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Abstract 

This study investigated how swimming speed may influence the growth performance and flesh 

quality characteristics of farmed adult Atlantic salmon (Salmo salar) in closed cages. Fish (889 

g, 41.6 cm) were exposed to water currents corresponding to initial swimming speeds of 

approximately 0.2 (LOW) and 0.6 BL s-1 (HIGH) for five months. Fish in the HIGH group had 

significantly higher final round weight compared to the LOW group, but no differences on fork 

length and specific growth rate (SGR) between treatments were found. Fish in the HIGH group 

also had higher condition factor (CF), relative ventricular mass (RVM), fillet yield than that in 

the LOW group. However, flesh texture measured instrumentally as maximum shear force and 

total shear work did not differ between treatments after exposing to water currents for eleven 

weeks. Other flesh quality characteristics including flesh colour, gaping, water content, lipid 

content and protein content were not affected by swimming speed as well. In conclusion, higher 

swimming speed can be used to improve growth performance without compromising flesh 

quality of farmed adult Atlantic salmon in closed cages.  
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1 Introduction 

1.1  World aquaculture 

Aquaculture refers to the breeding, rearing, and harvesting of plants and animals in all types of 

water environments (NOAA, n.d.). Global aquaculture production has grown steadily since 

1970s. According to the current available statistics from FAO, world aquaculture production 

reached another high of 90.4 million tonnes (live weight equivalent) in 2012, consisting of 66.6 

million tonnes of food fish and 23.8 million tonnes of aquatic algae (FAO, 2014). The world 

food fish aquaculture production more than doubled from 32.4 to 66.6 million tonnes in the 

period of 2000 to 2012 (FAO, 2014). 15 aquaculture leading countries produced more than 90% 

of all farmed food fish in 2012. China is the largest aquaculture production country, accounting 

for more than 60% of world farmed food fish production in 2012 (FAO, 2014). 

 

The world population is expected to grow by another 2 billion by 2050, with most of the 

population growth occurring in developing regions. World per capita apparent fish consumption 

has reached 19.2 kg in 2012, which is almost twice than that in 1960s (9.9kg) (FAO, 2014). 

Ensuring adequate food and nutrition security to this growing population and growing need are 

big challenges for meat products. Fish has high potential to meet the meat requirement since 

they are more efficient in using the feed and processing energy than chicken, cow and pig. Fish 

is well known by its high quality protein, various vitamins and minerals (Sikorski et al., 1995). 

Farmed marine fish like Atlantic salmon (Salmo salar), is rich in the long chain omega-3 fatty 

acids, such as DHA and EPA. Consumption of long chain omega-3 fatty acids are beneficial for 

health and the development of brain (Ruxton et al., 2004). Therefore, aquaculture remains as 

the best option to meet the increasing demands of meat.  
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1.2 Atlantic salmon aquaculture 

1.2.1 Status 

The Atlantic salmon (Salmo salar) belongs to the family Salmonidae, is naturally found in the 

northern Atlantic Ocean and the rivers that flow into the north Atlantic (Shearer, 1992). Atlantic 

salmon is an anadromous fish that migrates out to the sea after two to five years in a river and 

then migrates back to its native river to spawn after two to four years in the sea.  

 

Atlantic salmon farming started in the late 1960s in Norway. Global aquaculture production for 

Atlantic salmon is more than two million tonnes in 2014, predominantly from aquaculture in 

Norway, Chile, Canada and UK (FAO, 2016). Norway has the largest Atlantic salmon 

aquaculture production, with 1.26 million tonnes (5.07 billion USD) in 2014 (data from 

Norwegian Directorate of Fisheries) (NDF, 2014). However, it seems that Norwegian Atlantic 

salmon aquaculture is facing a challenge of keeping the increase trend (Fig. 1). 

 

 
Fig. 1. Production (Sales of slaughtered fish in thousand tonnes round weight) of farmed 
Atlantic salmon in Norway from 1998 to 2014. Based on data from Norwegian Directorate of 
Fisheries (NDF, 2014). 
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1.2.2 Traditional open cage systems  

Traditional open cage systems, which are normally located in fjords, bays and open sea, are the 

most used Atlantic salmon aquaculture systems to date. These systems take advantage of the 

natural resources such as water and light from the ocean without occupying too much land 

space. Major components in traditional open cage systems include: 1) Net bag with weights in 

the bottom to spread the bag 2) A jumping net above the surface fixed to the net bag to prevent 

fish from escaping 3) Bird net is used to prevent birds from coming into the production unit 4) 

Floating collar for spreading out the net bag and giving buoyancy to keep the bag in the correct 

position in the water column 5) Mooring system (Lekang, 2007). 

 

There are three main problems for Atlantic salmon aquaculture in open cage systems currently 

(Bergheim, 2012). The most common problem is sea lice infection due to the costly treatment, 

reduced growth, increased feed wastage and reduced market quality of the final product. Sea 

lice treatments include bath treatment with different medicinal compounds (such as hydrogen 

peroxide and deltamethrin) and in-feed treatment (emamectin benzoate) (Aaen et al., 2015). 

Moreover, the use of “cleaner fish” such as lumpfish (Cyclopterus lumpus) (Imsland et al., 

2014) and wrasse (Leclercq et al., 2014) has become feasible and efficient alternatives to aid in 

the control of sea lice. Effort has been put to develop vaccines against the salmon sea lice, but 

effective vaccines haven’t been developed yet. The second problem is escaped farmed fish, 

which would affect wild population through competition, disease and genetic interactions. The 

third problem is the footprint on the environment (pollution). Elevated discharges of nutrients, 

excess feed and waste to the marine environment are big concern about open cage aquaculture 

systems (Mente et al., 2006). 

 

1.2.3 Closed cage systems 

Closed cage systems are new technologies that attempt to create restrict interactions between 

 3 



farmed fish and the external aquatic environment (Thorarensen and Farrell, 2011). The closed 

cage systems increase the control of water entering and leaving the bag. The largest advantage 

is that the systems can prevent sea lice infection by pumping water from deeper depth. In 

addition, it is possible to reduce environmental pollution by pumping and controlling the waste 

from the system. So far, there are no technology on waste treatment, but there are plans and 

development ongoing on this topic. Furthermore, the closed cage systems have a high efficiency 

in preventing fish from escaping. 

 

Open sea cage systems are exposed to the natural water current, closed cage systems have the 

water enclosed, and it is therefore possible to control the water current within the unit. However, 

there is limited knowledge on welfare and flesh quality issues from fish subjected to long time 

exercise in closed cage systems. How the fish react and perform at different water speed are 

vital factors on deciding the optimal water speed in closed cage systems. Therefore, 

documentation on what is the optimal water speed for closed cage systems is important before 

such systems are commercialized. 

 

1.3 Fish muscle structure 

Fish striated muscle makes up the fillet, which is the most destined part for most food products. 

Striated muscle is the largest organ in most of the fish species, contributing approximately 60% 

of the total body mass (Sänger and Stoiber, 2001). Unlike the mammals which also use the 

muscle to support the skeletal, fish only use the muscle for movement and as energy storage 

during periods of food deprivation (Love, 1988). 

