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Abstract

For passengers to reach the final destination of the trip it is often necessary to make use of the
transport services provided by several firms. When these transport services follow in a natural
transport chain they are characterized as complementarities and the firms providing the services can,
as for substitutes, to some extent influence the demand facing the other firms by their own
behaviour. A model is presented in this paper where two firms compete in complementary transport
services differentiated by travel distance. Equilibria are derived for collusion and competition in price
and quantity, and these are analyzed with respect to the degree of complementarity and distance.
The analysis shows that the influence of type of competition on equilibrium price and quantity
increases with the complementarity of the products. Moreover, it is discussed how marginal
operating costs for the firms, marginal time cost for the passenger and the type of competition
influences whether fares will increase with distance and which of the two firms will set the higher
price. The commonly accepted ranking for complements that the collusive price is lower than the
Bertrand price is not necessarily true. It is demonstrated that the collusive price of the shorter
(longer) distance could be set above (lower) that of price competition. It is also addressed how mark-
up of price over marginal cost is influenced by changes in own and competitors distance for the

different types of competition.
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1. Introduction

Even though the liberalization of transport markets in industrialized countries has increased
competition, many passenger transport routes are still served by one or two suppliers (e.g. Blauwens
et al., 2008). Hence, the classic duopoly models discussed in the literature dating back to Cournot
(1927) are still relevant to explain equilibria in passenger transport markets. The role of
substitutability and complementarity with respect to equilibria has been addressed in economic
literature (e.g. Economides and Salop, 1992; Hackner, 2000; Singh and Vives, 1984), but has rarely
been related to the transport industry. A central characteristic of this industry is the role of transport
distance which has been included in the literature on optimal design of scheduled passenger
transport (e.g. Kraus, 1991; Mohring, 1972). Transport distance has also been addressed by Li et al.
(2012) when discussing the optimal fares for a rail line. Founded on the model by Singh and Vives
(1984), Clark et al. (2011) considered simultaneous and sequential duopoly competition and
addressed specifically how transport distance influences the equilibrium prices when all firms
maximize profit and compete on services between the same locations. However, these latter works
focus purely on competition between alternative transport solutions, which thereby is regarded as
substitutable services, over the same distance. Complementary services! are, however, often found
in the passenger transport industry, and there is, therefore, a need to address them in the theoretical

models.

The fact that cooperation and competition can be parts of one and the same was addressed by
Nalebuff and Brandenburger (1996) using the concept co-opetition to describe such a relationship.
Some studies on complementary services have used the computer industry as case. Packalen (2010)
modelled a monopolist (Microsoft) acting in complementary markets and compared the equilibria to
that of quantity competition (Cournot). Also, Casadesus-Masanell et al. (2008) studied competing
complements using the relationship between the software provider Microsoft and CPU producers
AMD and Intel as a case. As one of several industries, Economides and Salop (1992) addressed the
transport industry when studying equilibrium prices under different forms of competition among
complementary products. In fact, the situation where two firms both compete and cooperate is
frequently found in the transport industry. An example is bus and train companies that compete on
legs where both supply transport services, and complement each other by feeding passengers for

further transport to the other provider.

! Complements are goods and services that are used together and defined by negative cross-price elasticity,
where more negative value indicates a higher degree of complementarity (e.g. Hubbard and O'Brien, 2013).
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In a congested transport corridor De Borger et al. (2007) studied pricing decisions when two links are
controlled by different governments. Also using freight transport as a case, Rodrigue et al. (2009)
argue that complementarity between transport modes can take place in different geographical
markets, different transport markets and different levels of service. These criteria can clearly be
transferred to passenger transport. The complementarity between air transport and high speed rail,
and the possible advantages of integrating these two transport modes, has been addressed by
Socorro and Viecens (2013). In fact, air transport is an obvious example of an industry where
complementarity takes place both between different transport modes and within the same type of
transport. First, passengers need to be transported between the city centre and the airport and vice
versa. In this case, changes in price on the commuting services by train or bus can influence the
demand for air transport. Second, due to the well established hub-and-spoke networks air transport
does, however, also include complementarity between services with the same transport mode.
When the route includes more than one flight, the trip from the airport of departure to the hub and
further from the hub to the airport at the final destination can be provided by the same firm as well
as by competing firms. Since there are relatively few suppliers of aircrafts, it can well be that legs
served by different carriers are made by the same type of aircraft and thereby with somewhat similar
costs. This is further actualised by the forming of alliances where a through ticket can include legs

provided by more than one firm.

The most important aim of this paper is to analyse how fares relate to distance when two profit
maximizing companies produce complementary transport services that are differentiated by
distance. Taking the degree of competition addressed by Clark et al. (2009) and the role of trip length
by Clark et al. (2011) the focus of this paper will be directed towards firms providing complementary
services of different trip lengths. Hence, models applied in the earlier studies are changed and
extended by assuming complementary services and introducing asymmetric distance for the services
provided by the transport firms. Singh and Vives (1984) modelled duopoly under complements but
did not solve for collusion or address quality differences which are relevant for the transport
industry. Earlier studies have focused on differences in quality by factors such as frequency, capacity
(e.g. De Borger and Van Dender, 2006) or congestion (e.g. Wan and Zhang, 2013; Wu et al., 2011).
Moreover, it must be considered that, in the case of transport, competition often depends on
strategic behaviour of governments rather than firms (see e.g. review by De Borger and Proost,

2012).

