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Summary 

 The physiology of triploid fish in comparison with diploids has been extensively 

investigated, more recently including welfare differences in aquaculture settings. Atlantic 

salmon (Salmo salar) have garnered considerable attention in this respect due in part to high 

individual product value and environmental conservation concerns, especially prevention of  

genetic dissemination by escaped fish. Notable advancements have been made in ensuring 

successful implementation of triploid Atlantic salmon with welfare debate in tow. The review 

and experimentation incorporated here further elucidate the implications of triploid salmon use 

in Norwegian aquaculture with a focus on endocrine stress response and welfare. 

 Achieving greater understanding of long-term hypothalamic-pituitary-

interrenal/adrenal (HPI/A) feedback response was the primary goal of this study, directly 

associating hormones with their systemic response elements. Four groups of salmon were 

formed based on ploidy and treatment: control diploid, stressed diploid, control triploid, and 

stressed triploid, each consisting of 480 0+ saltwater adjusted smolt. Daily, irregularly timed 

crowding was the experimental treatment in which the two stressed groups had their water 

drained then immediately refilled. Adrenocorticotropic hormone (ACTH) was used to 

differentiate a basal plasma cortisol group from an ACTH-injected and a phosphate-buffered 

saline (PBS) group in each of the four tanks, producing significantly increased plasma cortisol 

concentrations in all stressed triploids (basal, ACTH, PBS) from the 14 day sampling interval 

onwards. Osmoregulatory evidence and previous studies suggest however that this increase 

occurred sometime after the 7 day interval. Plasma magnesium was the osmoregulatory factor 

and described a loss of glomerular secretory electrolyte balance in both stressed triploids and 

diploids, though beginning in the former by the 7 day interval and the latter at the 28 day 

interval. Growth and specific growth rate (SGR) were both significantly differential over the 

course of the study, with stressed triploid exhibiting less than 1% average SGR both between 

sample groups and pre-stress values and an average weight loss at early sampling intervals. 

 Review of relevant studies presents concern as to triploid stress coping, most especially 

throughout regular aquaculture production which includes potentially lethal requisite stressors 

at developmental intervals. Investigation into economic and ethical components surrounding 

triploid implementation is necessary and must consider many factors, including those presented 

here and beyond.  
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Sammendrag 

 Fysiologien til triploid fisk sammenlignet med diploider har blitt grundig undersøkt, mer 

nylig også i forhold til velferdsforskjellene i akvakultursammenheng. Atlantisk laks (Salmo 

salar) har fått stor oppmerksomhet, noe som delvis skyldes høy verdi av enkeltprodukt og 

miljøvernhensyn, da spesielt forebygging av genetisk spredning av rømt fisk. Det har også blitt 

gjort fremskritt for å sikre en vellykket innføring av triploid laks med velferdsdebatten på slep. 

Gjennomgangen og eksperimenteringen beskrevet i denne oppgaven vil videre belyse 

konsekvensene av triploid laks brukt i norsk akvakultur med fokus på endokrin stressrespons 

og velferd. 

 Det primære målet med denne oppgaven er å oppnå større forståelse av langsiktig 

hypothalamus-hypofyse-interrenal/adrenal (HPI/A) akse “negative feedback” respons, og 

direkte knytte HPI-hormoner med sine systemiske responselementer. Fire grupper laks ble 

kategorisert basert på ploiditet og behandling: kontroll-diploid, stressbehandlede diploid, 

kontroll-triploide, og stressbehandlede triploide. Disse gruppene bestod av 480 0+ saltvann-

justerte smolt. Daglig, uregelmessige trenginger er en eksperimentell behandling der de to 

stressede gruppene fikk vannet sitt uttappet, for å rett etter få det fylt opp igjen. 

Adrenokortikotropt hormon (ACTH) ble brukt for å skille en basal plasmakortisol gruppe fra 

de ACTH-injiserte og en fosfat-bufret saltvann (PBS)-injisert gruppe fra hver av de fire karene. 

Etter fjorten dager hadde ACTH produsert signifikant økning i plasmakortisolkonsentrasjoner 

i de tre stressede triploide gruppene (basal, ACTH, PBS). Osmoregulatoriske funn og tidligere 

studier foreslår at denne økningen skjedde en gang etter syv dagers intervall. Plasma-

magnesium var den osmoregulatoriske faktoren og beskrev et tap av glomerulær sekretoriske 

elektrolyttbalanse i både belastede triploider og diploider, men vises tidligere ved 7 dagers 

interval for triploider og etter 28 dager for diploider. Både vekst og spesifikk veksthastighet 

(SGR) viste betydelig forskjell i løpet av studiet, med stressbehandlede triploider som viste 

mindre enn 1% gjennomsnittlig SGR både mellom prøvegrupper og “pre-stress” og en 

gjennomsnittlig vekttap i disse fiskene på tidlige prøvetakingsintervaller. 

 Gjennomgang av relevante studier presenterer bekymring med hensyn til triploid 

stressmestring, spesielt når man ser på regelmessig akvakulturproduksjon som inkluderer 

nødvendige belastninger som er potensielt dødelige for disse fiskene. Både økonomisk og etisk 

gransking innenfor dette feltet er nødvendig, og mange faktorer må vurderes, både de beskrevet 

i denne oppgaven og videre. 

  



6 

 

1. Introduction 

 Selective breeding found its roots in ancient practices as domestication for both practical 

and aesthetic purposes, and technology has progressed to selective gene and ploidy alteration 

to allow transcendence from many diseases and ecological harm. Such power rests only with 

humanity and so does accountability for their application on animals whose welfare must be 

monitored and maintained. In Atlantic salmon, triploid stocks are an interesting commodity 

which were induced artificially to prevent genetic dissemination from farms to wild stocks—

value and practicality studies are ongoing, and the survivability of triploids versus diploids 

remains in question due to stressors along production chains, e.g. grading, vaccination, 

smoltification, transport and transfer to sea. Stress has been observed to affect triploid salmon 

more severely than diploid, so a method for improving efficiency and welfare in both groups is 

to limit these stressors (Benfey and Biron, 2000, Cnaani et al., 2014, Fraser et al., 2012, Fraser 

et al., 2015, Hatløy, 2015, Iversen, 2013, Maxime, 2008). Given the triploid salmon’s potential 

on great industrial scales, studies are carried out weighing costs against benefits, e.g. 

“Salmotrip” in which production was field tested, monitored, and consumer perception was 

assessed for 3 years through the University of Stirling (Taylor et al., 2007).  

 The particularly crucial issue of farmed fish genes reproducing on wild spawning 

grounds is the primary reason for these studies, though ecological impacts of escaped, 

selectively bred fish into spawning and feeding grounds stem only partly from this fact; 

competition for food with wild salmon can edge out wild stocks in genetic representation 

through more than the reproductive route (Naylor et al., 2005). More than 90% of all farmed 

salmon production is attributed to Atlantic salmon, making the prevention of escape important. 

Those caught from natural sites in Norway, home to many of those few remaining, are often 

(11-35% mean in 2001) farmed bloodlines (Fiske et al., 2001, Naylor et al., 2005). These 

statistics are troubling for select Norwegian wildernesses, especially considering some stocks 

are upward of 80% farmed ancestry, and this distinction is key when deciding whether to 

produce triploids on a given site (Naylor et al., 2005). Genetic manipulation beyond selective 

breeding certainly provides a potential avenue for wild stock recovery capability, but at what 

cost? 
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1.1 Animal welfare and fish welfare 

 Instated by the Farm Animal Welfare Council (FAWC) as early as December 1979, the 

Five Freedoms extended eventually to all corners of UK animal welfare management and 

further influenced many aspects of European animal welfare in general (McCulloch, 2013). The 

modern and ubiquitously referenced form of the Five Freedoms is available online, though its 

origins lie in the 1965 Brambell Report which declared animals should have the abilities to 

stand, lie, groom, turn, and stretch (Brambell, 1965). Primitive in today’s perspective, and 

nearly unrelated to fish, adaptation of The Five Freedoms is currently: 

1.  Freedom from Hunger and Thirst - by ready access to fresh water and a diet to maintain 

full health and vigor. 

2. Freedom from Discomfort - by providing an appropriate environment including shelter 

and a comfortable resting area. 

3. Freedom from Pain, Injury or Disease - by prevention or rapid diagnosis and treatment. 

4. Freedom to Express Normal Behavior - by providing sufficient space, proper facilities 

and company of the animal's own kind. 

5. Freedom from Fear and Distress - by ensuring conditions and treatment which avoid 

mental suffering. 

            Although its application has found no end, only recently has its accuracy regarding 

animal welfare itself been sufficiently questioned (McCulloch, 2013). Definition without the 

Five Freedoms proves difficult, given their indispensable wording, but efforts have been made 

from different perspectives, some specifically including fish. Singling out fish welfare for its 

objective factors provides an avenue to increase understanding of distress and pain, whereas 

subjective discussions of ethics often result in arguments of anthropomorphism (Arlinghaus et 

al., 2009). The mental faculties which set cerebrates apart from other animals are often debated 

in comparison with fish, a lack of evidence satisfying objectivity requirements to disprove 

piscine perception of pain beyond nociception (Rose et al., 2014). As more information 

becomes available regarding what pain, fear, and distress mean to animals, our management 

practices adapt and have improved for animals, the environment, and consumers on every level. 