 

The myotomal muscle is composed of repeated segment called myotome, which is separated 

by sheets called myocommata. Myotome is consisted of relatively short lateral muscle fibres. 

There are mainly two types of muscle fibres in fish muscle, including red (slow) muscle fibres 

and white (fast) muscle fibres. White muscle fibres are the major part of striated muscle (never 
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less than 70% of the striated muscle). White muscle fibres have big fibre diameter up to 300 

μm, while the diameter of the red fibres is only about 20-50% of that of the white fibres (25-45 

μm) (Sänger and Stoiber, 2001). White muscle fibres use anaerobic energy metabolism, while 

red muscle fibres use aerobic metabolism (Luther et al., 1995). Generally, white muscle is used 

at high swimming speeds and red muscle is mainly used for sustained energy efficient 

swimming. The majority of the myotomal muscle occupied by white fibres, which are covered 

by a thin layer of red muscle fibres. Many species also have a layer of pink intermediate muscle 

fibres in between white and red muscle fibre compartments (Sänger and Stoiber, 2001). The 

proportion of red and white fibres is related to the swimming mode and activity level of the fish 

species (Videler, 1993). Active fish species have higher proportion of red muscle, compare to 

bentic fish that spend most of their time lying on the bottom. And the proportion of red muscle 

fibres varies at different position along the body axis of the fish, with the highest percent of red 

muscle fibres towards tail in most fish species (Videler, 1993).  

 

1.4 Flesh quality and influencing parameters 

1.4.1 Texture 

Flesh texture is a multi-faced parameter dealing with sensory interpretation of a fish products 

(Coppes et al., 2002). Textural parameters are frequently used to evaluate fish quality and give 

an assessment on the shelf life of fish products. Firmness is an essential parameter of fish 

textural quality that is associated with the human visible acceptability of fish products (Veland 

and Torrissen, 1999). Firmer fillets are more desirable for consumers (Haard, 1992). Fillet with 

insufficient firmness can cause downgrading and might not be suited for further industrial 

processing, resulting in a large economic loss. Study shows this index is largely correlated with 

the structure of connective tissue and the density of muscle fiber (Johnston et al., 2000).  

 

Collagen is a significant compound in the connective tissue of fresh fish muscle. In fish muscle, 
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3% to 10% of the muscle protein is collagen, which plays an essential role in maintaining fillet 

integrity and muscle cohesiveness (Sikorski et al., 1984). A histological study showed that the 

disintegration of thin collagen fibrils is the reason for fish flesh rapidly soften (Ando et al., 

1992). The hydroxylysyl pyridinoline (PYD) is a mature intermolecular cross-link between 

collagen fibres that contribute to the structure and rigidity of the collagen. Some studies has 

showed a mature PYD is the most important parameter that affect fish texture (Li et al., 2005; 

Hagen et al., 2007).  

 

Endogenous enzyme, is a primary factor that cause the biochemical change and quality loss of 

fish muscle. Post-mortem fish generally have a soft texture, resulting from proteolysis by 

endogenous proteases (Sriket, 2014). External factors like stress and cold storage have 

potentially a large impact on enzyme activity and rigor mortis onset, therefor affecting the fish 

textural quality (Sigholt et al., 1997). 

 

Different texture measurements based on various parameters are carried out to examine the fish 

flesh quality (Cheng et al., 2014). For consumers, quality index method (QIM) has been 

implemented in several countries. For industries, “finger method” which mainly indicate the 

firmness has been used widely to evaluate the texture of fish fillet. For scientific research, 

different instrumental texture analyses are used to reduce the variation in results from sensory 

analysis. 

 

1.4.2 Proximate composition  

Fish muscle generally consists of approximately 18% protein, about 80% water plus lipid and 

about 2% other nutrients (carbohydrate, minerals and vitamins).  

  

Fish can be divided into four classes according to their fat content: lean (<2%), low fat (2-4%), 

medium fat (4-8%) and high fat (>8%) fish species. Marine fish contains high amount of omega-
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3 fatty acid including eicosapentaenoic acid (20:5 n-3, EPA) and docosahexaenoic acid (22:6 

n-3, DHA), which can help to prevent some diseases (Ashton, 2002; Ruxton et al., 2004). Lipid 

content can vary according to seasons (Hamre et al., 2003), dietary lipid content (Nanton et al., 

2003) and the position within the fillet (Sigurgisladottir et al., 1997). The oxidation of 

polyunsaturated fatty acid (PUFA) causes the development of off-flavors and aromas by 

producing volatile lipid oxidation products like aldehydes, alkanes, alkenes, alcohols and 

organic acids, causing the unpleasant taste and odor. Compared to mammals that rarely have 

two or more double bounds per fatty acid, fish contains many fatty acids with five or six double 

bounds, which are more subjected to oxidation (Ashton, 2002).  

 

Proteins are important elements for fish meat quality, regarding to its nutritional value and 

effects on the sensory properties of fish products. In the fish muscle, the crude protein content 

is usually in the broad range 11-24% wet weight (Sikorski et al., 1995). Muscle proteins can be 

divided into three groups (Sikorski et al., 1995). The sarcoplasmic proteins, act as enzymes and 

oxygen carriers, are normally found in the cell plasma. They will comprise 18-20% of total 

muscle protein. The myofibrillar proteins give the muscle its fibre-like structure and muscular 

activity, comprising 65-80% of total protein. The stroma proteins are those making up the 

connective tissue, surrounding the muscle fibres, comprising about 3-5% of the total protein. 

 

The water content in fish has an important impact on the fish quality, especially for parameters 

such as dryness and juiciness. Therefore, water content within the fish muscle can have impact 

on the commercial value and consumer acceptance. The water holding capacity of foods can be 

defined as the ability to hold its own and added water during the application of forces, pressing, 

centrifugation or heating. Water binding capacity in fish plays an important role by preventing 

water from being released from the structure (Zayas, 1997).  
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1.4.3 Gaping 

Fillet gaping happens when the connective tissue fails to hold the muscle segment against the 

forces pulling the muscle apart (Lavety et al., 1988). Fillet gaping is one of the most important 

quality issues in Atlantic salmon industry because the unattractive appearance will reduce the 

final product value (Michie, 2001). The mechanisms behind gaping are still not fully 

understood, but PYD cross-link concentration has been showed having effects on filleting 

gaping, as the formation of PYD cross-links increases the strength of the collagen fibres (Hagen 

and Johnsen, 2016).  

 

Post-mortem processing has a big influence on fillet gaping in Atlantic salmon. Storage 

temperature that causes fast and strong rigor mortis would increase the risk towards gaping 

(Lavety et al., 1988). Pre-rigor filleting results in less gaping compared to post-rigor filleting in 

Atlantic salmon (Skjervold et al., 2001). The fillets were more susceptible to gaping following 

the rough handling at slaughter, which is known to cause changes of muscle pH (Robb et al., 

2000).  

 

Fasting and manipulating feeding regimes and diet are possible strategies to reduce fillet gaping. 