Equilibria are calculated under collusion and simultaneous and sequential competition on price or
guantity. The model results demonstrate how fares for complementary transport services depend on

distance under different regulatory policies and degrees of complementarity between the services

3



provided by the two firms. We present conditions under which fares are increasing and decreasing in
distance, and for when the company with the largest travelled distance sets the highest price.
Moreover, the influence of mark-up of price over marginal cost for changes in own and competitors

distance is discussed for the different types of competition.

Section 2 presents the model and accounts for central assumptions. The equilibria under different
forms of competition are derived in Section 3. Section 4 provides the analysis with focus on ranking
of equilibrium fares and how they develop with respect to the degree of complementarity under

different types of competition. Finally, conclusions and implications are presented in Section 5.

2. The model

Let us assume a transport route where passengers are required to make a mode change at place B in
order to travel between A and C. The distances for the two legs are denoted D; and D, as illustrated
in Figure 1. Two operators, denoted firm 1 and firm 2, provide transport services on the separate legs
D; and D,, respectively. The two services are complements and total demand depends on their prices.
The complementarity between the two legs of the service is, thereby, not perfect. The fact that

demand could be transferred to other modes is not modelled here.

Distance Distance
first leg, D, second leg, D,

A B ¢
Origin Mode Destination

Figure 1: Complementary services on two legs.

The inverse demand functions in (1) follow the specifications by Clark et al. (2009) and Clark et al.
(2011) based on how Singh and Vives (1984) incorporated in their model how passengers maximize
their utility according to the quantities for the services provided by the two firms. In line with Singh
and Vives (1984) we assume that a representative consumer maximizes consumer surplus based on
the use of services X; and X; by CS = U(Xi,Xj) — G;X; — G;X; defined by the utility function

2 2
(Xi +ZgXin+X]- )

UX, X)) =X+ X — , with generalized costs G; = P; + k + bD; (with the

generalized cost of using service j defined similarly).



(1) P;=(1—k—bD;) —X; — gX; where i,j = {1,2}and i # j

In (1) the parameter D; denotes distance in km for the services provided by firm i, k is distance-
independent time costs and (bD;) is time costs when travelling by the mode. The k parameter
depends on walking time, waiting time and time spent on boarding and alighting the mode (buses
and trains) and/or transport time to airports (air transport), whilst the b parameter denotes each
passenger’s time costs of travelling an extra km by the mode and decreases when the mode’s quality
(for example speed) increases. The values of both k and b depend on the travellers’ income and the

trip purpose (e.g. Button, 2010) which are exogenously given in this model.

The parameter g € (0, —1) in (1) measures the degree of complementarity between the services
offered by the two firms. The services are perfect complements if g = —1 and independent if g = 0.
Hence, the higher proportion of the travellers starting and ending their travel at place B and the
better services from other transport modes between A and B and B and C, the lower the value of g,
in absolute terms. In Clark et al. (2011) this parameter was defined within the range of 0 and 1 when
studying competition in substitutes. It has been demonstrated by Singh and Vives (1984) that the
equilibrium for Cournot (Bertrand) when competing with substitutes is the dual of Bertrand

(Cournot) when they compete in complements.

A rephrasing of (1) gives the direct demand for the service of firm i in (2).

1
= g

(2) X; (1=9)A—k)— P+ gP; —bD; + gbD;) where i,j = {1,2}and i # j

In accordance with the model presented by Clark et al. (2011) the costs, (C;), in (3) are assumed to
have a symmetric structure between the firms and linearly increase with the number of passengers

(X;) and the number of passenger km (X;D;) and with a fixed cost term f.
(3) Cl(Xl) = f + th + aXl-Dl-, where i = {1,2}

Such simple cost functions in transport are often good proxies of more advanced specifications (e.g.
Pels and Rietveld, 2008), and the above functions in particular are supported from several empirical
cost studies carried out for bus (Jergensen and Preston, 2003) and ferry transport (Jgrgensen et al.,
2004) in Norway. For further discussions on properties of common functional forms for costs we
refer to Baumol et al. (1988) and Coelli et al. (2005). The applicability of a symmetric cost structure
can be argued by firms using the same type of transport mode and that there is no variation in

efficiency between them.

From the cost function in (3) it follows that marginal costs, dC;/dX;, are



26,

(4) 0X;

= h + aD;, where i = {1,2}

In the linearly increasing relationship for marginal costs in (4) the parameter h represents distance-
independent marginal costs, while a is costs inflicted on the transport firm when carrying a

passenger an extra km.
The profit function of firm i is thus given by ; = P;X; — C;(X;). ?

The reaction functions when choosing price (Bertrand) and quantity (Cournot) strategically can be
commented on.? Under Bertrand the services are strategic substitutes (aPiB/anB) <0and
increasing own distance gives a positive shift if a > b. Increasing opponent distance causes the
reaction function to shift inwards. Under Cournot, services are strategic complements (6Xl-c/6XjC) >
0. An increase in own distance makes the reaction function shift inwards, while increasing opponent

distance has no effect.

