAAATCACCATATAATTACTAGTCCCGCTATTCTTA 1759
ACATCTATCATTATACTAGGTAAAAGAGGGAATTACCAAATAATTACTACTCCCGCTACTCTTA 1786 AATTCAATTATTGTGCTGGGTAAAAAGAGGAAAGTAGCCCTTATAATAACTAGTTCCACCAATTCAAA 1786 AATCCAATTATTGTGTTGGGTAAAAGAGGAAGTAGCCTTATAATAACTAGTTCCACCATTCAAA 1768
AATCCAATTATTGTGTTGGGTAAAAGAGGAAGTAGCCTTATAATAACTAGTTCCACCATTCAAA 1768
AATCCAATTATTGTGTTGGGTAAAAGAGGAAGTAGCCTTATAATAACTAGTTCCACCATTCAAA 1768 AATCCAATTATTGTGTTGGGTAAAAAGAGGAAGTAGCCTTATAATAACTAGTTCCACCAATTCAAA 1768 1768 -TCCCCCATTAT--ATTGGGTAAAAAGAGGAAATCACCATATAATTACTAGGTTCCGCCTATTCTTT AATTCAGTTATTGTGTTGGGTAAAAGAGGAAATTACCTTATAATTACTAGCCCCGCCATTCATA 1756 ACTTCTATTATTATATTAGGTAAAAGAGGAAATCATCATATAATCACTAACACCACTCTCCTTA 1855 CCCCCTATTAT--ATTGGGTAAAAAGAGGAAATCACCATATAATTACTAGTTCCGCTATTCTTA 1756 -TCATCTATTATTATACTGGGTAAAAGAGGGAATTACCAAAATAATTACTAGTCCCGCTATTCTTA 17777
TCATCTATTATTATACTAGGTAAAAGAGGGAATTACCAAAATAATTACTAGTCCCGCTATTCTTA 17777

1,980 2,000 2,020 2,060 2,040 200
AAGTATCAATTGAATTAAATTTATTAGAAGAGCAAATTAATACTTATGTCAAACAGACTTATAACCGGGAACTTAAAAGATTATAT 1818 AAGTATCAATCGAATTAAATTTATTAGAAGAGCAAATTAATACTTATGTCAAACAGACTTATAACCGGGAACTTAAAAGATTATAT 1854 AAA TATCAATCGAATTAAATTTATTAGAAGAGCAAATTAATACTTACGTTAAACAGACTTATAACCAGGAACTTAAAAGATTATAT 1845 AAGTATCAATTAAACTAAATTTATTAGAAGAACAAGTTAATATTTATGTTAAACAAACTTATAACAGGGAACTTAAAAGATTATAT 1872 AAGTATCGATCGAATTAAGTTTATTAGAAGAGCAAATTAATACTTATGTTAAACAGACTTATAACCGGGAACTTAAAAGATTATAT 1857 AAGTCTCAATCAAATTAAGTTTATTAGAAGAGCAAATTAATACTTATGTTAAACAAACTTATAACCGGGAACTTAAAAGATTATAT 1854 AAGTCTCAATCAAATTAAGTTTATTAGAAGAGCAAATTAATACTTATGTTAAACAAACTTATAACCGGGAACTTAAAAGATTATAT 1854 AAGTCTCAATCAAATTAAGTTTATTAGAAGAGCAAATTAATACTTATGTTAAACAAACTTATAACCGGGAACTTAAAAGGATTATAT 1854 AAGTCTCAATCAAATTAAGTTTATTAGAAGAGCAAATTAATACTTATGTTAAACAAACTTATAACCGGGAACTTAAAAGATTATAT 1854 AAGTATCAATTGAATTAAAACTTAGTAGACGAGCAAGTTAATATTTATGTCAAACAAACTTATAACGGGGAACTTAAAAGGACTACAT 1845 AAGTATCAATCAAATTAAATTTATTAGAAGAGCATGTTAATACTTATGTTAAACAGACTTATAACCGGGAACTTAAAAAATTATAT 1854 AAGTATCAATCGAATTAAACTCATTAGAAGAGCAAATTAATACTCATGTAAAACAGATTTATAACCGGGAACTTAAAAAATTATAT 1842 AAGTATCAGTTGAATTAAGTTTATTAGAAGAGCAAATTGATATTTATGTTAAACAAACTTATAACCGAGAGCTTAAAAGACTATAT 1941 AAGTGTCAATCGAATTAAATTTATTAGAAGAGCAAATTAATACTTATGTTAAACAGACTTATAACCGGGAACTTAAGAGATTATAT 1854 AAGTATCAGTAGAATTAAACTTATTAGAAGAACAGGTTAATATTTATGTTAAACAAACCTATAATGGGGAACTAAAAAGACTATAT 1863 AAGTAACAGTTGAATTAAACTTATTAGAAGAACAGGTTAATATTTATGTTAAACAAACCTATAATGGGGAACTTAAAAGGACTATAT 1863 AAGTAACAGTTGAATTAAACTTATTAGAAGAACAGGTTAATATTTATGTTAAACAAACCTATAATGGGGAACTTAAAAGACTATAT 1863 GAGTAACAGTTGAATTAAACTTATTAGAAGAACAGGTTAATATTTATGTTAAACAAACCCTATAATGGGGAACTTAAAAAGACTATAT 1863 AAGTATCAATTGAATTAAACTTATTAGAAGAGCAAGTTAATATTTATGTCAAACAAACTTATAACCGGGAACTTAAAAAGACTATAT 1853 AAGTATCAATTGAGTTAAACTTATTAGAAGAGCAGATTAATACTTATGTTAAACAAGCTTATAACCGGGAACTTAAGAGACTATAT 1863 AAGTATCAACTAAGTTAAACTTATTAGAAGAGCAAATTAATACTTATGTTAAACAAATTTATAACCGAGAACTTAAAAGACTATAT 1866 AAGTATCAATTGAATTAAACTTATTAGAAGAGCAAATTAATACTTATGTTAAACAAACTTATAACCGGGAACTTAAAAGACTATAT

2.080

TCAGTTATTCTGAGCTGTTTTTACCCTTAGAAAATATGATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATTGCGGCTATTAA 1904 TTCAGTTATTCTGAGTTGTTTTTGCCCTTAGTAAATATGATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATTGCGGCTATTAA 1940 TTTAGTTATTCTGAGCTGTTTTTACCCTTAGAGAATATAATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATCGTGTCTACTAA 1931 TTTAGTTATTCTGAGCTATTTTCTCCCTTAGAGAATATAATTTCTAGATTAGATGTTGCATTAAGGCGGGGCTATCGTGTCTACTAA 1931 TTTAGTTATTCTGAACTGTTTTTACCCTTAGTAAGTATGATTTCTAGATTAGATGTCGCACTAAGCGGGGCTATTGCGGCTATTAA 1943 TTTAGTTATTCTGATCTGTTTTTACCCTTAGTAAATATGATTTCTAGATTAGATGTTGCACTAAGCGGGGCTATTGCGGCTATTAA 1940 TTTAGTTATTCTGATCTGTTTTTACCCTTAGTAAATATGATTTCTAGATTAGATGTTGCACTAAGCGGGGCTATTGCGGCTATTAA 1940 TTTAGTTATTCTGATCTGTTTTTACCCTTAGTAAATATGATTTCTAGATTAGATGTTGCACTAAGCGGGGCTATTGCGGCTATTAA 1940 TTTAGTTATTCTGATCTGTTTTTACCCTTAGTAAATATGATTTCTAGATTAGATGTTGCACTAAGCGGGGCTATTGCGGCTATTAA 1940 TTCAGCTATTCTGAACTGTTTTTACCCTTAGAGAATATAATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATCGTATCTACTAA 1946 TTCAGGTATTATGAGCTGTTTTTCCCCTTAGAGAATCTTATTTCTAGATTAGATGCTGCATTAAGCGGGGCTATCGTGTCTACTAAA 1931 CTCAGTTATTCTAAGCTGTTTTTACCCTTAGAGAATATAATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATTGCGGCTATTAA 1940 TTCAATTATTCTGAGCTGTTTTTACCCTTAGAAAAATATAGATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATTGCGGCTATTAA 1928 TTTAATTATTCTGAGCTGTTTTTACCCCTAGAAAATATGATTTCTAGGTTAGATGTTGCATTAAGCGGGGCTGTTGCGGCTGTTAA 1940 TTCAGGTATTATGAGCTGTTTTTCCCCTTAGAGAATATGATTTCTAGATTAGATGCTGCATTAAGCGGGGCTATCGTGTCTACTAA 1928 TTTAGTTATTCGGAGCTATTTTTTCCCCTAGAGAATATAATTTCTAGGTTAGATGTCGCATTAAGCGGGGCTATCGTGTCTATTAA 1949 TTTAGTTATTCTAAGCTATTTTTACCCCTGGAGAATATAATTGCTAGGTTAGATGTTGCATTAAGCGGGGCTATCGTGTCTACTAA 1949 TTAGTTATTCTAAGCTATTTTTACCCCTGGAGAATATAATTGCTAGGTTAGATGTTGCATTAAGCGGGGCTATCGTGTCTACTAA 1949 TTTAGTTATTCTGAGCTATTTTTTCCCCTAGAGAATATAATTTCTAGGTTAGATGTTGCATTAAGCGGGGCTATCGTGTCTATTAA 1949 TTTAGTTATTCTGAGCTATTTTTTCCCCTAGAGAATATAATTTCTAGGTTAGATGTTGCATTAAGCGGGGCTATCGTGTCTATTAA 1949 TTCAGCTATTCTGAGCTGTTTTTACCCTTAGAAAATATGATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATCGTGTCTACTAA 1943 TTCAGTTATTCTGAACTGTTTTCACCTTTAGAGAATATAATTTCTAGATTAGATGTTGCATTAAGGCGGGGCTATCGTGTCTACTAAA 1952 TTTAGTTATTCTGAGCTGTTTTTACCCTTAGAGAATATNATTTCTAGATTAGATGTTGCATTAAGCGGGGCTATCGTGTCTATTAA

alcyonium_digitatum_muts sinularia peculiaris_muts
sids narella_hawaiinensis_muts paraminabea_aldersladei_muts scleronephthya_gracillimum_muts
dendronephthya castane__muts dendronephthya_castanea_muts dendronephthya_mollis_muts dendronephthya_mollis_muts
endronephthya suensoni-muts junceeella_fragilis_muts
keratoisidinae muts re echinogorgia_complexa_muts euplexaura_crassa_muts
biareum asbestinum muts pseudopterogorgia_bipinnata_muts acanella_eburnea_muts rev
sibagogorgia_cauliflora muts corallium_elatius_muts corallium_rubrum_muts rev
rallium_japonicum_muts heliopora_coerūlea_muts stylatula_elongata_muts
renilla_muelleri_muts

Conservation
alcyonium_digitatum_muts sinularia_peculiaris_muts harella_hawaiinensis_muts leronephthya_gracillimum_muts dendronephthya_castanea-muts dendronephthya_gigantea_muts dendronephthya_mollis_mut junceella fragilis muts keratoisidinae muts rev
echinogorgia_complexa_muts euplexaura_crassa_muts pseudopterogorgia_bipinnata muts acanella_eburnea_muts rev corallium elatius_muts corallium konojims muts corallium_rubrum_muts rev
rallium_japonicum_muts rev stylatula_coerulea_muts stylatula_elongata_muts
renilla_muelleri-muts

Consensu
alcyonium_digitatum_muts primnoa_resedaeformis_muts sinularia_peculiaris_muts paraminabea_aldersladei_muts scleronephthya_gracillimum_muts dendronephthya_castanea_muts dendronephthya mollis muts dendronephthya_suensoni_muts junceella_fragilis muts keratoisidinae_muts rev euplexaura_crassa_muts riareum asbestinum_muts pseudopterogorgia bipinnata-muts acanella_eburnea_muts rev sibagogorgia_cauliflora_muts corallium_elatius_muts corallium rubrum muts rev paracorallium japonicum muts rev heliopora_coerulea_muts stylatula_elongata_muts

