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from Oil to Gas Production in a Depleting Field, European Journal of Operational Research (2018),
doi: 10.1016/j.ejor.2018.05.043

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.ejor.2018.05.043
https://doi.org/10.1016/j.ejor.2018.05.043


ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Optimal exercise rule for switching from oil to gas production in a deplet-

ing field

• A new explicit solution for the option value inside of the continuation

region

• Perpetual American style option with prices following two separate dy-

namics

• Numerical example with comprehensive sensitivity analysis and compara-

tive statics

1



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Switching from Oil to Gas Production
in a Depleting FieldI

Kristian Størea,∗, Stein-Erik Fletenb, Verena Hagspielb, Cláudia Nunesc
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Abstract

We derive an optimal decision rule with regards to making an irreversible switch

from oil to gas production. The approach can be used by petroleum field op-

erators to maximize the value creation from a petroleum field with diminishing

oil production and remaining gas reserves. Assuming that both the oil and gas

prices follow a geometric Brownian motion we derive an analytical solution for

the exercise threshold. We also propose an explicit solution for the option value

that is new to the literature. Numerical examples are used to demonstrate the

threshold and option value for a generic petroleum field. Both the threshold

and option value solutions are relevant for application to other real options

cases with similar features (e.g. other types of switching options or a perpetual

spread option).

Keywords: OR in energy, Switching option, Petroleum, Investment under

uncertainty

1. Introduction

At the Prudhoe Bay field in Alaska, one of the largest oil fields in North

America, operators have increased the recovery factor substantially due to gas

injection, together with other techniques (see e.g. Ning et al. (2016) or Szabo &

Meyers (1993)). The associated gas being produced together with the oil is re-

injected into the reservoir. As oil production from the field falls, a gas pipeline

IThe authors gratefully acknowledge comments from three anonymous referees and would
also like to thank Øystein Dahl Hem, Alexander Svendsen, and Vidar Gunnerud for discussions
on reservoir dynamics and petroleum field cases.

∗Corresponding author: kristian.store@nord.no
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to export the gas is being discussed; necessary infrastructure for large-scale gas

export is not currently present. In the North Sea, on the Norwegian Continental

Shelf (NCS), substantial investments have been made in the Statfjord Latelife

project on the Statfjord field. The investments, including a new pipeline which

connects the gas exports of the field to the UK market, have changed the primary

function of the production facilities from predominantly oil production to gas

production. On the Oseberg field, also located on the NCS, natural gas has

been imported from the nearby Troll field and used for injection to enhance oil

production. The field has been in a phase of declining oil production for many

years, often refered to as the “tail production phase”. Discussions are ongoing

as to what the optimal course for future action should be and producing a

significant portion the injected gas (a small portion is already being produced

and sold every year) is one of the considered alternatives.

Injection of natural gas is one of a number of techniques employed by oper-

ators of petroleum fields to increase the recovery rate of oil. The gas used for

injection may be associated gas produced with the oil, gas transported to the

field from other sources, or a combination of the two. From a business point of

view this makes sense as long as the value of continuing oil production under the

gas injection scheme is higher than the alternative value of stopping the gas in-

jection and investing in producing and exporting the gas that has been injected

(the term “export” here means the transportation of the gas to a market). As

the oil field matures, and the amount of oil in the reservoir as well as the oil

production rate decline, it may become optimal to export the gas rather than

continuing the injection scheme. This could involve substantial investments in

both the production facilities and in export solutions for the gas, as well as

having a strong adverse effect on the oil production. Therefore, determining the

optimal timing to start gas production and export is relevant for a number of

stakeholders in a petroleum field. For the operators and owners of petroleum

fields such decision models can contribute to maximizing the value of the asset

both for themselves and the society in which they operate. Also, policymakers

can make use of such models to avoid value-erosive regulations or approval de-

cisions. Furthermore, the option valuation approach could serve as a tool for

the petroleum field owner(s) seeking to fund or sell an interest in the switching
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venture (which may require substantial investments), and also assist engineers

and suppliers of conversion equipment seeking early project development1.

