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Establishment of the early-life gut microbiota has a large influence on host development
and succession of microbial composition in later life stages. The effect of commensal
yeasts − which are known to create a conducive environment for beneficial bacteria
− on the structure and diversity of fish gut microbiota still remains unexplored. The
present study examined the intestinal bacterial community of zebrafish (Danio rerio)
larvae exposed to two fish-derived yeasts by sequencing the V4 hypervariable region
of bacterial 16S rRNA. The first stage of the experiment (until 7 days post-fertilization)
was performed in cell culture flasks under sterile and conventional conditions for
germ-free (GF) and conventionally raised (CR) larvae, respectively. The second phase
was carried out under standard rearing conditions, for both groups. Exposure of GF
and CR zebrafish larvae to one of the yeast species Debaryomyces or Pseudozyma
affected the bacterial composition. Exposure to Debaryomyces resulted in a significantly
higher abundance of core bacteria. The difference was mainly due to shifts in
relative abundance of taxa belonging to the phylum Proteobacteria. In Debaryomyces-
exposed CR larvae, the significantly enriched taxa included beneficial bacteria such
as Pediococcus and Lactococcus (Firmicutes). Furthermore, most diversity indices
of bacterial communities in yeast-exposed CR zebrafish were significantly altered
compared to the control group. Such alterations were not evident in GF zebrafish. The
water bacterial community was distinct from the intestinal microbiota of zebrafish larvae.
Our findings indicate that early exposure to commensal yeast could cause differential
bacterial assemblage, including the establishment of potentially beneficial bacteria.

Keywords: yeast, microbiota, zebrafish, germ-free, 16S rRNA, amplicon sequencing, Debaryomyces,
Pseudozyma

INTRODUCTION

Early microbial colonization of the gastrointestinal tract plays a key role in immunological
and metabolic development of the host, which influences their health and disease status
later in life (Rodríguez et al., 2015; Tanaka and Nakayama, 2017). Host–microbe coevolution
has resulted in parasitic, commensal, or mutualistic relationships between the gut microbial
community members and their host (Ley et al., 2008). These complex relationships are shaped
by the indigenous intestinal microbial communities, which include bacteria, fungi, viruses, and
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protozoans (Barko et al., 2018). The initial microbial colonizers
are essential for the development of neonatal gut epithelial
barrier functions, maturation, and modulation of innate and
adaptive immune responses (Hooper and Gordon, 2001). In
addition, they may provide favorable conditions for subsequent
colonization of microbial members (Houghteling and Walker,
2015) and create the platform for establishment of persistent
microbial communities (Faith et al., 2013; Houghteling and
Walker, 2015). Thus, the microbial composition in adults may
reflect the history of early-life events, such as initial encounter
with microbes, colonization and establishment of microbes in the
gastrointestinal tract (Rodríguez et al., 2015).

Microbial colonization of the fish gut during larval stages is
known to occur during either active uptake of water or the time
of first feeding (Reitan et al., 1998; Vadstein et al., 2013). Microbes
associated with chorion of fish eggs, surrounding water, and
early diet influence the composition of the larval gut microbiota
(Llewellyn et al., 2014). This community is further shaped by
host ontogeny stage, habitat (Stephens et al., 2016) and the gut
environmental conditions such as availability of nutrients, pH,
and digestive enzymes (Hansen and Olafsen, 1999). The diversity
of fish gut microbiota is affected by early-life factors including
life stages, diet, and rearing environment on fish gut microbiota
composition (Romero et al., 2014; Lokesh et al., 2018). In this
context, probiotics are microorganisms that are administered
in diets to promote host health and potentially modulate the
gut microbiota throughout fish ontogeny from larvae to adult
(Montalban-Arques et al., 2015; Ringø et al., 2016). Improving
the beneficial microbial community, by altering gut microbial
composition through dietary administration of probiotics, will
increase feed efficiency and growth, and to maintain the health
and wellbeing of aquatic animals (Llewellyn et al., 2014). For
instance, lactic acid bacteria (LAB) are considered as probiotic
candidates in aquaculture (Llewellyn et al., 2014) because they
provide nutritional benefits and protect the host from pathogenic
infections (Balcázar et al., 2007; Martínez Cruz et al., 2012; Hai,
2015).

The effect of application of yeast and their derivatives as
probiotics, immunostimulants, and feed supplements is also
well-documented in different animals including fish (Navarrete
and Tovar-Ramírez, 2014; Vohra et al., 2016). For example,
European sea bass (Dicentrarchus labrax) larvae fed live yeast
Debaryomyces hansenii had improved growth, feed efficiency,
survival, and immune competence (Tovar-Ramírez et al.,
2004, 2010). Additionally, feeding juvenile European sturgeon
(Huso huso) with a live yeast-supplemented diet increased the
proportion of LAB in the gut (Hoseinifar et al., 2011), even
if their significance for the host remains to be elucidated
(Hoseinifar et al., 2011). Nevertheless, the presence of different
LAB strains could have a positive effect on host; they exert
different competition mechanisms (hydrogen peroxide, lactic
acid, bacteriocin-like molecules) to inhibit growth of pathogens
and stimulate the host immune system (Ringø and Gatesoupe,
1998; Verschuere et al., 2000; Campana et al., 2017). In a
recent study, it was reported that feeding juvenile rainbow
trout (Oncorhynchus mykiss) with functional diet incorporated
with a probiotic yeast (Saccharomyces cerevisiae) changed the

intestinal microbiota (Gonçalves and Gallardo-Escárate, 2017).
Rather than allochthonous microorganisms, autochthonous
microorganisms are potential functional food ingredients for
modulating the composition of microbiota (O’Toole and Cooney,
2008).

