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Marine macrophytes are the foundation of algal forests and seagrass meadows–some
of the most productive and diverse coastal marine ecosystems on the planet. These
ecosystems provide nursery grounds and food for �sh and invertebrates, coastline
protection from erosion, carbon sequestration, and nutrient �xation. For marine
macrophytes, temperature is generally the most important range limiting factor, and
ocean warming is considered the most severe threat among global climate change
factors. Ocean warming induced losses of dominant macrophytes along their equatorial
range edges, as well as range extensions into polar regions,are predicted and already
documented. While adaptive evolution based on genetic change is considered too
slow to keep pace with the increasing rate of anthropogenic environmental changes,
rapid adaptation may come about through a set of non-geneticmechanisms involving
the functional composition of the associated microbiome, as well as epigenetic
modi�cation of the genome and its regulatory effect on gene expression and the activity
of transposable elements. While research in terrestrial plants demonstrates that the
integration of non-genetic mechanisms provide a more holistic picture of a species'
evolutionary potential, research in marine systems is lagging behind. Here, we aim to
review the potential of marine macrophytes to acclimatize and adapt to major climate
change effects via intraspeci�c variation at the genetic, epigenetic, and microbiome
levels. All three levels create phenotypic variation that may either enhance �tness
within individuals (plasticity) or be subject to selectionand ultimately, adaptation. We
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review three of the most important phenotypic variations ina climate change context,
including physiological variation, variation in propagation success, and in herbivore
resistance. Integrating different levels of plasticity, and adaptability into ecological models
will allow to obtain a more holistic understanding of trait variation and a realistic
assessment of the future performance and distribution of marine macrophytes. Such
multi-disciplinary approach that integrates various levels of intraspeci�c variation, and
their effect on phenotypic and physiological variation, isof crucial importance for the
effective management and conservation of seagrasses and macroalgae under climate
change.

Keywords: seagrasses, kelp forests, physiology, epigeneti cs, microbiome, modeling, early life stages, global
climate change

CLIMATE CHANGE IMPACT ON MARINE
MACROPHYTES

Burning of fossil fuels since the eighteenth century Industrial
Revolution increased the atmospheric CO2 concentration from
a pre-industrial level of 280 ppm to> 400 ppm (reached in
2013), a level that has not been reached over the past few million
years (Monastersky, 2013). Increasing levels of CO2 enhance
the greenhouse e�ect, trapping more solar radiation near the
earth surface, which causes an increase in global temperatures
(Keller, 2009). About 80% of the excessive heat is absorbed by
the ocean. Consequently, average global ocean temperatureshave
increased by 0.9� C in the upper 700 m during the twentieth
century (Domingues et al., 2008), and currently (2001–2005
average) rank among the highest levels recorded during the past
1.4 million years (Hansen et al., 2006). Concomitantly, ocean
uptake of atmospheric CO2 leads to ocean acidi�cation (Doney
et al., 2009). Further consequences of rising temperatures are
ranging from changes in atmospheric and ocean circulation,
over changes in season succession, as well as in storm and
precipitation patterns, to drought periods and altered thermal
environments (Reay et al., 2007; Poloczanska et al., 2013). A
cascade of extreme thermal events became particularly evident
in the last years, with severe increases in both frequency and
intensity (Reay et al., 2007; Field et al., 2012), and a�ected
phenological cycles in both adult forms and early-life stages
of many marine organisms (Poloczanska et al., 2013). Summer
warm extremes have increased by about 10% since the 1960's to
1970's in China and Europe (Yan et al., 2002; Klein Tank et al.,
2003; Alexander et al., 2006) and the European heat waves in
summer 2003 and 2010 (Beniston and Stephenson, 2004; Schär
and Jendritzky, 2004; Barriopedro et al., 2011) caused major
community shifts and local species extinctions (e.g.,Garrabou
et al., 2009; Sorte et al., 2010). Increasing ocean temperature and
changing chemistry a�ects physiological performance, behavior,
and population dynamics of all marine organisms, from primary
producers to upper-trophic-levels, including �shes, seabirds, and
marine mammals (Doney et al., 2012).

With the exception of hydrothermal vents in the deep sea,
photosynthetic primary producers are at the base of all food
webs. Here, we focus on macrophytes as key primary producers

in marine benthic habitats, commonly known as seagrasses
(marine angiosperms) and brown macroalgae. Seagrasses are
Archaeplastida, the primordial photosynthetic eukaryote group
which includes also green and red algae. In contrast, brown
macroalgae are Stramenopiles (SAR), a lineage that gained
chloroplasts in some groups by secondary endosymbiosis from
other eukaryotes. Brown macroalgae (hereafter referred toas
macroalgae) include fucoids that grow mainly in the intertidal,
and kelps, a term used to designate large subtidal brown algae,
most with a heteromorphic life cycle in the orders Laminariales,
Tilopteridales, and Desmarestiales. An exception is bull kelp
that is classi�ed as a fucoid. Taxonomic understanding of both
groups remains incomplete and in need of further re�nement
(reviewsHartog and den Kuo, 2006; Bartsch et al., 2008; Bolton,
2010), despite recent advances (Lane et al., 2006; Aires et al., 2011;
Coyer et al., 2013; Rothman et al., 2015, 2017; Jackson et al.,
2017). The continued application of genome-wide markers and
multigene phylogenies will likely reveal previously overlooked
taxonomic and biogeographic lineages (e.g.,Tellier et al., 2009,
2011).

Both seagrasses and brown macroalgae are not only
key primary producers, but also foundation species that
in�uence ecosystem structure and function by creating
locally stable conditions and habitat for other species,
while supporting some of the most productive and diverse
coastal marine ecosystems on the planet (Costanza et al.,
1997; Spalding et al., 2007; Chung et al., 2011; Smale et al.,
2013; Thomson et al., 2015; Teagle et al., 2017). Marine
macrophytes further provide ecosystem services, such as food
for invertebrates and �sh, a blue carbon sink, nutrient �xation,
and protection of the coastline from erosion (Procaccini et al.,
2007; Harley et al., 2012). While macroalgae predominate
on rocky shores in temperate to polar regions (Steneck
et al., 2002; Bolton, 2010), seagrasses predominate on sandy
shores from temperate to tropical regions (Short et al.,
2007).

Seagrass beds and kelp forests are increasingly threatenedby
a variety of stressors (Orth et al., 2006; Waycott et al., 2009;
Krumhansl et al., 2016). The combined e�ect of multiple climate-
change related stressors on the extinction risk and productivity of
macrophytes can be additive, synergistic, or antagonistic (Wahl
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et al., 2011, 2015), and may not be predicted from the individual
e�ect of each variable operating in isolation (Darling and Côté,
2008). Nevertheless, for many marine macrophytes, temperature
is the most important range limiting factor, and ocean warming
is considered the most severe threat among global climate change
factors (Diaz-Almela et al., 2007; Moore et al., 2012; Jueterbock
et al., 2013; Araújo et al., 2016; Assis et al., 2017a; Repolho et al.,
2017). In contrast, the predicted rise in ocean CO2 concentration
is likely to have a positive e�ect on growth and photosynthesis
because most macrophytes are carbon-limited at current ocean
dissolved inorganic carbon (DIC) (Koch et al., 2013). However,
the e�ect is unlikely to be big since the predicted long-term rise
in CO2 falls several orders of magnitude below current CO2 and
pH �uctuations within seagrass beds and kelp forests (Saderne
et al., 2013; Wahl et al., 2017). Thus, in this review we mainly
focus on ocean warming as the most important climate-change
e�ect.

For macroalgae, the magnitude and direction of abundance
changes vary strongly between geographic regions (Krumhansl
et al., 2016), but macrophyte losses are concentrated in
warm-temperate to tropical regions (Nicastro et al., 2013;
Fraser et al., 2014). Physiological, genetic, and modeling data
predict, and already document, that rising temperatures cause
massive die-o�s of genetically unique populations along warm-
temperate distribution limits and open up new thermally
suitable habitat in polar regions (Wernberg et al., 2011;
Jueterbock et al., 2013, 2016; Brodie et al., 2014; Krause-
Jensen and Duarte, 2014; Valle et al., 2014; Olesen et al.,
2015; Assis et al., 2016a, 2017a; Hyndes et al., 2016). How
fast and far warm-temperate range edges will retract toward
higher latitudes largely depends on the macrophytes' abilityto
rapidly acclimatize or adapt to warm temperature extremes. In
contrast, how fast and far poleward range-edges will extend into
polar regions does not only depend on suitable temperatures
for reproduction, but also on the macrophytes' ability to
adapt to the extreme polar light conditions with month-long
winters of constant darkness, and month-long summers of
constant light (Krause-Jensen and Duarte, 2014; Berge et al.,
2015).