In this respect, arguments against consciousness become increasingly irrelevant (Arlinghaus et 

al., 2009, Ellis et al., 2012, Fraser and Duncan, 1998, Huntingford et al., 2006, McCulloch, 

2013, Rose et al., 2014, Selye, 1950,  1973).  
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1.2 Concept of stress 

  The culminated knowledge in the fields of biosciences, medicine, and philosophy 

appeared as “the general adaptation syndrome” or G.A.S. before becoming its modern 

equivalents (Selye, 1950). This lifelong balance of “alarm reaction” with stages of “resistance” 

and “exhaustion” eventually proved too primitive, as Selye (1950, 1973) ascertained would 

occur once stress had become “satisfactorily elucidated”. Essentially an amalgam of 

presumptuous conclusions, G.A.S. has been respectfully altered as necessary to bring the stress 

definition into its current form (Ellis et al., 2012, Iversen, 2013, Rose et al., 2014, Selye, 1950). 

The data collectively referring to the HPA axis certainly applies today, also within piscine stress 

studies (Ellis et al., 2012, Iversen 2013). The specific physiological mechanisms for stress in 

fish have essentially been uncovered and understood for their contribution to the organism, 

though the sum of their parts is still largely unknown: neural triggers for endocrine signals to 

central nervous and renal secretory tissues lead to whole-animal effects, each consisting of well-

documented components but imparting effects unseen both immediately and over time as either 

chronic or permanent effects (Barton, 2002, Ellis et al., 2012, Fraser et al., 2012, Hatløy, 2015, 

Iversen, 2013, Iversen and Eliassen, 2014, Mommsen et al., 1999). 

 Given historical ignorance of stress in any fish, both technological application and 

policy debate has been necessary. The characterization of pain and fear perception in fish has 

been, until the past few decades, strafed, with some of the earliest, basic studies on the topic 

non-existent before 1970 (Ellis et al., 2012, Iversen 2013). Resultant controversy surfaced once 

consciousness became part of the discussion, since delimiting pain to nociception simplifies 

any issue of handling or treatment to anthropomorphism. Fear is unnecessary as a component 

of pain, but knowledge of pain implies fear and this awareness inconveniences production 

protocol (Ellis et al., 2012, Rose et al., 2014). The opposite argument is made still based on 

anthropomorphism, identifying the search for piscine consciousness as unsupported and only 

self-serving (Rose et al., 2014). Either way, technology and policy are under constant criticism 

and techniques are thus constantly developing. Current metrics depend heavily on largely 

inaccurate corticosteroid responses, though combination approaches integrating 

neurochemistry, physiology, and behavior allow ever-increasing elucidation, e.g. study 

revolving around endocrine feedback using allostasis (Burghardt and Rivas, 2002, Edwards, 

2009, Ellis et al., 2012, Fraser and Duncan, 1998, Hatløy, 2015, Jensen, 1996, Paul et al., 2005, 

Rose et al., 2014, Veissier and Boissy, 2007). 
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 The distinction between stress and distress is a fine one, respectively referring to 

adaptive and maladaptive responses (Barton, 2002). Stress in itself provides the animal with 

situationally appropriate change and under optimal circumstances results in adaptation. Helpful 

responses are not inherently negative, barring transient discomfort, as opposed to maladaptive 

situations (Barton, 2002, Ellis et al., 2012, Hatløy, 2015, Iversen, 2013). Distressed animals do 

not exhibit healthy negative feedback responses and instead counteract them by suppression of 

required endocrine signals, exhibiting sub-optimal adaptation or no adaptation at all (Barton, 

2002, Iversen, 2013). 

 

1.2.1 Hypothalamus – pituitary -interrenal axis in fish 

Cortisol, a glucocorticoid, is prominent across the animal kingdom with similar 

influences: an immunosuppressive capacity, a promoter of gluconeogenesis, and gamete quality 

effects (Breuner, 2008, Iversen, 2013, Pankhurst, 2011, Schreck, 2010, Schreck et al., 2001). 

Teleostean physiological mediation is broadly influenced by cortisol, including these areas but 

also osmoregulation, a crucial element in aquatic survival and fitness (Ellis et al., 2012, Fraser 

et al., 2012, Iversen, 2013). As cultured animals’ welfare hinges upon human regulation, 

cortisol is often used as a gauge to determine stress perceived from negative experiences such 

as handling and crowding (Ellis et al., 2012). 

The promotion and regulation of plasma cortisol circulation is dictated by the HPA/HPI 

axis of cascading hormone activity, where Atlantic salmon do not possess adrenal glands and 

instead utilize the interrenal tissue of the head kidney (Iversen, 2013). Stressors which impact 

the central nervous system (CNS) are perceived internally or from outside the body by the 

peripheral nervous system (PNS), and thus induce a hormonal cascade effect (Ellis et al., 2012). 

The HPI axis is influenced by any stimulus able to initiate the secretion of corticotropin release 

hormone (CRH) from hypothalamic neurons (See Figure 1, p11) (Aluru and Vijayan, 2007). 

CRH receptors on corticotropic pituitary cells transduce CRH signalling to ACTH, which enters 

the general circulation before entering the head kidney to cells located near chromaffin cells 

and the posterior cardinal vein. Indirect from this juxtaposition, cortisol works in tandem with 

endocrine factors such as catecholamines to promote rapid release via paracrine signalling (Ellis 

et al., 2012, Iversen, 2013). 

ACTH is a linear peptide chain of 39 amino acids derived from pro-opiomelanocortin and 

secreted from the adenohypophysis, specifically the rostral pars distalis (RPD, frontal 

hypothalamus), and is the primary actuator behind interrenal steroidogenesis in the piscine head 

kidney (Bernier et al., 2009, Wendelaar Bonga, 2011). ACTH circulates to interrenal 
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melanocortin-2 receptors (MC2Rs), a form of G-protein-coupled receptors, triggering an 

ATPcAMP reaction. ACTH is essential to this reaction, as MC2R only responds to ACTH 

(Bernier et al. 2009). Although the primary promoting factor in ACTH secretion is CRH, some 

species variation causes urotensin-I to be more effective than CRH, e.g. goldfish (Fryer et al., 

1985). Cumulative effect in tandem with CRH and angiotensin I and II causes amplified ACTH 

secretion, whereas paracrine signals from the neurohypophysis can act alone as a secretory 

factor, e.g. arginine vasotocin, an osmoregulator and isotocin, a piscine vasopressin analog. 

Angiotensin-I, II and thyrotropin have also been related to corticotropic release (Bernier et al., 

2009).  

The primary negative regulatory hormones of ACTH are dopamine (DA) and melanin-

concentrating hormone (MCH), both of hypothalamic origin. Regulation of ACTH can occur 

physiologically by these endocrine factors at pituitary binding sites, making them 

neurotransmitters within the CNS which locally actuate negative feedback from the PNS. 

Although MCH and DA regulate ACTH secretion, their presence in situ has also been 

documented as necessary to normal promotion of ACTH in the primary stress response (Bernier 

et al., 2009). ACTH binds on the interrenal surface to MC2Rs, preceding corticosteroid-genesis 

and cortisol circulation (Aluru and Vijayan, 2009).  

Cortisol circulates within blood plasma through assistance of yet unidentified carrier–

proteins to target tissues exhibiting one mineralocorticoid and two glucocorticoid receptors 

(MR, GRs) (Aluru and Vijayan, 2009, Iversen, 2013). The genetic mechanism behind this 

adaptive activation or suppression is the cortisol-GR complex, binding to nuclear DNA of 

effector cells at the active site, the glucocorticoid response element (GRE), allowing a 

cascading promotion or regulation of subsequent expression. Local activity at the tissue site 

may also be activated by signaling of surface membrane proteins. The cascading effect of 

cortisol seems governed by heat shock protein-90 presence as with mammals, with further 

elucidation on extracellular signaling largely lacking; cortisol does however act as a GR 

regulator, with increased plasma circulation increasing proteasome GR catabolism (Iwama et 

al., 2004). Primarily, this affects the gills, liver, and gastrointestinal tract, made evident by 

chloride retention and increased plasma osmolality, rapidly increasing gluconeogenesis 

(endogenous glucose synthesis), and a halt on hunger and digestion. Cortisol thus allows fish 

access to quickly catabolized energy reserves, hyperventilation without ionic imbalance 

(providing necessary respiration to facilitate rapid gluconeogenesis), and the ability to excrete 

any waste and flee, hide, or fight as long as possible (Aluru and Vijayan, 2009, Ellis et al., 

2012, Iversen, 2013). Other important effects have been documented, such as exogenous 
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cortisol injection suppressing testosterone and 17β-estradiol in vitellogenic rainbow trout 

(sexually mature females developing yolk, preovulatory), 1 and 3 hours post injection (hpi), 

and 3 and 6 hpi respectively, though gonadotropin was unaffected, possibly linking it to cortisol 

transduction (Pankhurst, 2011). 

 

 

Figure 1. Overview of major factors that affect the activity of the HPI axis. Green arrows=stimulatory effect, Red 
arrows=inhibition, dashed red arrows=negative feedback. CRF=corticotropin-releasing factor (CRH), UI=urotensin 
I, TRH=thyrotropin-releasing hormone, AVT=arginine vasotocin, IST=isotocin, Ang II=angiotensin II, 
DA=dopamine, MCH=melanin-concentrating hormone, MCR=melanocortin receptors, GR=glucocorticoid 
receptor, MR=mineralcorticoid receptor, and RPD=rostral pars distalis. Iversen (2013). 

 

 The relationship of ACTH and cortisol is of specific relevance, as the cascading effect 

of CRHACTHcortisol has a negative feedback based on cortisol MR/GR saturation, 

leading to MC2Rs feedback, then pituitary neurons. It is therefore understood wherever 

MR/GR, MC2R, or pituitary saturation is left unchecked, this feedback system no longer has 

vertical synergy, and negative feedback is needed to maintain balance (Ellis et al., 2012, 

Iversen, 2013, McEwen and Wingfield, 2003, Sterling, 2012). A fat-soluble hormone will either 

be found in bound form with various transport proteins (biologically inactive) or in unbound 

form free in the plasma (biologically active), and in addition one will find the hormone in 
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metabolized and inactive form inside of cells. Cortisol levels are reduced by metabolic change, 

deactivating and making it unavailable to GR and MR, as well as increasing its water solubility. 