For the market to exist, it is required that the profit must be positive for carrying the passenger with
the largest willingness to pay, meaning that 1 — k — h — D;(a + b) > 0. This expression is derived by
taking the maximum willingness-to-pay minus the sum of fixed cost to the passenger of making the

trip, the cost of production for the first passenger and the distance-related costs.

3. Market Equilibria

The equilibrium fare expressions will be derived to study how optimal fares are linked to operators’
marginal costs (h and a), the quality of supplied transport services (k and b), the degree of
complementarity between the services (g) and, finally, the transport distance of services provided by
the mode (D;). Focus will be directed towards the collusion (shared monopoly) case and traditional
forms of simultaneous market competition where the firms compete in either quantity (Cournot) or

price (Bertrand). Equilibrium prices, quantities and profits for collusion, Cournot and Bertrand are

2 The use of pure profit maximization as goal is a question for debate. Transport firms are in many studies
argued to put some weight on other goal such as consumer surplus, mainly due to the large proportion of
shares owned by public bodies (see e.g. Clark et al., 2009; Jgrgensen and Preston, 2007).

3 The reaction functions for firm i are: Bertrand P? = i((l -9)(1—k)+h+gP+Di(a—b)+ ngb) and
Cournot Xf = %(1 —h—k—gX;—Di(a+ b)) where i,j = {1,2}and i # j.
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denoted by superscripts COLL, C and B, respectively.* Sequential equilibria are examined in the

subsequent analysis.

3.1 Simultaneous competition on price (Bertrand)

When the two transport firms maximize their profits in price competition, the prices, quantities and

profits in equilibrium are

1
(5) PP = 1—g? (C+9)(h+(1-9)A—-k)+D;(2a—b(2 - g?)) + gDj(a + b))
XB = (g+2)(1-9))(1-h-k)+(gDj—(2-g*)D;)(a+b)
t (1-9)(g+1)(2-9)(g+2)
XB +X? _ 2(1-h-k)-(D1+Dy)(a+b)
I =

g+ (2-9)

nl=1+9A -2 - f

3.2 Simultaneous competition on quantity (Cournot)

When the two transport firms maximize profits in quantity competition, the prices, quantities and

profits in equilibrium are

6) P =G (2= ) (h(1+g) +1 - k) —Di(2b — a2 — g1)) + gD;(a+ b))

X€ = m((z — ) —h—k) + (a + b)(gD; — 2D,))

¢\ ve _ 2(1—h—k)—(Dy+D;)(a+b)

mf = (X2 - f

4 For these equilibria to be valid, all price, quantity and profit expressions must be positive. This is assumed in
the further analysis.



3.3. Collusion (shared monopoly)

When the two transport firms maximize total profit the equilibrium the prices, quantities and profits

are
(7)  PEOLL = %(1 +h—k+D;(a—Db))

1
X{OU = e (1= )L = h = k) = (D; — gD;)(a + b))

l 2(1—h—k)—(D1+D2)(a+b)
2 (1+g)

COLL COLL _
X7 + X5 =

T[fOLL + T[gOLL — (XlCOLL)Z + (XZCOLL)Z + 4gX1C0LLX2C0LL _ 2f

3.4 Some brief comments on the equilibria

It can be seen from the quantities presented in equations (5), (6) and (7) that the firm with longest
distance will have the lowest number of passengers and that the difference between the two firms is
highest when they compete in quantities (Cournot) and least when they collude (see appendix A).
Moreover, when looking at total quantity it is evident that the expressions have the same numerator
and can easily be ranked to (X 9Lt + X]-COLL) > (X2 + XJ-B) > (XF + X]-C) by looking at the
denominators. Hence, total quantity provided from the two firms will be highest when they collude
and lowest when they compete in quantities which is in line with the results from earlier studies (e.g.

Economides and Salop, 1992; Singh and Vives, 1984).

It can be determined that all equilibrium fares are increasing in the distance independent marginal
costs (h) and decreasing when the passengers time costs (k and b) increase (see appendix B). The
latter suggests that quality improvements of transport supply leading to reduced values of k and b
will increase prices. Higher costs (h) due to increased quality provision will strengthen this effect. It
is also worth noting that exogenous decrease in passengers’ time costs due to income reductions

and/or higher proportion of leisure travels also will increase prices.

The distance dependent marginal costs (a) influence fares in collusion positively, but gives
ambiguous results for Cournot and Bertrand depending on the distances for the services provided by
the two firms, D; and D,. It is, however, clear from the partial differentiations that it is more likely
that optimal prices increase with a under Bertrand than under Cournot competition, and that price is

positively related to own distance and negatively related to the rival’s distance. Under Bertrand a



sufficient but not necessary condition that dP? /da > 0 is D; > 0.5D;; that is when firm i offers a
transport service with distance more than half the length of firm j. The similar condition under
Cournot for E)Pic/aa > 0is D; > D; meaning that firm i provides a longer journey than firm j. The
equilibrium prices are unaffected by the level of complementarity, (g), between the services when
the firms collude. The influence of g on equilibrium prices is ambiguous under Cournot and Bertrand
competition. Hence, it is uncertain whether prices go up or down when the firms’ services become

closer complements.®

4. Further analyses of equilibrium prices
4.1 Fare and distance

The equilibria in Section 3 will be analyzed further with special attention given to the influence of trip
length on the two sequential legs on optimal fares for the two firms. These relationships are studied
by differentiation of equilibrium prices with respect to distance for the services provided by the firm

itself and the competing firm.