The type of optionality considered here falls naturally into a category of real

options often refered to as switching options. There are many examples of real

options applications with switching features in the literature, with the work of

Brennan & Schwartz (1985) being one of the earliest. Using a copper mine

as an example they value the combined options to temporarily shut down, re-

opening after a temporary shutdown, and abandoning entirely. In a more recent

example, Tsekrekos & Yannacopoulos (2016) derive a closed form approximate

solution to a class of optimal switching problems where the underlying prices

follow stochastic mean-reverting volatility models. Studying a switching case

similar to the one described herein, Hahn & Dyer (2008) propose a binomial lat-

tice approach for modeling an oil-to-gas switching option when the underlying

uncertainty factors follow correlated one-factor mean reverting processes. Using

the Prudhoe Bay field previously mentioned as their case (including a research

and development program with uncertain outcome) they apply their proposed

approach to value the asset. The focus in their study is to approximate the asset

value, rather than on a tractable decision rule for making a switch. Adkins &

Paxson (2011a) propose an analytical approach to an optimal asset replacement

case when operating costs and revenues are stochastic (which is similar to a

switching option) and arrive at what they term a “quasi-analytical solution” to

the decision rule problem. This approach has been applied by the same authors

to a range of real options cases with multiple sources of uncertainty and with

switching-like features (see e.g. Adkins & Paxson (2011b) and Adkins & Pax-

son (2017)). They study cases where there is a single opportunity to make a

switch (or replacement) and cases where there is a perpetual string of sequential

switching opportunities. By assuming that asset prices follow geometric Brown-

ian motions and that a smooth pasting condition2 holds, their approach results

in an equation set that the authors solve numerically. Gahungu & Smeers (2011)

1We thank an anonymous referee for bringing up this point.
2This principle is sometimes called high contact or smooth fit. See Brekke & Øksendal

(1991) for an introduction to the concept as well as a proof of sufficient and necessary con-
ditions for the smooth pasting condition to produce the optimal solution to the stopping
problem.
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study in a more general manner the same type of problem as the “single oppor-

tunity” switching case; they find the optimal time to exercise an option which

gives the right to exchange a basket of assets for another, assuming the asset

prices follow correlated geometric brownian motions. They show that an equa-

tion set such as the ones Adkins & Paxson (2011a,b) solve numerically can be

determined in closed form. Specific examples of real options applications where

such closed form solutions are presented can be found in Heydari et al. (2012)

and Rohlfs & Madlener (2011), who both derive decision rules related to in-

vestmens in emission-reduction technologies. Where Gahungu & Smeers (2011)

use simulation tecniques to determine option value inside of the continuation

region, Adkins & Paxson (2011a,b) and Heydari et al. (2012) make simplifying

assumptions about the solution in order to approximate option value (Rohlfs &

Madlener (2011) and Adkins & Paxson (2017) do not calculate option values

inside of the continuation region). However, neither of them provide explicit

solutions for how to determine the option value inside of the continuation re-

gion (in all cases the option value exactly at the exercise threshold is expressed

explicitly).

We model the switching option as a perpetual American style option and

the decision to switch is considered irreversible. Although the negative effects

on oil production from starting gas production depend on the characteristics of

the oil field, we assume that the remaining oil is lost if the decision to switch

is made3. This is a conservative assumption which will emphasize the trade-off

effect between the two resources in the model. On the basis of a parameter

set that describes a representative large size oil field (initial reserves of 100–

500 mill. barrels of oil) in the North Sea, we derive the region of oil and gas

prices for which it is optimal to undergo a switch. We contribute to the existing

literature by determining and applying an analytical solution to the decision to

change from oil to gas production in the tail production phase of a petroleum

field. Moreover, we propose an explicit solution which is new to the literature

3The effect of gas injection on the oil production rate is dependent on the reservoir proper-
ties of each field, and placement of injecting and producing wells. Assuming that oil production
drops to zero when the gas is produced might be a fair approximation if the oil layer in the
reservoir is thin, where many wells can move below the oil-water contact if this shifts slightly
upwards. In fields where gas is mostly used for moving the oil towards the wells this might
be a poor approximation and more complex reservoir models may be necessary.
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for determining the option value (inside of the continuation region).