A study carried out by Hagen and Solberg (2010) has showed fasted Atlantic cod (Gadus 

morhua) performs better texture quality over the fed counterpart. High-fat diet can result in 

wider myosepta on the fillets and restricted diet can lead to less gaping (Refstie et al., 2001; 

Johnsen et al., 2013). 

 

1.4.4 Colour 

The customers often rely heavily on visual appearance of the products, colour especially, due 

to the limited opportunity to evaluate the products. In salmonids, flesh colour plays an important 

role on the price and consumer acceptance of the products. The orange-red colour of farmed 
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Atlantic salmon is caused by the deposition of the carotenoids in the muscle, with astaxanthin 

proven to be the most efficient for pigmentation of muscle. It was suggested that carotenoid 

pigments seem to have other functions than just as a source for colour. For example, astaxanthin 

could make contributions to the intracellular communication and immune response since it is a 

precursor of vitamin A (Nickell and Springate, 2001; Davies, 2008). Astaxanthin in muscle is 

weakly bound to the actomyosin protein-complex by no-specific hydrophobic bounding 

(Henmi et al., 1990). Moreover, Johnston et al. (2004) hypothesized that the organization of 

astaxanthin is associated with the regular alignment of actin and myosin proteins, hence the 

depth in colour also highly depends on the sarcomere alignment.  

 

Farmed Atlantic salmon get the astaxanthin from the feed, which is mainly produced 

synthetically from a petrochemical source (Lerfall et al., 2016). As farmed Atlantic salmon have 

to absorb carotenoids exogenously, dietary source and feed composition play important roles in 

deciding the pigmentation of the fish (Torrissen, 1985; Einen et al., 1999).  

 

1.5 Impact of swimming speed on behavior, growth and flesh 

quality  

For Atlantic salmon aquaculture, fish generally experience water speeds below 20 cm s-1 and 

they are free to express its behaviors within this water speeds range (Johansson et al., 2007). 

The fish often form a circular and one-way directed swimming pattern under such water current, 

possibly because fish actively avoiding collision with the cage wall and each other (Føre et al., 

2009).  

 

1.5.1 Behavior 

Salmonid fish attempt to stay stationary against the water flow and tend to exhibit regular, 
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synchronized locomotory behaviors and form school when they are exposed to moderate water 

flow (East and Magnan, 1987; Christiansen and Jobling, 1990). Higher swimming speed can 

reduce the aggression between fish since they have to hold their station against the water current 

(East and Magnan, 1987; Christiansen and Jobling, 1990; Adams et al., 1995). The frequency 

of reduced signs of fin or body damage as a result of reduced aggression in exercised fish may 

have a potential benefit of lowering the risk of further infections (Jobling et al., 1993). In 

addition, due to the fact that the energy cost of spontaneous actcities for fish held in still water 

may be substantial, the reduced aggression in fish swimming at higher speed may have a benefit 

of reducing energy cost (Christiansen et al., 1991; Adams et al., 1995).  

 

1.5.2 Growth 

In general, moderate swimming speed on fish have the potential to stimualte growth, especially 

in salmonids. A study on yearling hatchery-reared brook charr (Salvelinus fontinalis) swimming 

at different speed of 0.00, 0.85, 1.72 and 2.50 body length per second (BL s-1) shows the highest 

growth performance happens at 0.85 BL s-1 (East and Magnan, 1987). Brown trout (Salmo 

trutta) and rainbow trout (Oncorhynchus mykiss) also show improved growth at moderate 

swimming speed of 1 BL s-1 (Davison and Goldspink, 1977; Houlihan and Laurent, 1987). Both 

continuous intensity training (0.8 BL s-1) and interval training (0.8 BL s-1 16 h and 1.0 BL s-1 8 

h) have been found to increase growth in pre-smolt Atlantic salmon (Castro et al., 2011). 

Jørgensen and Jobling (1993) found that juvenile Atlantic salmon shows the highest SGRs when 

fish swimming at 1.5 BL s-1 compared to the 1.0, 2.0 BL s-1 and non-exercised group. For adult 

Atlantic salmon, fish swimming at 0.45 BL s-1 gained nearly 40% higher weight compared to 

the non-exercised fish raised in open cages (Totland et al., 1987). However, recently published 

paper found that fast swimming speed can have negative impact on fish, resulting in a decreased 

production performance in post-smolt Atlantic salmon (Solstorm et al., 2015). 
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1.5.3 Proximate composition 

Increased swimming speed have potential to change flesh composition and consequently the 

quality of the fish, even though results about how swimming training affects flesh composition 

varies among studies. Fish under moderate swimming training tends to contain higher flesh 

protein content (Davison and Goldspink, 1977; Houlihan and Laurent, 1987; Solstorm et al., 

2015). Higher flesh lipid content is found in fish muscle that is trained under moderate 

swimming speed than untrained fish (Davison and Goldspink, 1977; East and Magnan, 1987; 

Houlihan and Laurent, 1987; Totland et al., 1987). However, fast swimming speed may also 

reduce lipid deposition in the muscle in Atlantic salmon (Solstorm et al., 2015). The higher 

flesh protein content may result from decreased fuelling by protein (Lauff and Wood, 1996). 

Furthermore, no effects of swimming speed on flesh lipid content and protein content has been 

observed (Rasmussen et al., 2011). 

 

1.5.4 Fillet firmness 

Moderate swimming speed has been shown to induce various effects on fish firmness. 

Swimming training leads to increased fillet firmness in Atlantic salmon (Totland et al., 1987), 

sea bream (Pagrus major) (Tachibana et al., 1988) and brown trout (Bugeon et al., 2003). On 

the contrary, Khan et al. (2015) found that firmness and muscle fibre density were significantly 

lower in the exercised hāpuku (Polyprion oxygeneios) than that in the unexercised fish. Such 

changes may be explained by muscle fibre hypertrophy (enlargement of muscle fibres) leads to 

lowered muscle fibre density, and may decrease the fillet firmness in salmonids (Bjørnevik et 

al., 2004; Mørkøre et al., 2009). While other studies shows no significant differences in fillet 

texture between exercised and unexercised group in rainbown trout (Rasmussen et al., 2011) 

and Atlantic cod (Bjørnevik et al., 2003). 
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1.6 Project aims 

The aims of this study were to investigate the growth and flesh quality characteristics of Atlantic 

salmon at two different swimming speeds in a closed cage system. The results will be used to 

optimize the swimming speed for Atlantic salmon in the closed cage system.  
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2 Materials and Methods 

2.1 Atlantic salmon 

The trial was conducted at Norsk Havbrukssenter, Brønnøysund (65.5°N 12.1°E, Nordland 

county, Norway) during the period from 27 May 2015 to 17 November 2015. The Atlantic 

salmon used in the experiment originated from Bindalssmolt AS (Nordland, Norway). The fish 

(S0 autumn smolt) were transferred to sea in November 2014, and were stocked in a closed 

cage (3000 m3) at site Møllebogen until 20 May 2015. The fish were then moved by a well boat 

to Lamholmen and were received in a large closed cage in Norsk Havbrukssenter on 20 May 

2015. Prior to the experimental setup, the fish were starved for two days. The fish had an initial 

mean round weight of 889 g and initial mean fork length of 41.6 cm on 27 May 2015 when they 

were graded and 1200 fish were evenly distributed into four closed cages. Each sea cage was 

stocked with 300 salmon, where 250 fish were untagged and 50 fish were PIT tagged with 

GPT12 Pre-load tags (12.5 mm, 134.2 kHz), using MK25TM Implant Gun (Biomark, Boise, 

USA). 