It is evident from (8) that price in collusion increases only with the own distance of the services
provided by a firm. Moreover, prices in collusion increase in distance if the marginal cost of
transporting a passenger one extra kilometre for the firm, (a), is larger than time costs for the
passenger of travelling an extra kilometre, (b), by the mode, a/b > 1. Furthermore, (8) provides the
derivatives of equilibrium prices in the two competitive situations with respect to the distance

provided by the company itself (indicated by i).

COLL pE _b(2—
i =a—b>0if> > 1 9P _ 2a-b@-9")

) ?)
aD; '3 T @9)9+2) and

>0f >—

(8)

Pt (2—g»a-2b
oD;  (2-9)(g+2)

>0f > wherel—{12}

The conditions under which prices increase with own distance are illustrated in Figure 2 and show
only partial overlap between the competitive regimes. It is evident that in Bertrand competition the
relationship is always positive if the marginal cost for transporting the passenger is higher than the

marginal time cost for the passenger, a/b > 1. For Cournot it is demonstrated that fares will always

> It can be verified (see appendix B) that a sufficient but not necessary condition for aPZ /dg < 0 is D;/D; <
—4g/(4+ g*) = D; < D; where i,j = {1,2}and i # .



decrease with distance if a < b. The fraction a/b is then less than 1 and marginal time cost for the
passenger exceeds the marginal cost for transporting the passenger. In the area between the two
curves prices will increase and decrease in own distance under Bertrand and Cournot competition,

respectively.

a/b
a/b=2/(2-¢°)
Increasing in own distance for both Bertrand and Cournot
+ 15
Increasing in own distance for Bertrand and decreasing in own distance for Cournot . 1
+ 0.5
alb= (2_(;2)’!2 Decreasing in own distance for both Bertrand and Cournot
g 0
-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Figure 2: Conditions for increasing prices with own distance depending on type of competition.

Figure 2 shows that the type of competition can be vital for understanding the exact relationship
between fares and distance. If the ratio a/b is very high or very low, then the type of competition
does not affect this result. For values of a/b that are in between these two extremes then increasing
distance will cause a fare increase if firms set fares strategically (Bertrand), and a decrease if capacity
is chosen strategically (Cournot). As is demonstrated in the next section, Bertrand competition is
more intense so that fares will be lower in this type of competition than Cournot. However, the a/b
ratio at which the firms increase their fare in response to distance increases is quite low; a distance
increase means that the firms incur larger costs per passenger and the already low price needs to be
increased. For Cournot competition, the price includes a larger margin above costs, so that the fare

does not increase in distance until the relative cost for the firm and passenger is larger.
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The fraction a/b can be related to empirical evidence. In their study of the competition between air
transport and high-speed rail in China, Yang and Zhang (2012) presented parameter values that
enable us to calculate marginal costs for both operators and passengers. If we assume that variable
unit costs per kilometre is a proxy for marginal costs and use time value for business passengers, the
fraction a/b derives the values 2.75 and 0.58 for air transport and high-speed rail, respectively.
Based on Norwegian cost data Jgrgensen and Preston (2007) estimated a/b to 0.75 and 1.7 for ferry
transport and bus transport, respectively. From these estimates and (8) we can conclude that
operators of air transport (high-speed rail) in China and bus (ferry) operators in Norway under
collusion would design fare schemes that increase (decrease) with distance. Seeing the estimates in
the light of the results in Figure 2, suggest that air (high-speed rail) and bus (ferry) operators will
design a fare scheme that increase (decrease) in own distance under Bertrand (Cournot)
competition.® In intermediate cases, that is when air and bus firms compete in quantities and high-
speed rail and ferry firms compete in prices, it is ambiguous how own distance influences fares; it

depends on the magnitudes of the a/b and g.

Prices will, according to the derivative in (9), always decrease when the distance for complementary
service increases. The condition is identical for the two forms of competition. This comparison is not
relevant for the collusion case since optimal price in (7) is independent of the distance of the other
firm. As the distance of one leg increases, the time cost associated with travel increases and, since

the services exhibit a degree of complementarity, this leads to a reduction in the fare of the other leg

of the journey.
opf _opf _ . atb o?pF _ 0%Pf _ (g*+4)(a+b) L

O 55, =9, T 9w < 0 an0s Taneg © @iy > O Wherelj={l2}and
i +]j.