The remainder of the paper is organized as follows. Section 2 formulates and

develops the model setup for the switching option and presents the solutions for

the exercise boundary and option value. The section also contains comparative

statics for price process parameters. In section 3, numerical examples for a base

case as well as a sensitivity analysis is presented. Lastly, section 4 concludes

the paper.

2. Switching option

To achieve a tractable model for the switching option some simplying as-

sumptions are made about the petroleum field and the nature of the switching

option. Firstly, the switching is assumed to happen instantaneously with all of

the switching costs incurring immediately and it is not possible to reverse the

switch once it has been made. Secondly, the operational costs are assumed to

be known and fixed. Thirdly, the “potential” initial gas production rate, after a

switch is made, is assumed fixed (i.e. unaffected by injection and oil being pro-

duced) and the gas used for injection is assumed to be costless (i.e. we exclude

any potential cost from importing gas to use for injection). This assumption

makes the example case more relevant for fields where the injection gas is only

re-injected associated gas (rather than imported from an external source) and

the potential gas production is unaffected by decreasing oil reserves. Lastly, the

rate at which oil is being produced is assumed to be deterministically declining,

and the same is assumed for the gas once a switch has been made.

Although the production profile for an oil field depends on the field’s physical

characteristics and the chosen depletion strategy, there are in general three

phases of production; build-up, plateau and decline (see e.g. Wallace et al.

(1987) for a discussion of aggregate production profiles and examples). As can

be seen in Figure 1, both the Oseberg and Prudhoe Bay fields are examples

of fields whose production profiles4 exhibit the typical characteristics of these

three phases. When we consider the option to switch to gas production we

4Sources for the production numbers are the Norwegian Petroleum Directorate for the
Oseberg field and the State of Alaska, Department of Revenue for Prudhoe Bay. The Prudhoe
data is for the fiscal year July-June and is converted from daily average in thousand barrels
by assuming it is averaged across 365 days per year.
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assume that this is only relevant in the decline phase. Although it is possible

to consider stopping oil production during the build-up or plateau phase, it is

highly unlikely to be considered as a viable alternative. The model we propose

therefore needs to include a decline in the oil production rate in order to capture

the characteristics of a representative field. We assume in the following that the

production rate is exponentially declining, very much in line with the shape

of the production curves in Figure 1. An exponentially declining production

rate is a standard simplifying assumption used in literature addressing decision

making related to petroleum extraction (see e.g. Paddock et al. (1988) for an

early example). For each commodity I ∈ {1, 2} (with oil given as I = 1 and

gas as I = 2), we assume that when production is ongoing the production rate

RI,t is exponentially declining over time, i.e. RI,t = RI,0e
−θIt. Here RI,0 and

θI are constants and the former is the initial production rate while the latter is

the exponential decline factor of the production. Furthermore, we assume that

the production costs, EI , are independent of the production rate, i.e. that the

total costs of operation are fixed. Thus, the cash flow from production, when

producing commodity I, is given by (XI,tRI,t −EI)dt. Note that for simplicity

the effects of taxes and royalties are ignored.

Figure 1: Historical oil production profiles for the Prudhoe and Oseberg fields

Under the assumptions described above, let F (τ, x1, x2) denote the value of

a petroleum field - with current oil price x1 and gas price x2 - if it is decided to
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switch from oil to gas production at time t = τ :

F (τ, x1, x2) =E
[ ∫ τ

0

(X1,tR1,t − E1) e−rtdt

+

∫ ∞

τ

(X2,tR2,t − E2) e−rtdt− e−rτS
]

=E
[ ∫ τ

0

X1,te
−θ1tR1,0e

−rtdt+

∫ ∞

τ

X2,te
−θ2tR2,0e

−rtdt

− e−rτ
(
S +

E2 − E1

r

)]
− E1

r
.