To date, there is limited information about the impact of
yeast on the establishment of the gut bacterial community in
fish, particularly during early developmental stages. Nevertheless,
it is known that the gut microbiota in fish larvae is less stable
than in adults (Gatesoupe, 1999). Hence, yeast exposure during
early ontogeny has the potential to modify the composition and
improve the functionality of gut microbiota in fish larvae. We
hypothesized that early exposure to yeast may alter the fish gut
microbiota. To test this hypothesis, we explored the potential of
two yeast species Debaryomyces sp. and Pseudozyma sp., which
were originally isolated from Atlantic salmon (Salmo salar) and
zebrafish (Danio rerio), respectively. Debaryomyces is frequently
associated with fish and it has been considered as an excellent
probiotic candidate because of its beneficial and therapeutic
properties (Navarrete and Tovar-Ramírez, 2014). On the other
hand, though Pseudozyma sp. is not commonly reported in fish,
P. fusiformata has been detected in the gut of wild salmonids
(Raggi et al., 2014). We investigated the effect of early yeast
exposure on the intestinal microbiota composition of zebrafish
larvae raised in germ-free (GF) or conventional conditions by
sequencing the V4 hypervariable region of the bacterial 16S
rRNA gene. Our findings provide the first evidence that fish-
derived yeast influence the assembly of the bacterial communities
during early life that could lead to a healthy gut environment in
fish.

MATERIALS AND METHODS

Yeast Strains and Culture Conditions
Debaryomyces sp. and Pseudozyma sp. used in this study
were originally isolated from the intestine of Atlantic salmon
and zebrafish, respectively, at Nord University, Bodø. The
isolated yeast colonies were identified by PCR amplification
and Sanger sequencing of the internal transcribed spacer 2
(ITS2) region of fungal rDNA. Pure cultures of the yeasts
were prepared and stored in 30% glycerol (Sigma-Aldrich
St. Louis, MO, United States) at −80◦C. Prior to use, the
cultures were revived on yeast extract peptone dextrose agar
(Sigma-Aldrich) plate and broth supplemented with 0.025%
chloramphenicol (Sigma-Aldrich). They were further grown in
yeast extract peptone dextrose broth at 28◦C, shaking the broth
at 180–200 rpm for 24 h. The cultured yeast cells were harvested
by centrifugation at 10,000 rpm for 10 min. Subsequently,
the harvested cells were washed and resuspended in sterile
phosphate-buffered saline (PBS) to obtain a final concentration
of 2× 105 CFU/ml for the following exposure study.

Ethics Statement
The experiments performed comply with the Guidelines of
the European Union Council (Directive 2010/63/EU) and
the Spanish RD 53/2013. Experiments and procedures were
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performed as approved by the Bioethical Committee of the
University of Murcia (approval numbers #537/2011, #75/2014,
and #216/2014).

Zebrafish Husbandry and Preparation of
Larvae
The experiments were conducted at the laboratories of the
Department of Cell Biology and Histology, University of
Murcia. Standard husbandry procedures (Westerfield, 2007) were
followed to maintain wild type zebrafish in a re-circulation
Fish-box system (Aqua Medic GmBH, Bissendorf, Germany).
Fish were offered a commercial diet (GEMMA Micro 300,
Skretting, Burgos, Spain) and Artemia salina nauplii, two times
a day. Adult zebrafish (1 male: 2 female) were introduced
into 1 L breeding tanks with dividers that kept the males and
females apart overnight. The following morning the dividers
were removed to allow natural spawning of fish. The eggs were
evenly split into two groups; one-half of the eggs were used
to generate GF embryos as described by Galindo-Villegas et al.
(2012). Subsequently, GF embryos were reared in sterile, vented
tissue culture flasks containing autoclaved and filtered egg water
without antibiotics. The remaining half of the collected eggs
were conventionally raised (CR) following same strategy but
using regular embryo medium as described elsewhere (Galindo-
Villegas et al., 2012). Both groups were carefully monitored daily,
and dead eggs, if any, were aseptically removed. In addition,
50% media was daily replaced in each flask according to the
respective initial conditions. The sterility of GF fish water media
was daily confirmed by visual assessment of inoculated agar plates
for microbial growth, as well as by conventional PCR using V4f
and V4r primer pairs targeting the V4 region of the bacterial 16S
rRNA (Kozich et al., 2013).

Design of the Yeast Exposure Study
The experiments employing GF and CR zebrafish larvae were
done in two phases. The first stage (from 0 to 7 days
post-fertilization, dpf) was performed in experimental flasks
under sterile or conventional conditions for GF and CR larvae,
respectively. The second phase was carried out from 7 to 14
dpf using 1.5 L tanks under standard rearing conditions, for
both groups. These tanks received water from the zebrafish
recirculation system. The larvae did not receive any feed during
the first phase. They were offered a commercial larval starter
microfeed (NovoTom Artemia, JBL, Neuhofen, Germany) from
7 until 14 dpf, i.e., the second phase. The rearing conditions in
the flasks/tanks were: temperature 28.0± 0.5◦C, pH 7.5 and 12 h
light/ 12 h dark cycle.

Zebrafish larvae, both GF and CR, were aseptically divided
into three treatment groups (Control, Debaryomyces, and
Pseudozyma) (Figure 1). Each group of larvae was maintained in
triplicate flasks, prior to immersion-exposure to yeasts. At 2 dpf,
GF and CR zebrafish larvae were exposed to 2 × 105 CFU/ml
Debaryomyces sp. or Pseudozyma sp. and incubated for 24 h
(until 3 dpf) at 28◦C. On the other hand, the control larvae were
exposed to PBS. After the 24 h exposure, larvae were washed (3×)
with regular embryo medium and raised in system water (CR)

or gnotobiotic medium (GF) until 7 dpf. Rearing media were
aseptically replaced daily with fresh media. At 7 dpf, larvae were
transferred to small tanks, where they were raised until 14 dpf.