Moreover, it is shown in (9) that the change in price with respect to the distance for the
complementary service is directly related to the degree of complementarity. When the level of
complementarity is reduced (g increases and becomes less negative), then the reduction is less in

optimal price for firm i caused by increased distance of the complimentary service provided by firm

% n Norway, the ferry fares increase linearly with travel distance. This may come from the fact that fares are
not decided on in any form of complementary competition and that the Norwegian Public Roads
Administration, who regulates the fares, pursues other goals than pure profit maximization, see Jgrgensen and
Preston (2007) for further discussion. Mixed goal functions in bus transport are discussed e.g. by Nash (1978)
and the inclusion of users surplus in addition to profit is also addressed by Meunier and Quinet (2012).
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j. Or put more simply, a higher value of g reduces the influence of the distance of the competing

service on price.

4.2 Mark-up of price over marginal cost

The mark-up of price over marginal cost (MC; = h + aD;, MC; = h + aDj) can be studied for the
types of competition. In the case of Bertrand competition, it is shown in (10) that the mark-up will
decrease both in own and the competitor’s distance. Even if the price should rise, the corresponding

increase in MC outweighs this.

B_ i B_ .
a(P; z.wcl) —2-g? a+b < 0 and (P -MCj) a+b

aD; (9-2)(g+2) oDj -9 (9-2)(g+2) <0

(10)

In the case of Cournot presented in (11), the mark-up always decreases in rivals distance since the
price falls (see (9)). The effect on mark-up is uncertain with respect to the firm’s own distance and it
is clear from the condition in (11) that the required value of a/b increases with the complementarity

of the services.

a(PE-Mcy)

_ 2y ca 2 a(pPE-Mcy)
35, =a(l-g°) 2b>0|fb<1

and
g2 aDj

(11) =gla+b)<0

The relationship from (11) is illustrated in Figure 3 where mark-up increases in own distance for
parameter combinations above the line a/b = 2/(1 — g?). When the cost to the firm of covering an
extra km is relatively large compared to the cost of the consumer, the fare will increase in distance as
will the marginal cost; however, the mark-up will still increase in own distance, increasing the profit
of the service provider. Moreover, Figure 3 includes the condition from (8) ensuring that price
increases in own distance. In the area between the two lines, an extra kilometre in own distance

causes prices to rise, but mark-up to fall.
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afb: 54

22
20
t+ 18
- 16

L 14

Price and mark-up increase in own distance
+ 12

t 10

a/b =2/(1-¢°) L 6
'

Price increases and mark-up
decreases in own distance

a/b=2/(2-¢%)

— P 2

Price and mark-up decrease in own distance

g-l.O -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Figure 3: Mark-up over marginal costs with own distance for Cournot.

Finally, for collusion it is evident from (12) that own price increases in own distance but is always

outweighed by the increase in marginal cost.

(PO —mcy)

(12) aD;

—~(a+b)<0

4.3 Comparing fares for firms 1 and 2

The difference between the fares set by firms 1 and 2 in collusion is given in (13) and states that the

longest distance has the higher fare as longas a/b > 1.
1 .. ..
(13)  pCOLL — choLL =-(a- b)(D; — Dj) where i,j = {1,2}and i # j.

A comparison of optimal fares set by firm 1 and 2 in Bertrand competition is given in (14) where the
condition for PiB being larger than PjB, PiB — PjB > 0, depends on distances for the two
complementary services. Consequently, for PiB to be larger than PjB thenl+g > (<)a/bifD; >
(<)D;.

13



(14) PP —PP=(D; - Dg%where i,j={12}andi # .

Similarly, the comparison of optimal fares for Cournot renders the difference in (15). The condition

for P to be larger than ch isthena/b > (<) 1/(1— g)if D; > (<)D;.
c C (1-g)a-b .. . :
(15)  P7 =B = (D; = Dy)=—, = —wherei,j ={12}and i #].

The conditions derived from (14) and (15) are illustrated in Figure 4. In area A (C), the operator with
the longest distance sets the higher (lower) price, independent of whether they compete in
quantities or prices. In area B, the type of competition is decisive. When competing in price
(quantity) then the firm with the longer distance sets the highest (lowest) price. Again, the fares
under price competition are pressed low due to more intense competition. Thereby, if the cost of
transporting an extra passenger an extra kilometre rises, then the price has to be raised in order to
cover costs. Hence distance has more weight in the pricing decision of firms that compete in price,
making the firm with the longest distance set the higher fare for lower values of the relative marginal
cost to the firm and the passenger, a/b. In a similar situation it was demonstrated by De Borger and
Van Dender (2006) that increases in marginal cost of capacity at toll road may render increased

profits in a congested Bertrand duopoly.

a/b

1.0

A: Firm with longest distance sets highest price [ i3

t 0.8
L 07
a/b=1/(1-g)

+ 0.6

+ 0.5

B: Firm with longest distance sets + 0.4
highest price under Bertrand and

lowest price under Cournot

C: Firm with longest distance sets lowest price

+ 0.3

+ 0.2

+ 0.1

0.0

Figure 4: Relationship between ranking of prices and distance.
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Hence, in collusion, the firm providing the service with the longest distance will set highest fare if the
marginal cost for transporting the passenger relative to the marginal time cost for the passenger is at
least 1. The required value of the fraction (a/b) to ensure that the longest distance has highest fare
is reduced as the degree of complementarity, and thereby the degree of competition, increases. In
the case of perfect complements, the fraction equals 0.5 and 0 for Cournot and Bertrand,
respectively. The conditions presented in Figure 4 can be related to the empirical evidence given in
4.1 and demonstrates that air and bus operators with the longest distance always set highest fares
whilst type of competition between the firms is decisive as far as high-speed rail and ferry transport

is concerned.