The aim of the present paper is to review the potential
of marine macrophytes to acclimatize and adapt to major
climate change e�ects via three pillars of intraspeci�c variation
(Figure 1). A holistic picture of ecologically and evolutionary
relevant variation integrates genetic variation (A1) withnon-
genetic mechanisms, involving the functional composition of
the epigenome (A2) and the microbiome (A3). All three
levels create plasticity and adaptability via phenotypic variation.
Most important in a climate change context is physiological
variation (B1), variation in propagation success (B2), and in
biotic interactions (B3). We do not aim to review ecological
e�ects on macrophyte associated ecosystems, but on the
macrophytes themselves. Our ultimate goal is to provide insight
into recent and novel approaches that might be integrated
in multidisciplinary studies and integrative niche modeling
approaches (C) toward a better understanding of the future of
these foundation species in a changing world (Figure 1).

A LEVELS OF INTRASPECIFIC VARIATION
CREATING PLASTICITY AND
ADAPTABILITY

A1 Genetic Variation and
Structure—Explained by Biogeographic
History
Geographic patterns of neutral genetic structure in macroalgae
and temperate seagrass species frequently reveal the imprints
of ancient, often multiple refugia that arose during past glacial
cycles and persist to the present day, revealing distinct genetic or
phylo-groups sharing limited gene �ow. In the Mediterranean,
ancient vicariance events, hypothetically attributed to the
Messinian Salinity Crisis, were reported in the seagrasses
Posidonia oceanica(Arnaud-Haond et al., 2007b; Serra et al.,
2010) and Ruppia spp. (Triest and Sierens, 2014), although
niche modeling indicated that the present phylogeography of
P. oceanicais also shaped by more recent climate refugia
(Chefaoui and Serrão, 2017). Mediterranean-Atlantic vicariance
with two glacial refugia in West Africa and the Eastern
Mediterranean was suggested inCymodocea nodosabased on
allelic distributions (Alberto et al., 2008), and niche models
(Chefaoui et al., 2017). Across latitudinal gradients, a recurring
theme is genetically unique and rich low latitude rear edge
populations and low-diversity poleward along post-glacial
expansion fronts (e.g., forZostera noltii, Coyer et al., 2004;
Diekmann et al., 2005), while central latitudes can be genetically
rich (Zostera marina; Diekmann and Serrão, 2012). Some works
point out to strong impacts of climate change on seagrasses (Valle
et al., 2014) and macroalgae (Wernberg et al., 2011; Jueterbock
et al., 2013; Assis et al., 2016a,b, 2017a; Neiva et al., 2016),
with poleward shifts at low diversity expansion fronts, while
signi�cant diversity near the rear edge may be lost.

A range of life-history and oceanographic features can serve
to maintain existing population or metapopulation structure.
Seagrass meadows often spread via vegetative clonal expansion,
with individual clones reaching extreme age and extent in long-
lived species (e.g.,Posidonia oceanica,Arnaud-Haond et al.,
2012or Zostera marinaReusch et al., 1999). Clonal propagation
creates challenges for genetic and biogeographical studies
(Arnaud-Haond et al., 2007a), such as requiring high resolution
genetic markers for identifying individuals. Notwithstanding the
importance of sexual propagation for seagrasses (Kendrick et al.,
2012), its principal role may be recolonization after disturbance
(Marba and Duarte, 1995).

Kelps disperse via haploid meiospores, subsequently followed
by syngamy between closely spaced (ca. 1 mm) benthic dioicous
male and female microgametophytes. As fertilization occursafter
the planktonic phase, low dispersal distance and inbreeding may
be the norm (Reed et al., 2004b; Raimondi et al., 2011; Johansson
et al., 2013), although km-scale dispersal is possible given a
suitably large source population (Reed et al., 2004a).

On biogeographic scales, dispersal of viable vegetative
fragments, larger-scale rafting, or sexual propagules is dependent
on surface currents transporting viable material (Alberto et al.,
2011; Johansson et al., 2015; Assis et al., 2017a). However,
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FIGURE 1 | Realistic predictions of future distributions and ecosystem functions of marine macrophytes under climate change rely on multi-disciplinary research.
Climate change research should ideally integrate various levels of intraspeci�c variation and their effect on phenotypic and physiological variation. The ultimate goal is
to widen the concept of niche stability in conventional modeling approaches with this multi-layered plasticity concept.

vicariance signatures suggest this type of dispersal is frequently
unsuccessful in producing e�ective recruitment in seagrasses
(Diekmann et al., 2005; Arnaud-Haond et al., 2007b; Alberto
et al., 2008; Serra et al., 2010) but seeReusch et al. (2000)
for Z. marina rafting success in the North Sea. A compelling
hypothesis is that, even if oceanographic barriers are incomplete,
dispersal into areas already colonized may be ine�ective due to
priority or density-barrier e�ects, in which incoming alleles are
“swamped” by those already present at higher-frequency (De
Meester et al., 2002; Neiva et al., 2012, 2016).

Populations di�erentiated along a latitudinal gradient
experience climate change in di�erent ways, due to their intrinsic
genetic characteristics and population dynamics. A clearer
picture of the biogeographic and metapopulation structure of
macroalgae and seagrasses will be key to unravel variation in
functional responses, adaptive potential, and likely resilience
across species ranges. Much remains to be discovered, with the
challenge to link genomic (Olsen et al., 2016) and functional
trait variation (Jueterbock et al., 2016), and integrate this with
projected threats arising from a rapidly changing climate. This
is particularly urgent for rear-edge and marginal populations,
many of which are under imminent threat.

Macrophytes can be locally adapted to their thermal regime
(e.g.,Zardi et al., 2013; Pereira et al., 2015; Saada et al., 2016;
King et al., in press). This means that migrations are rather the

dislocation of those adapted subpopulations, and must also be
investigated/modeled as such (as inAssis et al., 2016b). Thus,
below the surface of a species with an apparent broad tolerance,
there may be more specialized sub-populations. However, the loss
of genetic variability is likely to act against local adaptation of
marginal populations (Pearson et al., 2009).

Genetic diversity is considered to be the key for future
adaptation to environmental change, and the long-term
survival of species (Bijlsma and Loeschcke, 2012). Genotypic
diversity, as one subset of genetic diversity in clonally growing
species, has been shown to increase productivity, and stress
resilience in seagrasses and macroalgae (Hughes and Stachowicz,
2004; Reusch et al., 2005; Ehlers et al., 2008). Conservation
management integrates the positive relation between genetic
diversity and adaptive potential by focusing conservation e�orts
on populations with low genetic diversity, and by considering
genetically diverse populations as source populations for
restoration. However, evolutionary success of> 1,000-years-old
clonal seagrass beds with extremely low genetic diversity (Reusch
et al., 1999) under substantial environmental change (Leipe et al.,
2008), and the successful establishment of a putatively small
North-European founder population ofLaminaria hyperborea
in Arctic Svalbard over the past few decades (Müller et al., 2009;
Assis et al., 2016b) challenge the hypothesis of a straightforward
relationship between genetic diversity and adaptive potential.
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A2 Epigenetic Potential to Adapt to
Climate Change
Epigenetic variation may contribute to rapid adaptation under
climate change (Zhang et al., 2013; Schlichting and Wund, 2014;
Prokopuk et al., 2015; Herman and Sultan, 2016; Rey et al.,
2016), as adaptive evolution via DNA based polymorphisms is
often considered too slow to keep pace with the increasing rate
of anthropogenic environmental change (Quintero and Wiens,
2013). Epigenetic variations are molecular modi�cations that
alter gene expression, but not the underlying DNA sequence,
and occur in the form of histone modi�cations, non-coding
RNAs, and DNA methylations (Bossdorf et al., 2008; Berger et al.,
2009). Recent studies in the young research �eld of Ecological
Epigenetics provide increasing evidence for the potential of
epigenetic variation to increase plasticity, facilitate speciation
and accelerate adaptation to new environments and stressful
conditions (Schrey et al., 2013; Bonasio, 2015; Verhoeven et al.,
2016; Kilvitis et al., 2017; Richards et al., 2017).