Hormone and receptor will finally detach from each other, with cortisol sent to the liver through 

the hepatobiliary tract as the main cortisol secretion route (Davis, 2006, Greenspan and 

Gardner, 2004, Mommsen et al., 1999). 

 The greatest reduction in cortisol is realized through reduction of the 4/5 double-bond 

in the A-ring and the ketone-group-3 (Greenspan and Gardner, 2004). Conjugation of the 

resulting hydroxyl group on carbon 3 together with sulphate and glucuronic acid makes the 

steroid more water-soluble, such that it may secrete through glomerular capillaries for urinary 

excretion (Davis, 2006, Greenspan and Gardner, 2004, Mommsen et al., 1999). 

 

1.2.2 Allostasis 

ACTH presented internally over natural levels per HPI primary stimulation therefore 

overloads corticosteroid-genesis, inducing relatively immediate cortisol concentration spiking 

and a long term sensitivity loss to endogenous ACTH circulation due to allostatic overload 

(Iversen and Eliassen, 2014, McEwen and Wingfield, 2003). Allostasis is described as 

maintenance of homeostasis through adaptation and changes, where change to the organism is 

evident but the internal stability must be maintained (Figure 2). This term was coined first in 

reference to humans, but has since been adapted to animals and fish (Barton, 2002, McEwen 

and Wingfield, 2003, Sterling, 2011). Where homeostasis implies consistent stability within 

rigid parameters, allostasis conceptualizes the interaction of the homeostatic organism with its 

environment and inherent endogenous and exogenous stressors; stress is thus observed adaptive 

response to stimuli towards homeostasis (Figure 2). Divided into three degrees of effect, stress 

has primary (1°), secondary (2°), and tertiary (3°) tiers. Primary stress encompasses neural 

stimulation, signal transduction, promotion and regulation of endocrine factors, and tissue 

response; secondary stress includes resulting behavioral and organism-level adaptive change; 

tertiary stress reaches to post-event time, affecting the organism beyond the stress itself in the 

greater realm of fitness (Barton, 2002, Ellis et al., 2012, Iversen and Eliassen, 2014, McEwen 

and Wingfield, 2003). 
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Figure 2. Physical, chemical and other perceived stressors act on fish to evoke physiological and related effects, 
which are commonly grouped as primary, secondary and tertiary responses. These responses are collectively 
regulated to promote homeostasis, as indicated by red (downregulation), green (secretion), and equal (the 
balanced release and control of primary response factors). 

The adaptive response to stress is the principle of the theory of allostasis and neural action 

potential is conceptually similar to the functional adaptive mechanism, allostatic overload, 

which is experienced as Type I or Type II. Type I allostatic overload describes acute stress in 

which 1° and 2° effectively provide a behavioral or otherwise whole-animal response to 

stressors, adaptation to and relief from stress, and finally a return to a pre-stress steroidogenic 

profile as cortisol is catabolized and ACTH is regulated (McEwen and Wingfield, 2003). This 

regulation of ACTH and cortisol occurs per 1° event, and therefore provides an adaptive 3° 

where homeostasis is maintained. Type II allostatic overload results wherever consistent 

hyperstimulation of the HPI axis occurs over time, leading 1° and 2° to 3° where typical 

adaptive response is not realized, i.e. homeostasis is affected and resulting maladaptive, atypical 

recovery is apparent. Practically, Type I allostatic overload can be described as typically 

adaptive acute stress, while Type II is a chronic condition with variable recovery potential 

(Barton 2002, Ellis et al., 2012, Iversen, 2013, Iversen et al., 2003, Iversen and Eliassen, 2014, 

STRESSOR 

2° 

ALLOSTASIS 
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McEwen and Wingfield, 2003). Specifically referencing Type II overload, allostasis provides 

the animal with adaptation, be it conducive to fitness or not; 2° occurs in predictable ways, but 

physiology is multi-tiered, intertwined, and fluid. Therefore, 3° is a dependent variable, with 1° 

and 2° independent: as the HPI feedback reaches apex to regulate ACTH secretion and promote 

uptake by cortisol concentration and tissue saturation, everything returns to normal, however 

this can be theoretically hindered with consistently sub-potential interrenal exposure to ACTH 

and/or GR/MR saturation with cortisol (Figure 3) (Iversen, 2013).  

 

Figure 3. A recreation of the bell-curve model representing the perspective change with respect to animal welfare 

in relation to hypostimulation and hyperstimulation. Redrawn from Korte et al.,(2005). 

 

1.2.3 Plasma cortisol and animal welfare 

 Plasma cortisol is the best available and most commonly used metric in piscine stress 

studies, based on its increased concentration following controlled stressor exposure (Barton, 

2002, Ellis et al., 2012, Mommsen et al., 1999, Ramsay et al., 2009). The consistent and 

predictable nature of cortisol circulation, metabolism, excretion and relatively low resting 

concentrations (>13.8nM or 5ng/mL in salmon, 50-75nM during smoltification) make cortisol 

objectively functional (Barton, 2002, Iversen, 2013, Wendelaar Bonga, 2011). Use of cortisol 

thus imparts evidence on otherwise unfounded phenomena, i.e. poor growth performance or 
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mortality increases without obvious disease, and often provides fish welfare with a supporting 

argument (Ellis et al., 2012, Iversen, 2013). 

 Functional changes in fish welfare are often represented by cellular activity as they are 

impacted by plasma cortisol increase or decrease (Iversen, 2013). References to growth, 

reproduction, locomotion, and osmoregulation exist connected with plasma cortisol, relating it 

intimately to essential physiological functions in fish. Definition of functional changes in fish 

is established and description of the feelings fish have, though mostly negative, is achieved with 

accuracy and careful interpretation via plasma cortisol (Ellis et al., 2012). 

 Investigation into alternative welfare objectification methods seems necessary in the 

face of such lacking evidence supporting positive affective indicators in fish with respect to 

feelings. Although function is explained clearly and behaviors are studied thoroughly in 

cultivated fish, the capabilities these animals have in understanding of such processes are left 

to ethical questions. Research has proven fish can perceive threats and danger without physical 

altercation of any kind, namely visual stimuli followed by increase in plasma cortisol (Davis, 

2006, Ellis et al., 2012, Ramsay et al., 2009, Schreck, 1981, Schreck et al., 2001). This could 

imply fear, an emotional response associated with feeling or memory, since these stimuli range 

from watching the handling of other individuals and simply seeing a capture net after observing 

its function, to only visual predator contact (Ellis et al., 2012). These responses of feeling have 

been represented by plasma cortisol increases, linking stress hormones to conceptual 

understanding via behavioral and functional expression, however these are no better than 

proxies for interpretation of a more complex concept (Ellis et al., 2012). So although there is 

some association between feelings and cortisol, there is no proven causation, and thus is no 

more than a de facto representation. There is an interest in expanding the definition of welfare 

to include more than just plasma cortisol indications, but records of alternative methods are 

lacking (Ellis et al., 2012). 

 

1.3 Triploids, triploid salmon, and welfare implications 

Polyploid animals feature more genome copies than are naturally selected for in a species, 

usually diploids with two (2n), while triploids exhibit exactly three (3n) complete sets of nuclear 

chromosomes in each cell. These are naturally occurring phenomena throughout Animalia with 

polyploidy induction used in livestock. Induction can result from different forms of shock 

during meiosis II to fertilized ova, though selective breeding is a possible route resulting in sex-

reversal (Maxime, 2008, Otto and Whitton, 2000). 
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Induction processes do vary and within salmonid applications, thermal and hydrostatic 

shock tend be the most common procedures, with success most consistent in hydrostatic 

pressure application during the second meiotic division (Maxime, 2008). Additional benefits 

are afforded by genetic manipulation and selective breeding, including potential sex-reversal 

for all-female egg stocks and prevention of precocious spawning, which directly benefit growth 

production. Refinement of induction technique specifics over more than 30 years has thus far 

improved induction success in survival and triploidization (Levandusky et al., 1990, Salimian 

et al., 2016). No matter the case, the process involves a shock to fertilized, meiosis II eggs 

before expulsion of the second polar body; this extra set of chromosomes is retained and 

reproduced during mitosis, producing triploids with an infertile set (Figure 4) (Benfey and 

Sutterlin, 1984, Quillet and Gaignon, 1990, Teskeredžić et al., 1993, Utter et al., 1983). 

 

 

Figure 4. Induction of triploidy, as occurs in fish. Pressure shock is applied along the triploid development 

column post-fertilization, before the second polar body is expelled. Adapted from T. Hansen, IMR (Salmotrip 

project, October 2008). 