4.4 Comparing equilibrium prices between types of competition

The differences in equilibrium prices under Bertrand and Cournot competition are given in (16).

B c___ 9> . 1 .
(16) P’ —P; = RSTTY) (D;(a+b) — (1 — h—k)) wherei = {1,2}

It can be derived from (16) that P£ > Pf if (1 —h—k—D;(a+ b)) > 0 which is true according to

the positive profit restriction defined in Section 2. Consequently, PiC > PL-B.

The difference between equilibrium prices in collusion and the competitive regimes can also be
studied. A comparison relative to Cournot is given in (17).

(17) PiCOLL _pc =4 1

_1_vcC
=t (@2~ g1 ~h—k)+(a+b)(gD ~2D)) = Lgxf <0

where i,j = {1,2}and i # j.

PFOLL — pL < 0. This is in line with well known result that mergers among

It thereby follows that
complements (moving from Cournot to collusion or Monopoly) will reduce prices (e.g. Economides
and Salop, 1992). It is also evident from (17) that the difference between the collusive price and
Cournot prices will be reduced when the degree of complementarity between the services

diminishes.

A comparison of collusion relative to Bertrand is given in (18).

COLL B_J 1 o _ ) . P
(18) P - P’ = 2 @i =a) (+9)1-h-k) (ZD] + ng)(a + b)) where i,j = {1,2}

andi # j.
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When D; # Dj it can be deduced from (18) that the condition for PFOL < pBis —g(l —h—k-

D;(a + b)) <2 (1 —h—k—-Dj(a+ b)) of which both sides of the equality can be seen to be

positive due to the positive profit restriction in Section 2. In the special case when the distance for
the two firms are equal, D; = D; = D, then the last element in (18) can be rephrased to

2+ g)(l —h—k—-D(a+ b)) > 0 by our previous assumption. Hence, at equal distance for the
two services the difference in (18) is negative implying that PL-COLL < Pl-B. In appendix C it is shown
that the following possibilities exist for the relative comparison of the collusive and Bertrand prices
when the providers traffic different distances: i) either both firms set their collusive prices under that
of Bertrand, or ii) the firm with the largest distance sets its collusive price under the one it would set
under price competition, and the firm with the shorter distance sets its collusive price above its

Bertrand one.

The first case is the one that is usually recognized in standard models of industrial organization,
where firms that supply complementary products use a collusive situation to reduce price,
generating more demand for the products of both. However, it should be noted that this effect
depends on the goals of the firms. It is demonstrated by Clark et al. (2009) that, when assuming
services over equal distances, more weight placed on consumer surplus implies less reduction in
prices when firms collude rather than compete. An additional effect that is captured by our model of
a transport market is that distance plays a crucial role. The larger the distance, the less attractive a
service is for travellers; a monopolist then reduces the price of this service (compared to price
competition) in order to attract more passengers to this service, and via complementarity also to the
other, initially more attractive service. The price of this service is marked up above the Bertrand price

to take advantage of the extra demand.

4.5 Some comments on sequential competition

The existence of dominant firms that largely define the price level in some markets makes it relevant
to comment on sequential competition. The equilibria arising in this model in cases of sequential
competition are characterised by complex expressions with few unambiguous relationships. This
section elaborates on equilibrium prices in sequential competition on quantity and price, denoted by
superscript SQ and SP respectively, and compare them to the results from the corresponding

simultaneous model.
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4.5.1 Sequential quantity competition (Stackelberg)

The prices under sequential quantity competition (Stackelberg) are presented in (22) where i is

leader and j is follower.

i

(19) P ®=1@(1+h—k+D(a—-b))+g(h+k+Di(a+b)—1))

pSQ _ Zg(l—h—k—Di(a+b))+g2(1+3h—k+D]-(3a—b))—4(1+h—k+D]-(a—b))
A 4(g2-2)

In a standard sequential model with quantity competition and complementary products, the leader

will set a lower price (fare) than in the case of simultaneous competition, whilst the follower will set
a higher price. The same is true in this model with distance, since it is easily verified that PiSQ — Pl-C <

0and B*? — Pf > 0.

It is interesting to consider the effect of distance on the equilibrium fares. As commented on above,

at equal distance 0 > PiSQ — 13-5(‘?. The magnitude of this difference in leader and follower fare

2-g-2
depends on the distance; if% > % , then an increase in the distance covered by the leader will

cause this difference to fall. This parameter area is above the line in Figure 5. As leader distance
increases, the leader’s fare is reduced more in relation to the follower (below the line in Figure 5).
For sequential quantity competition an increase in rival distance reduces own fare for both the
leader and follower firms. For the leader, an increase in own distance increases fares if a > b. This is
also true for the follower, but in addition it is possible for own distance to increase own fare even
when a < b. If 3a > b > a then services must be sufficiently complementary (large absolute value
of g) and if b > 3a then services must be sufficiently independent (low g) to ensure that the

follower will increase fares in own distance.