Consensus
Conservation
alcyonium_digitatum_muts primnoa_resedaeformis_muts sinularia_peculiaris_muts araminabea_aldersladei_muts scleronephthya_gracillimum_muts dendronephthya_castanea_muts dendronephthya_gigantea_mutS dendronephthya_mollis_muts
dendronephthya suensoni_muts junceella_fragilis muts keratoisidinae muts rev echinogorgia_complexa_muts euplexaura_crassa_muts pseudopterogorgia bipinnata muts
acanella_eburnea_muts rev
sibagogorgia_cauliflora_muts
corallium_elatius_muts corallium rubrum muts rev paracorallium japonicum muts rev heliopora coerūlea muts
stylatula_elongata_muts
renilla_muelleri_muts
Consensus
$2.500 \quad 2.520$
$2.520 \quad 2.540$
$2.540 \quad 2.560$
2.580 TTGAGGTCGAAATGAGAGATCTTTCAACTATATTAAAGCTAGCTAATTATAACAGTCTAATATTGGGGGACGAAATTTGTCATGGA TTGAGGTCGAAATGAGAGATCTTTCAACTATATTAAAGCTAGCTAATTATAACAGTTTAAATATTAGGGGACGAAAATTTGTCATGGA TGAGGTCGAAATGAGAGATCTCTCAACTATATTAAAGCTAGCTAATTATAACAGTTTAATATTAGGTGATGAGATTTGCCATGG TGAGGTCGAAATGAGAGATCTTTCAACTATATTAAAGCTAGCTAATTATAACAGTTTAATATTAGGTGATGAAATTTGCCATGG TTGAGGTCGAAATGAGAGATCTTTCAACTATATTAAAGCTAGCTAATTATAACAGTTTAATATTAGGGGACGAAAATTTGTCATGGA TTGAGGTCGAAATGAGAGATCTTTCAACTATATTAAAGCTAGCTAATTATAACAGTTTAATATTAGGGGACGAAATTTGTCATGGA TTGAGGTCGAAATGAGAGATCTTTCAACTATATTAAAGCTAGCTAATTATAACAGTTTAAATATTAGGGGACGAAATTTGTCATGGA TTGAGGTCGAAAATGAGAGATCTTTCAACTATATTAAAGCTAGCCAAATTATAACAGTTTAATATTAGGGCGATGAAATTTGCCATGGG TTGAGGTTGAAATGAAAGATCTTTCAAACTATATTAAAGCTAGCTGATTATAACAGTTTAAATATTAGGTGATGAAAATTTGCTCATGGA TTGAGGTTGAAATGAGAGATCTTTCAACTATATTAAAGCTAGCTAATTATAACAGTTTAATATTAGGTGATGAGATTTGCCATGGG TTGAGGTCGAAATGAGAGATCTCTCAACTATATTAAAGCTAGCCAATTATAACAGTTTAATATTAGGTGATGAGATTTGCCATGGG CAACTATATTAAGCTAGCTGATTATAGCAGTTTAATATTAGGGGATGAGATTTGCCATGG TTGAAGTAGAAATGAGAGATCTTTCAACTATATTAAAGCTAGCTGATTATAGCAGTTTAAATATTAGGGGAATGAGATTTTGCCATGG
 TTGAGGTAGAAATGAGAGATCTCTCGACTATATTAAAGCCTAGCTAATTATAATAGTTTAATATTAGGCGATGAAATGAATATGCCATGGG TTGAGGTCGAAATGAGAGATCTTTCAACTATATTAAAGCTAGCTAATTATAACAGTTTAATATTAGGGGATGAAATTTGCCATGGA
 2.680
2.700
2.720
2.740

TCTACATCAAGTTTGTTCTTTAATTGATTCACCAGTTCGGTACTATCATTTATCTGTTATTCAACAAGAAGATTTGGGCCTAATTT 2503 TCTACATCAAGTTTGTTCTTTAATTGATTCACCAGTTCGGTACTATCATTTATCTGTTATTCAACAAGAAGATTTGGGGCTAATTT 2530 TTTACATCAAGTTTGTTCTTTAATTGATTTGCCAGTTCGGTGCTATCATTTATCTGTTATTCAACAAGAAAATTCGGGCCTAATTT 2521 CCTACATCAAGTTTGTTCTTTGATTGATTCACCAGTTCGGTATTATCATCTATCTGTTATTCAGCGAGAAGATTTAGGGATAATTT 2521 TCTACATCAAGTTTGTTCTTTGATTGATTCACCAGTTCGGTGTTATCATCTATCTGTCATTCAACAGGAAG-...-. -GTTTAATTT 2548 TTTACATCAAGTTTTTTCTTTAATTGATTCGCCAGTTCGGTGCTATCATTTATCTGTTATTCAACAAAAAGATTTGGGCCTAATTT 2533 TTTACATCAAGTTTTTTCTTTAATTGATTCGCCAGTTCGGTGCTATCATTTATCTGTTATGCAACAAAAAAGATTTGGGCCTAATTT 2524 TTTACATCAAGTTTTTTCTTTAATTGATTCGCCAGTTCGGTGCTATCATTTATCTGTTATGCAACAAAAAGATTTGGGCCTAATTT 2524 TTTACATCAAGTTTTTTCTTTAATTGATTCGCCAGTTCGGTGCTATCATTTATCTGTTATGCAACAAAAAGATTTGGGCCTAATTT 2524 CCTACATCAAGTTTGTTCTTTAATTGATTTACCAGTTCGATATTATCATCTATCTGTTATTCAGCGAGAAGATTTAGGTATAATTT 2524 TTTACACCAAGTTTGTTCCCTAATTGATTCACCAGTTCGGTATTATCACCTATCTGTTATTCAGCGAGAAGATTTAGGTATAATTT 2518 TTTACATCAAGTTTTTTCTTTAATTGATTCGCCAGTTCGGTGCTATCATTTATCTGTTATTCAACAAGAAGATTTGGGCCTAATTT 2518 CTTGCATCAAGTTTGTTCTTTACTTGCAGCCCCAGTTCGGTGCTATCACCTATCTGTTATTCAGCGAAAAGATTTAGGTCTAATTT 2623 CTT GCATCAAGTTTGTTCTAATTGGCTCGCCAGTTCGGTGCTATCACTTATCTGTTATTCAACAAAAAGATTTGGGCCTAATTT 2530 CCTACACCAAGTTTGTTCCCTAATTGATTCACCAGTTCGGTATTATCACCTATCTGTTATTCAGCGAGAAGATTTAGGTATAATTT 2515 TTTACATCAGGTTTGTTCTCTAATTGATTCACCGGTTCGGTGTTATCATCTATCTGTTATTCAGCAAGAAG....... GTATAATTT 2545 TTTACATCAGGTTTGTTCTCTAATTGATTCACCGGTTCGGTGTTATCATCTATCTGTTATTCAGCAAGAAG.......- GTATAATTT 2545 TCTACATCAAGTTTGTTCTCTGATTGATTCACCAGTTAGGTGTTATCATCTTTCTGTTATTCAGCAAGAAG-....- - GTATAATTT 2545 CCTACATCAGGTTTGTTCTCTGATTGATTCACCAGTTCGGTGTTATCATCTTTCTGTTATTCAGCAAGAAG-...... GGATAAATTT 253 CCTACATCAAATTTGTTCTTTAATTGATTCACCAGTTCGATATTACCATCTATCTGTTATTCAGCGAGAAGATTTAGGTATAATTT 2527 CCTACATCAAGTCTGTTCTTTAATTGATTCACCAGTTCAATATTATCATCTATCAGTTATTCAGCGAGAAGATTTGGGAATAATTT TCTACATCAAGTTTGTTCTTTAATTGATTCACCAGTTCGGTGTTATCATCTATCTGTTATTCAGCAAGAAGATTTGGGTCTAATTT 2.760

2,820
ATGAACGTAAATTGAAGCCTGGACCCGGGCCCTCTCAATATGGCATTGAAGTTATGGGCCACATAATTAATGATAAAAAATTTTAT 2589 ATGAACGTAAATTGAAACCTGGACCAGGGCCCTCTCAATATGGCATTGAAGTTATGGGCCACATAATTAATGATAAAAAAATTTTAT 2616 ATGAACGTAAATTGAAACCTGGTC CAGGGCCCTCTCAATATGGCATCGAAGTTATGGGGCACATAATTAATGACAGAGAGTTTTAT 2607 ATGAACGTAAATTGAAACCTGGCCCAGGGCCCTCTCAATATGGCATTGAAGTTATGGGGCACATCATTAATAACAAAGAGTTTTAT 2634 ATGAACGTAAATTGAAACCTGGTCCGGGACCCTCCCAATATGGCATTGAAGTTATGGGCCACATAATTAATGACAAAAAATTTTAT 2619 ATGAACGTAAATTAAAACCTGGTCCGGGACCCTCCCAATATGGCATTGAAGTTATGGGCCACATAATTAATGACAAAAAAATTTTAT 2610 ATGAACGTAAATTAAAACCTGGTCCGGGACCCTCCCAATATGGCATTGAAGTTATGGGCCACATAATTAATGACAAAAAAATTTTAT 2610 ATGAACGTAAATTAAAACCTGGTCCGGGACCCTCCCAATATGGCATTGAAGTTATGGGCCACATAATTAATGACAAAAAATTTTAT 2610 ATGAACGTAAATTAAAACCTGGTCCGGGACCCTCCCAATATGGCATTGAAGTTATGGGCCACATAATTAATGACAAAAAAATTTTAT 2610 ATGAGCGTAAATTGAAACCTGGTCCAGGGCCCTCTCAATATGGCATCGAAGTTATGGGGCACATAATTAATGACAGAGAGTTTTAT 2604 ATGAACGTAAATTAAAACCTGGCCCAGGACCCTCCCAATATGGCATTGAAGTTATGGGCCACATAATAAATGACAAAAAATTTTAT 2616 ATGAACGTAAATTGAAACCTGGCCCAGGGC CCTCCCAATATGGCATTGAAGTTATGGGCCACATAATTAATGACAAAAAATTTTAT 2604 ATGAGCGTAAATTAAAAC CCGGTC CAGGGCCCDCTCAATATGGCATCGAAGTAATGGGCCACATAATTAATGACAGAGAGTTTTAT 2709 ATGAGCGTAAATTGAAACCTGGTCCAGGGCCCTCCCAATATGGCATTGAAGTTATGGGGCACATAATTAATGACAAAAAATTTTAT 2616 ATGAGCGTAAATTGAAACCTGGTCCAGGGCCCTCTCAATATGGCATCGAAGTTATGGGGCACATAATTAATGACTGAGAGTTTTAT 2601 ATGAACGTAAATTGAAACCTGGTCCAGGGCCCCCTCAATATGGCATTGAAGTTATGGGGCACATAATTAATGACAGAGAGTTTTAT 2631 ATGAGCGTAAAATTGAAACCTGGTCCGGGGCCCCCTCAGTATGGCATTGAAGTTATGGGGCACATAATTAATGACAGAGAGTTTAT ATGAGCGTAAATTGAAACCTGGTCGGGGCCCCCTAGTATGGCATTGAAGTTATGGGGCACATAATIATGACA ATGAACGTAAATTGAAACCTGGTCCGGGGCCCCCTCAGTATGGCATTGAAGTTATGGGGCACATAATTAATGACAGAGAGTTTTAT 2631 ATGAGCGTAAATTGAAACCTGGTCCAGGGCCCTCTCAATATGGAATTGAAGTTATGGGACACATAATTAATGATAGAGAGTTTTAC 2616 ATGAGCGTAAATTAAAAC CTGGCCCAGGGC CCTCCCAATATGGCATCGAAGTTATGGGTTATATTATTAATGACAAAGAGTTTTAT 2613 ATGAACGTAAATTAAAACCTGGTC CAGGGCCCTCCCAATATGGCATCGAAGTTATGGGGCATATTATTAACGATAAAGAGTTTTAT 2613 ATGAACGTAAATTGAAACCTGGTC CAGGGCCCTCTCAATATGGCATTGAAGTTATGGGGCACATAATTAATGACAAAGAGTTTTAT

primnoa_resedaeformis_mut sinularia_peculiaris_mutS narella_hawaiinensis_mutS paraminabea_aldersladei_mut scleronephthya_gracillimum_mutS dendronephthya castanea muts dendronephthya gigantea muts dendronephthya mollis muts dendronephthya suensoni-muts junceeIlla_fragilis_muts keratoisidinae_muts rev echinogorgia_complexa_muts euplexaúa crassa-muts briareum_asbestinum_muts pseudopterogorgia_bipinnata_muts acanella_eburnea_mutS rev sibagogorgia_cauliflora_muts corallium_elatius_muts corallium_konojoi_muts corallium_rubrum mutS rev paracorallium_japonicum_muts rev heliopora coerulea muts stylatula_elongata_muts
renilla_muelleri_muts
Consensus
Conservation
alcyonium_digitatum_muts GACCCCAGGACATAAGAAATTATATTGGGTTTATCTTAATGAGTCTTTGGATAGTGGAACTGAGTAA 2943
GACCCCAGGACATAAGAAATTATATTGGGTTTATCTTAATGAGTCTTTGGATAGTGGAACTGAGTAA 2943 AACCCCAGGACATAA GAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2973
 AACACCAACACATAATAAATTATATTGGGTTTATCTTAATAACTCTTTAGACAGTGGAACTGAGTAA 2994 AACCCCAGGACATAGGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2949 AACCCCGGGACATAGGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2940 AACCCCGGGACATAGGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2940 AACCCCGGGACATAGGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2940 AACCCCGGGACATAGGAAATTATATTGGGTTTA TCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2940 AACACCAGGACATAAGAAATTATATTGGGTTTATCTTAATGGGCCTTTAGACAGTGGAACTGAGTAA 2964 AACACCAGCACATAAGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2982 $A A C C C C A G G A C A T A A T A A A T T A T A T T G G G T T T A T C T T A A T G A G T C T T T A G A C A G T G G A A C T G A G T A A ~ 2958$ AACCCCCGGACATAAGAAATTATATTGGGTTAATCTTAATGTGTCTTTAGACAGTGGAACTGAGTAA 2946 AACACCAGTACATAAGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 3066 AACCCCCGGGTATAAGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGATAGTGGAACTGAGTAA 2958 AACACCAGCACATAAGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2964 AACATCAGTACATAATAAATTATATTGGGTTTATCTTAATGGGCCTTTAGACAGTGGAACTAAGTAA 2991 AACACCAGTACATAATAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTAAGTAA 2991 AACACCAGTACATAATAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTAAGTAA 2991 AACCCCAGTACATAATAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTAAGTAA 2991 AACCCCAGTACATAATAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTAAGTAA 2991 AACACCAGTACATAAGAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2976 AACGCCAGTACATAATAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA 2955 AACGCCCGGACATAATAAATTATATTGGGTTTATCTTAATGAGTCTAAAGACAGTGGAACTGAGTAA 2955 AACCCCAGGACATAA GAAATTATATTGGGTTTATCTTAATGAGTCTTTAGACAGTGGAACTGAGTAA