The different study groups and their abbreviations are:
CRC, conventionally raised control; CRD, conventionally
raised Debaryomyces-exposed; CRP, conventionally raised
Pseudozyma-exposed; GFC, germ-free control; GFD, germ-free
Debaryomyces-exposed; GFP, germ-free Pseudozyma-exposed.
For water samples of the different groups, we followed the
same nomenclature as above, but inserted the letter “W.” One
extra group representing zebrafish system water, ZSW, was also
included for comparison.

Collection of Intestine and Water
Samples
At 14 dpf, zebrafish larvae were euthanized with an overdose
of MS222 (Sigma-Aldrich, Madrid, Spain) and rinsed with
sterile water before dissection. The gastrointestinal tract of each
laterally placed larva was aseptically excised under a Leica MZ16F
fluorescence stereo microscope (Leica Microsystems, Wetzlar,
Germany). The intestinal content was gently scraped off with
Dumont #5 fine forceps (Fine Science Tools GmbH, Heidelberg,
Germany). Each sample was a pool of intestines from 7 larvae; 2
to 3 samples were collected from each tank, making a total of 6
to 9 samples per treatment group. All samples were immediately
frozen using dry ice and stored at −80◦C until DNA extraction.
Water samples from 3 replicate flasks or tanks for each treatment
group were pooled and filtered using 0.2 µm pore size filter
(Merck, Darmstadt, Germany) and stored at −80◦C until use. In
addition, we obtained water samples from the zebrafish facilities,
which were also filtered and stored at −80◦C before DNA
extraction.

Isolation of DNA, PCR Amplification and
Sequencing
Genomic DNA from the pooled intestinal samples was extracted
using the QIAamp Fast DNA Stool Mini Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s instructions, with
minor modifications as described in our earlier publication
(Siriyappagouder et al., 2018). In addition, we used the QIAamp
DNA micro spin column instead of QIAamp column to purify
and elute the DNA. DNA from water samples was extracted
with the Metagenomic DNA isolation kit for water (Epicentre,
Madison, WI, United States). The extracted DNA was stored at
−20◦C until further analyses.

To profile bacterial communities, the V4 hypervariable region
(∼250 base pairs) of bacterial 16S rRNA gene was amplified
using the primer pair V4f and V4r attached with Illumina
barcoded adapters and sample-specific indices (Kozich et al.,
2013). PCR reactions were performed in a reaction volume of
20 µl containing 13 µl of KAPA KAPA HiFi HotStart ReadyMix
(2X) (KAPA Biosystems, Woburn, MA, United States), 0.3 µM
of each primer, 3 µl DNA template and sterile water up to
20 µl. Distilled water and genomic DNA from the bacterial
mock community (ZymoBIOMICSTM Microbial Community
Standard, Zymo research, Irvine, CA, United States) were used
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FIGURE 1 | Design of the yeast exposure study. The alterations in the intestinal bacterial communities of conventionally raised (CR) and germ-free (GF) zebrafish
larvae were examined after exposing them to the yeasts Debaryomyces sp. or Pseudozyma sp. for 24 h. The larvae in the control group were exposed to PBS. The
intestine samples were collected on day 14 and water samples from their respective flasks/tanks were collected at days 2, 3, 7, and 14.

as negative and positive controls, respectively. The DNA from
each sample was independently amplified in duplicate reactions
in a thermocycler (Bio-Rad Laboratories, Inc., Hercules, CA,
United States) with the following thermocycling conditions:
initial denaturation at 95◦C for 5 min, followed by 35 cycles
of 98◦C for 30 s, 58◦C for 30 s, and 72◦C for 45 s and a final
elongation at 72◦C for 2 min. The resulting amplicon replicates
were pooled and run on a 1.2% (w/v) agarose gel and positive
amplicons were excised from the gel and further purified using
the QIAquick Gel Extraction Kit (Qiagen).

Purified amplicon libraries were quantified with Qubit 3.0
Fluorometer and Qubit R© dsDNA HS Assay Kit (Thermo Fisher
Scientific – Invitrogen, Waltham, MA, United States). All
libraries were pooled in an equimolar ratio to 4 nM. Fragment
size and library concentration were further confirmed on the
Bioanalyzer 2200 TapeStation system (Agilent Technologies,
Santa Clara, CA, United States). The normalized library pool was
further diluted to 10 pM, spiked with 20% (10 pM) PhiX control
and sequenced on an Illumina Miseq platform (Illumina, San
Diego, CA, United States) using the MiSeq R© reagent kit V3 to
generate 2× 300 base pair reads.

Sequence Data, Quality Control and
Processing
Sequence data were processed and analyzed using USEARCH
v9.2.64 (Edgar, 2013) and QIIME v1.9.1 (Caporaso et al., 2010)
pipelines. Quality of raw sequencing reads were assessed using
FastQC software (Andrews, 2010). The sequence length of the
V4 hypervariable region of 16S rRNA gene is approximately 250
base pairs for most microbial species (Kozich et al., 2013), and
it was individually covered by both forward and reverse reads.

Only forward reads were retained for downstream analysis since
their quality was generally better than the corresponding reverse
reads. They were trimmed to 260 base pairs; to remove the primer
sequence and any subsequent sequences at the 3′ end. Sequences
with less than 260 base pairs were removed. A maximum expected
error filter strategy with a threshold of 1 was adopted to get rid
of the low quality reads (Edgar and Flyvbjerg, 2015). Chimeric
sequences were removed using the UCHIME algorithm (Edgar
et al., 2011). Then, quality filtered sequences were clustered into
operational taxonomic units (OTUs) at 97% sequence similarity
threshold. The representative sequences of OTUs were assigned
to different taxa using the SINTAX algorithm (Edgar, 2016)
employing the 16S rRNA RDP database (v11.5) and choosing a
confidence cutoff of 0.5. Subsequently, OTUs with a confidence
score <1 at domain level and the 12 OTUs belonging to the
phylum Cyanobacteria were removed since they only accounted
for 0.0092% of the total reads. All samples were rarefied to 20,000
sequences and rarefaction curves were obtained by plotting the
species richness against the number of sequences per sample. The
raw 16S sequence data from this study has been deposited at the
European Nucleotide Archive database (EBI) under the accession
number ERS2484299 to ERS2484358.