DNA-methylation variants (epialleles), epigenetic
modi�cations that involve the addition of a methyl-group
to cytosines (5-mC) in DNA sequence motifs, are currently the
most popular epigenetic modi�cation screened in evolutionary
and ecological contexts (Schrey et al., 2013; Verhoeven et al.,
2016; Richards et al., 2017). The possibility of methylation
changes to respond directly to environmental change, and to
trigger at least partly heritable changes in gene expression,
resembles Lamarck's theory of the inheritance of acquired
characteristics (Schmitz et al., 2013; Herman and Sultan, 2016)
and ultimately challenges the classical theory of evolutionary
adaptation.

The integration of epigenetic variation will certainly provide
a more comprehensive understanding of the ecologically and
evolutionary relevant variation of marine macrophytes, very
much in the light of the recently suggested extended evolutionary
synthesis (Pigliucci and Müller, 2010). This may enable for
a more holistic prediction of the susceptibility of populations
in terms of both genetic and epigenetic adaptive potential
and, thus, for a more holistic conservation management under
climate change. Due to their sessile nature, epigenetic variation
is expected to be particularly relevant for rapid adaptation of
marine macrophytes under climate change (Liu, 2013). Given
the ecological key role of habitat-forming seagrass meadows,
and macroalgal beds, epigenetic diversity in these systems is
likely to secure the function of the entire associated coastal
ecosystems. For example, DNA methylation enhanced the
productivity, competitive advantage, and pathogen resistance
of Arabidopsis thalianaplant populations (Latzel et al., 2013).
Moreover, since the epigenome plays an essential role in plant
development (Feng et al., 2010; Gutierrez-Marcos and Dickinson,
2012; Kawashima and Berger, 2014), its understanding is
crucial to optimize seedling and gametophyte propagation for
sustainable management, restoration, and cultivation of marine
macrophytes.

Epigenetics research is growing particularly strong in
terrestrial plants (Hirsch et al., 2013; Slotkin, 2016; Richards et al.,
2017). A case in point within the context of climate change, is

thermal tolerance that may be partly ascribed to CG methylation-
variants, which is supported by temperature-associated variation
in gene-body methylation in natural populations ofA. thaliana
(Dubin et al., 2015; Keller et al., 2016) and the valley oak
Quercus lobata(Gugger et al., 2016). Moreover, experimental
warming increased CHH methylation inA. thalianatransposable
elements (Dubin et al., 2015) and contributed to increased
methylation variation and adaptive plasticity in seedlings of the
alpine herb,Wahlenbergia ceracea(Nicotra et al., 2015). However,
these studies could not resolve to what extent the temperature
associated methylation variants provided an autonomous wayof
adaptation that cannot be simply explained by underlying genetic
variation (Foust et al., 2016; Herrera and Bazaga, 2016).

Epigenetic responses to climate change related stresses have
to date been understudied in marine organisms (reviewed
in Hofmann, 2017). One pioneering study on an Antarctic
polychaete showed that a net increase in DNA methylation
contributed to acclimation to warmer temperatures (� 1.5� vs.
C4� C), by regulating energy metabolism (Marsh and Pasqualone,
2014). In the European sea bass, a temperature increase of 2� C
was shown to change global DNA methylation in larval but not
in juvenile stages (Anastasiadi et al., 2017). In the scleractinian
coralPocillopora damicornis,DNA methylation levels increased
globally in response to increased pCO2 levels (from ambient pH
7.9–7.65 to low pH 7.6–7.35) (Putnam et al., 2016). Accordingly,
increasing DNA methylation likely contributed to phenotypic
acclimation of the coralStylophora pistillataunder long-term
exposure to reduced pH (Liew et al., 2017). These pioneering
studies suggest that DNA methylation increases plasticity and
adaptive potential in an ocean climate change context. While they
focused on marine metazoans, the �eld is wide open in marine
macrophytes.

Seagrasses likely show methylation in the same three sequence
contexts as terrestrial plants, including CHG, CHH, and CG
(Xie and Yu, 2015; Kilvitis et al., 2017; Richards et al., 2017).
So-called CpG islands represent clusters of CG sites in gene
promoter regions, and are commonly associated with gene
expression regulation (Bossdorf et al., 2008; Illingworth and
Bird, 2009; Zhang and Jeltsch, 2010). Transposable elements,
generally silenced by DNA methylation, can be activated by
stress-induced de-methylation processes and move to new
genomic locations (Zhang et al., 2006; Slotkin and Martienssen,
2007; Biémont, 2010; Seymour et al., 2014). Such “jumping
genes” can trigger changes in gene expression and genome
structure, and may facilitate rapid species adaptation to new
environmental conditions (González et al., 2010; Chénais et al.,
2012; Casacuberta and González, 2013; Schrader et al., 2014;
Stapley et al., 2015; Staton and Burke, 2015). Accordingly, a
burst of transposable elements in the genome of the seagrass
Zostera marinalikely provided novel promoters and splicing
sites, resulting in a gain of genes which may have facilitated
its adaptation to the marine environment (Olsen et al., 2016).
This suggests that DNA methylation changes and associated
re-activation of transposable elements can additionally play an
important role for rapid adaptation of seagrass under climate
change.
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Their partial clonal reproduction makes seagrass particularly
well suited for epigenetic studies, as it allows to investigate
epigenetic di�erentiation and change without the confounding
factor of genetic variation. Vegetative reproduction entirely
circumvents the meiotic resetting of epigenetic marks, thus
enhancing the transgenerational epigenetic memory of clonal
plants (Verhoeven and Preite, 2014; Latzel et al., 2016).
Geographic variation in the degree of clonal reproduction allows
to study the relevance of epigenetic variation under di�erent
reproduction modes. In a� 1,000-year old, predominantly clonal
seagrass (Z. marina) meadow in the Baltic sea (Reusch et al.,
1999), genetically identical shoots were recently shown to vary
epigenetically in DNA methylation (Jueterbock et al., 2017). This
variation may confer advantages that compensate evolutionary
costs of clonal reproduction (Douhovniko� and Dodd, 2014;
Latzel et al., 2016), and may partly explain the evolutionary
success of clonal seagrass meadows in the absence of genetic
variation.

Another route to achieving genetic variation, despite clonal
growth, may be somatic mutations, which have long been
dismissed as route for adaptive mutational change. However,they
do exist in long-lived seagrasses clones (Reusch and Boström,
2010) and may confer �tness advantages. Interestingly, in corals,
genetic heterogeneity has also been observed within clones
(Schweinsberg et al., 2015).

In contrast to seagrass DNA, it is still not clear which
species of multicellular brown algae use DNA methylation as
epigenetic mechanism. DNA methylation was found in the
genomes of green and red algae, as well as in single-celled
brown algae, and in diatoms (Maumus et al., 2011; Tirichine
and Bowler, 2011; Veluchamy et al., 2013). MSAP analysis
detected DNA methylation also in the kelpSaccharina japonica,
with higher methylation-levels in sporophytes (ca. 25%) as
compared with gametophytes (ca. 5%) (Qu et al., 2013). In
contrast, undetectable 5-mC and C5-methyltransferase genes in
the genome ofEctocarpus siliculosus(Cock et al., 2010) suggests
a lack of DNA methylation as a derived feature in the brown algal
order Ectocarpales. Sequence contexts and inheritance patterns
of DNA-methylation variants are entirely unknown in brown
macroalgae.

The �rst steps in marine macrophyte epigenetics can be taken
with existing high-throughput techniques (Laird, 2010; Zhang
and Jeltsch, 2010; Richards et al., 2017). Bisul�te sequencing is
considered the 'gold-standard' to characterize DNA-methylation
as the only method resolving nucleotide-level polymorphisms
(Schrey et al., 2013; Adusumalli et al., 2014). While whole
genome bisul�te sequencing is still expensive for large sample
sizes, reduced representation techniques, such as RRBS (Gu
et al., 2011), bsRADseq (Trucchi et al., 2016), and epiGBS
(van Gurp et al., 2016) allow for cost-e�ective population
epigenetic comparisons, partly without the need for a reference
genome. Alternatively, DNA-methylation can be characterized
with markers obtained via methylation-sensitive restriction
enzymes, such as EpiRAD (Schield et al., 2016) and MethylRAD
(Wang et al., 2015). While epigenetic population comparisons
and stress responses can be studied for any species with DNA-
methylation, an annotated reference genome is essential toinfer

the functional relevance of epigenetic di�erences and stress
responses.