 

2.2 Closed cage  

The closed cage used in the experiment is 15 m circumference, with an estimated volume of 30 

m3 (Akva Design AS, Brønnøysund, Norway). The basic structure of the cage is similar to a 

traditional open cage: jumping net, bird net, floating collar and mooring system (Lekang, 2007). 

However, there are some significant changes on the closed cage (Fig. 2). First change is that a 

closed bag of dense and flexible tarpaulin wall (Rantex AS, Lundamo, Norway) was used in 

the closed cage instead of using the net as a bag. Second change is that water is supplied from 

25 m deep through a pipe and pumped into the cage. Third change is that the water outlet is 

located at the center of the bottom, where the dead fish and the remaining waste can be collected 

and pumped up through a drain pipe. The oxygen and temperature sensors (Akva Group AS, 
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Trondheim, Norway) are located at 2 m deep and 1 m from the wall. Each cage is set up with a 

control cabinet where data-collecting IQ Sensor Net 2020 XT (YSI Incorporated, USA) are 

hooked up, allowing to monitor the water quality in the cage.  

 

 
Fig. 2. Model of the closed cage used in the experiment. From Akva Design AS. 

 

2.3 Experimental setup 

Two weeks after the fish were distributed to the experimental setup, two water speeds were 

established (LOW, two cages and HIGH, two cages). The water speed for the LOW group was 

created only by incoming water through horizontally mounted inlet pipe. The water speed for 

the HIGH group was established by incoming water through horizontally mounted inlet pipe, 

with an extra propeller that is opposite to the inlet pipe. The water speed was measured by Flow 

Rate Sensor LQ2-LE, being connected to Labquest 2 (Vernier Software & Technology, USA). 
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The water speed was measured just behind the water inlet (A) and the propeller (B) at different 

depths (10 cm, 1 m and 2 m) (Fig. 3). The water speeds were around 8 cm s-1 and 22 cm s-1 for 

LOW and HIGH group respectively, even though variation exist within the cage (Fig. 3). Since 

the initial fish length was 41.6 cm, the swimming speeds for LOW and HIGH group were 

approximately 0.2 and 0.6 BL s-1 respectively at start of the experiment, decreasing to 

approximately 0.1 and 0.4 BL s-1 at the end of the experiment. 

 

 

 
Fig. 3. Mean (SD) water speed at different position in a cage from the HIGH group on July 22th. 

 

All fish were fed Spirit S600-50A 7 mm (Skretting AS, Stavanger, Norway) from 15 June 2015 

to 29 July 2015, Premium 1200-50A 9 mm (Skretting AS, Stavanger, Norway) from 29 July 

2015 to 14 October 2015, Premium 2500-50A 9 mm (Skretting AS, Stavanger, Norway) from 

15 October 2015 to 18 November 2015 to satiation every day, using Betten feeders S1 automatic 

feeding system (Betten Maskinstasjon AS, Vågland, Norway). Feed and feeding regimes were 

regulated every week according to commercial standards and manual inspection. Water 

exchange was continuously, with an estimated water exchange speed of 250-275 L min-1 for 

each cage. Stocking density was approximately 9 kg m-3 at the start of the experiment and this 

increased to a maximum of approximately 25 kg m-3 during the experiment. Oxygen saturation 
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was maintained above 90% through the experiment. Water temperature ranged from 8.7 °C in 

June to 14.2 °C in August 2015 (Fig. 4). 

 

 
Fig. 4. Water temperature during the experiment. 

 

2.4 Sampling procedure 

To see the growth performance, the round weight (± 1 g) and fork length (± 0.5 cm) of all fish 

were recorded on 27 May 2015 and 17 November 2015, with only 50 fish were measured on 

26 August 2015. 

 

Fish were sampled on 10 June, 26 August and 17 November 2015 for the evaluation of flesh 

characteristics. 15 fish from each cage were sampled for flesh quality characteristics analysis 

at each sampling point. Fish were collected by purse seine, and randomly taken out by a scoop 

net. Fish were anesthetized using 1.5-2 gram Tricaine methane sulphonate in a 50 L tank with 

seawater (30-80 mg/L).  

 

Biomark 601TM Reader (Biomark, Boise, USA) was used to read the PIT tag ID and the tagged 

fish were not sampled. The sampled fish were killed by a sharp blow to the head immediately 
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and were bled for half an hour in a 50 L tank with seawater by cutting the gill arches on both 

sides. The fish were labeled individually. Round weight, fork length, gutted weight, liver weight 

and heart weight (including the bulbus arteriosus) of each individual were measured. The fish 

were iced in polystyrene boxes and sent by ferry (Hutigruta) to Faculty of Biosciences and 

Aquaculture, Nord University (Bodø, Norway) for further analysis. The fish were stored in a 

cold room (+ 4 °C) awaiting further analysis after arrival at the Nord University.  

 

Five days after slaughter, the fish were filleted and the fillet weight were recorded as the weight 

of both fillet. Fillet gaping were measured using the whole left fillet. The Norwegian quality 

cut (NQC, Fig. 5) from the left fillet were cut out and used for colour and texture analysis, and 

thereafter homogenized in Braun MR530 Turbo-Accesorios homogenizer (Braun, Germany). 

The homogenized fish were stored at - 40 °C prior to chemical composition analysis. 

 

 

 

Fig. 5. NQC and sampling sites for texture and colour analysis in the experiment. 

 

2.5 Gaping score assessment  

The gaping score was visually evaluated on the whole left fillet in an anterior to posterior 
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direction, according to a scale from 0-4.0 (Table 1) (Johnsen et al., 2011): 

 

Table 1. Scale of gaping score applied in the study. 