 

Morphology and behavior of both diploid and triploid Atlantic salmon are 

indistinguishable despite hypertrophic triploid nuclei with a maintained cytoplasmic ratio, 

resulting in similarly sized organs and tissues but with fewer cells (Fraser et al., 2012, Maxime, 

2008). Vital to whole animal stress is cellular physiology and signal transduction, which are 

strongly influenced by stressors due to heat shock proteins and many receptor types, although 

this potential for dysfunction is well-studied, it does not include knowledge of (Aluru and 

Vijayan, 2007, Iwama et al., 2004, Osborne et al., 2007). Reproductive implications arise, given 

inherent incompatibility between polyploids and diploids, even though exceptions exist within 

teleost species (Otto and Whitton, 2000, Piferrer et al., 2009). Sex-reversed, induced Atlantic 
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salmon triploidy produces all-female populations incapable of gonadal maturation, achieved 

commonly by thermal shock treatment and results in increased early growth (Piferrer et al., 

2009). Immunity seems to function similarly between triploids and diploids, and externally 

regarding sea lice. Some variation is documented in intestinal microbiota communities and with 

regard to antibacterial resistance, as well as an apparently slight disadvantage of triploids to 

exogenous bacterial infection (LPS injection) (Cantas et al., 2011, Frenzl et al., 2014, Jhingan 

et al., 2003, Maxime, 2008). Myriad accounts of triploid salmonids exhibiting various 

inferiorities compared to diploids have been presented and continue to be, including (in Atlantic 

salmon) decreased marine growth performance, jawbone deformity, gill filament deformity, 

acute stress response and complete cataracts (100% ocular coverage) in one eye or the other 

(Cotter et al., 2002, Hatløy, 2015, Sadler and King, 2001). Some physiological differences are 

remediated with nutritional or environmental management, though baseline deformity and 

morbidity is typically higher in triploids (Taylor et al., 2014). 

A host of inferiorities implies greater stress for similar fitness, allowed for by principles 

of allostasis: individual difficulty in achieving growth, reproductive, and survival success 

impacts 1° response more or less profoundly, producing varying 2° response and most likely 3o 

responses. Understanding and quantifying this difference between individual experiences is key 

to stress evaluation, given its subjective nature; separate evaluations of physiological stress 

factors and co-factors, while eliminating confounders, as of yet provides the most accurate 

information to this effect (Barton, 2002, Cotter et al., 2002, Davis, 2006). 

 

1.4 Hypothesis 

 Use of triploid Atlantic salmon has merits in the face of ecological destruction, though 

unknown factors in their welfare raise questions as to ethics of their implementation. A 

challenge study of ACTH sensitivity could demystify some uncertainty both in direct relation 

to physiological welfare standards and indirectly through possible effects of chronic stress. 

 

 H0: ACTH sensitivity, as well as 2° and 3° stress response, is not differentially affected 

by chronic crowding stress between diploid and induced triploid Atlantic salmon (Salmo 

salar). 

 H1: ACTH sensitivity, as well as 2° and 3° stress response, is differentially affected by 

chronic crowding stress between diploid and induced triploid Atlantic salmon. 
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2 Materials and methods 

2.1 Experimental animals 

 480 0+ Atlantic salmon (Salmo salar) smolt were halved as diploid and triploid 

individuals (AquaGen DIPLOID R*E QTL IPN/PD+ILA IPN/PD and AquaGen TRIPLOID 

R*E QTL, respectively) and randomly distributed within the groups between four 450 L open, 

white cylindrical plastic tanks in Hall 5, Mørkvedbukta. Flow cytometry of erythrocyte DNA 

confirmed 100% triploidy induction within the triploid group (AquaGen AS). Smolts were 

delivered to Mørkvedbukta research station in Bodø from Cermaq facilities in Hopen 

05/09/2014 via enclosed 600 L transport tanks aboard approved transport with oxygen injection 

during loading and unloading. A 30 day acclimitization period followed transfer into the 4 

tanks, during which and throughout the study salinity (33-34%), temperature (9.2±0.2 °C), and 

oxygen (76.1±8.5% saturation) of continuously flowing water were maintained. Dry feed was 

automatically dispensed to the fish, light period was 24:0 unless specimens were in separate 

holding tanks post-injection awaiting further study, and human interaction was limited to those 

directly handling the fish at variable times on set days by closed doors, opaque tank shrouds, 

and appropriate notification to those potentially entering Hall 5. 

 

2.2 Experimental approval 

Norwegian Animal Research Authority (NARA) registered this experiment with approval 

number ID 6933 by the approval of the locally responsible laboratory animal science specialist. 

 

2.3 Pre-stress 

 Maintaining 1° and 2° background values requires pre-stress evaluation of 

morphological and hematological factors, providing control figures comparing potential 

physiological change in vivo. This was performed by first measuring weight, length, glucose, 

and lactate of 3 fish per tank as control values (n=12), followed by injecting 6 individuals from 

each of the 4 tanks (n=24) with 0.1mL/100g dexamethasone (DEX) under surgical anesthesia 

(Stage IV; Schoettger and Julin, 1967) which were divided by ploidy and treatment into four 

groups of 6 and held in 4 separate tanks (9 fish sampled per tank, 3 of these per tank sampled 

for pre-stress evaluation, 6 of these per tank injected with DEX and isolated for 24 hours in four 

separate 40 L tanks). ACTH and PBS challenges followed as described below for these 24 pre-

stress fish. 
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2.3.1 Experimental design  

  

 Values were obtained randomly and separately between diploid and triploid groups, 

allowing 18 individuals of both groups’ (diploid and triploid) total weight and length 

measurement, followed by glucose and lactate readings of blood samples of control fish. Those 

fish held for 24 h after DEX injection were again anesthetized (directly in 40 L holding cells, 

water flow stopped prior to dissolution) to Stage IV in 5mg/L metomidate before being injected 

with either 0.1 mL/100 g crystalline ACTH in ethanol solution or 0.1 mL/100 g PBS solution, 

in order to determine a control for healthy function of a negative feedback system in cortisol 

concentration regulation versus exogenous ACTH introduction. 

 

2.3.2 Sampling procedures 

 Prior to blood sampling each fish was euthanized with blunt head trauma during Stage 

IV anesthesia (Schoettger and Julin, 1967). Blood was sampled with a heparinized 1mL syringe 

via caudal vasculature of the fish, and thereafter deposited into previously labeled Eppendorf® 

Micro-lock centrifuge tubes, sorted by test group. Evaluation of blood glucose and lactate 

concentrations was performed using Freestyle Freedom Lite™ (0.3 µL) and Lactate Scout™ 

(0.2 µL), respectively prior to plasma extraction. Tubes were centrifuged at 5-6000 rpm until 

plasma was separated from blood and extracted into new, sealed Eppendorf® tubes and labeled 

for storage in a commercial freezer (-20 °C, long-term storage at -40 °C). 

 

2.3.3 Stressor 

 Each of two 450L tanks, stressed diploid (SD) and stressed triploid (ST), were drained 

of their water each day by removing a vertically adjacent and external drain plug, without 

halting water influx. The tanks were drained simultaneously until crowding prevented dorsal 

submersion and subsequently refilled. Randomization of this process was ensured by recording 

their intervals weekly and selecting times no less than an hour apart, without sequential repeats. 

 

2.3.4 Sensitivity and negative feedback response 

 The ACTH sensitivity test was carried out weekly, applied to 12 fish per group (48 fish 

weekly, 24 weekly basal samples, 360 total samples, and additionally 24 pre-stress subjects) 

for the duration of the study. This negative feedback response test was dependent upon 
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background values and blocking of ACTH secretion by DEX peritoneal injection 

(0.1mL/100g), performed each week at 08:00 Monday prior to daily stressors, and metomidate 

(5mg/L) was used to ensure minimal confounding influences by unwanted cortisol response. 

The test transferred 18 fish per tank (6 control and 12 challenge) into two 10L buckets of 

anesthetic, followed by sampling of control fish and DEX injection of challenge test fish and 

their transfer to isolated 40L tanks (separated by ploidy, stress, and ACTH exposure into 8 

separate tanks) for 24 hours. After 24 hours, 6 of these fish were anesthetized and sampled for 

basal cortisol readings, with 6 peritoneal injections of ACTH and 6 injections of PBS, then 

replaced into 40L isolation tanks for two hours. These 12 fish per group were then transferred 

to anesthetic once more, euthanized, then sampled as previously described to determine by 

challenge the sensitivity to ACTH comparatively. 

 

2.4 Analytic procedures 

 

2.4.1 Plasma cortisol 

 The concentration of plasma cortisol was analyzed via radio immunoassay (RIA) 

methods, as described by Iversen et al., (1998). [3H]-cortisol (TRK 407, Institutt for 

Energiteknikk, Kjeller) was used as the tracer in the analytical procedure. Hydrocortisone (H 

4001, Sigma) comprised the standard analytical series (0-137.5nM (nmol/L)). Anti-cortisol 

rabbit serum (F3-314, Endocrine Science, Tarzana, USA) was the chosen antibody. Samples 

were initially centrifuged (Haraeus sepatech Omnifuge 2 ORS, 154mm radius, rotor 3360) and 

subsequently incubated (24h at 4-5°C). The antibody-antigen complex was analyzed via liquid 

scintillation counter to determine radioactivity (Packard Tri Carb 1900 TR). RIA sensitivity 

was at 1.68nM, with any sub-minimum readings attributed to minimum sensitivity values. Inter 

assay Coefficient of Variability (CV) was 12.5% and intra assay CV was below 10%. Non-

specific binding (NSB) varied from 2.1to 4.8%. 

 

2.4.2 Glucose 

 A handheld device designed to register blood glucose concentrations at or above 1.1mM 

in diabetics, Freestyle Freedom Lite™ (Abbott Diabetes Care, ltd, Oxon, United Kingdom). 

Efficacy of such handheld instruments in non-human animal glucose evaluation has been 

addressed and found sufficient (Wells and Pankhurst, 1999). 
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2.4.3 Lactate 

 A handheld device, Lactate Scout+ (Arkray KDK, Kyoto, Japan) registers lactate values 

of 0.8mM. Efficacy of such handheld instruments in non-human animal glucose evaluation has 

been addressed and found sufficient (Wells and Pankhurst, 1999). 