17



a/b_ .,
+ 0.9
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Negative difference between prices for leader and
follower decreases as leader distance increases

+ 0.7

- 0.6

+ 0.5
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Negative difference between prices for leader and
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a/b =(g’-g-2)/(g°+g-2)

03

r 0.2

+ 0.1

0.0

g—l.D -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

Figure 5: Condition for price difference between leader and follower in sequential quantity
competition.

Considering the effect of how own distance affects the firms’ mark-up over marginal cost reveals a
difference compared to the case of simultaneous quantity competition. Whilst the effect of
increasing own distance is parameter dependent for simultaneous quantity competition (see

equation (11)), an increase in own distance causes both firms’ mark-up to decrease with sequential

competition:
ap-Mcy) _ 1 AR %-Mc) _ 1
(20) BT 2(a+b) <0’—aD,- —4g(a+b) <0
A(P;O-MC) 1 g(a+b) a(P;%-Mcj) 1(2+9)(2-g)(a+h)
(21) =291 . p, == <0.
daD; 2 2—-g aDj 4 2—g2

The effect of increasing rival distance on mark-up is negative whether competition is simultaneous or

sequential.
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4.5.2 Sequential price competition

The prices under sequential price competition are presented in (22) where i is leader and j is

follower.

) pSP = l(g2—2)(1+h—k+Di(a—b))+g(1—h—k—Dj(a+b))

(22) L 72 g2-2
psP _ lZg(l—h—k—Di(a+b))+g3(h+k+Di(a+b)—1)+gz(3+h—3k+D]-(a—3b))—4(1+h—k+Dj(a—b))
] 4 g%-2

In standard sequential price setting with complementary products, the leader will raise its price
above the one set simultaneously, and the follower will lower its price (second- mover advantage).
The same is true here since it can easily be verified that PiSP — PiB > 0and PjSP — P]-B < 0.The gap

between the leader and follower fare increases in the distance of the leader if a > b.

For mark-up, the results of increasing own or rival distance qualitatively mirror those of simultaneous
price competition, since any increase in distance leads to a reduction in mark-up for both firms (see

equation (10)).

5. Conclusions and Implications

By the time a passenger reaches the final destination of a trip it is often necessary to make use of the
transport services provided by more than one firm. Transport services following in a natural order
are complementary to some degree and can be provided by firms competing with each other. This
paper studies prices and quantities in equilibrium for complementary services in the market for
passenger transport, both when firms compete and collude. The model extends on previous research
using oligopoly models to analyse transport markets by introducing complementary services

differentiated by distance.
We may summarize the results derived from the model as follows:

1) It is demonstrated that the firm with longest distance will have the lowest number of passengers
regardless of the type of competition as long as the services are not perfect complements. It is clear
that distance is most important when the firms compete simultaneously in quantity and least when
they collude. All equilibrium prices are increasing when the distance independent marginal cost

(h) increase and when passengers’ time cost (k and b) decrease. We can, however, not conclude

unambiguously whether higher degree of complementarity between the services (higher g in
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absolute terms) will lead to lower or higher prices under Cournot and Bertrand competition. For
equal distance the leader will have lowest (highest) fares in sequential competition on quantity
(price). The difference between fares for leader and follower when distances increase depends on

the combination of parameter values.

2) The conditions for increasing prices with distance and the ranking of prices depend on 1) the cost
of carrying one passenger an extra kilometre (a) relative to the time cost for the passenger of
travelling an extra kilometre (b), 2) the type of competition and 3) the degree of complementarity
(g)between the transport services. The ratio of the costs of carrying the passenger an extra
kilometre over the extra time cost for the passenger (a/b) must be at least 1 in the case of collusion
and when firms’ compete, and the degree of complementarity between their services increases, then

the required value of (a/b) increases (decreases) from 1 for Cournot (Bertrand).

3) It can be derived from the model equilibrium that optimal Cournot price is always higher than
optimal Bertrand price for complementary services. It is also proved that optimal price in Cournot is
higher than in collusion and the difference increases when the services become closer complements.
The ranking of prices in collusion and Bertrand cannot be unambiguously defined since distance can
play a crucial role. Collusive prices are either both under the Bertrand ones, or the monopolist sets
the collusive price of the longer distance lower than under price competition, and the price of the
shorter journey above that arising from price competition. The leader (follower) of sequential
guantity competition sets a lower (higher) price compared to simultaneous Cournot. The results are

opposite for sequential price competition.

4) The mark-up over marginal costs will decrease both in own and a rival’s distance in the case of
Bertrand competition. In collusion, own price increases in own distance, but mark-up is reduced since
the corresponding increase in marginal cost outweighs this. For Cournot, the mark-up always
decreases in rival distance since the price falls and decreases in own distance if the ratio of the cost
of carrying the passenger an extra kilometre to the extra time cost for the passenger (a/b) is
sufficiently high. With sequential competition, there is a subtle difference in the effect that distance
has on mark-up, depending upon whether price or quantity is the choice variable. For price
competition, the simultaneous and sequential models have similar effects. For quantity competition,
the mark-up can increase in own distance if firms choose simultaneously, but there is an unequivocal

fall in mark-up in the case of sequential competition.