Score Sign 

0 no gaping 
0.5 1-3 small breaks [ < 0.5 cm] in the myoseptum 
1.0 4-6 small breaks 

1.5 7-9 small breaks or 1-3 medium breaks [0.5-1.5 cm] 
2.0 > 10 small breaks or 4-6 medium breaks 

2.5 7-9 medium breaks or 1-2 large breaks [ > 1.5 cm] 
3.0 > 10 medium breaks or 3-5 large breaks 

3.5 > 6 large breaks 
4.0 extreme gaping = myotomes falling apart 

 

2.6 Colour evaluation 

Flesh colour was examined using the DSM SalmoFanTM (DSM, Switzerland) under bright light 

in a special light cabinet (Ra > 90, colour temperature > 5000 K). SalmoFan evaluation was 

carried out on the left NQC fillet. To minimize the variation between samples the measurement 

was performed by the same person. Flesh colour was also measured in triplicate by using 

Spectrophotometer CM-700d (Konica Minolta, Japan). The measurement was done just above 

the lateral line on the left NQC (Fig. 5). The L* variable represents lightness (L* = 0 for black, 

L* = 100 for white), the a* scale represents the red/green (a* positive represents intensive on 

red colour and a* negative represents intensive on green colour), and b* value represents the 

yellow/blue (positive and negative respectively) (Hunter and Harold, 1987). 
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2.7 Instrument texture analysis 

Texture analysis was done by using a TA-XT2 PLUS texture analyser with Texture Expert 

Exceed 2.52 software (Stable Micro System, Surrey, England). The instrument was equipped 

with a load cell of 50 kg, a knife steel blade with thickness of 3.0 mm and width of 70 mm, a 

slotted insert platform for muscle blocks. Duplicate measurements were done on each fish by 

using a standardized block (25 × 25 ×10 mm) from the dorsal part of the left NQC (Fig. 5). The 

knife blade was pressed downward through the muscle block at a 90 angle to the longitudinal 

orientation of the muscle block, with a constant test speed of 1 mm/s, cutting through 120 % of 

the block. A figure was shown on the computer, showing the force needed to cut through the 

muscle block. The maximum shear force in newton (N) is the maximum resisting force to the 

cutting of the sampling and the total shear work was calculated as the total work needed to cut 

through the muscle in millijoules (mJ). Owing to the unfortunate instrumental calibration 

problems with the instrument, the texture data at final sampling were not included. 

 

2.8 Proximate composition  

Chemical composition of post-rigor fillet from the right NQC fillet were determined in 

duplicate samples. And DA 7200 NIR Analyzer (Perten Instruments, Sweden) was also used to 

evaluate the chemical composition at the final sampling point.  

 

2.8.1 Water content 

Water content was determined in parallels by drying the sample at 105 °C. An aluminium cup 

was labeled and pre-weighed. Wet weight (5 g) of homogenized fillet was weighed into the cup 

and placed in an oven for 20 hours at 105 °C. The cup with sample was weighed after drying 

for determination of dry weight (g). Water content was calculated according to the following 

formula: 
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Water content (%) = 100 × (Wet weight – Dry weight) × Wet weight-1 

 

2.8.2 Protein content 

Protein content was determined by the Kjeldahl method. Homogenized fillet sample was 

weighed (1 g) into a nitrogen-free Kjeltec paper (GE Healthcare life science whatman, UK) and 

was added into a glass tube. Two Kjeltabs and 15 ml concentrated sulphuric acid (98% H2SO4) 

were added to the sample tube under fume hood using bottle top dispenser. The tube was then 

heated at 420 °C on a Foss Tecator 2020 digestor (Foss Analytical AB, Sweden) for 45 minutes. 

75 ml distilled water was added after the sample was cooled down. By using a factor of 6.25, 

the amount of protein was decided by titrating with 0.1999 mol L-1 hydrochloric acid in a 1% 

boric acid indicator solution, with methyl-red and bromcresol-green as indicator by using 

Kjeltec 2300 (Foss Analytical AB, Sweden). 

 

2.8.3 Lipid content 

Lipid content was determined by using homogenized fillet sample extracted in ethyl acetate. 

Homogenized fillet sample (sample weight: 5 g) and 20 g of water free sodium sulfate were 

mixed in a porcelain bowl. The mixed powder was transferred into a 100 ml glass bottle, in 

which 50 ml ethyl acetate was added. The glass bottle was placed on a shaking table for an hour 

at a speed of 260 shake per minute in a fume hood, 20 ml of the sample was filtrated through a 

filter paper (VWR international, Belgium). 20 ml filtrated sample was measured into an 

evaporation cup through glass pipette and was evaporated in a water bath at 100 °C for 20 

minutes. The sample was dried at 105 °C for 20 minutes and put into the desiccator to cool 

down. Then the cup was weighed and lipid weight (g) was calculated. Lipid content was 

calculated according to the following formula: 

Lipid content (%) = 10300 × Lipid weight × ((40 – 2.17 × Lipid weight) × Sample weight)-1 
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2.9 Calculations  

Condition Factor. Fulton’s condition factor (CF) was calculated as: 

CF = 100 × round weight × fork length-3 

 

Specific Growth Rate. Specific growth rate (SGR) was calculated using tagged fish only 

according to the formula: 

SGR (% day-1) = 100 × (ln W2 – ln W1) × (t2 – t1)-1 

Where W1 and W2 represent the individual fish round weights (g) at time t1 and t2 (day) 

respectively. 

 

Hepato Somatic Index. Hepato somatic index (HSI) was calculated as: 

HSI (%) = 100 × liver weight × round weight-1 

 

Relative Ventricular Mass. Relative ventricular mass (RVM) was calculated according to the 
formula (Gallaugher et al., 2001):  

RVM (%) = 100 × heart weight × round weight-1 

 

Fillet yield. Fillet yield was calculated as: 

Fillet yield (%) = 100 × fillet weight × round weight-1 
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2.10  Statistical analyses 

Statistics were performed using IBM SPSS Statistics v. 22.0 (IBM Corporation, NY, US). 

Microsoft Excel 2016 (Microsoft Corporation, WA, US) was used for the graphical illustration 

of results. A partial least square regression was performed using Unscrambler Ver.10X (Camo 

Process AS, Oslo, Norway) to predict the flesh water content, protein content, lipid content. 

Data are presented as mean ± SD, and significance was accepted at P < 0.05. Prior to analysis, 

Shapiro Wilk’s W and Levene’s tests had been used for checking normality and homogeneity 

of variance, respectively. Outliers were individually investigated for underlying reasons and the 

outliers were removed from the data set where methodological causes were detected. Effects of 

swimming speed on growth performance for overall fish and biometric parameters for sampled 

fish were analyzed by using one-way ANOVA, followed by a t-test for comparisons when a 

significant difference was found between the treatments, and the results from these two tests 

gave the same outcome. A nonparametric Mann-Whitney U test was used when statistical 

assumptions were not met. A general liner model (GLM) for ANCOVA was used to investigate 

the effect of swimming speed on HSI, RVM and flesh quality characteristics, with gutted weight 

as covariate and swimming speed as fixed factor. Relationships between test variables were also 

analyzed by Pearson’s correlation.  
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3 Results 

3.1 Effects on growth performance 

Results for overall fish growth performance are presented in Fig. 6. Fish round weight (mean ± 

SD) increased three-fold from 884 ± 112 g to 2837 ± 468 g and from 894 ± 115 g to 3031 ± 503 

g in the LOW group and HIGH group during the five months’ trial, respectively. On May 27th 

and August 26th there were no significant differences between treatments in fish mean round 

weight (Fig. 6A, P > 0.05). However, at the end of the experiment (November 17th), the HIGH 

group had 6.4% higher mean round weight than the LOW group (Fig. 6A, P < 0.001).  