Data Visualization and Statistical
Analysis
We executed R codes in RStudio v1.1.442 (R Development Core
Team, 2018) and employed the undermentioned packages to
analyze the data. Data were imported into R using the package
‘xlsx.’ The package ‘phyloseq’ v1.22.3 (McMurdie and Holmes,
2013) was used to make phyloseq objects. The data visualization
was done mainly using ‘ggplot2’ v2.2.1 (Wickham, 2010).
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Packages ‘iNEXT’ v2.0.12 (Hsieh et al., 2016) and microbiome
v1.0.2 (Lahti et al., 2017) were used to create the rarefaction
curves and boxplots of diversity indices.

Pearson’s chi-squared followed by Benjamin–Hochberg post
hoc tests were performed to determine if the proportions
of Proteobacteria/Bacteroidetes in the treatment groups of
CR and GF fish differed significantly. Significance was set
at P < 0.05. To determine the alpha diversity of bacterial
communities, species richness, Shannon diversity, and Simpson
diversity [effective number of species, Jost (2006)], phylogenetic
diversity (PD whole tree, Faith and Baker, 2006), core
abundance and rare low abundance [relative proportion of
core species and least abundant species (Lahti et al., 2017)]
were analyzed. The Kruskal–Wallis test and Dunn’s test with
the Benjamini–Hochberg FDR correction were used to identify
significant differences in the alpha diversity indices of the groups.
To assess the beta diversity, principal coordinate analysis was
performed on the matrices generated using weighted UniFrac
distances (Lozupone and Knight, 2005). The sample sizes of
the experimental groups were different, and we checked for the
heterogeneity of dispersions using the function betadisper from
vegan v2.4-6 by Oksanen et al. (2018). Analysis of similarity
(ANOSIM, employing 999 permutations) and Adonis in the R
package ‘vegan’ were employed to understand the differences in
clustering and the locations of their centroids. We have examined
the differentially abundant bacterial communities of the groups
by analyzing the data using linear discriminant analysis effect
size (LEfSe) (Segata et al., 2011). An alpha value of 0.05 for
the factorial Kruskal–Wallis test and a threshold of 3.5 for
the logarithmic LDA score were selected to understand the
discriminative features.

RESULTS

Sterility of GF and CR Zebrafish Larvae
Microbial status or sterility of larvae was confirmed before yeast
exposure. There was no bacterial growth on TSA agar plate

inoculated with samples from GF larvae and media. Furthermore,
we did not observe any bands after PCR amplification of the
16S rRNA from larvae samples until 7 dpf and water/media
from GF zebrafish. On the other hand, CR larvae and rearing
media samples produced positive amplification of 16S rRNA; for
samples collected at all the sampling points (2, 3, 7, and 14 dpf).

Sequencing Quality
We analyzed the 16S rRNA V4 amplicon sequences of the
bacterial communities of 62 samples. Of these, 25 were intestine
samples of CR larvae, 20 were those of GF larvae and remaining
17 were of water from the respective treatment groups and
zebrafish facility. We obtained a total of 5,150,530 high-quality
reads after adapter and quality trimming of 5,650,637 raw
sequences (Supplementary Table S1). They were clustered into
2095 OTUs at 97% identity threshold; the OTUs represented 399
different taxa, of which 308 were assigned to specific genera. The
majority of the rarefaction curves reached the saturation point
at 20,000, allowing us to capture most of the underlying diversity
(Supplementary Figure S1). Hence, 20,000 sequences per sample
were considered to be appropriate for further analysis.

Relative Abundance and Core Microbiota
in Zebrafish Larvae
Analysis of the intestine samples revealed that Proteobacteria
(97.8%) was the dominant phylum, followed by Bacteroidetes
(1.5%). Actinobacteria, Firmicutes, Fusobacteria and remaining
rare phyla accounted for the residual 0.7% of the reads
(Figure 2A).

The abundance profile at genus level (Figure 2B) indicated
that the most common genera were present in all larvae groups.
Differences between bacterial communities in control and
yeast-exposed groups were due to different proportions of these
core bacteria as well as some rare genera, which are not shown
in Figure 2B. The dominant genera, namely Aeromonas,
Acidovorax, Pseudomonas, Rheinheimera, Shewanella,
Sphaerotilus, Gemmobacter, Zoogloea and unidentified genera

FIGURE 2 | Relative abundance of the intestinal bacterial communities of zebrafish larvae, at different taxonomic levels. Phyla (A) and the top abundant genera (B) in
CR and GF zebrafish. Each bar segment representing the average relative abundance of a particular bacterial taxon within a group is color coded: Proteobacteria –
shades of purple and pink, and Bacteroidetes – green. CRC, conventionally raised control; CRD, conventionally raised Debaryomyces-exposed; CRP, conventionally
raised Pseudozyma-exposed; GFC, germ-free control; GFD, germ-free Debaryomyces-exposed; GFP, germ-free Pseudozyma-exposed.
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of the family Comamonadaceae were found among the core
microbiota (shared by 97% of the samples) in the zebrafish larvae
(Supplementary Figure S2). In contrast, some low abundant and
rare taxa mainly Staphylococcus, Photobacterium, Comamonas,
Plesiomonas, Vibrio, and Cetobacterium were unique to some
samples, but we did not find any considerable correlation of
these genera with yeast exposure.