As numerous temperate macrophytes are predicted to shift
poleward under projected climate change (see Biogeographic
history section or niche modeling section), rapid acclimation and
adaptation potential will become particularly relevant along their
equatorial and polar distribution edges. Initial research priorities
in marine macrophytes with respect to the relevance of epigenetic
variation under climate change, are: (1) to characterize the
relation between epigenetic and genetic variation and structure
along latitudinal temperature gradients, and (2) to identify
induced epigenetic changes in response to climate change related
stress, their e�ect on TE activity and gene expression, as well as
their heritability, and thus adaptive potential.

A3 Marine Macrophyte Holobionts and
Their Hologenomes
In addition to the above covered mechanisms for adaptation
and acclimation of marine macrophytes, we highlight in this
section that acclimation can also be mediated by changes in
the structure of associated microbial communities. These fast
dividing and evolving members of microbial communities can
change orders of magnitude faster than their host. Future
climate change conditions can shift host microbiome structure
(microbial composition and abundances) and function. To
what extend the host in�uences these shifts and whether these
shifts increase the hosts' �tness under changed conditionsis
uncertain, but if so acclimation could be microbiome-mediated
(Webster and Reusch, 2017). Over the last decade, it has
become increasingly clear that the �tness of macro-organisms
is at least partially determined by their associated microbiota,
the microbiome, consisting of archaea, bacteria, fungi, viruses,
protists, etc., all together with the host forming a holobiont.
In the marine realm, microbiomes have been studied especially
in corals and sponges (Bourne et al., 2016; Keller et al.,
2016; Hernandez-Agreda et al., 2017). Although macroalgae
and seagrasses form habitats worldwide known as hotspots of
biodiversity and production, we know little about the microbes
in these ecosystems (Bengtsson et al., 2012), but seeClasen
and Shurin (2015)for an ecosystem approach. The relative few
microbial studies performed have focused almost exclusively
on (epi-)bacterial communities associated to seagrasses and
macroalgae, neglecting most other microbes (Bengtsson et al.,
2012; Bockelmann et al., 2012, 2013; Michelou et al., 2013; Brakel
et al., 2014, 2017; Cúcio et al., 2016; Singh and Reddy, 2016).
On top of that, particularly functional interactions between
marine macrophytes and their microbiomes are poorly known.
Molecular ecology of seagrass and macroalgae microbiomes is
a young research �eld. With the progress in high throughput
sequencing, it has the potential to radically in�uence our
understanding of seagrass and macroalgae ecology.

Marine macrophytes associate with bacterial communities
that di�er strongly from those of their surrounding seawater,
sediment or substrate (Bengtsson and Øvreås, 2010; Bengtsson
et al., 2010; Aires et al., 2016; Cúcio et al., 2016). However,
bacterial communities associated to marine macrophytes arenot
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�xed and can change temporally and spatially across seasons,
lifespan, life stages and tissue types by biotic and abiotic factors
(Staufenberger et al., 2008; Aires et al., 2016; Mancuso et al.,
2016). While bacterial communities of some macroalgae appear
species- or even lineage-speci�c (Aires et al., 2016; Vieira et al.,
2016), this is yet unclear for kelps and seagrasses due to the low
number of studies with inter-species comparisons. Recent results
(Cúcio et al., 2016) suggest that sympatric seagrass species (in this
caseZ. marina, Z. noltei, and Cymodocea nodosa) might share
largely the same rhizosphere community. Similar results were
very recently obtained by (Crump et al., 2018) for a comparison
between sympatricZ. marina and Z. japonica in Oregon,
USA using metatranscriptomics and 16S amplicon sequencing.
The co-occuring Halophila ovalis, Halodule uninervis,and
Cymodocea serrulataeach showed unique root microbiomes,
as light was experimentally reduced their root exudation was
altered which reduced the abundance of microorganisms that
are potentially bene�cial to the seagrasses, but not the predicted
function (Martin et al., 2018).

Only few macroalgae have been the subject of microbiome
studies. OnL. hyperborea, one of Europe's most important
marine forest former, epibacterial diversity increases with the
age/successive colonization of the kelp surface (Bengtsson
et al., 2012). Bacterial density and community composition
follow the kelp seasonal growth cycle. As most of the bio�lm
seems to consist of bacteria utilizing carbon produced by
the host (Bengtsson and Øvreås, 2010), microbiome dynamics
are probably strongly linked to seasonal changes in the
kelp metabolome and seawater temperature (Bengtsson et al.,
2010). A recent study using shotgun metagenomics suggests a
complementary and mutualistic relationship between the female
gametophyte of the kelpSaccharina japonicaand its microbiome,
in which bacteria seem to bene�t from kelp polysaccharides
and the kelp pro�ts from enhanced growth and nutrient
uptake by bacterial bioactive compounds such as vitamins and
hormones (Ji et al., 2017). Gene functions within this kelp epi-
microbiome were mainly symbiosis-associated, indicatingthat
selective pressures shape these microbiomes to sustain a mutual
bene�t for both kelp and bacteria (Ji et al., 2017).

Macroalgae associated bacteria can have a wide range of
bene�cial e�ects for their host. Already at a very early stage
of development, macroalgae can depend on associated bacteria.
Green algae of the genusUlva, for example, depend on bacterial
compounds for induction of cell divisions, di�erentiation, wall
formation, and hence a normal morphogenesis (Provasoli and
Pintner, 1980; Matsuo et al., 2003; Wichard, 2015; Grueneberg
et al., 2016). We are not aware of similar �ndings reported for
kelp or seagrasses. Kelp associated bacteria can have growth-
promoting e�ects, like noted forL. japonica(Dimitrieva et al.,
2006) and provide nutrients. In more than half of the algal
kingdom bacteria provide vitamins to their hosts (Croft et al.,
2005). Azotobacterbacteria associated with the green alga
Codium fragile,for example, were shown to be involved in
nitrogen �xation, and are thought to supply the alga with
nitrogen compounds (Head, 1975). Diazotrophic heterotrophic
bacteria in seagrasses rhizosphere are involved in nitrogen
�xation ( Welsh, 2000). Macrophyte associated bacteria are also

involved in the production of biologically active and defensive
compounds, protecting the host from pathogens, herbivores,
fouling, and chemical intrusion (Burgess et al., 1999; Rao et al.,
2007; Penesyan et al., 2009; Egan et al., 2014; Saha et al., 2014).
Bacterial antimicrobial metabolites negatively a�ect fouling
organisms and control microbial communities on macroalgae
surfaces (Egan et al., 2000; Joint et al., 2007; Romero et al., 2011).
In L. saccharina,half of the bacterial strains isolated byWiese
et al. (2009)demonstrated antimicrobial activity, inhibiting
the growth of at least one Gram-negative and Gram-positive
bacterium.

In the light of rising seawater temperatures and consequent
stress conditions for seagrasses and macroalgae resultingin
northward shifts of their species distribution, it is important to
assess the role associated microbiomes can perform for their
macrophytic host. Increased physical disturbances and stress,
resulting from changing environmental conditions, are known to
a�ect the macroalgae-associated microbial composition (directly
or via its physiological responses) and cause its structural,
functional or behavioral changes (Goecke et al., 2010; Egan
et al., 2013; Hollants et al., 2013; Dittami et al., 2016).
Microorganisms seem to be able to play a pivoting role in
enabling macrophytes to expand their physiological capacities,
broadening their environmental tolerance (Goecke et al., 2010;
Egan et al., 2013; Hollants et al., 2013). In a species of
the genusEctocarpusfor example, speci�c bacteria are linked
to low salinity tolerance inEctocarpuscultures facilitating
acclimation to environmental change (Dittami et al., 2016).
To what extend the marine macrophyte microbiome could be
involved in thermal acclimation and adaptation is not known.
In terrestrial plants, fungal symbionts increased plant biomass
under various global change scenarios, including warming
(Kivlin et al., 2013). In their review, the authors conclude
that it is critical to include plant-fungal symbioses in the
prediction of ecosystem response to global change (Kivlin
et al., 2013). In some cases, however thermal tolerance involves
more partners.Marquez et al. (2007)showed elegantly that
a virus of a fungal endophyte of a tropical grass confers
heat tolerance to both organisms enabling them to grow at
high soil temperatures. Experimental warming ofCymodocea
nodosa and Labyrinthula spp. that cause seagrass wasting
disease, showed that the seagrass was not more susceptible to
infection at higher temperature. On the contrary, lesion size
decreased with warming (Olsen et al., 2014). Based on these
cases it seems likely that also the macrophyte microbiome
is linked to environmental tolerance, including warming. The
only study that combined elevated temperatures and ocean
acidi�cation showed that elevated temperatures alone drives
dysbiosis in Macrocystis pyriferaunder which kelp growth
was also negatively a�ected (Minich et al., 2017). However,
acidi�cation counteracted the elevated temperature e�ects
resulting in positive kelp growth and a commensal microbial
community that increased mucus production (Minich et al.,
2017). Although it is not clear whether the microbiome changes
in reaction to a change in the health of the host orvice versa
(probably a tight and complex interaction of the two), it is
increasingly clear that the interaction of global change factors

Frontiers in Marine Science | www.frontiersin.org 7 June 2018 | Volume 5 | Article 190

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/marine-science#articles


Duarte et al. Shifts in Seagrasses and Kelps

on marine macrophytes and their microbiomes should be more
investigated.