 

Fork length (mean ± SD) on May 27th was 41.5 ± 1.6 cm in the LOW group and 41.7 ± 1.6 cm 

in the HIGH group, and increased to 59.0 ± 3.7 cm and 58.8 ± 4.5 cm in the LOW group and 

HIGH group respectively, at the end of the experiment (November 17th). No significant 

differences in fork length between the treatments were observed throughout the experiment 

(Fig. 6B, P > 0.05).   

 

Calculated mean condition factor increased from 1.23 on May 27th to 1.35 and 1.45 on August 

26th in the LOW group and HIGH group, respectively. Mean condition factor was significantly 

higher in the HIGH group on both August 26th (P = 0.031) and November 17th (Fig. 6C, P < 

0.001).  

 

SGR for individually tagged fish increased from 0.50 ± 0.20% day-1 and 0.60 ± 0.10% day-1 

(May 27th-August 26th) to 0.79 ± 0.19% day-1 and 0.82 ± 0.14% day-1 (August 26th-November 

17th) in the LOW group and HIGH group respectively. During the whole experimental period 

from May 27th to November 17th, the SGR were 0.66 ± 0.10% day-1 in the LOW group and 0.69 

± 0.08% day-1 in the HIGH group. No significant differences were found between treatments 

with regards to mean SGR during the experiment (Fig. 6D, P > 0.05). 
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A)   B) 

  

 C)   D) 

 
 

Fig. 6. Round weight (A), fork length (B), condition factor (C) and SGR (D) for Atlantic salmon 
exposed to water currents corresponding to initial swimming speeds of 0.2 (left column, LOW) 
or 0.6 BL s-1 (right column, HIGH) for five months. Significance differences (ANOVA) between 
groups at the same sampling time are indicated by asterisks (*) P < 0.05 and (***) P < 0.001.  
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3.2 Effects on biometric parameters  

Biometry data of the randomly selected fish for flesh quality characteristics analyses are 

presented in Table 2. Fork length were similar between treatments at all three sampling points 

(P > 0.05). However, fish in the HIGH group had significantly higher round weight (P = 0.012), 

gutted weight (P = 0.009) and condition factor (P = 0.009) value than the LOW group on 

November 17th, while no significant differences were found between treatments on both June 

10th and August 26th. HSI were significantly higher in the LOW group than the HIGH group 

only at the start of the experiment (P = 0.029). Significant higher RVM was found in the HIGH 

group at the end of the experiment (P = 0.048).  

 

Table 2. Biometry data (mean ± SD) for Atlantic salmon kept at water currents corresponding 
to initial swimming speeds of 0.2 (LOW) or 0.6 BL s-1 (HIGH) for five months. Significant 
differences (ANOVA and ANCOVA) between groups at the same sampling time are indicated 
by asterisks (*) P < 0.05 and (**) P < 0.01. 

 June 10th  August 26th  November 17th 
Round Weight (g)   
LOW  854 ± 110 1411 ± 289   2866 ± 402* 
HIGH  843 ± 100 1485 ± 196  3119 ± 331 
Fork Length (cm)   
LOW 41.5 ± 1.6 48.4 ± 2.8  59.4 ± 2.8 
HIGH 41.3 ± 1.7 49.2 ± 2.4  59.8 ± 2.1 
Gutted Weight (g)   
LOW 779 ± 89 1250 ± 254     2519 ± 351** 
HIGH 758 ± 90 1332 ± 200  2748 ± 288 
CFA    
LOW  1.20 ± 0.07  1.23 ± 0.10        1.36 ± 0.10** 
HIGH  1.19 ± 0.06  1.25 ± 0.06        1.46 ± 0.10 
HSIB       
LOW   0.93 ± 0.10*  0.93 ± 0.09   1.00 ± 0.06 
HIGH  0.76 ± 0.09  0.96 ± 0.07   1.04 ± 0.06 
RVMC    
LOW  0.102 ± 0.011  0.112 ± 0.012     0.111 ± 0.011* 
HIGH  0.102 ± 0.014  0.108 ± 0.013    0.118 ± 0.010 

A Condition factor.        B Hepato somatic index.    
C Relative ventricular mass
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3.3 Effects on flesh quality characteristics 

3.3.1 Fillet yield 

The fillet yield ranged from 64.1 to 67.1% and 65.9 to 66.5 % in the LOW and HIGH group 

respectively. There were no differences in fillet yield between groups on June 10th and August 

26th. However, the fillet yield of the fish in the HIGH group was 3% higher than the fish in the 

LOW group (P < 0.001) on November 17th (Fig. 7).  

 

 

 

 
Fig. 7. Fillet yield of Atlantic salmon kept at water currents corresponding to initial swimming 
speeds of 0.2 (left column, LOW) or 0.6 BL s-1 (right column, HIGH) for five months. 
Significant difference (ANCOVA) between groups at the same sampling time is indicated by 
(***) P < 0.001. 

 

3.3.2 Colour  
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and b* were significantly higher in the HIGH group on June 10th (a*: P = 0.040, b*: P = 0.002), 

but the LOW group had significantly higher a* and b* on August 26th (a*: P = 0.002, b*: P = 

0.013). However, no significant differences were observed between treatments with regards to 

L*, a* and b* at the end of the experiment. No significant differences were found in SalmoFan 

between treatments throughout the experiment.  

 

3.3.3 Texture and gaping 

Flesh maximum shear force and total shear work decreased from June to August (Table 3). 

Nevertheless, flesh total shear work and maximum shear force were not influenced by 

swimming speed on June 10th and August 26th (Table 3). Part of the data for the final sampling 

were missing due to unfortunate instrumental calibration problem. The incidence of fillet 

gaping was very low across training treatments, with no significant differences between 

treatments at all three samplings (Table 3). 

 

3.3.4 Proximate composition 

The water content and protein content of fish muscle decreased from June to November, 

whereas the lipid content increased (Table 3). There were no significant differences in water, 

protein and lipid between treatments during the whole experiment, except for protein in August 

being significantly higher in the Low group (Table 3, P = 0.014). Lipid content were positively 

correlated to L* (r = 0.506, P < 0.01, n = 60), a* (r = 0.305, P < 0.05, n = 60), b* (r = 0.314, P 

< 0.05, n = 60). 
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Table 3. Flesh quality characteristics of Atlantic salmon kept at water currents corresponding 
to initial swimming speeds of 0.2 (LOW) or 0.6 BL s-1 (HIGH) for five months. Values represent 
means ± SD and significant differences (ANCOVA) between groups at the same sampling time 
are indicated by asterisks (*) P < 0.05 and