 

2.4.4 Plasma magnesium 

  Magnesium (Mg2+) analysis was performed using a Fluitest Mg-XB analysis kit (Biocon 

Diagnosemittel GmbH and Co., Germany). The kit utilizes colorimetrics by photometric 

absorbance analysis of xylidyl blue from a Mg-Xylidyl blue complex, which is purple in color. 

10µL plasma for each sample is diluted individually according to kit metrics by 1mL xylidyl 

blue in Eppendorf® centrifuge containers and incubated (to 26°C) prior to deposition and 

analysis in 520nm plates, controlled by Fluitest xylidyl blue (null) and Mg standard (control, 

total standard) and produced in mM (mmol/L). 

 

2.4.5 Fin erosion 

Subjective observation of fin erosion was personally performed at each sampling interval, 

scored according to minor alterations on Hoyle et al. (2007). These intervals were pre-stress, 7, 

14, 21, and 28 days of daily crowding and were scored from 0-3, wherein erosion could be non-

existent (0%), mild (1-24%), moderate (25-49%) or severe (>49%), respectively.  

 

2.4.6 Specific growth rate 

Specific growth rate (SGR) was calculated using the following equation: 

(ln(𝑓𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)) − ln (𝑠𝑡𝑎𝑟𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔))

# 𝑑𝑎𝑦𝑠
× 100 

SGR was calculated during the experiment for all experimental groups from 0-7d, 7-14d, 14-

21d and 21-28 days with daily stressor. An average SGR was calculated for the experimental 

period (28 days) for all groups. 

 

2.5 Statistical analysis 

Statistical tests were performed using the statistical program SPSS 18.0 for Windows. 

Homogeneity and normality were determined for each dataset with Levene’s and the 

Kolmogorov-Smirnov tests, respectively. As described by Sokal and Rohlf (1987), one-way 

ANOVA testing was implemented to investigate differences both within and between 
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experimental groups based on physiological parameters per sampling event. If significant F-

values resulted, a Bonferroni post-hoc test was used to determine which groups differed. 

Wherein parametric evaluation did not correctly apply, Kruskal–Wallis ANOVA (non-

parametric) and Mann–Whitney-U tests with a Bonferroni-adjusted significance level were 

used. Statistical significance was set at 0.05 to determine differences within two STD. Results 

provided are expressed in mean ± standard deviation (SD) format. Those figures noted with # 

indicate significant difference between experimental groups at the same sampling time and * 

indicates significant difference at a given sampling compared to pre-stress levels within the 

same experimental group. Sample group acronyms were applied as follows: diploid control 

(DC), diploid stress (DS), triploid control (TC), triploid stress (TS). 
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3 Results 
 

3.1 Primary stress responses 

3.1.1 Plasma cortisol 

 
Figure 5. The average values of plasma cortisol (n ± SD) pre-stress (n=6), in the diploid control, triploid control, 

daily stress diploid and daily stress triploid group of Atlantic salmon smolts (n=12). # indicates significant 

difference between groups at the same sampling day at 95% confidence level, * indicates significant difference 

from the pre-stress level within the same group at 95% confidence level. 

 The resting levels of plasma cortisol concentrations for the four sample groups is shown 

in Figure 5. At the beginning of the experiment the average baseline levels of plasma cortisol 

were 5,14 ± 6,56 nmo/L (nM) and 5,26 ± 6,51 nM for control diploid (CD) and control triploid 

groups (CT), respectively. The daily stress triploid group experienced a significant increase in 

resting levels of plasma cortisol compared to pre- stress and the other groups at same sampling 

time at 14 (55.47 ±24.53 nM), 21 (43.02 ±16.39 nM) and 28 (44.52 ± 20.39 nM) days after the 

start of the experiment.  
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3.1.2 Sensitivity of the HPI-axis 

 
Figure 6. The average values of plasma cortisol (n ± SD) pre-stress (n=6), in the diploid control, triploid control, 

daily stress diploid and daily stress triploid group of Atlantic salmon smolts (n=12). # indicates significant 

difference between groups at the same sampling day at 95% confidence level, * indicates significant difference 

from the pre-stress level within the same group at 95% confidence level. 
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 The average levels of plasma cortisol concentrations subjected to an ACTH (Figure 6a) 

and a negative feedback test (Figure 6b) are shown in Figure 6. At the beginning of the 

experiment (pre-stress) the average levels of plasma cortisol exposed to a ACTH injection were 

264.53 ± 55.62 nM (control diploid (CD) and stress diploid (SD)), and 267.72 ± 89.50 nM 

(control triploid (CT) and stress triploid (ST)). The ST group experienced during ACTH test a 

significant increase in plasma cortisol compared to pre- stress and the other groups at same 

sampling time at 14 (527.37 ±162.72 nM), 21 (572.40 ±184.75 nM) and 28 (550.30 ± 135.47 

nM) days after the start of the experiment. 

Pre-stress levels of plasma cortisol subjected to a negative feedback test were 1.68 ± 0.01 

nM (control diploid (CD) and stress diploid (SD)), and 1.68 ± 0.01 nM (control triploid (CT) 

and stress triploid (ST)). The ST group experienced during the negative feedback test a 

significant increase in plasma cortisol compared to pre- stress and the other groups at same 

sampling time at 14 (34.62 ± 40.02 nM), 21 (89.51 ± 29.06 nM) and 28 (77.74 ± 43.43 nM) 

days after the start of the experiment.. 

3.2 Secondary stress responses 

3.2.1 Glucose 

 

Figure 7. The average values of blood glucose (n ± SD) pre-stress (n=6), in the diploid control, triploid control, 

daily stress diploid and daily stress triploid group of Atlantic salmon smolts (n=12). # indicates significant 

difference between groups at the same sampling day at 95% confidence level, * indicates significant difference 

from the pre-stress level within the same group at 95% confidence level. 
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 The average levels of blood glucose concentrations for the four sample groups are 

shown in Figure 7. At the beginning of the experiment (pre-stress) the average levels of blood 

glucose were 5.6 ± 0.46 mM (control diploid (CD) and stress diploid (SD)), and 3.27 ± 1.12 

mM (control triploid (CT) and stress triploid (ST)). 

3.2.2 Lactate 

 

Figure 8. The average values of blood lactate (n ± SD) pre-stress (n=6), in the diploid control, triploid control, 

daily stress diploid and daily stress triploid group of Atlantic salmon smolts (n=12). # indicates significant 

difference between groups at the same sampling day at 95% confidence level, * indicates significant difference 

from the pre-stress level within the same group at 95% confidence level. 

 

 The average levels of blood lactate concentrations for the four sample groups are shown 

in Figure 8. At the beginning of the experiment (pre-stress) the average levels of blood lactate 

were 5.53 ± 2.14 mM (control diploid (CD) and stress diploid (SD)), and 4.77 ± 1.55 mM 

(control triploid (CT) and stress triploid (ST)). 
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3.2.3 Plasma magnesium 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The average values of plasma magnesium (Mg2+) (n ± SD) pre-stress (n=6), in the diploid control, 

triploid control, daily stress diploid and daily stress triploid group of Atlantic salmon smolts (n=12). # indicates 

significant difference between groups at the same sampling day at 95% confidence level, * indicates significant 

difference from the pre-stress level within the same group at 95% confidence level. 

 The average levels of plasma magnesium (Mg2+) concentrations for the four sample 

groups are shown in Figure 9. At the beginning of the experiment (pre-stress) the average levels 

of plasma magnesium were 1.20 ± 0.21 mM (control diploid (CD) and stress diploid (SD)), and 

1.35 ± 0.51 mM (control triploid (CT) and stress triploid (ST)). Significant differences exist 

both between ST and other 7d (3.26 ± 0.66 mM), 14d (3.38 ± 0.48 mM), and 21d (3.29 ± 1.12 

mM) groups and their pre-stress magnesium levels. At 28 days of daily stress, SD (2.33 ± 0.60 

mM) and ST (3.60 ± 0.90 mM) both exhibited significant differences between 28d controls and 

pre-stressvalues. 
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3.3 Tertiary stress responses 

3.3.1 Fin erosion 

 
Figure 10. The average scores of fin erosion (n ± SD) pre-stress (n=6), in the diploid control, triploid control, daily 

stress diploid and daily stress triploid group of Atlantic salmon smolts (n=12). # indicates significant difference 

between groups at the same sampling day at 95% confidence level, * indicates significant difference from the pre-

stress level within the same group at 95% confidence level. 

 The average fin erosion scores for the four sample groups are shown in Figure 10. At 

the beginning of the experiment (pre-stress) the average scores were 1.25 ± 1.33 (control diploid 

(CD) and stress diploid (SD)), and 1.07 ± 0.99 (control triploid (CT) and stress triploid (ST)). 
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3.3.2 Growth 

 

Figure 11. The average wet weight (n ± SD) pre-stress (n=6), in the diploid control, daily stress diploid (12a) and 

triploid control, daily stress triploid (12b) group of Atlantic salmon smolts (n=12). # indicates significant 

difference between groups at the same sampling day at 95% confidence level, * indicates significant difference 

from the pre-stress level within the same group at 95% confidence level. 
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 The average wet weight of the four sample groups is shown in Figure 11. At the 

beginning of the experiment (pre-stress) the average wet weights were 104.31 ± 19.08g (control 

diploid (CD) and stress diploid (SD)), and 148.47 ± 18.89g (control triploid (CT) and stress 

triploid (ST)). Both diploid groups (CD, SD) experienced a significant increase in wet weight 

compared to pre-stress 21 (166.94 ± 29.38g, 168.17 ± 35.69g) and 28 (183.44 ± 23.18g, 174.44 

± 33.82g) days after the start of the experiment, and CT experienced a significant increase in 

wet weight compared to pre-stress 28 (213.56 ± 50.63g) days after the start of the experiment. 