The association with microorganisms may allow marine
macrophytes to acclimate/adapt to warming conditions by
changing the composition of microbiota, a process that can
be much faster than by genomic evolution. Therefore, the
diverse microbiota can possibly assist the macrophyte holobionts
functioning and survival under elevated temperatures. As
the combination of host and microbiota genomes, i.e., the
hologenome, might in some cases act as a unit of natural
selection, the association with microbes might play a crucial
role in the acclimation of marine macrophytes to warming. At
this moment, few studies address this issue in seagrasses and
macroalgae. However some evidences are already documented
in �lamentous algae (Dittami et al., 2016). Holobiont evolution
requires strict partner �delity and will only work under vertical
transmission �delity and can be evolutionary unstable due
to microbial cheaters, or shifting cost:bene�t ratios (Douglas
and Werren, 2016). However, the persistence of co-introduced
symbiont bacteria many decades after macroalgae invaded in
the Mediterranean from Australia, and their correlation with
the host ecology (Aires et al., 2013; Arnaud-Haond et al., 2017),
suggests a tight inter-dependence in at least some invasive
macroalgae lineages. Notwithstanding, positive functional roles
of the host-associated microbiome are also possible if the
microbiome and its host do not evolve as a strict unit. Thus, we
propose that concepts of climate change e�ects on macroalgae
and seagrasses require the inclusion of microbiome-mediated
acclimation. In the coral world, the study of �tness e�ects of
associated microbes is far more developed than in seagrasses
and macroalgae. As some corals are functionally plants (i.e.,
in corals with photosynthetic symbionts photosynthesis mostly
exceeds heterotrophic nutrition) it may be useful to actively
search parallels among both functional groups of habitat forming
species. For example, both somatic mutations and epigenetic
changes owing to environmental conditions have recently been
described, making corals a poster child for the adaptation of the
holobiont (Webster and Reusch, 2017).

B FORMS AND EFFECTS OF PHENOTYPIC
VARIATION

B1 Physiological Constrains Promoted by
Climate Change
The direct link between epigenetic mechanisms and gene
expression (Bossdorf et al., 2008; Berger et al., 2009), and the
proven e�ect of the root microbiome on the leaf metabolome
in a terrestrial plant (Badri et al., 2013), demonstrate the
direct relation between epigenetic or microbome variation and
physiology. Despite the lack of research in marine macrophytes,
it can be expected that rapid shifts in epigenetic marks or in the
microbiome composition may contribute to acclimatization to
climate-change related stressors.

Photosynthesis is one of the most essential physiological
processes that will be a�ected by increasing ocean temperatures.
From a physical point of view, increasing water temperatures

reduce oxygen solubility and CO2 availability (Beardall et al.,
1998). Photosynthetic e�ciencies are severely impaired by
low light and/or high temperature conditions (York et al.,
2013). Kinetically, photosynthesis increases with increasing
temperatures until an optimum temperature point or range of a
few degrees, beyond which it declines rapidly (Davison, 1991).
These physiological imbalances increase respiratory activity, and
shift marine forests and seagrass beds from carbon sinks to
carbon sources (York et al., 2013). Most photosynthetic changes
are due to damage at the chloroplast level (Repolho et al., 2017).
Thermal-stress induced structural alterations at the photosystem
II (PS II) reaction centers can lead to photoinhibition over several
days (Campbell et al., 2006), so that the a�ected macrophytes
depend on the respiration of their storage compounds. Moreover,
thermal stresses have a very typical signature at the PS II level
(Srivastava et al., 1997; Strasser et al., 2000). Thermal stress
impairs typically the donor side of the PS II reaction centers,
which corresponds to the location of oxygen evolving complexes
(OEC) (Strasser et al., 2000; Duarte et al., 2015a,b, 2016). This
imposes serious physiological constrains to the chloroplastidial
electron transport and energy production. Therefore, only
species with a high degree of physiological plasticity can cope
with abrupt changes, such as heat waves (Duarte et al., 2015a,b,
2016). From an ecological point of view, rising temperatures
a�ect the role of kelp forests and seagrass beds as primary oxygen
producers and, thus, all the heterotrophic food chain.Zhang
et al. (2017)suggest four possible mechanisms in macrophytes
to balance the redox state of electron transport and regulate
the energy distribution between the two photosystems, thereby
protecting the photosynthetic tissues from thermal stress: (1) an
enhancement in the active PS II reaction centers e�ciency; (2)
an increase in the activity of the PS II electron acceptor side;
(3) an enhancement in the cyclic electron �ow transport around
photosystem (PS I), allowing this photosystem to absorb the
excessive electron �ow; (4) alternation between PS II and PSI.

The accumulation of reducing power inside the chloroplast
(Duarte et al., 2015a) increases non-photochemical quenching
and decreases the photochemical quenching in order to dissipate
excessive energy (Repolho et al., 2017). This can be performed
by quantum dissipation or by enzymatic means, through the
de-epoxidation of the xanthophylls (Figure 2, DES). Due to the
characteristics of any enzymatic reaction, also this enzymatic
dissipation mechanisms can be impaired outside the thermal
optimum of each species (Campbell et al., 2006; Repolho
et al., 2017). Additionally, ocean warming can lower chlorophyll
contents and, thus, lead to kelp bleaching and seagrass browning
(Staehr and Wernberg, 2009; Figure 2).

Under stress, macrophytes can recycle the photosynthetic
substrates using storage ATP and carbohydrates. Respirationis
very sensitive to ocean warming. InEcklonia radiata, respiration
is more a�ected than photosynthesis, implying that increasing
temperatures raise respiratory energy demands faster than the
photosynthetic regeneration of new ATP and carbohydrates
(Staehr and Wernberg, 2009). To prevent metabolic arrest
under such conditions, the most direct means to maintain a
positive carbon balance is to increase the light demands and
the light harvesting capacity of the photosystems. In seagrasses,
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FIGURE 2 | Pigment pro�le in the dwarf eelgrass (Zostera noltii) under control and ocean warming conditions. The decrease in chlorophylls and increase in carotenoid
content as well as chlorophyll degradation products are symptoms of thermal stress, concomitant with the decrease in the chl a/chl b ratio, a well-known indicator of
stress (adapted fromRepolho et al., 2017).

respiration mechanisms acquire a reinforced importance, due
to the below-ground respiration of their root system. Leaf-
based thermal optima may not represent thermal optima of
the whole individual, since seagrasses have non-photosynthetic
compartments (rhizome and roots), accounting for the majority
of the total biomass (Collier et al., 2017). While respiratory
activity under thermal stress can already surpass the plant
photosynthetic capacity, this non-photosynthetic compartment
imposes an additional respiratory burden (Fourqurean and
Zieman, 1991).

The balance between photosynthesis and respiration will
further determine whether macrophytes can extend poleward
into regions that are predicted to become ice-free and thermally
suitable. Survival of the light season in summer may depend

on the ability for increased light-respiration under constant
light conditions. In contrast, survival of the dark winter season
depends on the ability to store enough photosynthetates during
the summer months to compensate for constant respiration in
month-long darkness (Berge et al., 2015), especially when energy
metabolism increases with rising temperatures (McMinn and
Martin, 2013).