Cob gene

alcyonium_digitatum_cob primnoa_resedaeformis_cob
sinularia_peculiaris cob narella_hawaiinensis narella_hawainensis_co cleronephthya_gracillimum_co dendronephthya_castanea_co dendronephthya_gigantea_cob dendronephthya_mollis_co dendronephthya_suensoni-co junceella_fragilis_ca echinogorgia complexa_co euplexaura crassaeudopterogorgia bipinnata cob sibagogorgia_cauliflora_co acanella_eburnea_co briareum_asbestinum_co coralium_elatius_co coralium_konojoi_co corallium_rubrum_co paracorallium_japonicum_cob heliopora_coerulea_co stylatula_elongata_co
renilla_ muelleri_co

Consensus
Consensus
alcyonium_digitatum_cob primnoa_resedaeformis_co sinularia_peculiaris_co narella_hawaiinensis_co paraminabea_aldersladei_cob dendronephthya castanea_dendronephthya_ gigantea_co dendronephthya mollis ${ }^{-}$ dendronephthya_suènsoni- co junceella_fragilis_co keratoisidinae_cob echinogorgia_complexa_co euplexaura_crassa_co pseudopterogorgia_bípinnata_cob
sibagogorgia_cauliflora_cob acanella_eburnea_co briareum_asbestinum_co corallium konojoi cob corallium_konojoi_co paracorallium japonicum cob heliopora_coerulea_cob stylatula_elongata_cob renilla_muelleri_co

Consensus
Consensu ATGCATATGGAATCACCAAACAAAATGTTACGAATAAGAACTCAACATCCAATACTCTCTATTGTGAATGGGGTACTGGTTGATCT 86 ATGCATATGGAATCACCAAACAAAATGTTACGAATAAGAACTCAACATCCACTACTCTCTATTGTGAATGGGGTACTGGTTGATCT 86
ATGCATATGGAATCACCAAACAAAATGTTACGAATAAGAACTCAACATCCAATAATCTCTATTGTGAACGGGGTTCTGGTTGATCT 86 ATGCATATGGAATCACCAAACAAAATGTTACGAATAAGAACTCAACATCCAATAATCTCTATTGTGAACGGGGTTCTGGTTGATCT 8 .
ATG-.-- GAATCACCAAGCAAAATGTTACGAGTAAGAACTCAACACCCATTACTCTCTATTGTGAACGGGATATTGGTCGATCT ATG ATG
ATG
ATG -
ATG ATG-.
ATG
ATG
ATG ATG - ATG . ATG ATG ATG ATG ATG ATG ATG. ATG - . ATG--
ATG.
ATG. ATG:-
ATG -
ATG -
ATG ATG .-. -GAATCACCAAGCAAAATGTTACGAGTAAGAACTCAACACCCATTACTCTCTATTGTGAACGGGATATTGGTCGATCT 80 GAATCACCAAACAAAATGTTACGAATAAGAACTCAACACCCAATAATCTCTATTGTGAATGGGATCCTGGTTGATCT 80 GAATCACCAAACAAAATGTTACGAATAAGAACTCAACACCCAATAATCTCTATTGTGAATGGGGTTCTGGTTGATCT 80
TTACGAATAAGAACTCAACACCCAATAATCTCTATTGTGAATGGGGTTCTGGTTGATCT 62 GAATCACCAAACAAAATGTTACGAATAAGAACTCAACACCCAATAATCTCTATTGTGAATGGGGTTTTGGTTGATCT 80 GAATCACCAAGCAAAATGTTACGAGTAAGAACTCAACATCCAATAATCTCTATTGTGAATGGGATAGTGATCGATCT 62 GAATCACCAAGCAAAATGTTACGAGTAAGAACTCAACATCCATTACTCAACATCAATACTCTCTATTGTGAATGGGGTACTGGTTGATTT 62 $\cdots \cdot \cdot \cdot-\cdots T A C G A A T A A G A A C T C A A C A T C C A A T A C T C T C T A T T G T G A A T G G G G T A C T G G T T G A T T T \quad 62$ - TTACGAATAAGAACTCAACATCCATTAATCTCTATTGTGAATGGGGTACTGGTTGATCT 62 GAATCACCGAACAAAATGTTACGAATAAGAACTCAACATCCAATAATCTCAACACCCATTAATATCTATTGTGAATGGGGTACTGGTTGATCT 62 GAATCACCAAGCAAAATGTTACGAGTAAGAACTCAACATCCATTACTCTCTATTGTAAACGGGATATTGGTAGATTT 80
 GAATCACCGAACAAAATGTTACGAGTAAGAACTCAACACCCATTATTATCTATTGTGAATGGAATACTGATTGATCT 80 GAATCACCGAACAAAATGTTACGA GTAAGAACTCAACACCCATTATTATCTATTGTGAATGGAATACTGATTGATCT 80 GAATCACCGAACAAAATGTTACGAGTAAGAACTCAACACCCATTAATATCTATTGTGAATGGAATATTGATTGATCT 80 GAATCACCGAACAAAATGTTACGAGTAAGAACTCAACACCCATTAATATCTATTGTGAATGGAATATTAATTGATCT 80 GAATCACCAAGCAAATGTG GAATCACCAAACAAAATGTTACGAATAAGAACTCAACATCCATTAATTTCTATTGTGAATGGGTATTGTAGATTT 80 GAATCACCAAACAAAATGTTACGAATAAGAACTCAACACCCATTAATCTCTATTGTGAATGGGATACTGGTTGATCT ATG
${ }^{100}$ GCCAGCCCCCTCTAATATTAGTTATTATTGGAATTTCGGTTCTTTGTTAGGACTTTGTTTAGCTATTCAATTGATTACCGGAATAT 172 ACCAGC CCCTTCTAATATTAGTTATTACTGGAATTTTGGTTCTTTGTTAGGACTTTGTTTAGCTATTCAATTGATTACTGGAATAT 172 GCCGGCCCCTTCTAATATAAGTTATTTATGGAATTTTGGTTCTTTATTAGGGGCTTGTTTAGTTGTTCAATTGATTACCGGAATAT 166 GCCCGCCCCGTCTAATATTAGTTATTTATGGAATTTTGGTTCTTTGTTAGGGGCTTGTTTAGTTATTCAGTTGATTACCGGAATAT 148 ACCAGCTCCTTCTAATATTAGTTATTACTGGAATTTTGGTTCTTTGTTAGGACTTTGTTTAACTATTCAATTGATTACCGGAATAT 166 ACCAGCTCCTTCTAATATTAGTTATTACTGGAATTTTGGTTCTTTGTTAGGACTTTGTTTAACTATTCAATTGATTACCGGAAATAT 148 ACCAGCTCCTTCTAATATTAGTTATTACTGGAATTTTGGTTCTTTGTTAGGACTTTGTTTAACTATTCAATTGATTACCGGAAATAT 148 ACCAGCTCCTTCTAATATTAGTTATTACTGGAATTTTGGTTCTTTGTTAGGACTTTGTTTAACTATTCAATTGATTACCGGAATAT 14 166 CCCATCCCCATCTAACATTAGTTATTTATGGAATTTTGGTTCTTTGTTAGGGGCTTGTTTAGTTATTCAATTAATTACCGGAATAT 148 GCCGGCTCCTTCTAA TATAAGTTATTTCTGGAACTTTGGTTCTTTATTAGGAGCTTGTTTAGTTATTCAATTGATTACCGGAATAT 166 ACCAGCCCCCTCTAATATTAATTATTACTGGAATTTTGGTTCTTTGTTAGGACTTTGTTTAGCTATTCAATTGATCACCGGAATAT 148 GCCAGCCCCTTCTAATATTAGTTATTACTGGAATTTTGGTTCTTTGTTAGGACTTTGTTTAGCTATTCAATTAATTACCGGAATAT 148 GCCAGCCCCCTCTAATATTAGTTATTACTGGAATTTTGGTTCTTTGTTAGGGCTTTGTTTAGCTATTCAGTTGATTACCGGAATAT 148 GCCGGCCCCGACAAATATAAGTTATTTATGGAATTACGGTTCTTTGTTAGGGACTTGTTTAGGTATTCAGTTGATTACCGGAATAT 166 GCCAGCCCCTTCTAATATTAGTTATTTATGGAATTTTGGTTCTTTATTAGGGGCTTGTTTAGCTATTCAATTGATTACCGGAATAT 16 GCCGACCCCGTCTAATATTAGTTATTTGTGGAATTTTGGTTCTTTGCTAGGGACTTGTTTAGGTCTTCAGTTGATTACCGGAATAT 166 GCCGACCCCGTCTAATATTAGTTATTTGTGGAATTTTGGTTCTTTGCTAGGGACTTGTTTAGGTCTTCAGTTGATTACCGGAATAT 166 GCCGACCCCGTCTAATATTAGTTATTTATGGAATTTTGGTTCTTTGTTAGGAGCCTGTTTGGGTATTCAGTTGATTACCGGAATAT 166 GCCGGCCCCGTCTAATATTAGTTATTTATGGAATTTTGGTTCTTTGTTAGGAACCTGTTTGGGTATTCAGTTGATTACCGGAATAT 166 GCCTGCCCCTTCTAATATTAGTTATTTATGGAATTTTGGTTCTCTGTTAGGAACTTGTTTAGTTATTCAATTGATTACCGGAATAT 166 ACCGGCCCCCACTAATATTAGTTATTTATGGAATTTTGGTTCTTTGTTAGGAGCTTGTTTAGTTATTCAATTGATGACTGGAATAT 166 ACCAGCTCCCTCTAATATTAGTTATTTATGGAATTTTGGGTCTTTGTTAGGAGCTTGTTTAGITATTCAATTGATGACTGGAATAT 166 GCCAGCCCCTTCTAATATTAGTTATTTATGGAATTTTGGTTCTTTGTTAGGACCTTGTTTAGCTATTCAATTGATTACCGGAATAT

alcyonium_digitatum_co
mnoa_resedaeformis_co sinularia_peculiaris_cob narella_hawaiinensis_co paraminabea_aldersladel_co dendronephthya_castanea_ dendronephthya__gigantea_ dendronephthya_mollis_ junceella_fragilis co keratoisidinae_co echinogorgia_complexa_co pseudopterogorgia_bipinnata_ sibagogorgia cauliflora acanella_eburnea_co corallium_astinum_co corallium - katius_co corallium_rubrum-co paracorallium japonicum_co heliopora_coerulea_co renilla_ muelleri_co

Consensu
alcyonium_digitatum_cob sinularia_peculiaris_co narella_hawaiinensis_co paraminabea_aldersladei_ scleronephthya_gracillimum_co
dendronephthya_ castanea dendronephthya_castanea_
dendronephthya_ gigantea dendronephthya_mollis_co junya_suensoni_co junceella_fragilis_co
keratoísidinae_co hinogorgia_complexa_c euplexaura_crassa_co pseudopterogorgia_bipinnata_c acanolla cauliflora_ areum asbestinum corallium_elatius_co corallium_konojoi_co corallium_rubrum_cob paracorallium_japonicum_co heliopora_coerulea_co
stylatula_elongata_co renilla_muelleri_co
\qquad
Conservation nnoa_resedaeformis -cob sinularia_peculiaris_co arella_hawainensis_cob paraminabéa_aldersladei_co scleronephthya_gracillimum_cob
dendronephthya dendronephthya giganteadendronephthya mollis ${ }^{-}$ dendronephthya suensoni cob junceella fragilis co keratoisidinae_cob euplexaura_crassa_co pseudopterogorgia_bipinnata_co sibagogorgia_cauliflora_co acanella_eburnea_cob briareum_asbestinum_cob
corallium elatius corallium Konojoi-co corallium_rubrum_cob paracorallium japonicum cob heliopora_coerulea-cob stylatula_elongata_cob renilla_muelleri_cob