 

Figure 12. The average SGR (n ± SD) pre-stress (n=6), in the diploid control, triploid control, daily stress diploid 

and daily stress triploid group of Atlantic salmon smolts (n=12). # indicates significant difference between groups 

at the same sampling day at 95% confidence level, * indicates significant difference from the pre-stress level within 

the same group at 95% confidence level. 

 

 The average specific growth rate (SGR) of the four sample groups 28 days after the start 

of the experiment are shown in Figure 12. Both diploid groups (CD, SD) experienced a 

significant difference in SGR compared with pre-stress weight (2.54% ± 0.01% and 2.28% ± 

0.00%) and triploid groups (CT, ST) experienced a significant difference in SGR compared to 

pre-stress weight (1.43% ± 0.00% and 0.59% ± 0.01%). 

 

3.3.3 Mortality 

 No mortality occurred during the experiment. 
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4 Discussion 

  

4.1 The benefit of triploid salmon 

 The relative fitness of farmed versus wild genotype Atlantic salmon, ploidy 

notwithstanding, has been illustrated as negative based on consistent recapture study results 

over ≥20 years and more recently experimentally characterized in vivo under semi-natural 

conditions behaviorally (Naylor et al., 2005, Skilbrei et al., 2015, Solberg et al., 2015). The 

importance of feed competition of escaped individuals thus seems much higher than that of 

spawning for transgenic rainbow trout, which may relate to triploid Atlantic salmon (which also 

grow at a faster rate post-developmental bottleneck) especially under threat of predation. If the 

same proves true for Atlantic salmon, then induced triploidy reaches an even more narrow 

potential range of Norwegian farms especially, though all Atlantic salmon farms must still be 

considered (Naylor et al., 2005). 

 Given the hazards of such farmed individuals on spawning grounds, studies must 

illuminate emergence behavior of wild Atlantic salmon fry and have begun to do so (Larsen et 

al., 2015). Contrasting wild and farm type individuals may possibly lead to some preliminary 

remediation of wild-spawned farm salmon through understanding of natural environment 

requirements. Increased susceptibility to predation is an oversimplification largely unfit for 

illustration of fry fitness in nature, since predation is not consistently observed, no studies exist 

to accurately propose such a hypothesis, and other potential mortality or disappearance factors 

exist (Naylor et al., 2005, Solberg et al., 2015). Therefore, learning more about survivability 

and coping behavior of fry hatched in the wild (farm vs. wild) could eliminate more 

confounding factors from this assumption. Evaluating the escape risks inherent could describe 

the potential effect of replacing a model farm population with triploids by weighing the impacts 

these potentially spawning diploids could have versus how greatly induced triploid populations 

could decrease these impacts. 

 Logically, triploid induction removes farm-borne eggs from consideration by effectively 

preventing their conception; despite this, spawning and feeding sites are still at risk from 

escapees (Naylor et al., 2005). Evidence describing the out-of-pen survival at known intervals 

is non-existent for Atlantic salmon triploid escapees, and barely beginning with diploids under 

experimentally controlled conditions; use of data describing other salmonid species is therefore 

apparently justified, i.e. rainbow trout (Oncorhynchus mykiss) (Solberg et al., 2015). A direct 

feed competition under semi-controlled natural conditions variable in predator presence, 
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genetic source, and age group (cutthroat trout present or not, non-transgenic (W) or transgenic-

wild (TW) or transgenic-domesticated/wild (TD/W), first-feeding (FF) fry or 60 days post-first-

feeding) of rainbow trout demonstrated the utter susceptibility of TW FF-fry to predation and 

relative weakness even without them (8 and 30% survival, respectively) compared to wild-type 

FF-fry (31 and 81%, respectively). Survival was however similar between TW and W trout 60 

days post-FF (overwinter), with a growth disadvantage to wild spawn (Crossin et al., 2015). 

Essentially, these data illustrate a life stage key to survival in the wild which farm-type trout 

poorly traverse compared to wild-type somewhere within the 60 days after first feeding. This 

is not necessarily evidence of which factors are responsible for this limited survival of wild-

hatched farm-related fry, though predator presence did significantly change survival rates in 

those youngest (transgenic or not). Survival of salmonid fry in nature is dependent on many 

things, and whether or not the transgenic offspring live to propagate themselves is vital to their 

genetic dissemination. Further research should in the author’s opinion be conducted on viability 

of those offspring before deciding if a given marine grow out facility should preferentially raise 

triploid salmon.  

 Escaped aquaculture fish can affect wild populations in many ways, but permanent 

alteration of the wild salmon stock gene pools is a major concern. Total escaped aquaculture 

salmon in Norway, the world’s greatest producer, was in 2001 at 272 000, in 2006 at 921 000, 

in 2014 at 287 000, with preliminary values for 2015 at 160 000 (FDIR, 2016). Many causative 

factors in salmon escape exist on land and at sea, though investigations indicate human failure, 

technical failure, improper equipment use, net pen damage by passing vessels, as well as 

extreme weather all contribute substantially (Hatløy 2015). Fish still escape from the pens 

despite preventative measures and production of triploid salmon has begun with the intention 

to reduce the genetic risk escapees present to the wild Norwegian Atlantic salmon stocks 

(Hatløy 2015, FDIR, 2016). The implementation of commercially produced triploids is only as 

viable as their necessity in the production cycle, so if escape is further hindered and better 

knowledge of spawn success is known in target regions then the viability of their 

implementation may decrease.  

 

4.2 Primary stress responses (tier 1o) 

HPI-axis negative feedback function is explored by this study in its cumulative capacity 

as opposed to the immediate response to acute stressors, both of which exhibit significant 

changes to the HPI-axis systemic response element, plasma cortisol, in triploid Atlantic salmon 
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(Hatløy, 2015). ACTH is directly responsible for these changes, as illustrated by these methods, 

with results highlighting the importance of hypothalamus-pars distalis endocrine signalling. 

Similarly, to this cascading stimulation of cortisol secretion must ACTH be naturally 

downregulated, another endocrine cascade suppressing the secretion of cortisol again at the 

hypothalamic-pituitary interface (Iwama et al., 2005). Dopamine (DA) is a negative feedback 

response element secreted from the hypothalamus which has been posited as a behavioral 

regulator following stress, helping salmonids recover and maintain homeostasis, though its 

exact functions are not clear (Fraser et al., 2015). Recent evidence has shown triploid Atlantic 

salmon exhibit lacking DA catabolism following stress, with respect to DA:DOPAC (a 

catabolite of  telencephalon DA activity) and could reflect a depressed hypothalamic negative 

feedback control either because it does not respond similarly to diploids or that it is simply 

lacking (Fraser et al., 2015). If triploids are biochemically inferior in ACTH regulation from 

the hypothalamic tier resultant of lacking DA reactivity to stress, comparative diploid study 

could elucidate a primary endocrine factor in this respect, though no conclusion can be drawn 

from this correlation alone. An interesting aspect would however include this DA:DOPAC 

comparison in relation to behavioral stress response, given the possible link between social 

hierarchy and DA/5-HT concentrations versus their respective metabolites under distress. 

As the ACTH-cortisol relationship affects so many physiological processes, any 

significantly detrimental variation between ploidies must be thoroughly explored before 

intensive aquaculture production can be justified from a welfare perspective. Described below 

in the following chapters are these individual effects on the 2° and 3° tiers, representing the 

visible reactions which produce those changes qualifiable into categories, e.g. lost production, 

reduced welfare; the 1° must be extrapolated into these areas to explain beyond endocrine 

hormone plasma concentrations and cellular responses. 

 

4.2.1 HPI -axis response to cumulative stress response 

 

 Vulnerability to distress accumulation is exacerbated in triploid salmon, which express 

the chronic stress response significantly higher than diploid seawater transfers (Fraser et al., 

2015, Langston et al., 2001). The importance of plasma cortisol at this point is greater to triploid 

salmon than diploids, since osmoregulatory ion regulation is poorer in the former under cortisol 

saturation of regulatory tissues than the latter (Cotter et al., 2002, Fraser et al., 2012). Prior to 

seawater release, a crucial resting period provides stress delimiting and negative feedback 

recovery—this recovery period has been shown to greatly increase in duration requirements for 
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triploid salmon by these results, assuming a return to pre-stress values is possible and HPI-axis 

response normalizes. 

 

4.2.2 Plasma cortisol and stress-related losses  

 

 Susceptibility of fish to cumulative stress-related loss is shown in this study, as 

increasing resting plasma cortisol concentrations correlated to negative SGR response and lost 

BW. It seems therefore that triploid Atlantic salmon do handle daily crowding stress in a 

profoundly negative and significant way compared to diploids, both under immediate stress and 

not. This accumulation of stress has been characterized in Atlantic salmon as indicative of a 

chronic stress condition beginning at different life stages individually and to various degrees, 

with significantly high mortality rates (of 50,970,000 lost Norwegian smolts post-transfer in 

2011, 77% were of recorded mortality), and unknown production loss to reduced growth 

(Iversen, 2013). Mortality is not always directly associated with stress coping, however, since 

it affects all aspects of the juvenile to grow out salmon. During the especially stress-vulnerable 

life stage from parr to smolt, a list of stressors encumbers healthy HPI negative feedback 

response: this is ensconced within smoltification itself, since plasma cortisol concentrations 

naturally rest higher during the process (>13.8nM or 5ng/mL in salmon, 50-75nM during 

smoltification) (Alne et al., 2011, Barton, 2002, Iversen, 2013, Iversen and Eliassen, 2009, 

Iversen et al., 2009, Iversen et al., 2005). The factors themselves are essentially composed of 

transfer to marine water and vaccinations, actually involving multiple loading and unloading 

events (especially potent stressors), anesthesia, vaccination (often oil-adjuvanted, commonly 

causing peritoneal cavity morbidity, e.g. adhesion), transport by land (tank truck) and/or by sea 

(well boat), and exposure to open seawater (osmoregulatory stress and natural environment 

stressors, e.g. pathogens). Profound variation in morbidity and mortality can occur between 

production chains, i.e. choice and application of anesthetics and vaccine(s), transport route and 

duration, and weather qualities (Iversen, 2013). 