The above results can aid regulators when aiming to meet politically decided objectives through
regulation. If regulators are concerned about the welfare of the passengers they should endorse

collusive behaviour rather than oppose it if the operators produce complementary services since it
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ensures lower price and, correspondingly, higher quantity than when they compete. The presence of
economies of scale would further enhance this conclusion since marginal costs then are reduced
which paves the way for even lower prices. Regulators should be aware that type of competition has
a stronger influence on market equilibrium when the degree of complementarity between the
services increases. Hence, when the level of complementarity is high colluding service providers
manage to set a low price, although it is still a monopoly price that exceeds marginal cost. It may
then be tempting for the regulator to attempt to reduce this price further towards marginal cost.
However, the regulator would need quite precise information on costs and demand, and how this
may be affected by factors that we have not considered here such as other transport options for

covering the same journey.’

Admittedly, there are several ways to expand the model to further take into consideration the
characteristics of the transport market. First, goal functions extending beyond profit maximization
could be included. Additional goals could be maximization of welfare or sales and they could be
asymmetric between the firms. Second, a topic for further research would be to test the model
results in practice by gathering actual data on fares and distance and relating them to the

characteristics of competition and marginal cost for operators and passengers.
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Appendices
A. Firm with longest distance gets the lowest quantity

This can be studied by looking at the difference between the equilibrium quantities for the two firms

under simultaneous competition and collusion. All expressions use the notation i,j = {1,2}and i #

j.
. yB _ _Dj=Di_
Bertrand: X — X = (a+ b)-—— P—
. yC _ 1 Dl
Cournot: X; — =(a+b)y——
D;-D;
Collusion: X{OM — X (Ol = (a +b)—— -4

For all expressions the difference is positive, meaning that X > ij where m = {COLL, B, C), if

D; > D;. Moreover, it can be seen that

(xgoLt — XCOLL) (XC_XC)___g(a+b) prReye; <0if D; < D;
-D;

(Xic_ch)>(XB XB) g (a+b)W>OIfD <D

(xfFOLE — xFOL) — (XB—XB)——g(a+b) ~ < 0ifD; < D

Hence, the influence on quantity by having the longest distance is highest for Cournot and least for

Collusion.
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B. Partial differentiations of equilibrium prices in simultaneous competition and collusion

This section presents the differentiations with respect to h, a, k, b and g. Differentiations wrt. D;

and D, are presented in section 4. All expressions use the notation i,j = {1,2}and i # j.

Bertrand:
B

aPi — L > 0

oh 2—g

apl.B __ 2Di+gDj «Di _-g

a  (2+9)(2-9) >0 if D; > 2

6Pf ____l:g

Sk Tag <0

)

7 —(2+g)(2 7 (D;(g?—2)+ gD) <0

opf _ 1 2 _ 2 (i

30 (2+g)2(2 B ((g+2)*(h+k—1)+ (D;j(4+g°) +4gD; )(a+b)) 0, where <O f

2

o s Dj < D; is sufficient

—4g

Cournot:

aPf _ g+1

an = grz > 0

LA S 2 > _9_

2a (2+g)(z 5 (L2 =97 +gDp) >0 5 > @-g®
C

ai — _L < 0

ok g+2

L

b  (2+9)(2-9)
apPf
ag (2+g)2(2 9)?

apf gD;—2D;
="J " <0

((g—=2)?*(h+k—-1)+ D4+ 9% —49D)(a+ b)) 0

Collusion:

opLOLE 4

oh =3;>0

COLL

1
9a _EDi>O

COLL

ok 2
apLOLL
ob
apLOLL

ag
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C. Sign of Pl-COLL — Pl-B

Denote PCOLL — pB = A, PCOLL — pB = A andlett; =1—h—k—D;(a+b),t;=1—h—k —
i i vty j ] 14 t ]

D;(a + b) . Note that t;, t; > 0 by assumption. From (17), it is the case that

(Cl) Ai < OfOT —gt; < th
(CZ) A] < OfOT - gt] < Zti

The following cases need to be considered:
Case1:A; > 0and A; >0

Then by (C.1) and (C.2) it must be the case that
(C.3)0 > 2¢t; + gt;

(C.4) 0 > 2¢; + gt;

Summing these two inequalities gives
(C50>2Z+g)(t+t)

which is a contradiction. Hence A; > 0 and A; > 0 cannot be true.
Case 2: A; > 0 and A; < 0 for D; > D;

The two A inequalities imply that

(C.6) 0 > 2t; + gt;

(C.7) 0 > =2t; — gt;

Summing these two inequalities gives

(C8)0>(2—g)t; —ti)

which cannot hold when D; > D; since this implies t; > t;. Combined with 2 — g > 0, this gives a
contradiction. Similar reasoning means that one can also rule out the case in which A; < 0 and A; >

0 for Dj > Di'

Case3:A; > 0and A; < Ofor Dy > D;
Case 4:A; < 0and A; > 0for D; > D;
Case5:4; < 0andA; <0

It is not possible to derive contradictions for the combinations in cases 3, 4 and 5 so these can

characterize equilibrium behaviour, as discussed in the text.
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