(1)

Here XI,t
5 is the spot price of oil (I = 1) and gas (I = 2) at time t, S denotes

the switching cost of converting from oil to gas production, and r is the risk

free rate (this assumes that the dynamics of X1,t and X2,t are described under

the risk neutral measure). Note also that as long as oil is being extracted from

the field, the oil production rate declines exponentially (at rate θ1); however,

when the switching occurs and gas production starts, the production rate for

gas starts declining exponentially at rate θ2. This means that the “potential”

gas production rate is constant as long as no gas is being produced. The optimal

value of the field is now given by

V (x1, x2) = supτF (τ, x1, x2). (2)

To find a solution for the optimal exercise threshold and option value given

by (2) it’s necessary to formulate the price dynamics for the spot price of oil and

gas under the risk neutral measure. For simplicity, we assume that both of these

prices follow a geometric Brownian motion (GBM). Although this may be a sim-

plifying assumption, it was noted by Pindyck (2001), and confirmed by Postali

& Picchetti (2006), that the half-life of oil price shocks is sufficiently long to

justify using GBM. If we deviate from the GBM assumption, for example by in-

corporating mean reversion, we suspect that the change will be small compared

to the GBM case. Schwartz (1997, 1998) offer insight into why this may be; the

GBM captures the persistence of commodity price shocks, whereas mean rever-

sion, capturing transitory shocks, has little bearing on decisions and valuation

due to the averaging effects of long lifetime and required time for construction

5In the rest of the paper we denote random variables by an uppercase letter, while their
realizations will be denoted by a lowercase letter.
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once an investment decision is made (although we assume for simplicity that a

switch happens instantaneously in our model)6.

With XI denoting the spot price for oil (I = 1) and gas (I = 2), respectively,

their dynamics under the risk neutral measure are described by the following

stochastic differential equation:

dXI,t = αIXI,tdt+ σIXI,tdZI,t. (3)

Here αI is the risk adjusted drift (we assume r > α2 and r > α1 − θ1 to ensure

that the option has a well-defined exercise threshold), σI is the volatility, and

dZI,t is the increment of a standard Brownian process. We allow the prices of

oil and gas to be dependent, introducing the correlation parameter ρ, where

Cov[dZ1, dZ2] = ρσ1σ2dt represents the covariance between the two Brownian

motions (Z1 and Z2), and with |ρ| ≤ 1.

Standard techniques found in the literature (see, e.g., Øksendal (2013)) show

that V (x1, x2) in (2) must be a solution to the following Hamilton-Jacobi-

Bellman equation:

max

(
− rV (x1, x2) + LV (x1, x2) + x1R1,0 − E1, (4)

x2R2,0

r + θ2 − α2
− E2

r
− S − V (x1, x2)

)
= 0,

where L represents the infinitesimal generator of the process (X1, X2), that,

according to our assumptions, is given by:

LV (x1, x2) =
1

2
σ2
1x

2
1

∂2V (x1, x2)

∂x21
+

1

2
σ2
2x

2
2

∂2V (x1, x2)

∂x22
(5)

+ ρσ1σ2x1x2
∂2V (x1, x2)

∂x1∂x2
+ (α1 − θ1)x1

∂V (x1, x2)

∂x1
+ α2x2

∂V (x1, x2)

∂x2
.

The above equation (4) should be interpreted as follows: in the continuation

region, that we denote by D, V (x1, x2) >
x2R2,0

r+θ2−α2
− E2

r −S , and it is a solution

6Schwartz uses different stochastic processes, including a two-factor model that incorpo-
rates both geometric commodity price movements and a mean reverting factor, and finds that
for so-called long-term assets, the mean reversion aspect is of little importance. One can
as well approximate the problem with a GBM (Schwartz (1998) allows for a time-varying
volatility in the approximation). By long-term assets he means investments with a long life-
time, with some time to build, and that has operational characteristics that give rise to cash
flow patterns that are unaffected by volatility and price reversions. These are in practice the
kinds of assets we are discussing in this paper. The intuition behind these results is that
the long-term (geometric) part of the process is carrying the persistence in prices, essentially
shouldering the value of waiting for more information. The mean reversion effect is dissipated
over time (lifetime of the asset, and time from decision to invest to the cash flow starts).
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to the partial differential equation