 From these results and a variable host of commercial stressors imparting substantial 

productivity losses in presumably otherwise healthy diploid salmon, subjecting induced triploid 

individuals to similar treatment would cause even greater losses. Losses experienced are 

resultant both in welfare and productivity, though the latter is characterized numerically both 

by individuals and monetary cost, factors carefully calculated and monitored by financial forces 

at large including Marine Harvest in the NYSE (Asche and Sikveland, 2015). In short, stress 

experienced by triploid Atlantic salmon is significantly higher than in diploids, both statistically 
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and physiologically. This illustrates both reduced welfare and production, translating to quickly 

realized losses with a profound impact during smoltification. Plasma cortisol is used to 

designate these facts, as its whole-organism nature describes stress at all levels of organisation 

in these fish. 

 

4.3 Secondary stress responses (tier 2o) 

 These impacts are those quantifiable stress responses which determine the adaptive 

nature of allostatic overload type I (Barton, 2002, Ellis et al., 2012, Iversen and Eliassen, 2014, 

McEwen and Wingfield, 2003). Describing 2° in this study are glucose and lactate, best 

representative of immediate reactions and not chronic stress, and plasma magnesium which 

produces significant changes over extended stressor exposure in cumulative fashion but also in 

triploids 48 hours after exposure to a 20-minute acute crowding stressor (Hatløy, 2015). 

 

4.3.1 Blood glucose 

 2° in fish has a directly regulatory effect on blood glucose concentrations, namely by 

way of cortisol saturation in those hepatic cells responsible for glycogenolysis and 

gluconeogenesis. The resultant blood glucose spike from catabolizing glycogen and rapidly 

releasing glucose provides substantial energy to carbohydrate-obligate tissues, allowing the 

gills, brain, and muscles an opportunity to react under distress (Barton, 2000, Barton et al., 

1988). Experimental triploids have now shown a profound cortisol response under repeated 

stress, though no correlative evidence links this fact to blood glucose concentrations as the 

results are largely inconclusive and not significantly variable. Therefore, the use of a single 

factor in determination of stress, its presence or its degree, is inaccurate and must be avoided 

(Barton, 2000, 2002; Barton et al., 1988). Some studies have also suggested correlative activity 

between plasma cortisol and blood glucose, since a long-term coexistence in circulation may 

indicate a direct regulation of glucose by cortisol (Vijayan and Moon, 1992, Vijayan et al., 

1997). If there is a lingering glucose-cortisol regulatory action, it may reflect in the results in 

that they are inconclusive: with elevated plasma cortisol and empirically similar blood glucose 

concentrations in all individuals, readings possibly provide neither evidence of the gradual 

process of glucose metabolism nor the immediate gluconeogenesis-glycogenolysis which 

follows 1° (see Fig. 7). This is in opposition to sampling intervals, which always took place 

before crowding stress in a cortisol reduction effort and from fish which had been separated 

from the crowding tanks for over 24 hours—this effectively prevented stressor exposure in 



36 

 

sample fish for two full crowding intervals and could allow removal of excess glucose from the 

bloodstream.  Ample time to regulate blood glucose would logically affect these readings and 

simply reflect homeostatic function in those tissues presumably affected by significantly 

changed plasma cortisol concentrations, suggesting the possibility of lost homeostasis at more 

immediate intervals. This has been reflected in a study performed parallel to this, with acutely 

stressed triploids exhibiting significantly increased blood glucose at 24 and 48h post-crowding 

within their respective interval groups (not relative to pre-stress values). This crowding was of 

similar method, though instead maintained for 20 minutes (Hatløy, 2015). 

 

4.3.2 Blood lactate  

  

 A resultant metabolite of glucose oxidation to pyruvate, an exercise-dependent process 

in piscine muscle, lactate forms from lactic acid both aerobically as such and anaerobically by 

fermentation (Pankhurst and Dedual, 1994, Wells and Pankhurst, 1999). Quantification of 

lactate concentrations in salmon blood clarifies a portion of its behavioral stress in theory by 

describing a ratio of lactate to muscular activity, though directly linking this to quantifiable 

stress response is a haphazard approach (Iversen, 2013, Wells and Pankhurst, 1999). Peaks 

experienced in blood lactate values relate to activity such as deep anesthesia and vaccination, 

including their recovery periods, as well as crowding and air exposure; these activities are in 

addition to strenuous exercise, which produces the highest values in salmon and other species 

(>20mM) (Iversen, 2013). 

 Given the immediate nature of lactate secondary response in allostasis, it would suffice 

to say its representation in a chronic stress study would be at most a correlative trend and not 

significant, as is apparent by the results (see Fig. 8). 

  

4.3.3 Osmoregulation 

 

 Renal maintenance of magnesium (Mg2+) concentrations is directly correlated by plasma 

secretion from peritubular capillaries to associated proximal tubules, especially with respect to 

the early proximal tubule. This, whether the fish is glomerular or aglomerular (Atlantic salmon 

are glomerular), is part of the nephritic osmoregulatory process for secreting, excreting, and 

retaining ions and organic metabolites, e.g. glucose and creatinine. In addition to Mg2+, chloride 

(Cl-) and sulfate (SO4
2-) are key electrolytes in marine teleost osmoregulation via glomerular 

secretion, and do so in tandem (McCormick, 2013). Along channels according to its 
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electrochemical gradient, Mg2+ is secreted into the tubule lumen from blood plasma and 

passively excreted to the urinary bladder via collection tubules by tonicity after active hydrogen 

(H+) excretion passively diffuses H+ back into the lumen. This renal excretion of Mg2+ accounts 

for the amount taken up intestinally, about 10-20% absorption of Mg2+ and Ca2+. These 

processes are made stable by Na+, K+-ATPase, H+-pump, and carbonic anhydrase (CA) 

functions, as the osmoregulatory balance act is not so simple (Marshall and Grosell, 2006). 

 Given the results, Mg2+ retention in the plasma in ST from between pre-stress and 7d 

onwards illustrates a loss of stability in these osmoregulatory functions to a significant degree 

after a relatively short period of mild stress (see Fig. 9). Even before significant plasma cortisol 

concentration changes occur (from 14d) in ST, Mg2+ had already responded and may indicate 

some osmoregulatory action independent of corticosteroid stress response. Triploid 

osmoregulatory fitness during smoltification is at best comparable with diploids and often 

depressed, exhibiting decreased rates of maturation and greater apparent sensitivity to gill 

parasite infection (Maxime, 2008). These results reflect one aspect of this by way of a key 

electrolyte both in triploids and diploids exposed to daily stressors, additionally Mg2+ is 

significantly affected by acute crowding stress in triploids highest 1 (2.5 ± 0.8 mM), but also 2, 

24, and 48 hours post-stressor compared to pre-stress concentrations (1.1 ± 0.2 mM) (Hatløy, 

2015). Commercial salmon cultivation in Norway depends currently in part upon salmon lice 

(Lepeoptheirus salmonis) management, a constant process over the grow-out period to varying 

degrees across the country often implementing hydrogen peroxide (H2O2) baths shown in sea 

bass (Dicentrarchus labrax) to significantly increase plasma Mg2+ (Helgesen et al., 2015, 

Roque et al., 2010). Given the frequent exposure of commercial Atlantic salmon to lice and 

treatment baths, the sensitivity of triploids to osmoregulatory stress may pose a problem. 

Osmoregulatory stress is apparently correlated strongly with both cortisol and secondary 

stressors, namely vaccination: a similar stress evaluation over a 28 day period in diploid 

Atlantic salmon produced similar Mg2+ significant fluctuation, and a severe cortisol spike 

following vaccination at the end of the 28 day stress trial (Iversen and Eliassen, 2014). The 

connection between Mg2+ and cortisol could be related to the apparently paracrine effect in head 

kidney stress response, an adrenergic process tying catecholamines, Mg2+, and 

corticosteroidogenesis together in 1° (Iversen, 2013, Iversen and Eliassen, 2014). If similar 

correlation exists in triploids, in which cortisol and Mg2+ appear significantly affected in a 

positively correlative manner sometime between 7d and 14d of chronic stress trials, such a 

vaccination at 28d could result in widespread mortality given their profound response compared 

to diploids (see Figs. 4, 5, 9). The Mg2+ increase in the SD 28d interval points to a correlation 
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both between other work on diploids but also the ST group, and illustrates the apparent effect 

chronic crowding stress has on osmoregulation since CT and CD had similar basal 

concentrations over the whole study. Aforementioned similar results are also depicted on the 

short term osmoregulatory changes in triploids over a 48 hour timespan (Hatløy, 2015). 

 Vaccination and H2O2 salmon lice treatment are thus avenues to critical stress response 

both in renal osmoregulation and directly on HPI-axis negative feedback, setting triploids and 

diploids apart because crowding stress and vaccination are not only commonplace but requisite 

aquaculture production protocol. 

 

4.4 Tertiary stress responses (3o tier) 

 Beyond the immediate events following stress response, the affected animal ideally 

enters an adaptive state and maintains homeostasis without maladaptive changes to fitness 

(Barton, 2002, Ellis et al., 2012, Iversen, 2013).  Tertiary stress responses are those which will 

reflect such changes, in this study represented by growth performance and fin erosion scoring, 

and describe the welfare impacts 1° and 2° have had on the individual. 