Conservation
alcyonium_digitatum_cob primnoa_resedaeformis_co
sinularia peculiaris narella hawainensis paraminabéa_aldersladei_co cleronephthya_gracillimum cob dendronephthya_castanea_cob dendronephthya_gigantea_cob dendronephthya suensoni-co junceella_fragilis_cob keratoisidinae_cob
echinogorgia_complexa_co euplexaura_crassa_co pseudopterogorgia_bipinnata_c acanella_eburnea_ briareum_asbestinum_cob corallium - konojoi_ corallium_rubrum_cob paracorallium_japonicum_cob heliopora_coerulea_co stylatula_elongata_co rilla_muelleri_cob

Consensus

 ATACTAGTAAATTAAGAGCTTTAACATAGTAAGTAGAGCTTTAGGTAAAAAATAGCATATATTTGGGTTTTTAGTAGCTGATTTTATTCTATTAACT ATACTAGTAAATTAAGAGCTTTAACATTTAGACCTTTAGGTAAAATAGCATTTTGGTTTTTAGTAGCTGATTTTATTCTATTAACC 1032 ATACTAGTAAATTAAGAGCCCTGACATTTAGACCTTTAGGTAAAATAGCATTTTGGTTTTTAGTAGCTGATTTTTTACTATTAACC 1008 ATACTAGTAAATTGAGAGCTTTAACGTTTAGGCCTTTAGGTAAAATAGCATTTTGGTTTTAGTAGCTGATTTTATACTATTAACC ATACTAGTAAATTGAGAGCTTTAACGTTTAGGCCTTTAGGTAAAATAGCATTTTGGTTTTTAGTGGCTGATTTTATACTATTAACC ATACTAGTAAATTGAGAGCTTTAACGTTTAGGCCTTTAGGTAAAATAGCATTTTGGTTTTTAGTGGCTGATTTTATACTATTAACC ATACTAGTAAAATAAGAGCCCCTAACATTTAGGCCTTTGGGTAAAATAGCATTTTGGTTTTTAGCAGCTGATTTTATAATTATTAACC ATACTAGTAAATTAAGAGCTTTAACATTTAGGCCTTTAGCCAAAATAGCATTTTGGTTTTTAGTAGCTGATTTTGTATTATTAACT ATACTAGTAAATTAAGAGCTTTAACATTTAGGCCTTTAGGTAAAATAGCATTTTGGTTTTTAGTAGCTGATTTTGTGTTATTAACC ATACCAGTAAATTAAGAGCCCTAACATTTAGACCTTTAGGTAAAAATAGCATTTTGGTTTTTAGTAGCTGATTTTATACTATTAACC ATACTAGTAAATTAAGAGCCCTAACATTTAGACCTTTAGGAAAACTAGCATTTTGGTTTTTAATAGCTGATTTTATACTATTAACC ATACTAGTAAATTAAGAGCCCTAACATTTAGACCTTTAGGTAAAAATAGCAATTTTGGTTTTTAGTAGCTGATTTTATTCTATTAACC ATACTAGTAAGTTAAGAGCCCTAACATTTAGACCTTTAGGTAAGATAGCATTTTGGTTTTTAGTAGCCGATTTTATACTATTAAC ATACTAGTAAATTGAGAGCCCTAACATTTAGACCTTTAGGAAAAATGGCATTTTGGTTTTTAATAGCTGATTTTATGTTATTAACC ATACTAGTAAATTAAGAGCCCCTAACAATTTAGGCCTTTGGGTAAAATGGCATTTTGGTTTTTAGTGGCTGACTTTATATTATTAACC ATACTAGTAAATTAAGAGCCCTAACATTTAGACCTTTAGGTAAAATAGCATTTTGGTTTTTAGTAGCTGATTTTATACTATTAACC
1.040
1.060
1.080
${ }^{1.100}$
TGGTTAGGAGCTAATGCAGTAGAGGAGCCGTATATTATGATTGGTCAATTTGCTTCTGTATACTACTTTTGCTACTTCTTAGTATT 1118 GGTTAGGAGCTAATCCAGTTGAGGAACCTTATGTTATGATTGGTCAATTTGCTTCTTTATTCTACTTTTGCTACTTCTTAGTATT 1118 TGGTTAGGAGCCAACCCAGTAGAGGAACCTTACGTTATGGTCGGTCAATTTGCTGCCTTATTCTACTTTATTTACTTCTTAGTATT 1112 TGGTTAGGGGCTAACCCAGTAGAGGAACCTTACGTTATGGTTGGCCAATTTGCTTCCTTATTCTACTTTTGTTACTTCTTATTATT 1094 TGGTTGGGGGCTAATCCAGTAGAGGAACCTTATGTTATGGTTGGACAATTTGCTTCTGTATTCTACTTTACCTACTTTTTATTATT 1112 TGGTTGGGGGCCAATCCAGTAGAGGAGCCTTATGTTATGGTTGGTCAATTTGCTTCTATATTTTACTTTACCTACTTTTTATTGTT 1094 TGGTTGGGGGCCAATCCAGTAGAGGAGCCTTATGTTATGGTTGGTCAATTTGCTTCTATATTTTACTTTACCTACTTTTTATTGTT 1094 TGGTTGGGGGCCAATCCAGTAGAGGAGCCTTATGTTATGGTTGGTCAATTTGCTTCTATATTTTACTTTACCTACTTTTTATTGTT 1112 TGGTTAGGA GCCAACCCAGTAGAGGAGCCTTACATTGTGATTGGTCAATTTGCTTCTTTATTCTACTTTTGTTACTTCTTATTATT 1094 TGGTTAGGAGCCAATCCAGTAGAGGAACCTTACGTTATGGTCGGTCAATTTGCTTCCTTATTATACTTTTTTTACTTCTTAGTATT 1112 GGTTAGGAGCTAACCCAGTTGAGGAACCATACATTATGATTGGGCAATTTGCTTCTATATTTTACTTTAGCTACTTTTTATTATT 1094 GGCTAGGGGCTAATCCAGTAGAGGAGCCTTATGTTATGATTGGTCAATTTGCATCTATATTCTACTTTTGCTACTTCTTAGTATT 1094 TGGTTAGGGGCTAATCCAGTAGAGGAACCTTATGTTATGGTTGGTCAATTTGCTTCTTTATTCTACTTTTTCTACTTCTTAATATT 1094 TGGTTAGGAGCTAACCCAGTAGAGGAACCTTACGTTATGGTCGGCCAATTTGCTTCCGTATTCTACTTTTGTTACTTTTTATTATT 1112 GGTTAGGA GCCAATCCAGTAGAGGAACCTTACGTTATGGTCGGTCAATTTGCTTCCTTATTATACTTTTTTTACTTCTTAGTATT 1112 TGGATAGGAGCTAACCCAGTAGAGGAACCTTACGTTTTGATCGGTCAATTTGCTTCCATGTTCTACTTTTGTTACTTCCTATTACT 1094 GGGTTAGGAGCTAACCCGGTAGAGGAACCTTACGTTATGGTCGGCCAATTTGCTTCCGTATTCTACTTTTGTTACTTTTTATTATT 1112 TGGTTAGGAGCTAACCCGGTAGAGGAACCTTACGTTATGGTCGGCCAATTTGCTTCCGTATTCTACTTTTGTTACTTTTTATTATT 1112 TGGTTAGGAGCTAACCCGGTAGAGGAACCTTACGTTATGGTCGGCCAATTTGCTTCCGTATTCTACTTTTGTTACTTTTTATTATT 1112 TGGTTGGGAGCTAACCCAGTAGAGGAGCCTTATATTATGATCGGTCAATTTGCTTCCGTATTCTACTTTTGTTATTTCTTATTATT 1112 TGGTTAGGAGCCAACCCAGTAGAGGAGCCTTACGTTGTGGTAGGCCAATTTGCTTCCATTTTATACTTTGGTTACTTCTTATTATT 1112 TGGTTAGGAGCCAACCCAGTAGAGGAACCTTACGTTATGATCGGCCAATTTGCTTCTGTTTTCTACTTTTGTTACTTCTTATTATT 1112 TGGTTAGGAGCTAACCCAGTAGAGGAACCTTACGTTATGGTTGGTCAATTTGCTTCTGTATTCTACTTTTGTTACTTCTTATTATT
 GATCCCCTTGTTAGGGTGGGTAGAAACCAAATTGCTCCGCA- \qquad GGTCCCCTTGTTAGGTTGGGTAGAAACCAAAATTGCTTCGTA
AGTTCCTCTGTTAGGTTGGGTAGAAAACTACCTCATAAGTAGCCGCCCTCCTTTAATCTCGTGTTATAAA

TGAAGTAA 1167 AATCCCCCTGTTAGGTTGGGTAGAAAA TTATTTACT
AATCCCCCTGTTAGGTTGGGTAGAAAATTAATTTACT
AATCCCCCTGTTAGGTTGGGTAGAAAATTA TGAAGTAG 1167 TAAAGTAG 1167 -----TAG 1167 -GAAATAG 1167

AGTGCCCCTATTAGGTTGGGCAGAAACCAAGTTGCTCCGGA GAAATAG 1155

ATCCCCTTGTTAGGGTGGGTAGAAACCAAATTGCTCCGGA gaAatag 1137

GGTACCTCTGTTAGGTTGGGTAGAAAAATTATTTACT-•-1.-
GATCCCCTTGTTAGGCTGGGTAGAAACCAAATTACTCCGTA TAGAGTAG 1143

解 1143 AATTCCTCTATTAGGTTGGGCAGAAACCAAATTGCTTCGGA TAAAGTAG 1161 AATTCCCCTGTTAGGGTGGATAGAAAA TTATTTACTAA-TAACCCCC tantag 1143 AATTCCCCTGTTAGGGTGGATAGAAAATTATTTACTAA -TAACCCCC - ... 1161 AATTCCCCTGTTAGGGTGGATAGAAAATTATTTACTAA-TAACCCCCCAAAATTACAAAGCTCTTTTATACAATCTCTACTAA 1194 AATTCCCCTGTTAGGGTGGATAGAAAA TTATTTACTAA -TAACCCCCCAAAATTACAAAGCTCTTTTATACAATCTCTACTAA 1194
 TGAAGTAG

Rns gene

ald
alcyonium_digitatum_rns C-N

Rnl gene

alcyonium_digitatum_rn mnoa_resedaeformis rn sinularia_peculiaris_rn narella_hawaiinensis_rn cleronephthya_gracillimum rn dendronephthya_castanea_rn endronephthya_gigantea_rn dendronephthya_mollis_rn junceella_fragilis rnl keratoisidiñae_rnl_rev echinogorgia_complexa_rn rogorgia__inina_rn pseudopterogorgia_bipinnata_rn acanella_eburnea_rnl_rev briareum_asbestinum rn corallium_elatius_rn corallium_rubrum_rnl_rev paracorllium_japonicum_rnl_re stylatula_elongata_rnl
renilla_muelleri_rnl
Consensus
alcyonium_digitatum_rn
primnoa_resedaeformis_rn sinularia_peculiaris_rn
narella_hawaiinensis rnl raminabea_aldersladei_rn sleronephthya_gracillimum_rnl dendronephthya_castanea_rn dendronephthya_mollis_rn dendronephthya_mollis_rn junceella fragilis_rn
keratoisidiñae $r n 1$ hinogorgia_complexa_rn euplexaura_crassa_rn pseudopterogorgia_bipinnata_rn
sibagogorgia_cauliflora_rn
biareum_asbestinum_rnl corallium konatins_rn corallium rubrum rnl rev paracorllium japonicum rnl_rev heliopora_coerulea_rn stylatula_elongata_rn
renilla_muelleri_rnl
Conservation
alcyonium_digitatum_rnl rimnoa_resedaeformis_rnl narellaria_peculiaris_rn narella_hawaiinensis_rn paraminabea_aldersladei_rn dendronephthya_castanea-rnl dendronephthya gigantea-rn dendronephthya_mollis_rn dendronephthya_suensoni_rn
junceella_fragilis_rn inogorgia complexa_rev euplexaura_crassa_rn pseudopterogorgia_bipinnata_rn acanogorgia_cauliflora_rn
briareum_asbestinum_rn corallium_elatius_rnl corallium_rubrum rnl ${ }^{\text {rev }}$ paracorllium japonicum rev heliopora_coerulea_rnl
styatula_elongata_rn
renilla_muelleri_rn
Consensus
alcyonium_digitatum_rnl
mnoa_resedaeformis_rnl
sinularia_peculiaris_rn raminab_hawainensis_rnl paraminabea_aldersladei_rnl
cleronephthya_gracillimum_rnl dendronephthya castanea-rnl dendronephthya_gigantea_rnl dendronephthya_mollis_rnl dendronephthya_suensoni_rnl
junceella fragilis_rnl keratoisidinae_rnl_rev echinogorgia_complexa_rnl
euplexaura_crassa_rnl pseudopterogorgia_bipinnata_rrl acanella_eburnea_rnl_rev sibagogorgia_cauliffora_rnl briareum_as̄bestinum_rnl corallium_elatius_rnl
corallium_konojoi rnl corallium_rubrum_rnl_rev paracorlium_japonicum_rnl_rev heliopora_coerulea_rnl stylatula_elongata_rn