−rV (x1, x2) + LV (x1, x2) + x1R1,0 − E1 = 0. (6)

Thus in the continuation region the value of the field (with continued oil ex-

traction) is larger than the value that results from switching and therefore the

operators should postpone the switching decision. We remark again that the

production rate for gas only declines when one starts extracting gas, and there-

fore in the continuation region (i.e., before the switching) there is no declining

behavior for the gas. Consequently, in the continuation region, the drift for the

product of the gas price and the gas production rate, X2,tR1,0, is α2 (with no

decline in the potential/initial gas production rate), whereas for the product of

the oil price and the oil production rate, X1,tR1,t, it is α1 − θ1.

2.1. Exercise boundary

For the remainder of the paper, let x∗1 and x∗2 denote the threshold switching

values for the processes X1 and X2 respectively. At the exercise boundary

the value from continuation must be equal to the value of switching, as the

solution of (2) must be a continuous function in all its domain (Øksendal (2013)).

Therefore we propose the following as the solution for (6), with x1 = x∗1 and

x2 = x∗2 at the threshold boundary:

v(x1, x2) = A(x1, x2)x
β(x1,x2)
1 x

η(x1,x2)
2 +

x1R1,0

r + θ1 − α1
− E1

r
, (7)

where A, β and η are parameters that still need to be derived and that may

depend on x1 and x2. For convenience the notation A, β and η will sometimes

be used instead of A(x1, x2), β(x1, x2) and η(x1, x2), respectively.

Note that in (7) the term Axβ1x
η
2 corresponds to the switching option value

and it is the homogeneous solution of (6), whereas the second and third terms,

x1R1,0

r+θ1−α1
− E1

r , represent the present value of perpetual oil production and it is

the particular solution of (6). Moreover, based on economical arguments it is

necessary that the option value goes towards zero when the oil price goes towards

infinity (limx1→∞ v(x1, x2) = 0) and the value should go towards infinity if

the gas price goes towards infinity (limx2→∞ v(x1, x2) = ∞). Consequently, it

means that β < 0 and η > 0 (trivially, it must also hold true that A > 0).

In order to determine the parameters A, β and η we must derive the necessary

conditions that ensure that the option value, k(x1, x2) ≡ Axβ1x
η
2 , is indeed a
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solution of the homogeneous part of (6). As part of this, it is necessary to

compute the partial derivatives stated in (5) and verify that (6) always holds.

As we let A, β and η depend on x1 and x2, then the partial derivatives of

k(x1, x2) with respect to x1 and x2 should also include the derivatives of A, β

and η with respect to x1 and x2. However, as we will argue in the next section,

all the derivatives with respect to these parameters cancel out. Therefore we

end up with simple expressions for the partial derivatives which are identical to

a case where the parameters are constants (e.g. ∂k(x1,x2)
∂x1

= Aβxβ−11 xη2). Using

this result, trivial calculations lead to β and η being the roots of the following

equation:

1

2
σ2
1β(β − 1) +

1

2
σ2
2η(η − 1) + ρσ1σ2βη + (α1 − θ1)β + α2η − r = 0 (8)

and A is a parameter that still needs to be determined.