 

4.4.1 Growth performance and fitness 

  

 Aquaculture production revolves around flesh biosynthesis in all species, aesthetic and 

food livestock alike. The significant losses to specific growth rate (SGR) both on average and 

by body weight (BW) at intervals in chronically stressed triploid salmon have demonstrated 

potential losses in welfare, flesh amount and quality (given impact of stress on quality), and 

finance (from valuation of triploid eggs, through vaccination and feeding, to extended 

smoltification periods and finally to apparent mortality) (Iversen, 2013, Iwama et al., 2005). 

Controlled aquaculture production delimits the definition of fitness in relatively isolated 

populations, though disease, feed availability, and social standing all exist in marine net pens 

which contain many competing individuals (Clements and Raubenheimer, 2005). Disease is of 

particular difference between wild and farmed stocks, since high densities and exposure to 

different environments increase the probability for pathogen proliferation (Mennerat et al., 

2010). Allostasis physiologically calculates these variable stressors and produces homeostasis, 

however if the negative feedback mechanisms governing it lose control of hormonal regulation, 

then fitness will be reduced and these results have shown triploids will also lose growth 

potential (see Figs. 12, 13).  



39 

 

 Significant growth and SGR loss experienced by ST is characterized by this and other 

plasma cortisol studies, reflecting a collapsed HPI-axis resultant of increased basal plasma 

cortisol concentrations. Studies using cortisol-enriched feed have clearly described this 

suppressive relationship between plasma cortisol and growth, i.e. goldfish (Carassius auratus) 

in a 21 day feeding trial comparing feed containing 0, 50, or 500µg cortisol/g feed (Bernier, 

2006). Other examples of this cortisol-influenced growth suppression are documented for 

rainbow trout (Oncorhynchus mykiss), matrinxã (Brycon cephalus), Atlantic cod (Gadus 

morhua), channel catfish (Ictalurus punctatus), and gilthead seabream (Sparus auratus) vis à 

vis direct effect on growth as well as appetite changes (Bernier, 2006, Bernier et al., 2004, 

Bernier and Peter, 2001, Bjornsson et al., 2002, Mommsen et al., 1999, Olsen et al., 2008, 

Pankhurst, 2011, Pankhurst et al., 2008, Pickering, 1990, Pickering, 1992,  1993, Small, 2004, 

Sørensen et al., 2011, Tsigos and Chrousos, 2002, Weil et al., 2001). The cascading effect of 

plasma cortisol circulation has multiple affective tiers from reduced cellular growth described 

in cultures treated with cortisol, a GR-mediated response by way of GRE in nuclear DNA, to 

increased oxidative activity in stressed fish observed as increased BMR resulting in reduced 

energy availability, and suggested to influence intestinal morphology, which would directly 

alter nutrient acquisition from gut lumen surface activity reduction. Cortisol also has an 

endocrine influence on feed consumption and FCR, given its documented effect on growth 

hormone and hepatic insulin-like growth factors (Bernier, 2006, Bernier et al., 2004, Bernier 

and Peter, 2001, Bjornsson et al., 2002, Mommsen et al., 1999, Olsen et al., 2008, Pankhurst, 

2011, Pankhurst et al., 2008, Pickering, 1990, Pickering, 1992,  1993, Small, 2004, Sørensen et 

al., 2011, Tsigos and Chrousos, 2002, Weil et al., 2001). 

 

4.4.2 Communal rearing 

 Performance of triploids (3N) versus diploids (2N), both in ploidy-isolated (ISO) and 

ploidy-mixed (MIX) rearing cohorts, is reduced significantly. This restriction on the use of 

induced triploid Atlantic salmon is further specified by negative performance between families 

of similar groups (thus, within and between 3N-ISO, 3N-MIX) (Taylor et al., 2014). The ratings 

of performance tend to be based on comparison of body weight (BW, a wet weight metric) and 

condition factor (CF or K), commonly associated with other metrics, i.e. specific feeding rate, 

thermal growth coefficient, basal metabolic rate, and feed conversion ratio, though variability 

between these occurs as a result of differing sample collection methods and standards (Alne et 

al., 2011, Taylor et al., 2014). Specific condition factor was not identified through review of 

several growth performance studies for Salmo salar and was instead reported as 



40 

 

K=(L/W3)*100, with the value of 3 being a common stand-in for freshwater fish, as K is often 

used in their weight characterization (Anderson and Neumann, 1996). 

 Relevance for K is expressed through triploid stock growth efficiency and possible 

welfare implications, since inferior growth efficiency should by commercial logic be avoided 

especially given the sensitive nature and careful handling required to raise such stocks. Reduced 

BW and K in both isolated and communal pens demonstrates triploid susceptibility to any 

number of environmental stressors; their exceptionally poor (6.8 and 26.4% lower than 2N-

ISO/MIX, respectively) growth performance in communal pens makes them even less attractive 

(Taylor et al., 2014). Morphological deformity vis à vis ocular (cataracts), mandibular (reduced 

jaw mobility), and opercular (exposed gill tissue) are also more prevalent in triploid stocks. 

These malformations are also significantly affected by heredity and accelerated growth, with 

2N/3N-ISO both exhibiting higher rates of cataracts than communal families with variable 

frequency (familial similarities) and especially higher deformity in 3N-ISO than 3N-MIX (30.4 

vs 5.8%) (Taylor et al., 2014). Prevention of cataracts via dietary histidine supplementation has 

however been experimentally demonstrated as a possible remedy to cataract formation tendency 

in triploid salmon (Taylor et al., 2014). A decreased growth performance is thus illustrated in 

comparison of communal pen stress with isolated families, as well as performance between 

ploidies and a differential deformity rate; BW and SGR results from this study also illustrate 

their significant decrease both within and between ploidies based on crowding stress in isolated 

familial tanks with no determination of deformities in 0+ smolt. The results are especially 

significant between diploid groups (both stressed and unstressed) and stressed triploids, for 

which the 28d SGR was almost -0.5% and BW intervals (rather than averages) resulted in 

significantly negative values at 3 of 5 samplings. Average SGR also implies a highly depressive 

effect for stressed triploid salmon at just over 0.5%, concurrent with those in Taylor et al. (2014) 

which presumably experienced social stress under communal conditions. 

 The importance of evaluating communal pen interactions between ploidies is to 

demonstrate the necessary separation of the two groups, thus rearing them indiscriminately is 

effectively advised against. If they cannot be reared in the same group, then more facilities must 

either displace diploid production or construct entirely new facilities for triploids, if these 

results are to be applied to that of Taylor et al. (2014). 
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4.5 Animal welfare of triploid aquaculture salmon 

 The increasing interest in aquaculture sustainability is a key driving factor in introducing 

triploids into commercial Norwegian production cycles both from animal and energetic 

perspectives, given the requirements of alternative methods of precocious maturation 

prevention (Fraser et al., 2012). Considering every caveat to their stress coping capability 

compared with diploids, these fish exhibit a weakened state after relatively minimal stressor 

periods with disproportionate response both in the endocrine system and numerous production 

quality affecters. Specifically discussing welfare parameters also illustrates a troubling 

dichotomy within the ploidy topic, clearly translating to studies of their differences based on 

indices, i.e. survival, metabolism, stress response (Fraser et al., 2015). 

 Debate on the conscious experience of fish is relevant here, in that inherent biochemical 

and physiological differences exist between ploidies of salmon, often to the detriment of triploid 

individuals and leading to additional care requirements (Cotter et al., 2002, Davis 2006, Fraser 

et al., 2012, Hatløy, 2015, Iversen, 2013, Langston et al., 2001, Maxime, 2008, Sadler et al., 

2001, Salimian et al., 2016, Taylor et al. 2014). Included previously in this paper have been 

myriad publications describing many aspects of environmental conservation made possible by 

successful and reliable triploid salmon induction, though none are published regarding the 

economic burden such an overhaul would require; given the apparent welfare management 

requirements of triploid salmon, implementing them on a commercial scale entails 

reconsideration of many production protocols, e.g. communal rearing, feed choice, and the 

logistics of transport and handling. Animal welfare is therefore a gauge for not only the 

wellbeing of triploid salmon, but also their additional costs if ethical treatment is carried out. 

 

Conclusion 

 Introduction of induced triploids could significantly reduce genetic dissemination and 

is researched for viability as a solution to an endemic issue in Atlantic salmon aquaculture. The 

results from this study raise concerns for chronic allostatic overload type 2 in triploid salmon 

subjected to a daily crowding stressor. Study has shown that additional stress following such 

overload has significantly detrimental results in diploids, which are better equipped to cope 

with stress than triploids. 

 HPI-axis response is significantly affected in triploid Atlantic salmon compared with 

diploids, chronic and acute, as expressed by blood glucose changes over days and by plasma 

cortisol and magnesium concentrations, as well as growth performance, over weeks. These 
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results indicate that if triploid salmon are to be used in commercial production, their more 

fragile nature compared to diploid salmon must be considered. Specifically, negative feedback 

response in the triploid salmon HPI-axis could be more receptive to environmental changes in 

production, thus increasing the probability of disease, heightening morbidity and mortality, and 

decreasing overall welfare and production. 

 Avoiding systematic animal suffering must constantly be weighed against human 

benefit and environmental conservation. These results present evidence depicting difficult 

division between these principles: triploid salmon could significantly improve wild stock 

bloodlines genetically, though their sensitivity may prove too great for commercial aquaculture 

production in meeting projected quotas.  Balance must then be realized between yet undefined 

economic, environmental, and ethical guidelines for triploid salmon aquaculture. 
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