180
${ }^{200}$
1
240
1 AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAGAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTTAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTTAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTTAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGGTGATTGGACATCTAGACTAAACCCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGGTGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGGTGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGGTGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGGTGATTGGACATCTAGACTAAACCCCGACAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTATCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGATACCTATAGAGAAAGTACCGTGAGGGAAAGA AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA
AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTAAGGGAAAGA AATTGTCTCAAACAGATAATTAAGATGATTGGACATCTAGACTAAACCCCGATAGACACCTATAGAGAAAGTACCGTGAGGGAAAGA

360
${ }^{400}$
tat
TGAAAGCAAGAGAA-AAACTCGTCAGTCAAAT-TACCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG TGAAAGCAAGAGAA - AAACTCGTCAGTCAAAT-TACCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTAT
 TGATAGCAAGAAGACAAACTCGTTAGTCAAATTTTCCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG
TGATAGCAAGA---CAAACTCGTTAGTCAAATTTTCCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG TGATAGCAAGA-- CAAACTCGTTAGTCAAATTTTCCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG TGATAGCAAGA-- CAAACTCGTTAGTCAAATTTTCCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG TGATAGCAAGA---CAAACTCGTTAGTCAAATTTTCCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG
TGAAAGCAAGGGA--AAACTCGTCAGTCAAATCT-CCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG TGAAAGCAAGGGA--AAACTCGTCAGTCAAATCT-CCCGAAACCAAAGTGATCTAACCATGGCCAGGTAGCTATG--TGAAAGCAAGAGAA-AA-CTCGTCAGTCAAATTT-CCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG-TGAAAGCAAGAGAA - AAACTCGTCAGTCAAATTC-CCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG TGAAAGCAAGGGA--AAACTCGTCAGTCAAATCT-CCCGAAACCAAGTGATCTAACCATGGCCAGGTAGGAGTAGTCTTTAGACAG TGAAAGCAAGGGAA - AAACCCGTCAGTCAAATCT-CCCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTAG--CT-.....-ATGTGAAAGCAAGGGAA - AAACTCGTCAGTCAAATCT GAAAGCAAGGGAA-AAACTCGTCAGTCAAATCT TGAAAGCAAGGGGAA -AAACTCGTCAGTCAAATC CTC TGAAAAGCAAGGGAA TGAAAGCAAGGGAA GAAAGCAAGAGAA AAACTCGTCAGTCAAATTC TGAAAGCAAGAGAA - AAACTCGTTAGTCAAATCT-CCCGAAACCAAGTGATCTAACCATGGCCAGGTAGGAGTATTTACCATA-
TGAAAGCAAGAGAA - AAACTCGTCAGTCAAATCT- C CCGAAACCAAGTGATCTAACCATGGCCAGGTAGCTATG -.....................
 - CTGAC CGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATA--GC CTGACCGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC TGCTGACCGAACCAGTGATTGTGGCAAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAATCGAACTTGGATATAGC GCTGACCGAACCAGTGATTGTGGCAAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC - CTGAC CGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC - CTGACCGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC CTGAC CGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC CTGAC CGAACCAGT GATTGT GGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC CTGAC CGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGTGGTGAAATACTAGTCGAACTTGGATATAGC CTGAC CGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATTCTAGTCGAACTTGGATATAGC CTGAC CGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATA--GC CTGACCGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC GAAACTCCTGACCGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAATCGAACTTGGATATAGC -- CTGCTGACCGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC CTGCTGACCGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTAAAAATGCTAGTCGAACTTGGATATAGC TGCTGACCGAACCAGT GATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC CTGCTGAC CGAACCAGTGATTGTGGCAAAAATCTTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC CTGAC CGAACCAGT GATTGT GGCAAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC CTCCTGACCGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGTGGTGAAATACTA GTCGAACTTGGATATAGC TCCTGAC CGA ACCAGT GATTGT GGCAAAAAATCTT GGATGA GCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC

- -CTGAC CGAACCAGTGATTGTGGCAAAAATCTTGGATGAGCTGTGGTTAGCGGTGAAATACTAGTCGAACTTGGATATAGC

```
    alcyonium_digitatum_rnl
    hoa_resedaeformis_rn
    sinularia_peculiaris_rn
    araminabéa aldersladei_rn
    scleronephthya_gracillimum_rn
    dendronephthya_castanea_rn
    dendronephthya_gigantea_rn
            junceella fragilis rnl
            keratoisidinae_rnl_rev
euplexaura_crassa_rn
    terogorgia_bipinnata_rnl
    acanella_eburnea_rnl_rev
        riareum__cauliffora_rnl
            corallium elatius_rn
            corallium_konojoi_rnl
    corallium_rubrum_rnl_rev
            stylatula-elongata_rn
                                    Consensus
                                    Conservation
    alcyonium_digitatum_rnl
        sinularia peculiaris_rn
    narella_hawaiinensis_rnl
    paraminabea_aldersladei_rnl
    eronephtya_gracillimum_rn
    dendronephthya_gigantea_rn
    dendronephthya_mollis_rnl
            putha_suensoni_rnl
            keratoisidinae rnl revilis_rn/
        _
        euplexaura_crassa_rn
pseudopterogorgia_bipinnata_m
    canegorgia cauliflora-
    briareum asbestinum
        corallium_elatius_rn
        orlium_ru_konojoi_rn
        racorllium japonicum rnI-rev
            heliopora_coerulea_rn
            styatula_elongata_rnl
                    Consensus
        alcyonium_digitatum rnl
        primnoa resedaeformis
            sinularia_peculiaris_rn
            narella_hawaiinensis_rn
        paraminabea_aldersladei_rn
        cleronephthya_gracillimum_rn
    dendronephthya_castanea_rn
        dendronephthya_gigantea_rn
    dendronephthya_mollis_rnl
            junceella_fragilis rnl
            keratoisidinae rnl
        echinogorgia complexa_rn
            euplexaura crassa_rn
pseudopterogorgia_bipinnata_rn
    acanella_eburnea_rnl_rev
    sibagogorgia_cauliflora__rn
            meum_asbestinum_rn
            corallium_elatius_rnl
            corallium_konojoi_rn
        aracorllium japonicum_rnl_rev
            heliopora_coerülea_rnl
            stylatula elongata_rn
            renilla_muelleri_rnl
                        Consensus
                        Conservation
alcyonium_digitatum_rnl primnoa_resedaeformis_rn sinularia_peculiaris_rn raminabea_alderslade-rn paraminabea_aldersladei_rnl
cleronephthya_gracillimum_rnl dendronephthya_castanea_rnl dendronephthya__gigantea_rnl dendronephthya_mollis_rnl dendronephthya_suensoni_rnl
junceella fragilis_rnl keratoisidinae_rnl_rev echinogorgia_complexa_rnl pseudopterogorgia bipinnata_rn acanella_eburnea_rnl_rev sibagogorgia_cauliflora_rnl briareum_assestinum_rnl
corallium_elatius_rnl corallium_konojoi_rn
corallium_rubrum rnl
rev paracorllium japonicum_rnl_rev
heliopora_coerulea_-rn
stylatula_-elongata_rnl
renilla_muelleri_rnl
Consensus
```


AGACTATGGCGATAAGGCCTCTAGTCAAGAGGG-TAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCTCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGC CTCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG
AGACTATGGCGATAAGGC CCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGACAAGGC CCCTAGTCAAGAGGGGTAAGCCCTAACCAGTAATTAAAGTCACTAATACAGATTAAGTGTGTAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGGAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGGAAGCCCCAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGGAAGCCCCAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGGAAGCCCCAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAAATTAAAGTCACTAAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGACAAGGCCTTTAGTCAAAAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAAATACAGATTAAGTGTATAAGGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGA AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAGGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG
AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCGCTAATACAGATTTAAGTGTATAAAGAGG AGA CTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG AGACTATGGCGATAAGGCCCCTAGTCAAGAGGGGTAAGCCCTAACCAGAAATTAAAGTCACTAATACAGATTAAGTGTATAAAGAGG


```
GTTCAACTTAGACAA \({ }_{1}^{720} \quad{ }_{1}^{740}\) 1 ACAGGAA 673 ACAGGAA 679 ACAGGAA 699
```



``` GCTCAACTTAGACAA
GTCCAACTTAAACAA acaggaa GTAGGCTTGGAAACAGCCATCTGTACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAATC 766 GTAGGCTTGGAAACAGCCATCTGTACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAATC 766 GTAGGCTTGGAAACAGCCCATCTGCACAGGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAAATTAAGGGCGGCTAAATC 786 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGGACCTCTAATAATTAGGGCGGCTAAATC 769 GTA GGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCCAGGGACCTCTAATAATTAAGGCGGCTAAATC 831 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCCAGGGACCTCTAATAATTAAGGCGGCTAAATC 766 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCCAGGGACCTCTAATAATTAAGGCGGCTAAATC 766 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCCAGGGACCTCTAATAATTAAGGCGGCTAAATC 766 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAGTC 766 GTAGGCTCGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAG-CGGCTAAATC 777 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAGGTGGCTAAATC 765 GTA GGCTTGGAAACA GCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAGCTCTAAGAATTAAGGTGGCTAAATC 766 GTAGGCTCGGAAACAGCCACCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAATC 794 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATAAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAATC 778 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAATC 774 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATAAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAATC 782俗 TAGGC GGAAACAGCCATCTGCACA GGAAAACGTAAAAGTTCACTGAATAAGCTA GGAAACTCTAAAAATTAAGGCGGCTAAATC 782 TAGGCTCGAAA GTAGGCTTGGAAACCATCTGCAGAAACTV TAGGCTCGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGTATGAGCTAGAAAAATCTAAGAATTAAGACGGCTAAATC 778 GTAGGCTTGGAAACAGCCATCTGCACAGGAAAACGTAAAAGTTCACTGAATGAGCTAGGAAACTCTAAGAATTAAGGCGGCTAAATC
```

${ }^{830}{ }_{900}^{920}$
alcyonium_digitatum_rn sinularia_peculiaris_rn narella_hawaiinensis_rn leraminabea_aldersladei_rn dendronephthya_castanea_rnl dendronephthya_gigantea_rn dendronephthya_mollis_rn junceella_fragilis rnl junceelia_-_ragilis_rn
keratoisidinae rnl rev
echinogorgia_complexa_rnl
pseudoterpexaura_crassa_rnl acanella eburneata_rnl
sibagogorgia_cauliflorā rnl corallium_elatius_rnl corallium_-konojoi-rn coralium_robrum-rnl-rev
heliopora_coerulea_rnl stylatula_elongata_rnl
renilla_muelleri_rnl

Consensus
Conservation
alcyonium_digitatum_rn primnoa_resedaeformis_rnl
sinularia peculiaris rnl narella_hawaiinensis_rnl araminabea_aldersladei_rnl cleronephthya_gracillimum_rn dendronephthya_castanea_rn dendronephthya mollis \quad rn dendronephthya_suensoni_rnl junceella_fragilis_rni chinogorgia complexa_rn euplexaura_crassa_rn acanella_eburnea_rnl_rev
briareumga_cauliflora_
corallium_elatius_rn
corallium_rubrum_rnl
paracorllium japonicum_rnl_rev heliopora_coerulea_rnl
stylatula-elongata-rn stylatula_elongata_rn
renilla_muelleri_rnl

Consensus Conservation
alcyonium digitatum rnl primnoa_resedaeformis_rnl
sinularia_peculiaris rnl narella_hawaiinensis_rnl paraminabea_aldersladei_rn| cleronephthya_gracillimum_rnl dendronephthya_castanea_rrnl dendronephthya_gigantea_rrn dendronephthya_mollis_rnl
dendronephthya suensoni
junceella_ fragilis rnl
keratoisidinae rnl rev echinogorgia complexa rnl euplexaura_crassa_rnl pseudopterogorgia_bipinnata_rn acanella_eburnea_rnl_rev sibagogorgia_cauliflora_rnl briareum_asbestinum_rnl corallium_elatius_rnl corallium rubrum_rn_rev Corallium_rubrum_rnl_rev heliopora coerūleă rnl stylatula elongata- rnl renilla_muelleri_rnl Consensus Conservation