Low oxygenation levels imposed by global warming alter
the sediment microbial community and biogeochemistry in
sediments, favoring anaerobic organic carbon oxidation (Holmer
and Bondgaard, 2001). Although this metabolic shift allows the
system to recycle organic carbon, it comes at a high cost by
generating high amounts of sul�de that is toxic for seagrasses
(Koch and Erskine, 2001). Seagrasses are able to tolerate sul�de
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intrusion by: (i) reoxidized sul�de by oxygen present in the
aerenchyma (Pedersen et al., 2004) or in the rhizosphere (van
der Heide et al., 2012) or (ii) organic sulfur conversion into
thiols (Holmer and Hasler-Sheetal, 2014). If both mechanisms
fail and sul�de intrudes into active tissues such as leaves and
meristems, seagrasses su�er in performance (Garcias-Bonet et al.,
2008; Pulido and Borum, 2010). Under increased anoxia, the
already low levels of oxygen in the �ne-grained soft sediments
that seagrasses grow in, can increase sul�de production beyond
optimal growth thresholds (Holmer and Bondgaard, 2001).
Additionally, lower O2 availabilities can impair the biological
sul�de reoxidation (Pedersen et al., 2004; van der Heide et al.,
2012), leading to increased sul�de accumulation. Moreover,
sul�de impairs the sucrose transport from leaves, where it is
photosynthetically generated, to the other non-photosynthetic
organs where it is stored or consumed for active growing (Holmer
and Bondgaard, 2001). If the plant cannot translocate sucrose
e�ciently to feed the underground organs, it will consume the
storage sugars (underground starch) to maintain root growth
and nutrient acquisition metabolisms. This re-mobilization of
underground starch shifts the plant metabolism from an energy
producer to an active consumer and, thus, impairs growth and
primary productivity (Holmer and Bondgaard, 2001; Koch and
Erskine, 2001; Holmer and Hasler-Sheetal, 2014).

Other climate-change associated stressors, such as hurricanes
and excessive precipitation, can be equally disturbing for
macrophytes. One of the direct consequences of these extreme
events is the alteration of sedimentary budgets in transitional
and coastal waters. During �ood events the export of sediment
from the river catchments to estuarine basins is substantially
increased (Duarte and Caçador, 2012). Although both seagrasses
and kelps depend on the sediment budget for their anchorage,
they experience increased turbidity as additional stress asit
reduces light availability (De Boer, 2007; Saunders et al., 2017).
Light availability is a key factor that contributes to about75%
of the variation in the distribution of seagrass meadows and
kelp forests (De Boer, 2007). However, seagrasses and kelps
also in�uence sedimentation by trapping sediments from the
water column, and thus actively decrease turbidity (De Boer,
2007). The sensible equilibrium between unproblematic and
problematic levels of water-borne sediments can be disturbed by
other climatic variables that act as multiple, synergistic stressors,
which trigger more extreme ecological responses, particularly in
ecosystems where foundation species exist near upper thermal
tolerance limits (Fraser et al., 2014). While acidi�cation can to
some extent alleviate thermal stress due to higher CO2 availability
for photosynthesis (Repolho et al., 2017), exposure to multiple
stresses may more often increase mortality and lead to carbon
exportation.

Seagrass meadows and kelp forests can support high carbon
uptake, depositing and preserving it as blue carbon over
millennia in surrounding sediments (Duarte et al., 2013). The
accelerated decline of macrophytes represents a loss of carbon
sink capacity, and an increased risk for sedimentary carbon
deposits to be lost through erosive and resuspension processes
(Duarte et al., 2013). The loss of carbon stocks is not limited
to carbon buried by erosion, but includes also the loss of

carbon sink capacity and a potential functional shift from carbon
sinks to carbon sources via the re-mobilization of carbon stocks
accumulated over millennia (Duarte et al., 2013).

Among other energy storage molecules, fatty acids play
an important role not only for the physiology of the plant
itself, but also in terms of macrophyte-based trophic chains,
which are either directly based on macroalgae and seagrasses
as food-source or on detritus exportation (Duarte et al., 2017b;
Repolho et al., 2017). While animals can produce metabolically
unsaturated and monosaturated fatty acids, they are able to
synthesize polyunsaturated fatty acids (PUFAs), like linoleic acid
(C18:2, n-6) anda-linolenic acid (C18:3, n-3) (van Ginneken
et al., 2011). These are precursors of long chain PUFAs (LC-
PUFAs) such as arachidonic acid (C20:4, n-6), eicosapentaenoic
acid (EPA, C20:5, n-3) and docosahexaenoic acid (DHA, C22:6,
n-3). Ocean warming is expected to have strong directional
e�ects on the quantity and quality of fatty acids in marine
macrophytes (Hixson and Arts, 2016), which will lead to
modi�cations of the structure of their cellular membranes
(Winter and Dzwolak, 2005), a mechanism of acclimatization
known as homeoviscous adaptation (Sinensky, 1974). This
adaptation involves remodeling of membrane lipids via the
modi�cation of fatty acid chain length and saturation, allowing
to maintain a desired level of �uidity in cell membranes
(Sinensky, 1974; Guschina and Harwood, 2006; Matos et al.,
2007; Feijão et al., in press), and counteracting the increased
�uidity promoted by higher temperatures. The decrease in
the number of double bonds in PUFA and the increase of
saturated fatty acids (SFA), enhances the ability of fatty acids
to maintain structural rigidity of cell membranes in a less
ordered environment (Fuschino et al., 2011). Global warming is
expected to reduce the global production of PUFAs by marine
macrophytes (Hixson and Arts, 2016). These biochemical and
physiological cascades are predicted to a�ect also terrestrial
animals because of the �ux of aquatic biomass, containing n-
3 LC-PUFA, which normally passes from aquatic to terrestrial
ecosystems (Gladyshev et al., 2013). Marine ecosystems provide
essential LC-PUFA for many omnivorous terrestrial animals,
including humans. This transport of essential LC-PUFA from
sea to land occurs through the trophic chain, as most terrestrial
consumers are directly or indirectly fed by ocean products
(Gladyshev et al., 2013). PUFAs were shown to enhance growth
rates and reproductive capacities of aquatic animals (Von elert,
2004), as well as to be of great importance to the neural/cognitive,
cardiovascular, and visual health of terrestrial vertebrates (Calder,
2015). Any stress like warming, that a�ects the fatty acid
composition of membrane lipids, has inevitable impacts on the
photosynthetic and respiratory pathways that are already under
stress due to perturbations at the energy transduction level
(Matos et al., 2007; Gameiro et al., 2016; Duarte et al., 2017a).

B2 Propagation Success: Climate Change
Impacts on Early Life Stages
In plants, epigenome and microbiome shifts play an essential
role during the development of early life stages (Feng et al.,
2010; Chaparro et al., 2014), the life stages that are generally
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most vulnerable to ocean warming in marine macrophytes (e.g.,
Brawley and Johnson, 1991; Schiel and Foster, 2006). Thus,
propagation success of macroalgae and seagrass under climate
change can be expected to at least partly depend on their
epigenetic makeup or their microbiome composition.

Macroalgae, usually perceived as large canopy-forming beds
or forests, all have microscopic phases that are generally
highly susceptible to environmental stress (Roleda et al., 2007).
The unicellular life stages of macroalgae, either spores or
gametes, are released into the water column. These settle on
the rocky coastline and give rise to the next macroscopic
generation. Enormous numbers of these microscopic propagules
are produced by macroalgae but only a small fraction survive
to maturity. Physical stressors such as visible light, ultraviolet
radiation (UVR), and temperature, account for much of the
mortality among spores, embryos and juveniles (Schiel and
Foster, 2006).

Macroalgae with complex life cycles have unicellular and
microscopic cryptic stages that serve as seed banks for the
next macroscopic generation. For example, the spores of some
large macroalgae, such as kelps (i.e.,Laminariales), germinate
to produce a microscopic phase—a free-living generation with
half the ploidy level of the macroscopic phase. Kelp sporophytes
release spores that settle and germinate into free-living, haploid
male and female microscopic �laments that grow on the sea�oor.
The gametophytes release sperm to fertilize eggs to form a
zygote which develops into an embryonic sporophyte that
matures into the morphologically complex macroscopic phase.
Kelps are thus an example of a “heteromorphic alternation of
generations” whereby two free-living phases are morphologically
and ecologically distinct.

Stress physiological studies comparing the relative
susceptibility of di�erent life history stages showed that spores
and gametes of brown, red and green macroalgae, are more
susceptible to UVR compared to their corresponding juvenile
and adult phases (Roleda et al., 2004, 2007, 2009). However, it
seems that the microscopic kelp gametophytes are insensitive
to anthropogenic CO2 induced ocean acidi�cation (Roleda
et al., 2012; Leal et al., 2017b), and relatively tolerant to ocean
warming (Leal et al., 2017a). Examples of thermal tolerances
are speci�c to species and even to populations, suggesting local
adaptation.