Yeast-Exposed Larvae Display a Distinct
Bacterial Relative Abundance Compared
to the Control Larvae
The relative abundance of phylum-level taxa indicates
that Proteobacteria is the predominant phylum in all the
treatment groups of CR larvae. However, the proportion of
Bacteroidetes was higher in CRC (8.8%, P = 0) in comparison
to Debaryomyces-exposed (0.3%) and Pseudozyma-exposed
(1.1%) CR larvae (Figure 2A). These differences were more
evident at lower taxonomic levels (Supplementary Figures
S3A–C). Additionally, the relative abundance of the 20
most abundant taxa revealed notable differences between
conventionally raised control (CRC) and yeast-exposed groups
(CRD/CRP; Figure 2B). At the genus level, Aeromonas and
Pseudomonas were the two predominant taxa. The abundance
of Aeromonas in yeast-exposed groups decreased, while that
of Pseudomonas increased compared to the control group
(Figure 2B). A similar pattern was also observed in the GFC
compared to the corresponding yeast-exposed groups (GFD,
GFP; Figures 2A,B).

The microbial community compositions of CRC and
yeast-exposed larvae were significantly different, according
to the weighted UniFrac distance-based analysis, which took
the bacterial abundance into account rather than presence
and absence of taxa. PCoA analysis revealed a clear clustering
pattern; samples were largely partitioned based on the yeast
exposure (Figure 3A, ANOSIM; R = 0.80, P < 0.001 and Adonis;
R2 = 0.55, P < 0.001). Even though axis one captures more
variation than axis two, the samples were better separated by
axis two. Significant differences between the groups (CRC vs.

CRD – P < 0.001, CRC vs. CRP – P < 0.001 and CRD vs. CRP –
P < 0.001) were revealed when the groups were considered
separately in pairwise comparisons. Samples of the CRC group
clustered near the CRD samples, while those of the CRP clustered
separately.

Regarding the GF samples, the cluster of the GFD group
was distinct compared to GFC and GFP (ANOSIM; R = 0.57,
P < 0.001 and Adonis; R2 = 0.50, P < 0.001, Figure 3B). The
GFP group clustered closer to GFC, unlike the CRP group of the
CR larvae. Significant difference between groups (GFC vs. GFD –
P < 0.01, GFC vs. GFP – P < 0.05 and GFD vs. GFP – P < 0.01)
were also observed during pairwise comparisons.

Bacterial Diversity Was Significantly
Affected by Exposure to Yeast
We did not observe any significant differences in species richness
and Shannon diversity indices (Figures 4A,B) between CRC and
CRD groups (P > 0.05) but when we compared Pseudozyma-
exposed group (CRP) with CRD significant differences were
obtained (P < 0.01) or CRC (P < 0.01). The species richness
and evenness of the community was relatively higher (P > 0.05)
in the CRD compared to the CRP group. Simpson diversity
(dominance) of the CRP group was significantly lower when
compared to the CRD (P < 0.001), whereas no significant
difference was observed for the CRD vs. CRC comparison
(P > 0.05; Figure 4C). Microbial phylogenetic diversity decreased
as a result of exposure to Pseudozyma (CRP); the value was higher
in the CRC (P < 0.01), but that of the CRD group was not
significantly different (P > 0.05; Figure 4D). The core abundance
value of the CRP group was significantly different from the CRC
group (P < 0.05) but similar to CRD (P > 0.05; Figure 4E). The
rare low abundance of the CRP group was significantly lower than
that of CRC (P < 0.01) and CRD (P < 0.05; Figure 4F).

In contrast to the results of the CR conditions,
Debaryomyces-exposed germ-free group (GFD) had significantly
higher Shannon and Simpson diversities when compared to
the control group (GFC, P < 0.01; Figures 5B,C). However,
Shannon and Simpson diversities of the GFD and GFP groups

FIGURE 3 | Principal coordinate analysis plots based on weighted UniFrac distance metric show the distinct intestinal bacterial communities in CR (A), and GF (B) of
zebrafish larvae. Ellipses include 95% of samples from normally distributed data. CRC, conventionally raised control; CRD, conventionally raised
Debaryomyces-exposed; CRP, conventionally raised Pseudozyma-exposed; GFC, germ-free control; GFD, germ-free Debaryomyces-exposed; GFP, germ-free
Pseudozyma-exposed.
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FIGURE 4 | Alpha diversity indices of the intestinal bacterial communities of CR zebrafish larvae. Species richness (A), Shannon diversity (B), Simpson diversity
(C), phylogenetic diversity (D), core abundance (E), and rare low abundance (F). Different letters above the bars indicate significant differences as determined by
Dunn’s tests. CRC, conventionally raised control; CRD, conventionally raised Debaryomyces-exposed; CRP, conventionally raised Pseudozyma-exposed.

were not significantly different (P > 0.05; Figures 5B,C).
Exposure to yeasts had no significant effect on microbial
alpha diversity measures (Figures 5A,D–F), the exception
being the abovementioned results of Shannon and Simpson
diversity.

Germ-Free and Conventionally Raised
Zebrafish Larvae Not Exposed to Yeast
Have Similar Intestinal Microbiota
The compositions of the microbiota in the control larvae reared
in GF and CR conditions were almost identical (Figures 2A,B).
PCoA also did not reveal any significant differences between GF
and CR larvae (Supplementary Figure S4A, ANOSIM; R = 0.01,

P > 0.05 and Adonis; R2 = 0.11). Similarly, we have not found
any significant differences in the alpha diversity measures of the
GF and CR larvae (Supplementary Figures S4B–F). Altogether,
microbial composition and diversity of GF and CR larvae were
similar.