  June 10th August 26th November 17th 
SalmoFan      
LOW 21.8 ± 0.9 22.5 ± 0.7       24.3 ± 0.8 
HIGH 22.2 ± 1.3 22.3 ± 0.9       24.1 ± 0.7 
L*       
LOW 40.3 ± 1.7  40.4 ± 1.4* 39.7 ± 1.9 
HIGH 39.9 ± 1.3 41.2 ± 1.3 39.5 ± 1.9 
a*      
LOW  10.4 ± 1.3*   11.6 ± 1.1** 13.3 ± 1.4 
HIGH 10.9 ± 1.2 10.6 ± 1.3 13.7 ± 1.0 
b*       
LOW   7.4 ±1.2**   7.4 ± 1.0*  9.5 ± 1.1 
HIGH 8.4 ±1.2  6.8 ± 1.1  9.8 ± 1.3 
Gaping        
LOW  0.80 ± 0.89  0.15 ± 0.42  0.08 ± 0.32 
HIGH  0.53 ± 0.67  0.07 ± 0.17  0.00 ± 0.00 
Maximum shear force (N) 

  
    

LOW  8.1 ± 1.3  7.4 ± 1.2  - 
HIGH  7.7 ± 1.2  7.3 ± 0.8  - 
Total shear work (mJ) 

  
    

LOW 34.5 ± 5.8       28.8 ± 4.5  - 
HIGH 32.3 ± 5.6  29.0 ± 2.9  - 
Water (%)       
LOW 68.7 ± 1.1  68.9 ± 1.8  64.9 ± 1.1 
HIGH 69.3 ± 1.2  69.0 ± 1.4  64.4 ± 1.0 
Protein (%)       
LOW 20.2 ± 0.4   19.5 ± 0.5*  19.1 ± 0.3 
HIGH 20.2 ± 0.4  19.2 ± 0.4  19.0 ± 0.2 
Lipid (%)       
LOW 10.8 ± 1.3  10.9 ± 1.9  15.8 ± 1.5 
HIGH 10.2 ± 1.3  10.8 ± 1.7  16.2 ± 1.3 

-. Number are missing due to unfortunate instrumental calibration problem.  
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4 Discussion  

4.1 Water speed 

Water speed showed big variation within the closed cage in present study. The homogeneity of 

the water speed highly depends on the rearing systems. For example, within rectangular tanks, 

the water speed is generally highest close to the water inlet (Oca et al., 2004). The circular tanks 

can have over three times higher water speed closer to the outer wall than the center (Oca et al., 

2004; Duarte et al., 2011). These systems allow fish to change position and experience different 

swimming speed. However, experiments that using raceway generally have more uniform water 

speed, indicating that the fish are forced to swim at a given water speed constantly (Solstorm et 

al., 2015). Different homogeneity of the water speed could explain some of the inconsistencies 

between results, since fish distribution is strongly correlated (r = 0.85) to water speed (Duarte 

et al., 2011).  

 

4.2 Effects on growth performance 

4.2.1 Growth 

The results clearly demonstrate that swimming speed affects growth performance of adult 

Atlantic salmon, with higher final body round weight in the HIGH group than the LOW group. 

Positive effects of increased swimming speed on fish growth performance has also been found 

in both pre-smolt Atlantic salmon (Jørgensen and Jobling, 1993, 1994; Castro et al., 2011) and 

adult Atlantic salmon (Totland et al., 1987), indicating consistency among studies. However, 

fast swimming speed of 1.5 BL s-1 could have a negative impact on the growth performance of 

post-smolt Atlantic salmon according to a study from Solstorm et al. (2015), indicating fish 

swimming at fast speed may use large amount of energy to swim against the water current 

instead of growing the body mass. 

 29 



 

It is not clear whether increased growth with increased swimming speed in Atlantic salmon 

results from increased food intake or increased food utilization. Jørgensen and Jobling (1993) 

found that the enhancement of growth in juvenile Atlantic salmon swimming at higher speed 

was accompanied by improved food utilization. However, Jørgensen and Jobling (1994) found 

the improved growth with increased swimming speed in juvenile Atlantic salmon was 

accounted for by a higher food intake, but not food utilization. Our setup did not measure the 

food intake and food utilization, but similar amounts of feeds were distributed to both 

treatments, indicating fish in the HIGH group may have better food utilization.  

 

It is also possible that better growth performance was due to less agonistic activity in the HIGH 

group, which is supported by several studies in salmonids (East and Magnan, 1987; 

Christiansen and Jobling, 1990; Jørgensen and Jobling, 1993; Adams et al., 1995). Results from 

Adams et al. (1995) suggested that improved growth in fish swimming at higher speed was a 

result of lower energetic costs of reduced agonistic activity rather than subordinates got better 

access to food, which may also explain larger variation of fish final body round weight (standard 

deviation) in the HIGH group.  

 

Nevertheless, SGR was not improved for fish in the HIGH group in this study. This is in contrast 

to previous literature, where higher SGR were observed when fish were exercised at higher 

swimming speed (Jørgensen and Jobling, 1993, 1994). It is known fish growth rate varies 

among different fish size (Austreng et al., 1987), with larger fish having lower growth rate than 

smaller fish, making it even more difficult to detect the differences. The fish in our experiment 

were much larger (∼ 900 g) already at the start of the experiment. The higher swimming speed 

in our study was approximately 0.6 BL s-1, which decreased to approximately 0.4 BL s-1. This 

relatively low swimming speed might be too weak to generate the differences in SGR.  
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4.2.2 Condition Factor (CF) 

Higher swimming speed gave higher condition factor in this study, indicating salmon in the 

HIGH group gained more weight relative to the increase in length. This observation is 

confirmed by other studies that were conducted on Atlantic salmon (Totland et al., 1987; 

Jørgensen and Jobling, 1994; Castro et al., 2011; Solstorm et al., 2015). Relatively slower 

growth of vertebral column than muscle growth could be the reason of higher condition factor 

in the HIGH group (Castro et al., 2011).  

 

4.2.3 Relative Ventricular Mass (RVM)  

RVM was higher in the HIGH group compared to the LOW group. This result is in line with 

previous studies on both pre-smolt (Castro et al., 2013) and post-smolt Atlantic salmon 

(Solstorm et al., 2015). Higher swimming speed has been shown to increase the stroke volume, 

cardiac output and maximum power output in rainbow trout (Farrell et al., 1991). Also, 

molecular study on Atlantic salmon suggested that fish swimming at higher speed may have 

improved cardiac contractile function (Castro et al., 2013). Thus, greater relative ventricular 

mass in the HIGH group might result from higher cardiac performance. 

 

4.2.4 Hepato Somatic Index (HSI) 

Increase of swimming speed did not affect the HSI in present study. The initial drop in HSI for 

fish in the HIGH group compared with that in the LOW group at the beginning is likely an 

artefact. The fact that Atlantic salmon uses mostly the muscle to store energy may suggest 

weaker effects on liver. 
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4.3 Effects on flesh quality characteristics 

4.3.1 Colour 

We found no differences in flesh colour between groups which are in agreement with previous 

study (Totland et al., 1987), where no significant differences were found in carotenoids content 

in fish flesh between fish swimming at 0.1 and 0.45 BL s-1.  

 

4.3.2 Texture and gaping 

Based on first and second sampling, we conclude that there were no effects of swimming speed 

on flesh texture, measured as maximum shear force and total shear work. Rasmussen et al. 

(2011) also found no significant differences on flesh texture between exercised (0.9 BL s-1) and 

unexercised fish (<0.1 BL s-1), which is in agreement with present results. 