1
TATCAACTGGCTTGGTAGTAGAGCGTTC
831
837
853 TGTAACTGAAATTCTGGAAGCCAGATGGCAACCGTAAGGAAG-.......................................AACTGGCTTGGTAGTAGAGCGTTCT CACCAACTGGCTTGGTA GTAGAGCGTTCT CATTAACTGGCTTGGTAGTAGAGCGTTCT CATCAACTGGCTTGTTAGTAGAGCGTTCT CATCAACTGGCTTGTTAGTAGAGCGTTCT CATCAACTGGCTTGTTAGTAGAGCGTTCT -TCAACTGGCTTGTTAGTAGAGCGTTCT CATTAACTGGCTTGGTAGTAGAGCGTTCT CATCAACTGGCTTGGTAGTAGAGCGTTCT CATTAACTGGCTTGGTA GTAGAGCGTTCT CGTCAACTGGCTTGGTAGTAGAGCGTTCT TATCAATTGGCTTGGTAGTAGAGCGTTCT CGTCAACTGGCTTGGTAGTAGAGCGTTCT CGTCAACTGGCTTGGTA GTAGAGCGTTCT CGTCAACTGGCTTGGTAGTAGAGCGTTCT CTTTAATTGGCTTGGTAGTAGAGCGTTCT CATCAACTGGCTTGGTAGTAGAGCGTTCT
AGGCACGATACGTGCACACCTCGTGAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTACAAGATTCATTCCCAAATAAA-TGTAAGCACGGTACGTGCACACCTCGTGAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTACAAGATTCATTCCCAAATAAAT GTA --GTA.-
GTA.
GTAGG CTATACACCTCGTGAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTACAAGATTCACTCCCAAATAAA GTAGGCACGATATGTGCGCACCTCGTGAGATAAACAGAAAGTGATAATGCAGGCATGAGTAGTACAAGATTTACTCCCAAAATAAAATAT GTAGGCACGATATGTGCGCACCTTGTAAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTACAAGATTAACTCCCAAAATAAATAT GTAGGCACGATATGTGCGCACCTTTGTAAGATAAACAGAAAGTGATAATGCAGGCATGAGTAGTACAAAGATTAACTCCCAAAATAAAATAT GTA
GTA
GTA TGCATCCACCTCGTGAGATAAACAGAAGTGACAATGCAGGCATGAGTAGTACAGGATTCACTCCCAAAATAAA
\qquad信 TAGGCACGATATGTGCGCACCTCGTGAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTACAAGATICACTCCCAAATAAATTG GTAGGCACGATACGTGCGCACCTCGTGAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTACAAAGATTCACTCCCAAGATAAAACAC GTA…-- TGTATACACCTCGTGAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTATAAGATTCACTCCCAAATAAAA
 TGTACACACCTCGTGAGACAAACAGAAGTGATAATGCAGGCATGAGTAGTACAGGATTTACTCCCAGATAAA TGTACACACCTCGTGAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTACAGGATTTACTCCCAAATAAA GACACGGTACGTGCGCACCTCGTGAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTATAAGATTCACTCCCAAGTAAAA GTA. CACATACACCTCGTGAGATAAACAGAAGTGATAATGCAGGCATGAGTAGTACAAGATTCACTCCCAAATGAA-

1.060

a...- tatacagcttctangggcatt A--- TATACAGCTTCTAAGGGCATT ATAGTTATACAACTTCTAAGGGCATT ATATTTATACAACTTCTAAGGGCATC ATATA ATATATATGTATACAGCTTCTAAGGACATT ata Tatatg TatacagctTctang acat ATAT ATGTTTATACAGCTTCTAAGGACATT ATATTTATACAACTTCTAAGGGCATT-.-. CAGCTTCTAAGGGCATT
ACA
ATA
ATA ATATTTATACAACTTCTAAGGGCATT atatt TatacaActTCTAAGGGCATT ATATTTATACAGCTTCTAAGGGCGTT ATATTTATACAACTTCTAAGGGCATT atattTatacaActTCTAAGGGCATT atatt Tataca acttctaagggcatt GTATTTATACAGCTTCTAAGGGCATT atGTTTATACAACTCCTAAGGGCATT atGTTTATACAACTCCTAAGGGCATTAT
atatt tatacagcttctangggcat
${ }^{1,080} \quad 1,100 \quad 1,120$
ACGCCCGATG-ATTATAATTCTTGTACCTGTTCAGGAAAAATATTATGGTACGA ACGCCCGATGGATTATAATTCTTGTACCTGTTCAGGAAAAATATTATGGTACGA 998 aCGCCCGATGGATTATAATTCTTATTCTTGTTCAGGAAAAATATTATGGTACTT 1018 ACGCCCGATGGA TTATAATTCTTGGACCTGTTCAGGAAAATTATTATAGTGCAT 1012 ACGCCCGATGGA TTATAATTCTTGTAC CTGTTCAGGAAAATTATTATAGTGCAT 1007 ATGCCCGATGGATTATAATTTTTATACCTGTTCAGGAAAAATATTATGGTACTT 997 ATGCCCGATGAATTATAATTTTTATACCTGTTCAGGAAAAATATTATGGTACTT 1067 ATGCCCGATGAA TTATAA TTTTTATACCTGTTCAGGAAAAATATTATGGTACTT 1002
ATGCCCGATGAATTATAATTTTTATACCTGTTCAGGAAAAATATTATGGTACTT 1002 ATGCCCGATGAATTATAATTTTTATACCTGTTCAGGAAAAATATTATGGTACTT 1002 ATGCCCGATGAATTATAATTTTTATACCTGTTCAGGAAAAATATTATGGTACTT 1000 - GCCCGATGGATTATAATTCTTGTACCTGTTCAGGAAAATTATTATAGTGCAT 968 ACGCCCGATGGATTATAATTCTTGAACCTGTTCAGGAAAAATATTATGGTACTT 988 --GCCCGATGGATTATAATTCTTGTACCTATTCAGGAAAAATATTATGGTACTT 972 ACGCCCGATGAATTATAATTCTTGTACCTGTTCAGGAAAAATATTATGGTACGA 992 ACGCCCGATGAA TTATAATTCTTGTACCGGTTCAGGAAAATTATTATAGTGCAT 994 ACGCCCGATGGATTATAATTCTTGTACCTGTTCGGGAAAATTATTATAGTGCAT 1003 ACGCCCGATGGA TTATAATTCTTGTACCTGTTCAGGAAAATTATTATAGTACGT 985 ACGCCCGATGGATTATAATTCTTGTACCTGTTCGGGAAAATTATTATAGTGCAT 1007 ACGCCCGATGAATTATAATTCCTGTACCTGTTCGGGAAAACTTTTATAGTGCAT ACGCCCGATGAATTATAATTCCTGTACCTGTTCGGGAAAACTTTTATAGTGCAT 1007 ACGCCCGATGGATTATAATTCTTGTAACTACCCAGGAAAATTATTATAGTCCGT 983 GCGCCCGATGGATTATAATTCTTGTACCTGTTCAGGAAAATTATTATAGTGCAT 1004 TGTGCCCGATGGGTTATAATTCTTGTACCTGTTCAGGAAAATTATTATAGTGCAT 1007 GCGCCCGATGGGTTATAA TTCTTGTACCTGTTCAGGAAAATTATTATAGTGCAT
$\begin{array}{cc}1,180 & 1.200\end{array}$
CCTTTAACTGTTATTTATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1054 CCTTCAACTGTTATTTATGGGACTTATATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1062 CCTTCAACTGTTATTTATGGGACTTATATCTAGGCATAATTTCTCTTAAGGGACTCGGCA 1082 CCTTCTATTGTTACTTATGGGACTTAGATCTAGGCATAATTCCTCTTAAGGAACTTGGCA 1071 CCTTCAACTGTTATTTATGGGATTTATATCTAGGCATAATTTCTCTTAAGGAACTTGGCA 1061 CCTTCAACTGTTATTTATGGGATTTATATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1131 CCTTCAACTGTTATTTATGGGATTTATATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1066 CCTTCAACTGTTATTTATGGGATTTATATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1066 CCTTCAACTGTTATTTATGGGATTTATATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1064 GACTTACTTTTGATTGTTA-TTATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1039 -----GATTGTTATTTATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1028 CCTTCAACTGTTATTAATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGGAACTCGGCA 1036 CCTTTTACTGTTATTTGTGGGATTTAGATATAGGCATAATTTCTCTTAAGGAACTCGGCA 1056 CTTTCGATTGTTATTTATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1058 CCTTTTATTGTTACTTATGGGACTTATATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1067 -CCTTTTATTGTTACTTATGGGACTTATATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1067 CCTTTTATTGTTACTTATGGGACTTATATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1071 CCTTTTATTGTTACTTATGGGACTTATATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1071 CCTTTTATTGTTACTTATGGGATTTATATCTGGGCATAATTTCTCTTA GGGAACTCGGCA 1071 -CCTTTTATTGTTACTTATGGGATTTATATCTGGGCATAATTTCTCTTAGGGAACTCGGCA 1071 --CCTTCAATTGTTACTTATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1047 - -TACTTTCGATTGTTATTTATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGAACTCGGCA 1076 TACITTCGATTGTTATTTATGGGACTTAGATCTA CCTTCAATTGTTATTTATGGGACTTAGATCTAGGCATAATTTCTCTTAAGGAACTCGGCA
alcyonium_digitatum_rn primnoa_resedaeformis_rn sinularia_peculiaris_rn araminabea aldersladei-rn scleronephthya_gracillimum_rn dendronephthya_castanea_rn dendronephthya_gigante__rn
dendronephthya_mollis rn dendronephthya s junceella fragilis_rn keratoisidinae rnl-rev pseudo euplexaura_crassa pseudopterogorgia_bipinnata acanella_eburnea_rnl_-
sibagogorgia_cauliflora_
briareum_asbestinum
orallium konoio
corallium_rubrum_rnl paracorllium_japonicum_rn heliopora_coerulea stylatula_elongata_rn
renilla_muelleri_rn

Conservation
alcyonium_digitatum_rn sinularia_peculiaris
is_r paraminabea_aldersladei_rn dendronephthya_castanea_rn dendronephthya_mollis rn dendronephthya_mollis
junceella, fragilis-
keratoisidiñae rnl-
echinogorgia_complexa_r euplexaura_crassa_r pseudopterogorgia_bipinnata_
acanella_eburnea_rnl
sibagogorgia_cauliffora_
criareum_asbestinum_
corallium_elatius coralium_konojoi
corallium_rubrum_rnl_
paracorllium_japonicum_rnl_
heliopora_coerulea_r
stylatula_elongata_rn
renilla_muelleri_rnl
Consensus
alcyonium_digitatum_rn primnoa_resedaeformis_rn narella hawaiinensis_rnl araminabea_aldersladei_rn scleronephthya_gracillimum_rn dendronephthya_castanea_rn dendronephthya mollis rnl dendronephthya suensoni rnl junceella_fragilis_rn echinogorgia_complexa_rn euplexaura_crassa_rn acanella_eburnea_rnl_rev sibagogorgia_cauliflora_rn briareum_asbestinum_rnl corallium_konojoi_rnl corallium_rubrum_rnl_re paracorlium japonicum_rn_rev
stylatula elongata- rn
renilla_muelleri_rn
Consensus
onservation
alcyonium_digitatum_rn sinnoresedaeformis_rn sinularia_peculiaris_rn aminabea aldersladei cleronephthya_gracillimum_rnl dendronephthya_castanea_rn dendronephthya_gigantea_rnl dendronephthya_molis_rnl
dendronephthya suensoni rnl
junceella fragilis_rnl keratoisidinae_rnl_rev euplexaura_crassa_rnl pseudopterogorgia_bipinnata_rn acanella_eburnea rnl_rev sibagogorgia_cauliflora_rn briareum_asbestinum_rn
corallium_konojoi_rnl corallium_rubrum_rnl_rev paracorllium_japonicum_rnl_rev
heliopora_coerulea_rnl
stylatula_elongata_rnl
renilla_muelleri_rn
Consensus
Conservation

CTGAAGTATAGAGGGTGAATTCTGCCCAATGGTT 113俗 1146 TGAAGTATAGAGGGTGAATTCTGCCCAATGGT GAGATAGAGGGTGAATTCTGCCCAATGGTT GAAGTATA GAGGGT GAATTCTGC CCAATGGT TAAGTATAGGGTGAATTCTCAATGGT AAGTATAGGGGGTGAATTCTGCCCAATGGT TAAGTATAGGGGGTGAATTCTGCCCAATGGTT TGAGACATAGAGGGTGAATTCTGCCCAATGGTT GAAGTATAGAGGGTGAATTCTGCCCAATGGTT GAAGTATAGGGGGTGAATTCTGCCCAATGGT TGAAGTATAGAGGGTGAATTCTGC CCAAATGGTT GAAGTATAGAGGGTGAATTCTGCCCAATGGT TAAAGTATAGAGGGTGAATTCTGCCCAATGGTT CTGAAGTATAGAGGGTGAATTCTGCCCAATGGT CTGAAGTATAGAGGGTGAATTCTGC CCAATGGTT GAAGTATAGAGGGT GAATTCTGC CCAATGGTT
\qquad
GTATAGTGAAACTGAGGACTAACGTCTAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA 1225 GTATAGTGAAACTGAGGACTAACGTCTAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA 125
 GTACAGTGAAACTAAGTACTAACGTATAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA GTACAGTGAAACTAAGTACTAACGTATAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA GTACAGTGAAACTAAGTACTAACGTATAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAA GTATAGTGAAACTGAGACT--ACGTCTAAAGCGAAACCCACT--GATGGCCGCGT--ACTCTGAC-GTGATAA-TGTAGCACACAATAAA
GTATAGTGAAACTTAGGACTAACGTCTAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA GTATAGTGAAACTAAGGACTAACGTCTAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAAATAAA GTACAGTGAAACTAAGGACTAACGTCTAAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA
GTATAGTGAAACTGGGGACTAACGTCTAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA GTATAGTGAAACTGAGGACTAACGTCTAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA GTATAGTGAAACTGAGGACTAACGTCTAAGGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA GTATAGTGAAACTGAGGACTAACGTCTAAAGCGAAACCCAGCTAAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA GTATAGTGAAACTGAGGACTAACGTCTAAAGCGAAACCCAGCTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA
 GTATAGTGAAACTGAGGACTAACGTCTAAAGCGAAACCCAACTGAATGGCCGCGGTAACTCTGACCGTGATAATGTAGCACAATAAA