Differentially Abundant Taxa Differ
Between the Treatments
Linear discriminant analysis effect size analysis revealed
that the genus Aeromonas was the overrepresented taxon
in control zebrafish, regardless of the rearing conditions
(Figures 6A,B). On the other hand, Pseudomonas was observed
as the significantly abundant type in the yeast-exposed group,
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FIGURE 5 | Alpha diversity indices of the intestinal bacterial communities of GF zebrafish larvae. Species richness (A), Shannon diversity (B), Simpson diversity
(C), phylogenetic diversity (D), core abundance (E), and rare low abundance (F). Different letters above the bars indicate significant differences as determined by
Dunn’s tests. GFC, Germ-free control; GFD, germ-free Debaryomyces-exposed; GFP, germ-free Pseudozyma-exposed.

i.e., in the Pseudozyma-exposed larvae of the CR group
(Figure 6A) and Debaryomyces-exposed larvae in the GF group
(Figure 6B), respectively. We also observed that relatively
few taxa were differentially abundant in Pseudozyma-exposed
larvae (7 and 4 taxa in CR and GF, respectively) in comparison
to the control (11 and 5 in CR and GF, respectively) and
Debaryomyces-exposed larvae (10 and 15 in CR and GF,
respectively). Zoogloe, Acidovorax, Rheinheimera were more
abundant in the CRD and GFD groups. Rhizobium was
overrepresented only in Pseudozyma-exposed groups of the
CR and GF fish larvae. Aureispira, Pedobacter, Chitinophaga,
Fluviicola from the second most dominant phylum Bacteroidetes

were largely abundant in the CR groups rather than in the
GF groups. Bacteria belonging to the phylum Firmicutes,
particularly the low abundant Pediococcus and Lactococcus, were
predominant in Debaryomyces-exposed CR group. In the GF
group, Peptostreptococcus and Vagococcus were the abundant
Firmicutes.

Bacterial Communities of Water and
Intestine of Zebrafish Larvae Differed
Proteobacteria, Bacteroidetes and Actinobacteria were the
dominant groups in water samples from the two rearing
conditions (CR and GF). These abundant phyla were also the
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FIGURE 6 | Differentially abundant bacterial taxa in CR (A) and GF (B) zebrafish larvae intestine. LEfSe was employed to find the differential abundance using a
cut-off of 3.5 and a significance threshold of P < 0.05. Y-axis labels are color coded for different bacterial taxa: Proteobacteria – purple, Bacteroidetes – light green,
Firmicutes – dark green, Chlamydiae – coral, Chloroflexi– cyan, Planctomycetes – dark red, and Actinobacteria – light orange. CRC, conventionally raised control;
CRD, conventionally raised Debaryomyces-exposed; CRP, conventionally raised Pseudozyma-exposed; GFC, germ-free control; GFD, germ-free
Debaryomyces-exposed; GFP, germ-free Pseudozyma-exposed.

dominant type in the samples from the water supply source of
the zebrafish facility. They also contained other dominant phyla,
namely Firmicutes, Fusobacteria, Nitrospirae, Planctomycetes,
and Verrucomicrobia (Figure 7A). At a class level, we observed
clear differences in microbial communities between water and
intestinal samples (Supplementary Figure S5). Similarly, PCoA
plot based on weighted UniFrac distance metrics indicated
that these groups harbored distinct microbial populations
(Figure 7B), despite the dominance of the phylum Proteobacteria
in both the water and intestine samples.

DISCUSSION

Early life-associated factors such as diet, environmental
conditions, microbial interactions, and exposure to antibiotics
or probiotics decide the assemblage and structure of the naïve
microbial communities of the hosts (Scholtens et al., 2012;
de Muinck et al., 2013). These microbes facilitate the host’s
acclimatization to a new environment and subsequent succession
of the associated intestinal microbial community. Several studies
in most vertebrates, including fish have demonstrated that the

FIGURE 7 | Relative abundance of bacterial phyla in the water samples (A) and principal coordinate analysis plot (B). The PCoA plot based on weighted UniFrac
distance metric shows the distinction between the bacterial communities in water and zebrafish intestine. Ellipses include 95% of samples from normally distributed
data. CRCW, CRDW, and CRPW represent the water samples collected from their respective flasks/tanks on day 2, 3, 7, and 14. GFCW, GFDW, and GFPW
represent the water samples collected only on day 14. ZSW represents the water samples collected from the zebrafish facility on days 7 and 14.
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selective manipulation through prebiotics and/or probiotics
or functional diets modulates the gut microbial community by
favoring the growth of beneficial microbes (Montalban-Arques
et al., 2015; Ringø et al., 2016; Zorriehzahra et al., 2016). Probiotic
administration is a promising approach to maintain the microbial
balance, to prevent diseases, and to improve the health status of
the host (Kiron, 2015). However, our current knowledge on the
influence of yeasts on fish gut microbial composition is based
on studies in a few species. We have determined the effect of
fish-derived yeasts on the composition of bacteria in the intestine
of zebrafish by sequencing the V4 region of bacterial 16S rRNA
gene on an Illumina MiSeq platform. Our data demonstrated
that early exposure to yeasts shapes the bacterial community and
diversity in GF and CR zebrafish larvae and provide evidence
that fish derived-yeasts can be used as biological tools to induce
alterations in the gut microbial communities.