Arctic kelps' spore photosynthesis and gametophyte growth
rate have a high temperature a�nity between 12 and 13� C
(Roleda, 2009, 2016); this temperature is 7–8� C higher than
the in situ summer water temperature (5–6� C) in Kongsfjorden
(Svalbard) (Hanelt et al., 2001; Svendsen et al., 2002). Moreover,
the germination rate was also enhanced when summer mean
temperature was increased by 4–5� C (Zacher et al., 2016). Among
cold temperate populations, photosynthesis ofLaminaria digitata
gametophytes from Rosco� (France) was also not compromised
when average summer temperature (17� C) was increased by
3� C (Delebecq et al., 2016). Among kelps in the Paci�c, spore
germination ofM. pyriferafrom New Zealand was not a�ected
while germling growth rate was enhanced by a 4� C increase in
summer water temperature (Leal et al., 2017a). On the other
hand, spore germination of the same species from California

signi�cantly decreased with a 5� C increase in temperature
(Gaitán-Espitia et al., 2014).

Gametogenesis and fertilization are particularly sensitiveto
rising temperatures (Hooper, 1984; tom Dieck, 1989; Roleda,
2016). For example, the growth rate ofLaminaria digitata
gametophytes was highest at 10–18� C, while gametogenesis
required lower temperatures (i.e., 10–15� C), and fertilization and
recruitment of sporophytes was optimal at only 5� C (Martins
et al., 2017).

Considering the worst-case scenario of a temperature increase
by 4� C until 2100 (Reay et al., 2007), and predictions of more
extreme warming in some areas in the northern hemisphere,
photosynthesis and growth of di�erent life history stages, e.g.,
the microscopic spores and gametophytes, and the canopy-
forming sporophytes, are unlikely to be negatively compromised.
However, ocean warming can negatively a�ect kelp's asexual
(sporogenesis) and sexual (gametogenesis) reproduction (Viejo
et al., 2011; Bartsch et al., 2013; Roleda, 2016; Martins et al.,
2017). The impacts of climate change on the reproduction (both
sporogenesis and gametogenesis) and embryogenesis among
macroalgae with complex life cycles require further studies.

Cold temperatures currently prevent the dominant seagrass
in the northern hemisphere,Zostera marina,to extend its range
further poleward into Arctic regions, like Svalbard and northern
Greenland. While this plant can �ower at temperatures as cold
as 0.5–3� C, the development of mature fruits requires 2 months
at 14–15� C (Silberhorn et al., 1983). In contrast, extremely
warm temperatures, like other stresses, commonly induce
�owering in plants (Wada and Takeno, 2010). Accordingly,
the Mediterranean seagrassPosidonia oceanicaresponded to an
experimental heat wave (27� C for 6 weeks) with an up to 47%
increase in �owering-rate (Ruiz et al., in press). While sexual
reproduction certainly provides the potential to escape from too
warm regions, and to increase genetic and phenotypic diversity
in this highly clonal plant, this potential can only be realized if
the produced early life stages can successfully establish a new
generation.

Early life stages of seagrass are comprised by seeds and
seedlings, which can be de�ned as the single shoot germinated
from seed prior to initiation of clonal growth. Evidence for
temperature e�ects on seagrass germination is equivocal, as
some authors report enhanced germination rates with increasing
temperature (e.g.,Hootsmans et al., 1987; Jinhua et al., 2011;
Kaldy et al., 2015), whereas others report no e�ects of
temperature within the ranges explored (e.g.,Phillips et al., 1983;
Loques et al., 1990), even if some of these contrasting results
refer to germination experiments conducted with the same
species. These contrasting results re�ect either local adaptation to
particular spring regimes or the fact that the response of seagrass
seed germination to temperature is likely to be best represented
by a Gaussian distribution, with minimal and maximum thermal
tolerances and an optimum temperature for germination.Abe
et al. (2009)determined that optimal water temperature for
seed germination of a JapaneseZ. marina stand was in the
range from 10 to 15� C, with optimal temperature for seedling
growth ranging from 20 to 25� C; and seedling mortality observed
at water temperatures exceeding 28� C. Based on these results,
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they predicted thatZ. marina stands would be lost from areas
exceeding maximum temperatures of 28� C (Abe et al., 2009),
thereby leading to the expectation of losses with warming in the
lower latitudinal limit of the species in Japan (Abe et al., 2009).
Seed abortion following marine heat waves has been documented
in Posidoniaspecies, both in the Mediterranean (P. oceanica,
Balestri and Cinelli, 2003) and Australia (P. australia, Shark Bay,
Thomson et al., 2015).

Seedling performance is also negatively a�ected by extreme
temperatures expected with further warming. Experimental
simulated heat waves and warming at projected levels in the
NW Mediterranean led to reduced growth, increased mortality,
leaf necrosis, and respiration inPosidonia oceanicaseedlings
(Herman and Sultan, 2016; Guerrero-Meseguer et al., 2017), and
also increased their susceptibility to consumption by grazers
(Hernán et al., 2016). Likewise, experiments withZ. japonica
seedlings showed a thermal limit of 29� C above which seedlings
die (Abe et al., 2009), similar to the thermal limit forP. oceanica
seedlings. Seagrass seedling mortality at temperatures around
30� C are likely to constrain the extant distribution of seagrasses
(e.g.,Abe et al., 2009), and their capacity to accommodate to
future, warmer regimes.

Elevated CO2 is believed to positively in�uence seagrasses,
which are often CO2 limited (Koch et al., 2013). This also applies
to seedlings, asP. oceanicaseedlings grown under elevated
CO2 improved photosynthetic performance, and developed
larger carbon storage in belowground tissues, having thus more
resources to tolerate and recover from stressors. However,
elevated CO2 also favors �lamentous algae, which can overgrow
seagrass seedlings, leading to reduced growth (Burnell et al.,
2014). Moreover, lower N content and increased sucrose levels
in seedlings growing under high pCO2 lead to higher herbivory
pressure (Hernán et al., 2016).

B3 Biotic Interactions—Increased Grazing
Pressure
Indirect e�ects of rising temperatures are often mediated
by biotic interactions. For macrophytes, increased grazing
pressure is likely the most important indirect e�ect of the
tropicalization of temperate seas as herbivores are progressively
moving poleward (Vergés et al., 2014; Hyndes et al., 2016).
Herbivore-induced shifts from productive kelp forests to
turf substrate or barren grounds are already documented
in the Mediterranean, Japan, and Australia (Vergés et al.,
2014). For example, in a tropical-temperate transition zone
in Eastern Australia, tropical herbivorous �shes contributed
to the deforestation of kelp communities within ten years
as sea surface temperature increased by 0.6� C (Vergés et al.,
2016).

With rising temperatures, detrital-based food webs, supported
by temperate seagrass ecosystems, are likely to turn into ones that
are based on the direct consumption of seagrass (Lal et al., 2010;
Kelkar et al., 2013; Hyndes et al., 2016). While few temperate
species use seagrass as primary food source (Heck and Valentine,
2006), poleward-extending herbivorous �shes and macrograzers
such as dugongs and marine turtles will likely have highest impact

on temperate seagrass meadows in the winter months, when low
light levels limit growth (Hyndes et al., 2016).

In addition to the northward shift of tropical herbivores,
temperate calci�ed herbivores are becoming more abundant with
rising temperatures (Harley et al., 2012), and further increase
grazing pressure on temperate macroalgae. For example, the loss
in cover of the fucoid macroalgaAscophyllum nodosumin regions
of Northern Ireland was accompanied by increases in limpet
densities due to a series of mild winters since the 1980s (Davies
et al., 2007). While even small herbivores, such as limpets, can
graze down matureA. nodosummonocultures (Lorenzen, 2007),
the species that are most susceptible to increased grazing are
those with small generation times, as herbivores can prevent
the nearly annual germling recruitment that these macroalgae
depend on (Jenkins et al., 2005; Coleman et al., 2006; Hawkins
et al., 2008; Bennett et al., 2015; Franco et al., 2015). However,
how the contrasting e�ect of rising temperatures and ocean
acidi�cation on calci�ed herbivores will a�ect canopy-forming
macroalgae, is yet poorly understood (reviewed inHarley et al.,
2012).

While the impact of increased herbivory on temperate
macrophytes will certainly be strong, it may be mitigated by
epigenetic or microbiome shifts that a�ect defense mechanisms.
Initial studies in terrestrial plants demonstrate that epigenetic
variation can in�uence plant-herbivore interactions across
generations (Herrera and Bazaga, 2011; Holeski et al., 2012;
Latzel et al., 2012; Rasmann et al., 2012). Moreover, bene�cial
microbes have been shown to enhance defense against insect
herbivores (Pangesti et al., 2013; Pieterse et al., 2014). In marine
macrophytes, the potential for non-genetic rapid adaptation to
increased herbivory is entirely unknown. Initial studies may
focus on the correlation between epigenetic or microbiome
variation and variation in compensatory growth (Vergés et al.,
2008) or in defense chemicals, such as phlorotannins and
phenolic compounds (Hay and Fenical, 1988; Arnold and Targett,
2002; Vergés et al., 2007).