1.400

1.420

1.440
1.460

TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGATCTTACTGTCTCAAGAGAAAAGCCGA ' ${ }^{\prime}$ ' $G A A A T T A T A G T T G T A G T G 1312$ TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGAAAAGCCGATGAAATTATAGTTGTAGTG 1320 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAGTTGTAGTG 1340 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAATTGTAGTG 1335 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCAATGAAATTATAGTTGTAGTG 1328 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTTTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAGTTGTAGTG 1319 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTTTTACTGTCTCAAGAGGAAAAGCCGATGAAATTATAGTTGTAGTG 1324 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTTTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAGTTGTAGTG 1324 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTTTTACTGTCTCAAGAGGAAAGCCGAATGAAATTATAGTTGTAGTG TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAATTGTAGTG 1288 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAATTGTAGTG 1289 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCAATGAAATTATAGTTGTAGTG 1308 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAGTTGTAGTG 1293 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAGTTGTAGTG 1314 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAATTGTAGTG 1319 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGATGAAATTATAGTTGTAGTG 1331 TAGCCAGTTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGGTGAAATTATAATTGTAGTG 1329 TAGCCAGTTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCGGTGAAATTATAATTGTAGTG 1329 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCCCAAGAGAAAAGCCGATGAAATTATAATTGTAGTG 1329 TAGCCAATTAATTGTTGGCGGGTATGAATGGAATCACGAGGGTCTTACTGTCTCAAGAGGAAAGCCAATGAAATTATAATTGTAGTG 1306 TAGCCAATTAATTGTTGGCGGGTATGAATGGAACCACGAGGGTCTTACTGTCTCAAGAGAAAAGCCGATGAAATTATAATTGTAGTG 1335

 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAACTTAAAATGATCGATA-TA 1398 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAACGTTGACTTAAAATGATCGATACTA 1407 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAACTTAAAAATGATCGATACAA 1427 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAATTTAGAATGATCGATACTA 1422 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAACTTAAAAATGATCTATACTA 1415 AAGATACTACATAGACTTTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAACTCAAAATGATCGATACTA 1476 AAGATACTACATAGACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAACTCAAAAATGATCGATACTA AAGATACTACATAGACATTGTAAGACGAAAAGACCTATCGAGCTTACTGGATACCGATAGCGTTAACTCAAAATGATCGATACTA AAGATATTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAATTTAAAATGATCGATACTA 1375 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAATTTAGAATGATCGATACTA 1376 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATATCTATAGCGTTAACTTAAAATGATCGATACTA 1395 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAACTTAAAATGATCGACACTA 1380 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAACCTAAAATGATCGATACTA 1401 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAATTTAGAATGATCGATACTA 1406 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTGTCGAGCTTTACTGGATACCAATAGCGTTAATTTAGAATGATCGATACTA 1412 AGATACTACACAAACATTGTAAGACGAAAAGACCTATCGAGCTTACTGGATACCAGTAGCGTTAATTTAGAATGATCGGTACCA 1416 AAGATACTACACAAACATTGTAAGACGAAAAGACCCTGTCGAGCTTTACTGGATACCAGTAGCGTTAATTTAGAATGATCGGTACCA 1416 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTGTCGAGCTTTACTGGATACCAATAGCGTTAATTTAGAATGATCGGTACTA 1416 AAGATACTACATAAACATGTAAGACGAAAGACCCTGTCAGCTTACTGGATACCAATAGCGTTAATTAGAA TGATCGGTACTA 1416 AGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAATTTAGAATGATCGATACTA 1422 AGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAACGTTAACTTAGAATGATCGATACTA 1421 AAGATACTACATAAACATTGTAAGACGAAAAGACCCTATCGAGCTTTACTGGATACCGATAGCGTTAACTTAAAATGATCGATACTA
1.580
1.60
1.620
1.
primnoa＿resedaeformis＿rn sinularia＿peculiaris
narella＿hawaiinensis paraminabea＿aldersladei dendronephthya＿castanea＿r dendronephthya＿gigantea＿rn
dendronephthy＿＿mollis rnl dendronephthya＿molis
junceella＿fragilis
keratoisidinae rnl－rev echinogorgia＿comprexa acanella＿eburnea＿rnl＿r briareum as cauliflora
corallium elatius rn corallium＿konojoi＿rn corallium＿rubrum＿rnl＿rev
heliopora＿coerulea＿rnl
stylatula＿elongata＿rnl
sty
renilla＿muelleri＿rn
Cond
Consensus
alcyonium＿digitatum＿rnl
primnoa＿resedaeformis＿rn
sinularia＿peculiaris＿rn
narella＿hawaiinensis＿rnl paraminabea＿aldersladei＿rn dendronephthya castanea－rn dendronephthya＿＿gigantea＿rn dendronephthya＿mollis＿rn
junceella fragisi－rn
junceella＿fragilis＿rnl
keratoisidinae rnl＿rev
echinogorgia＿complexa＿rnl
euplexaura＿crassa＿rnl pseudopterogorgia＿bipinnata＿rnl
acanella＿eburnea＿rnl＿rev
ibagogorgia＿cauliflora＿rn！
briareum＿asbestinum＿rnl
corallium＿elatius＿rn
corallium＿rubrum＿rnl＿rev
paracorllium＿japonicum＿rnl rev
heliopora＿coerulea＿rnl
stylatula＿elongata＿rnl
renilla＿mulleri＿rl
Conservation
alcyonium digitatum rn primnoa resedaeformis＿rn sinularia＿peculiaris＿rnl narella＿hawaiinensis＿rn paraminabea＿aldersladei＿rnl cleronephthya＿gracillimum＿rn dendronephthya＿castanea＿rn dendronephthya＿gigantea＿rnl dendronephthya＿mollis＿rnl
dendronephthya suensoni $r n!$ dendronephthya＿suensoni＿rn
keratoisidinae rnl＿rev inogorgia＿complexa＿rn euplexaura crassa rn pseudopterogorgia＿bipinnata＿rnl acanella＿eburnea＿rn＿rev rian briareum asbestinum＿rn corallium＿elatius＿rn corallium rubrum ril rev corallium＿rubrum＿rnl－rev heliopora coerūleärn stylatula elongata rn renilla＿muelleri＿rn Consensus Conservation

 AGTATC CTAATTTTGAGTTAATAATTTTTGTTGGTAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCTT AGTATCCTAATTCTAAGTTAATAATTTTTGTTGGTCGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCTT AGTATCTAATTTAAGTTAATAATTTTGTTGGTAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGTGAGCT AGTATTCTAATTTTGAGTTAATAATTTTTGTTGGTGGGACAGTTTAGTTGGGGCGACTGCCTTTGAATAAAGAAACGAAGGCGAGCTT AGTATTCTAATTTTGAGTTAATAATTTTTGTTGGTGGGACAGTTTAGTTGGGGCGACTGC CTTTGAATAAGAAACGAAGGCGAGCTT AGTATICTAATTTTGAGTTAATAATTTTTGTTGGTGGGACAGTTTAGTTGGGGCGACTGCCTTTGAATAAGAAACGAAGGCGAGCTT AGTATCCTAATTCTAAGTTAATAATTTTTGTTGGTAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCTT AGTATC CTAATTTTAAGTTAATAATTTTTGTTGGTAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCT AGTATCCTAATTTTAAGTTAATAATTTTTGTTGGTAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCT AGTATC CTAATTCTAAGTTAATAAATTTTGTTGGTAGGACAGTTTAGTTGGGGC GACTACCTTTGAATAAGAAACGAAGGCGAGCTT AGTATTCTAATTTTAAGTTAATAATTTTTGTTGGCAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCTT AGTATTCTAATTTTAAGTTAATAATTTTTGTTGGCAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCTT AGTATC CTAATTTTAAGATAATAATTTTTGTTGGTAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCTT AGTACC CTAATTCTAAGTTAATAAATTTTGTTGGTAAGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCTT | AGTATC CTAATTTTAAGTTAATAATTTTTGTTGGTAGGACAGTTTAGTTGGGGCGACTACCTTTGAATAAGAAACGAAGGCGAGCTT | |
| :--- | :--- |
| 1.660 | 1.630 | ATGGTATACAAAGCTA－TCACATTAGCCTGACAGTGAGGGGGACATCCCTAGCTGGCACAAGGACA

ATGGTATACAAAGCTAATCACATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACAAGGACG
ATGGTATATAAAGCTAATCTCATTAGCCTGACAGTGAGGGGGGACACCCCTAGCTGGCACAAGGGAC
TTACCCACATAG
ATGGTATACAAAGCTAATCTCATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACAAGGACT
ATGGTATACAAAGCTAATCTCATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACAAGGACT
ATGGTATACAAAGCTAATCTCATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACAAGGAC
ATGGTATTAATAA－－AATCTCATTAGCCTCACAGTGAGGGGGACACCCCTAGCTGGCACAAGGACC…
ATGGTATACAAAGCTAATCTCTTTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACAAGGACT ATGGTATACAAAGCTAATCTCATTAGCCTGATAGTGAGGGGGACACCCCTAGCTGGCACAAGGACT－．．． ATGGTATTATTAA－－AATCTCATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACAAGGACTTACCCATATAG ATGGTATTATTAA－－AATCTCATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACTAGGACCTATCCGTATAG
ATGGTATTATTAA－AATCTCATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACTAGGACCTATCCGTATAG ATGGTATTATTAA－－AATCTCATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACAAGGACTTACCCAT
ATGGTATTGTTAA－AATCTCATTAGCCTGACAGTGAGGGGGACACCCCTAGCTGGCACAAGGACTTCCCCACGGTACCCACATAGTA信
GGTATTAATAA－－AATCTCATTAGCCTGACAGTGAGGGGGACACCC CTAGCTGGCACAAGGACT－．．．．．．．．．．．．．．
－ACGTCCTATGTGGGCGATAATGACCCGATATGATTGTCCAAAATAAATATCGAAAGCGAATAAA －ATGTCCTATGTGGGCGATAATGACCCGATATGATTGTCCAAAATAAATATCGAAAGCGAATAAAA 1614
1625
1645 －TATATATTATATACGTAATGGGCTCCTATGTGGGCGATAGTGACCCGATATGATTATCCAAAATAAAATATCGAAAGCGGATAAAAA 1645
1669 －ACGTCCTATGTGGGCGATAATGACCCGATATGATTGTCCAAAATAAATATCGAAAGCGAATAAAA ACATCCTATGTGGGCGATAATGACCCGATATAATTGTCCAAAATAAATATCGAAAGCGAATAAAA 1694 ACATCCTATGTGGGCGATAATGACCCGATATAATTGTCCAAAAATAAATATCGAAAGCGAATAAAA 1629 ACATCCTATGTGGGCGATAATGACCCGATATAATTGTCCAAAATAAATATCGAAAGCGGATAAAA 1627
CGCACAGCGGGGTTCTCTGTGGGCGATAGTGACCCGATATGATTATCCAAAATAAATATCGAAAGCGGATAAAA
AT－CGTAAGGG－．．－－ATGTGGGCGATAGTGACCCGATATGATTATCCAAAATAAATATCGAAAGCGGATAAAA －AGGTTCTATGTGGGCGATAATGACCCGATATGATTGTCCAAAATAAATATCGAAAGCGGATAAAA －ACGTCCTATGTGGGCGATAATGACCCGATATGATTGACCAAAATAAATATCGAAAGCGGATAAAA －ACGTCCTATGTGGGCGATAATGACCCGATATAATAGTCCAAAATAAATATCGAAAGCGGATAAAA

ITATATTATATGCGTAA

位 TAT信 TATATAATATATACGTA TATATAATATATA ACA－．．．－ACGTAATGGGTTCCTATGTGGGCGATAATGACCCGATATAATTATCCTAAATAAATATCGAAAGCGGATAAAAA 1651 TACA ．－．．．．．．．ACGTAATGGGTTCCTATGTGGGCGATAATGACCCGATATAATTATCCTAAATAAATATCGAAAGCGGATAAAA CTTATACATAGTGGGGTACGTGGGTTCCTATGTGGGCGATAATGACCCGATATGATTATCCAAAATAAATATCGAAAGCGGATAAAA GGGTTCCTATGTGGGCGATAGTGACCCGATATTATTATCCAAAATAAATATCGAAAGCGGATAAAAalcyonium＿digitatum＿rnl primnoa＿resedaeformis＿rn narella hawaiinensis rn narella＿hawaiinensis＿rn
paraminabea＿aldersladei rnl paraminabea＿adersladeI＿rnd
cleronephthya＿gracillimum＿rnl dendronephthya＿castanea＿rn dendronephthya＿gigantea＿rn dendronephthya＿mollis＿rn dendronephthya＿suensoni＿rn
junceella fragilis＿rn hinogorgia complexa＿r echinogorgia＿complexa＿rnl pseudopterogorgia bipinnata rn acanella＿eburnea＿rnl＿rev sibagogorgia＿cauliflora＿rn briareum＿asbestinum＿rn corallium＿konojoi＿rnl corallium＿rubrum＿rnl－rev helioporacon－＿re
heliopora＿coerulea＿rn
renilla muelleri＿rnl
Consensus

GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1701 GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1712 GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1732 GCTACCGTAGGGATAACAGCGCAATATTGTCGTAGAGTTCTTATCGAGGACAGTGTTTGCGGACCTCGATGTTGAATTGCGGTGCCCT 1748 GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1711 GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1781 GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1716 GCTACCGTA GGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1714
 GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1700 GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1685 GCTACCGTA GGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1706 GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1726 GCTACCGCA GGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1745 GCTACCGCAGGGATAACAGCGTAATATTGTCGGAGAGTTCTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1750 GCTACCGCAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1750 GCTACCGCAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1738 GCTACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1739 CTIACCGTAGGGATAACAGCGTAATATTGTCGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT 1732 GCTACCGTAGGGATAACAGCGTAATATTGTGGGAGAGTTCTTATCGAGGACAGTGTTTGCGACCTCGATGTTGAATTGCGGTGCCCT


```
        alcyonium_digitatum_rnl
        alcyorm_digitatum_rn
        sinularia_peculiaris_rn
        \mathrm{ sinularia_peculiaris_rn}
    narela_hawaiinensis_rn
scleronephthya_gracillimum_rn
    dendronephthya_castanea_rnl
    dendronephthya_gigantea_rn
    dendronephthya_mollis_rn
    dendronephthya_suensoni_rnl
            junceella fragilis_rn
        hinogorgia_complexä rn
        euplexaura crassa_rn
pseudopterogorgia_bipinnata_rn
    acanella_eburnea_rnl_rev
    sibagogorgia_cauliflora_rn
        briareum_asbestinum_rnl
            corallium_elatius_rnl
            corallium_konojoi_rnl
        corallium_rubrum_rnI_rev
paracorllium_japonicum_rnI_rev
            Chiopora_coerūlea_rnl
            stylatula_elongata_rn
                    renila_muelleri_rn
                    Conservation
        alcyonium_digitatum_rn
    primnoa_resedaeformis_rnl
        sinularia_peculiaris_rn
        narella_hawaiinensis_rn!
    paraminabea_aldersladei_rnl
scleronephthya_gracillimum_rnl
    dendronephthya_castanea_rn
    dendronephthya_castanea_rnl
        dendronephthya_mollis_rnl
    dendronephthya_suensoni_rn
            junceella_fragilis_rnl
            keratoisidinae_rnl_rev
        echinogorgia_complexa_rnl
            euplexaura_crassa_rnl
pseudopterogorgia_bipinnata_rn
    acanella_eburnea_rnl_rev
    _biareum_asbestinum_rn
            corallium_elatius_rnl
            corallium_elatius_rnl
    corallium_rubrum_rni_rev
paracorllium_japonicum_rnl_rev
            heliopora_coerulea_rnl
            stylatula_elongata_rn
                renilla_muelleri_rnl
                    Consensus
                    Conservation
```


tRNA f-Met

alcyonium_digitatum_Met rev TG primnoa_resedaeformis_tRNA_Met rev narella hawaiinens is tRNA Met rev paraminabea_aldersladei_tRNA_Met rev paraminabea_aldersladei_tRNA_Met rev
cleronephthya_gracillimum_tRNA_Met rev dendronephthya_castanea_tRNA_Met rev dendronephthya_gigantea_-tRNA_Met rev dendronephthya_mollis_tRNA_Met rev dendronephthya_suens oni tTNA Met junceella_fragilis_tRNA_Met rev echinogorgia_complexa_tRNA_Met rev euplexaura_crassa_tRNA_Met rev pseudopterogorgia_bipinnata_tRNA_Met rev acanella_eburnea_tRNA_Met rev briareum asbestinum_tRNA_Met rev briareum_as bestinum_tRNA_Met rev corallium_konojoi_tRNA_Met rev corallium_rubrum_t-̄RA_Met paracorallium japonicum tRNA Met stylatula_elongata_tRNA Met rev renilla_muelleri_tRNA_Met rev

Consensus
Conservation
-GTAGGGGCAG---GAGTTGAACCTGCATAATCAGATTATGAGTCTGAGAACTTACCGTTAGTTGACCCTAC -GTAGGGGCAG--GAGTTGAACCTGCATAATCAGATTATGAGTCTGGGAACTTACCGTTAGTTGACCCTAC-A 71 TGTAGGGTCAACTAACGGTAAGTTCTCAGACTCATAATCTGATTATGCAGGTTCAACTCC-- TGCCCCTACCA 71 TGTAGAGTCAACTAACGGTAAGTTTTCAGACTCATAATCTGATTATGCAGGTTCAACTCCTGTAGGGTCAACTAACGGTAAGTTCTCAGACTCATAATCTGGTTATGCAGGTTCAACTCC. TGTAGGGTCAACTAACGGTAAGTTCTCAGACTCATAATCTGGTTATGTAGGTTCAACTCC. TGTAGGGTCAACTAACGGTAAGTTCTCAGACTCATAATCTGGTTATGTAGGTTCAACTCC TGTAGGGTCAACTAACGGTAAGTTCTCAGACTCATAATCTGGTTATGTAGGTTCAACTCC---GTAGGGGCAG---GAGTTGAACCTACATAACCAGATTATGAGTCTGAGAACTTACCGTTAG TGTAGAGTCAACTAACGGTAAGTTTTCAGACTCATAATCTGAATATGCAGGTTCAACTCC TGTAGGGTCAACTAACGGTAAGTTCTCAGACTCATAATCTGATTATGCAGGTTCAACTCC. TGTAGGGTCAACTAACGGTAAGTTCTCAGACTCATAATCTGATTATGCGGGTTCAACTCC - -TGTAGGGTCAACTAACGGTAAGTTCTCAGACTCATAATCTGACTATGCAGGTTCAACTCC-- TGTAGAGTCAACTAACGGTAAGTTTTCAGACTCATAATCTGATTATGCAGGTTCAACTCC -TTGTAGAGTCAACTAACGGTAAGTTTTCAGGCTCATAATCTGATTATGCAGGTTCAACTCCTGTAGAGTCAACTAACGGTAAGTTTTCAGACTCATAATCTGATTATGCAGGTTCAACTCC tGAGAGTCA tGTAGAGTCAACTAACGGTAAGTTTTCAGGTTCATAATCTGATTATGCAGGTTCAACTC TGTAGAGTCAACTAACGGTAAGTTTTCAGGCTCATAATCTGATTATGCAGGTTCAACTCC TGTAGAGTCAACTAACGGTAAGTTTTCAGACTCATAATCTGATTATGCAGGTTCAACTCC. TGTAGAGTCAACTAACGGTAAGTTTTCAGACTCATAATCTGATTATGCAGGTTCAACTCC TGTAGAGTCAACTAACGGTAAGTTTTCAGACTCATAATCTGAATATGCAGGTTCAACTCC gtagagtcaactancggtangttitcagactcatantctgattatgcaggttcanctc -

TGCCTCTACCC 71 tgCCCCTACCA 71 tGCCCCTACCA 71 tGCCCCTACCA 71 TGCCCCTACCA 71 tGACCCTAC-A 71 TGCCTCTACCA 71 TGCCTCTACCT 71 TGCCCCTACCA 71 TGCCCCTACCA 71 TGCCCCTACCA 71 TGCCTCTACCC 71 TGTCTCTA-- 71 TGCCTCTACCA 71 TGTCTCTACCA 71 TGTCTCTAcca 71 TGTCTCTACCA 71 TGCCTCTACCA 71 TGCCTCTACCA 71 tGCCTCTACCA 71 tGCCTCTACCA

Appendix F

Protein sequence of $\boldsymbol{m t M u t S}$ gene in A . digitatum

Abstract

MNQIPMQYFNLAEENYSKYGLSVIQLIQIGKFYELWHEPNTPSSQQAYSQTELLAESSMR SRPLGVTPPIEQVASLLDMSMMLPGKSSLLQMGFPTYSLNNHLSTLLDKGWTVMVIDEL VTGKSGPKQRAVSQVYSPSCNLEDCSELSYVLSIYFSQDDLLGITLFSAMNGHSMMFPVS WADSDKVARLLISYRISEMVIWANSGAVSEILMYNLLIGYNLFPSEPNAKIEVMGEVMNN LPCYLSYSYENNNKEWLLLHIYMGINAEWFNKNYQEYTLSKMFQSTWAENVNQANLISL LGVLQFIKDRNPNLIKNLQLPECYNSVVSPLNLMLCNRAEYQLDLLPKSGKLGGLLSLVD YCSTAMGKSLLKFSLLNPITDHSELNLRYEEIATFKQLYNKKMFDNSELKHIKDLSSLHRQ WTMCASSDTTLPPKKLSQIYHSYLSANQLMSKLTNNIQLPPLVVPQLELLIEEMGRIFQTD NLLGDFKDVLQPTDNLTNFFVQQQTLKAQLTEWGEQTSNIVFQDTISIKAEYFNKEAYAF SILSKKLTKLEQYMPDNSIMMLGKSGSHHMITSPTIHKVSIELNLLEEQINTYVKQTYNRE LKSLYFSYSELFLPLENMISSLDVALSGAIAAIKFNYTKPCLMLTKSHQPQQTKGLMEAIN LRHPLVEQLNTQEECVAHNISLEDKGMLMFSVNGAGKSTLLSAIGVNVILAQAGMYVAA DSFSLSPYHYLITRILGGDDLHKGQGTFEVEMSDLSTMLKLANYNSLMLGDEICHGTEVS SGAAMLAATIESLTAAQTSFVLSTHLHQVCSLIDSPVRYYHLSVIQQEDLGLIYERKLKPG PGPSQYGIEVMGHMINDKKFYTSALKYRKLINWEPPSRSESSSLTVFRPSKYNARVFIDSC EMCGAPAEAIHHIQPKNQLKNQPKKLCNSSSNLVPVCSSCHLDIHSNKISILGWSGTPGHK KLYWVYLNESLDSGTE*

Protein annotation of $\boldsymbol{m t M u t S}$ gene in A. digitatum

Protein sequence of $\boldsymbol{m t M u t S}$ gene in \mathbf{P}. resedaeformis

MNQIPMQYFNLAEENYSKYGLSVIQLIQIGKFYELWHEPDTSSSQQAYSQAELLAESSMR SQPLGVTPPIEQVASLLDMSMMLPGKSSLLQMGFPIYSLTTHLSTLLDKGWTVMVIDELV TGKSGPKQRAVSQVYSPSCNLEDCSELSYVLSIYFSQDDLLGITLFSVMNGHSMMFPVSW TDSDKVARLLINYRISEMVIWANSGAGSEILMNKMYNLLIGWNLFPSEPNAKMEVMGEA LTNLPCYLSYSYENNNKEWLLLHIYMGINAEWFNKNYQEYTLSKMFQSTWTENVNQVN LISLLGVLQFIKDRNPNLIKNLQLPECYNSVVSPLNLMLCNRAEYQLDLLPKSGKLGGLLS LVDYCSTAMGKSLLKFRLLNPITDHSELNLRYEEIATFKQLLDKKMFDNSELKHIKDLSSL HRQWAMCASSDTTLPPKKLSQIYHSYLFANQLMSKLMNNKWINIQLPPSVGPQLELLIEE MGRVFQADNLLGDFKDVLQPTDNLTNFFVQQQTLKAQLTEWAEQTSNIVFQDTISIKAE YFNKEGYAFSILPKKLIKLEQYLTNASMSDNSIMMLGKSGSHHMITSPAIHKVSIELNLLE EQINTYVKQTYNRELKSLYFSYSELFLPLVNMISSLDVALSGAIAAIKFNYIKPCLMLAKS QQTKGLMEAINLRHPLVEQLNTQEECVAHNISLEDKGMLMFSVNGAGKSTLLSAIGVNVI LAQAGMYVAADSFSLSPYHYLITRILGGDDLHKGQGTFEVEMSDLSTMLKLANYNSLML GDEICHGTEVSSGAAMLAATIESLTAAQTSFVLSTHLHQVCSLIDSPVRYYHLSVIQQEDL GLIYERKLKPGPGPSQYGIEVMGHMINDKKFYTSALKYRKLINWEPSSRSEPNSLTVFRPS KYNVRVFIDSCEMCGAPAEAIHHIQPKNQLKSQPSKLCNSSSNLVPVCSSCHLDIHSNKISI LGWKGTPGHKKLYWVYLNESLDSGTE*

Protein annotation of $\boldsymbol{m t M u t S}$ gene in P. resedaeformis

primnoa_resedaeformis_muts (+1) DSGTE *

[^1]: 774
 774