Proteobacteria Is the Dominant Phylum
in Zebrafish Intestine
Bacterial communities in the intestine of zebrafish larvae
comprised Proteobacteria (97.8%), Bacteroidetes (1.5%) and
other rare phyla (Figure 2A); this profile is similar to other
fish gut microbiota, including adult zebrafish (Roeselers et al.,
2011; Llewellyn et al., 2014; Stephens et al., 2016). Our result
is also consistent with previous reports that zebrafish larval
gut harbors a highly constrained set of bacterial phyla (Davis
et al., 2016; Phelps et al., 2017; Dahan et al., 2018). At the genus
level, Aeromonas, Acidovorax, Pseudomonas, Rheinheimera,
Shewanella, Sphaerotilus, Gemmobacter, and Zoogloea,
and unidentified genera of the family Comamonadaceae
were the dominant bacteria (Figure 2B). Among these,
Aeromonas, Pseudomonas, Shewanella and few other rare genera
(Staphylococcus, Photobacterium, Comamonas, Plesiomonas,
Vibrio, and Cetobacterium) were commonly found and reported
as the core gut microbiota of zebrafish (Roeselers et al., 2011;
Cantas et al., 2012). The existence of these core communities
in the intestine could reflect the significance and functional
association of these bacteria with zebrafish. Although we did not
find the abovementioned rare genera among the core taxa, this
hidden backbone of microbial communities is known to enhance
the functionality of abundant microbes (Jousset et al., 2017).

Yeast Exposure Alters the Relative
Abundance of Aeromonas and
Pseudomonas
Zebrafish larvae that were exposed to yeasts had significantly
different microbial composition than their counterparts in the
control groups (Figures 3A,B). Bacteroidetes decreased in the
yeast-exposed groups compared to the control (Figure 2A).
However, the effect of yeasts on the members of Proteobacteria
seems to be selective; manifested by a trade-off between
the relative abundance of two core genera, Aeromonas
and Pseudomonas (Figure 2B). These bacterial genera are
natural inhabitants of the aquatic environments and could
persist in the fish gut as well (Cantas et al., 2012). Most
bacteria belonging to these genera are opportunistic pathogens

(Austin and Austin, 2007) but a few species are acknowledged
as probiotic candidates in aquaculture (Irianto and Austin,
2002; Pieters et al., 2008; Van Hai and Fotedar, 2009). The
intestinal microbiota of the control group was enriched with
Aeromonas, whereas yeast-exposed larvae were enriched with
Pseudomonas. Fish-derived yeasts or their cellular components
seem to have antagonistic activity against the members of
Aeromonas but favor the growth of Pseudomonas species. Yeasts
and bacteria are common colonizers of gastrointestinal tract of
animals, and their interaction, either symbiotic or antagonistic
(Arvanitis and Mylonakis, 2015), has been shown to play a
major role in the host biological activities (Iliev and Underhill,
2013). Furthermore, yeasts and their cell wall components
including β-glucans, mannans and chitin may act as prebiotics
or probiotics not only to facilitate the growth of beneficial
bacteria but also to suppress the growth of other microbes via the
production of various metabolites (Hatoum et al., 2012). Cider
yeast-supplemented diet modulated the gut microbiota of pigs
and reduced the counts of Lactobacilli (Upadrasta et al., 2013).
Similarly, Gonçalves and Gallardo-Escárate (2017) showed
that rainbow trout fed S. cerevisiae-supplemented diets had
decreased abundance of Gammaproteobacteria of the phylum
Proteobacteria and increased abundance of the phyla Firmicutes
and Fusobacteria. A higher abundance of Pseudomonas in
the yeast-exposed group also suggests that they outcompete
Aeromonas. The antifungal properties of Pseudomonas against
Candida spp. (fungi) have been reported; these bacteria
can produce phenazines (Nishanth Kumar et al., 2014) and
quorum-sensing molecules (Hogan et al., 2004). Furthermore,
Pseudomonas has developed a mechanism to restrict Candida to
its yeast form, so as to take advantage of the yeast fermentation
products for its own growth and proliferation. Their complex
interaction also involves the attachment of Pseudomonas to
existing Candida hyphae to aid its dissemination (Chen et al.,
2014). Conversely, Candida is able to down-regulate virulence
factors of P. aeruginosa by modulating its quinolone signal
(Cugini et al., 2007), which is part of the quorum-sensing
system and controls multiple virulence factors (Calfee et al.,
2001).

Yeast Exposure Impacts the Intestinal
Bacterial Diversity
We have examined the effect of yeast exposure on the bacterial
diversity in the intestine of zebrafish larvae. Regarding the CR
larvae, Pseudozyma had a significant impact on both species
richness and diversity indices (Figures 4A,B). However, such an
effect was not observed for Debaryomyces. The lower diversity
(richness, common and dominant species) of bacteria in the CRP
group compared to CRC and CRD groups may be related to
the predominance of Pseudomonas in CRP larvae (Figure 2B).
The intestinal bacteria in the CRP group were phylogenetically
more homogenous or closely related than those of the CRC
and CRD groups (Figure 4D). We also observed a significant
difference in the abundance of core community in CRP compared
to CRC but not between CRP and CRD (Figure 4E). Again,
this can be due to higher relative proportion of Pseudomonas,
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which is part of the zebrafish core community and could
explain the significantly lower proportion of the low abundant
species (Figure 4F). As for the germ-free larvae, the GFD
group had significantly higher Shannon and Simpson diversity
compared to the GFC group, suggesting that exposure to
yeast can facilitate the establishment of diverse bacteria in the
intestine of germ-free larvae. On the other hand, we did not
observe any significant differences among other alpha diversity
indices of the GF larvae. In CR zebrafish, the effect of yeast-
exposure on the different diversity indices of intestinal bacteria
contrasted with previous observations in rainbow trout (Waché
et al., 2006; Gonçalves and Gallardo-Escárate, 2017). These
authors reported that feeding rainbow trout fry and juveniles
with diet containing S. cerevisiae increases their gut microbial
diversity. Similarly, feeding dietary mannan-oligosaccharides to
juvenile rainbow trout and gilthead seabream (Sparus aurata)
increased the diversity of gut microbiota (Dimitroglou et al.,
2010; Gonçalves and Gallardo-Escárate, 2017). Our results are
in agreement with a previous report on the reduction of
microbial diversity of zebrafish larvae after immersion exposure
to probiotic Lactobacillus rhamnosus GG (Falcinelli et al., 2016).
Interestingly, we have observed increased microbial diversity
only in germ-free larvae exposed to Debaryomyces (GFD).
Tapia-Paniagua et al. (2011) observed lower Shannon and
Simpson diversity of the gut microbiota of S. aurata after
the fish consumed diets incorporated with D. hansenii L2 for
4 weeks. The result of immersion versus feeding exposure
to probiotics on gut microbiota depends on several factors,
including the probiotic strain in question, dosage, viability
and ability to cope with alimentary tract conditions in the
host (Hai, 2015). In some cases, a similar colonization success
is achieved through live feed and rearing water. However,
three probiotic strains of Ruegeria, Pseudoalteromonas, and
Vibrio were unable to colonize the gut of Atlantic cod (Gadus
morhua) larvae either by immersion or feeding exposure
(Skjermo et al., 2015). Nevertheless, the influence of yeast
exposure methods on gut microbiota in fish warrants further
investigation.