 

Study found that increased swimming speed of 0.45 BL s-1 for eight months in adult Atlantic 

salmon resulted in larger muscle fibre diameter (Totland et al., 1987), which can have a negative 

impact on flesh texture firmness (Bjørnevik et al., 2004; Mørkøre et al., 2009). The effects of 

muscle fibre sizes on flesh texture may be hidden by the increase of connective tissue and its 

collagen crosslinks (PYD). This counterbalance between fibre sizes and connective tissue might 

explain our conclusion. However, Bugeon et al. (2003) suggested firmer flesh texture may result 

from stronger connective tissue in fish swimming at 1.0 BL s-1 and 2.0 BL s-1 compared to 

standing water, in spite of greater muscle fibre size in exercised fish. Nevertheless, the relatively 

shorter period (11 weeks vs 8 months) and lower swimming speed  (0.6 vs 1.0 BL s-1) in our 

study compared to Bugeon et al. (2003) might be too weak to cause a significant change in 

connective tissue. Stronger connective tissue may also explain slightly lower fillet gaping for 

fish in HIGH group compared to LOW group, although not significant.  
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Studies on the effects of swimming speed on fish has also found better flesh texture in Atlantic 

salmon (Totland et al., 1987) and sea bream (Tachibana et al., 1988), but these studies should 

be explained carefully since important covariate (fish gutted weight) were not included in the 

statistical analysis. Moreover, flesh texture assessment methods vary between studies, making 

it difficult to compare the results. We lost the texture data for the last sampling, and thereby any 

differences in texture between groups at last sampling.  

 

4.3.3 Proximate composition  

In present study, no significant differences were found with regards to flesh lipid content, 

protein content and water content between two experimental groups. This is in line with 

previous studies on pan-sized rainbow trout (Rasmussen et al., 2011). They suggested that 

relatively larger fish and slower swimming speed all associate with smaller effects in the flesh 

composition. In our study, swimming speed in both group (<0.6 BL s-1) were much lower and 

fish were much larger (∼ 900 g). Furthermore, in our study, the water speed differed between 

different locations in the cage, and there is possibility that the fish would choose to stay at lower 

water speed in shorter periods to relax. This could also promote access for food, and may 

explain unchanged flesh chemical composition in the HIGH group. In contrast, Solstorm et al. 

(2015) using raceway, had the same water speed all over, and the fish had no possibility to rest 

during the experiment. 

 

Earlier studies on swimming speed are diverging with respect to the flesh lipid content. Some 

authors find increasing lipid level with increased swimming speed in salmonids (Davison and 

Goldspink, 1977; East and Magnan, 1987; Houlihan and Laurent, 1987; Totland et al., 1987), 

whereas others has found decreasing lipid level with higher swimming speed (Solstorm et al., 

2015). A decrease in lipid level could be explained by increased lipid metabolism in fish 

subjected to higher swimming speed (Lauff and Wood, 1996). The reason we did not find 

decreased flesh lipid content could also be as Rasmussen et al. (2011), who proposed that 
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unchanged flesh lipid content in fish swimming at higher speed could be the increase of lipid 

catabolism mainly happens in other tissues than muscle or the applied swimming speed was too 

low to give increased lipid metabolism.  

 

The increase of the flesh protein content may be due to the relatively lower contribution of 

protein metabolism in the muscle when fish are forced to swim, which is reflected by the 

significantly lower flesh lipid content in fish swimming at higher speed (Houlihan and Laurent, 

1987; Solstorm et al., 2015). Failure to include gutted weight in the statistical analysis might 

contribute to the misinterpretation of the results in their study.  

 

No significant difference in muscle water content was also found in Atlantic cod swimming at 

0, 0.5 and 1.0 BL s-1 (Bjørnevik et al., 2003). However, Bugeon et al. (2003) found that fish 

exercised at moderate swimming speed of 1.0 BL s-1 had significantly lower flesh water content, 

whilst fish exercised at high swimming speed of 2.0 BL s-1 had significantly higher flesh water 

content. Thus, we suggest that fish exercise at moderate swimming speed might have higher 

deposition of energy content, but fish exercise at high swimming speed may use more energy 

content to swim against the water current. In our study, swimming speed in the HIGH group 

was probably too low to affect the energy content measured in the muscle. 

4.4 Correlations 

There were significant correlations between lipid content and the perceived colour of raw 

salmon. High level of flesh lipid content tends to give higher L*, a* and b*. Several studies 

have also found considerable relations between the perceived colour and lipid content of raw 

Atlantic salmon fillet (Rørå et al., 1998; Mørkøre et al., 2001). The interaction between flesh 

colour and lipid content is probably due to the light scattering that is affected by lipid content 

(Christiansen et al., 1995). 
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5 Conclusions  

This study shows that the increase of swimming speed from 0.2 to 0.6 BL s-1 for five months 

can be used as a tool to enhance the growth of adult Atlantic salmon without compromising 

flesh quality in closed cages. Higher swimming speed resulted in higher round weight, 

condition factor, relative ventricular mass and fillet yield. Flesh quality characteristics, 

including colour, gaping, texture, water content, lipid content and protein content were not 

affected by swimming speed in present study. A swimming speed of 0.6 BL s-1 might be too low 

to affect flesh quality in Atlantic salmon of this size, and further studies should be carried out 

at higher swimming speeds. And higher swimming speeds might be challenging due to technical 

and hydrodynamics challenges. 
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Appendix: Correlations 

 

 
 
 

**.Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 
c. Cannot be computed because at least one of the variables is constant. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 Round weight (g)   1                            
2 Fork length (cm)  ,801**   1                          
3 Gutted weight (g)  ,996**  ,806**   1                        
4 Condition factor  ,381** -,244  ,367**   1                      
5 HSI  ,320*  ,124  ,298*  ,333**   1                    
6 RVM  ,070  ,033  ,054  ,085 -,054   1                  

7 SlmoFan  ,237  ,238  ,245  ,021  ,025  ,035   1                
8 L*  ,257  ,319*  ,252 -,080  ,178  ,018 -,253   1              
9 a*  ,225  ,169  ,229  ,124  ,195  ,153  ,242  ,094   1            
10 b*  ,072  ,056  ,083  ,061  ,151  ,236  ,034  ,191  ,831**   1          
11 Gaping  ,076  ,113  ,075 -,064 -,002 -,082  ,092  ,252  ,055 -,008  1        
12 Water (%) -,452** -,359** -,475** -,202 -,103  ,003  ,033 -,481** -,325* -,307*  -,128   1      
13 Protein (%) -,122 -,039 -,117 -,124  ,034 -,132  ,179 -,446** -,131 -,250  -,097  ,599**  1    
14 Lipid (%)  ,388**  ,298**  ,397**  ,188  ,091 -,015 -,054  ,506**  ,305*  ,314*  .163 -,948** -,731** 1  
15 Fillet yield (%)  ,254 -,007  ,293*  ,403** -,013  ,002 -,024 -,185 -,022 -,067 -,037 -,262 -,219 ,231  1 
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