C INTEGRATIVE
MODELING–UNDERSTANDING THE PAST
AND MODELING THE FUTURE

These plastic and evolutionary dimensions of seagrass and
macroalgae performance under climate change are di�cult to
synthesize into a unifying concept/vision. The development
of modeling tools able to incorporate relevant processes and
parameters appears as a powerful tool to provide a holistic
scenario and, thus, project climate change e�ects accounting
for the diverse dimensions involved in seagrass and macroalgae
production.

Nonetheless, numerical models of marine primary producers
are still scarce in the scienti�c literature. Some of the
�rst published models targeted phytoplankton productivity
(Falkowski and Wirick, 1981); during the 90's with the
global onset of coastal eutrophication, models of opportunistic
macroalgal species growth (mostlyUlva spp.) became rather
popular (Bendoricchio et al., 1993; Fong et al., 1997; Solidoro
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et al., 1997; Martins and Marques, 2002). More recently, seagrass
and kelp models are getting prominent due to the growing
recognition of their important ecosystem services and the
increasing need to preserve them (Elkalay et al., 2003; Plus et al.,
2003; Koch et al., 2007; Ortiz, 2008; Downie et al., 2013; Young
et al., 2015; Franco et al., 2018). Thus, from the analysis of
published literature, it is possible to identify two fundamentally
di�erent but complementary modeling approaches that have
been applied to study primary producers: species distribution
models (SDMs) and productivity models.

Species distribution models, also called “Ecological Niche
Models” (ENMs) (Guisan and Zimmermann, 2000; Kelly et al.,
2001; Murphy and Lovett-Doust, 2007; Elith and Leathwick,
2009; Kearney et al., 2009), have been applied to seagrasses and
macroalgae, aiming to predict species distribution and habitat
suitability (Downie et al., 2013; Jueterbock et al., 2013; Assis
et al., 2016b, 2017a,b; Neiva et al., 2016) or to unveil past species
range shifts (Assis et al., 2016a,b; Neiva et al., 2016; Chefaoui
and Serrão, 2017; Chefaoui et al., 2017). In general, results
from SDM's of temperate marine macroalgae predict that rising
temperatures will cause massive die-o�s along warm-temperate
distribution limits and disclose new thermally suitable habitat in
the Arctic (Müller et al., 2009; Jueterbock et al., 2013; Assis et al.,
2017a). Besides projecting the distribution of species abundance,
SDM's can also identify the main drivers associated with the
presence/absence of seagrasses and macroalgae across coastal
and marine areas (Chefaoui and Serrão, 2017), genetic diversity
hotspots of long-term persistence, adaptive potential for several
species (Bellard et al., 2012; Beaumont et al., 2016; Chefaoui
and Serrão, 2017; Chefaoui et al., 2017), estimate seagrass
colonization area or the probability of successful restoration
(Kelly et al., 2001).

For marine macrophytes, both kelp and seagrasses,
temperature was generally identi�ed as the most important
range-limiting factor and, consequently, ocean warming as
the most severe threat among other global climate drivers
(Downie et al., 2013; Jueterbock et al., 2013; Assis et al., 2016b,
2017a,b; Neiva et al., 2016; Chefaoui et al., 2017). Nevertheless,
macrophytes can be exposed to extreme temperatures along
their distribution ranges, especially in the intertidal zone where
desiccation can prevent cellular stress and allow persistence
under temperatures beyond their thermal tolerances (Mota et al.,
2015). Thus, site-speci�c and species-speci�c relevant processes
must be accounted for in order to build accurate SDM's of marine
macrophytes and macroalgae (Assis et al., 2016b; Neiva et al.,
2016). These models can give a �rst rough approximation of
future distributions but they often do not take biological aspects
or the eco-evolutionary responding potential of the focal species
into account (but seeAssis et al., 2016b).

Productivity models aim at describing the growth of algae
and plants in a speci�c system, either through static (Eilers
and Peeters, 1988) or dynamic (time-dependent) (Duarte and
Ferreira, 1997) approaches, whereby the underlying mathematics
is either empirical (Adams et al., 2017) or mechanistic (for a
review seeMacedo and Duarte, 2006). A major complication
of the mechanistic approach is that its implementation requires
extensive knowledge on the physiology and life history of the

modeled species. Indeed, these models can even account for
di�erent size-classes or population groups (Duarte and Ferreira,
1997; Martins et al., 2007), which will add realism to the
model, though it can also increase model instability due to the
high number of variables (Duarte and Ferreira, 1997). Dealing
with this requires application of the parsimony rule to model
complexity vs. data quality throughout the entire modeling
process (Jørgensen, 1994).

Productivity models have provided sensible descriptions
of standing stock variations of marine primary producers,
assessed the sensitivity of parameters and projected variations
for scenarios of climatic changes and other stressors (Duarte and
Ferreira, 1997; Fong et al., 1997; Elkalay et al., 2003; Lirman and
Cropper, 2003; Biber et al., 2004; Martins et al., 2007; Couto et al.,
2014). Nonetheless, there is a generalized consensus that marine
primary production models should aim for increasing accuracy of
parameters, spatial discrimination and uncertainty quanti�cation
(Co�aro et al., 1997; Lirman and Cropper, 2003; Biber et al., 2004;
Laufkötter et al., 2015).

Multi-model approaches have the potential to compensate
the weaknesses and bias associated to a single type of model
and can provide richer information regarding the system. The
ultimate goal is to integrate information on species' plasticity,
adaptability, dispersal potential, and biotic interactions into
a single forecasting approach (Moore et al., 2007; Lavergne
et al., 2010). Although the need for an integrative approach
is well recognized (Guisan and Thuiller, 2005; Guisan et al.,
2006; Lavergne et al., 2010; Sinclair et al., 2010; Franco etal.,
2018), implementation is largely unexplored and lacks consensus.
Based on high-quality data retrieved from comprehensive
environmental datasets (van Vuuren et al., 2011; Taylor et al.,
2012; Tyberghein et al., 2012; Assis et al., 2017a) and empirical
approaches (Franco et al., 2018), we propose a stepwise multi-
model strategy that combines correlative SDMs with mechanistic
productivity models into an integrative forecasting tool aimed at
understanding changes at the ecosystem level. This multi-model
approach comprises:

- Building SDMs to identify key environmental drivers for the
distribution of seagrass/macroalgae, to predict sensitive areas
where the species are threatened with extinction and robust
areas for restoration;

- Developing productivity models for the dominant species
incorporating species- and site-speci�c parameters identi�edin
the previous step; these models should account for the spatial
variability of the modeled area (e.g., depth, type of sediment,
wave exposure) and the ecotypic di�erentiation of the focal
species in terms of plastic and adaptive potential.

This stepwise modeling approach would provide dynamic
and spatial explicit simulations of seagrass and macroalgal
ecosystems coupled to an accurate evaluation of uncertainty
at each stage of the modeling process (Larson et al., 2004).
Implementing such a modeling framework is a challenging
task that, nonetheless, is worthwhile trying as it will
improve the power to predict range shifts and assessing
species extinction risks under climate change. This is of
paramount importance for an e�ective management of
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marine primary producer habitats and derived ecosystem
services.

Final Remarks
Seagrasses and macroalgae are in multiple ways at stake under
the ongoing climatic changes. Physiological responses and
the survivability of early life stages (both seeds and spores)
are intrinsically connected to their genetic and epigenetic
characteristics. Additionally, environmental changes a�ect the
symbiotic relation between microbiome communities and
their hosts. Biochemical changes in macrophytes can have
severe impacts on trophic levels feeding on seagrass derived
organic matter, including reduced energy transfer due to
reduced carbon �xation, but also severe reduction of essential
fatty acid production. In order to predict with a more
holistic understanding the constrains to which these important
foundation species will be subjected in the near future,
the concept of niche stability in conventional modeling
approaches should be widened by coupling physiological and
ecological insights in primary productivity models and ecological
niche models. Ideally, research on seagrasses and macroalgae
should be multi-disciplinary, integrating genetic, epigenetic,
and microbiome levels of intra-speci�c variation and ecotypic
di�erentiation for a comprehensive understanding of phenotypic
variation and more realistic scenarios of change that are essential
for mitigation and conservation purposes (Figure 1).
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