Microbial composition, diversity and abundance are positively
affected by favorable conditions related to space, nutrients and
competition (Hibbing et al., 2010). Debaryomyces-exposed CR
and GF zebrafish larvae had relatively higher alpha diversity
indices and we speculate that it might provide favorable
intestinal conditions due to its inherent probiotic properties.
For instance, juvenile leopard grouper (Mycteroperca rosacea)
and gilthead seabream (S. aurata) offered live D. hansenii
CBS8339 and strain L2, respectively, had enhanced immune
responses and were resistant to pathogenic A. hydrophila (Reyes-
Becerril et al., 2011, 2012). In addition, cell wall components
of yeast can influence the host immune responses to regulate
the diversity of gut microbiota (Charlet et al., 2018). The
prebiotic/probiotic efficacy of a yeast is dependent on many
factors including the type of species. In our study, larvae
exposed to zebrafish-derived Pseudozyma had more abundance
of Pseudomonas and lower microbial diversity compared to
Debaryomyces, which was isolated from Atlantic salmon. Unlike
Pseudozyma, Debaryomyces might have positive effect on host

by increasing the microbial diversity. Thus, the species of yeast
impacts the diversity of bacterial species which in turn influence
the bacterial assemblage. Several studies have shown that the
presence of diverse microbiota indicate a healthy ecosystem,
which increases microbial functional stability and adaptive
capacity (De Roy et al., 2013). However, its beneficial effects
depend on the presence or enrichment of certain genera/species
in the community rather than diversity per se. For example, it
has been demonstrated that functional characteristics of a small
number of bacterial species (low richness) have a positive impact
on feed efficiency and energy requirements in ruminants (Shabat
et al., 2016).

Exposure to Debaryomyces Favors
Beneficial Bacteria
Linear discriminant analysis has indicated that taxa belonging
to Proteobacteria were differentially abundant in all the groups
(Figures 6A,B), irrespective of treatment. However, taxa from
the Bacteroidetes were only enriched in CR zebrafish larvae
(Figure 6A). Debaryomyces-exposed groups (GF and CR) were
characterized by several significantly abundant bacterial taxa
that included beneficial bacteria. Particularly, species from the
low occurring phylum Firmicutes including Pediococcus and
Lactococcus were enriched in CRD. Increasing abundance of LAB
after yeast supplementation has also been reported in studies
of juvenile European sturgeon (Hoseinifar et al., 2011) and
Nile tilapia (Ran et al., 2015). Exposure to Debaryomyces may
improve and maintain homeostasis in the gut ecosystem by
modulating the abundance and diversity of bacteria, including
those of LAB.

Variation in the Intestinal Bacterial
Assemblage of Zebrafish Larvae Is Not
Determined by Their Rearing Conditions
The CR larvae in control group were colonized with commensal
bacteria as soon as they hatched from their protective chorions.
On the other hand, GF larvae in the control group keep
the GF conditions up to 7 dpf. Surprisingly, the microbial
composition and diversity in the intestinal tract of both the
GF and CR larvae were similar after they were reared in
the system tanks (Supplementary Figure S4A). The intestinal
bacterial composition of zebrafish larvae was distinct from that
of the rearing water (Figure 7B). Similar results have been
observed in other fish studies (Lokesh et al., 2018; Sevellec
et al., 2018; Zhang et al., 2018). The intestinal microbiota
of zebrafish larvae at 4 and 8 dpf had more abundance of
Gammaproteobacteria, whereas the corresponding water samples
had predominance of Betaproteobacteria (Stephens et al., 2016).
We also observed more abundance of Gammaproteobacteria in
the intestine of zebrafish larvae than their rearing water, which
was mostly comprised of Betaproteobacteria (Supplementary
Figure S5).

Our results suggest that exposure to yeast during the early
developmental stage of zebrafish could influence the microbiota,
and the differences in the established communities were evident
after they were maintained in similar rearing conditions. In other
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words, variation in microbial composition is driven by specific
yeast species, rather than the rearing condition of zebrafish larvae.
Thus, our observations are in agreement with those of Yan
et al. (2012) who proposed that bacterial community assembly
and dynamics are shaped by both deterministic and stochastic
factors.

CONCLUSION

The present study demonstrates that exposure to fish-derived
yeast can alter the composition and diversity of the intestinal
bacteria of zebrafish larvae. Noticeably, even a transient early-life
exposure to yeast could induce remarkable alterations in
the bacterial assemblage. If persistent, this early modulation
of microbiota could influence host physiology later in
life.
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