In order to determine A and the switching thresholds x∗1 and x∗2 we assume

that the standard value-matching and smooth-pasting conditions must hold,

resulting in:

Ax∗1
βx∗2

η +
x∗1R1,0

r + θ1 − α1
− E1

r
=

x∗2R2,0

r + θ2 − α2
− E2

r
− S, (9)

and

Aβx∗1
β−1x∗2

η +
R1,0

r + θ1 − α1
= 0, (10)

Aηx∗1
βx∗2

η−1 =
R2,0

r + θ2 − α2
. (11)

This implies that

− R1,0x
∗
1

β(r + θ1 − α1)
=

R2,0x
∗
2

η(r + θ2 − α2)
, (12)

and therefore

x∗1 = −β(r + θ1 − α1)

η(r + θ2 − α2)

R2,0

R1,0
x∗2, (13)

A = − R1,0

β(r + θ1 − α1)x∗1
β−1x∗2

η
. (14)

Substituting equations (13) and (14) into the value-matching relationship (9)

we derive the following useful relation:

x∗1
R1,0

r + θ1 − α1

(
η + β − 1

β

)
+ S − E1 − E2

r
= 0. (15)
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Combining this with condition (8) and (13) leads to the following equation set

which must be solved to find the switching threshold:

1

2
σ2
1β(β − 1) +

1

2
σ2
2η(η − 1) + ρσ1σ2βη + (α1 − θ1)β + α2η − r = 0, (16)

x∗1 = −β(r + θ1 − α1)

η(r + θ2 − α2)

R2,0

R1,0
x∗2, (17)

x∗1
R1,0

r + θ1 − α1

(
η + β − 1

β

)
+ S − E1 − E2

r
= 0. (18)

This equation set is very similar to those stated in Adkins & Paxson (2011a, eq.

2.4, 3.3 and 3.5) and Adkins & Paxson (2011b, eq. 4, 15 and 20). It was shown

for a more general case (of switching baskets consisting of sums of geometric

Brownian motion prices) by Gahungu & Smeers (2011), and particular two-

and three-dimensional real options cases by Heydari et al. (2012) and Rohlfs

& Madlener (2011), that the set should have an analytical solution. Note that

there are four unknowns (x∗1, x∗2, β, and η) and three equations in this equation

set. Although this seemingly makes the solution indetermined, that is not the

case. The solution we are looking for is not a particular point, but rather pairs

of critical oil and gas prices. When determining whether it is optimal to switch

it only makes sense to consider the two prices jointly and therefore we can first

assume a critical oil/gas price and find the corresponding critical gas/oil price.

Analytical solutions for A, η and β could be expressed in terms of either x∗1

or x∗2. However, one can select the alternative which ensures that the solution

can be interpreted unambiguously for all prices. To determine whether x∗1 or x∗2

should be used to achieve this, consider the following expression:

C(x∗1) ≡ 1 +

[
r + θ1 − α1

x∗1R1,0

] [
S − (E1 − E2)

r

]
. (19)

When
[
S − (E1−E2)

r

]
> 0 it means that C(x∗1) > 1 and also that the switching

threshold intercepts the gas price axis. The reason for this is that S − (E1−E2)
r

represents the total fixed cost component associated with making a switch; when

this is positive there must be some interval of low gas prices for which it is never

optimal to make a switch regardless of how low the oil price becomes. Therefore

the threshold is in such a case defined for all positive threshold oil prices, but

not for all gas prices. We assume this condition (C(x∗1) > 1) is satisfied in

the following, but will also show a solution for the alternative case. Under this
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assumption it can then be shown that the solution to β(x∗1) from the above

equation set must be

β(x∗1) =
f(x∗1)

2g(x∗1)
−
√(

f(x∗1)

2g(x∗1)

)2

+ 2
(r − α2)

g(x∗1)
, (20)

where f(x∗1) ≡ σ2
1 − 2(α1 − θ1) − 2ρσ1σ2 + C(x∗1)(2α2 + σ2

2) and g(x∗1) ≡ σ2
1 +

σ2
2C(x∗1)2 − 2ρσ1σ2C(x∗1). Assuming that r > α2 (otherwise it is never optimal

to exercise the option) it must always be true that

f(x∗1)

2g(x∗1)
<

√(
f(x∗1)

2g(x∗1)

)2

+ 2
(r − α2)

g(x∗1)
, (21)

when g(x∗1) > 0. Recognizing that g(x∗1) is equivalent to a weighted variance ex-

pression, Var (x2C(x∗1)− x1|x∗1), and that variances for non-constant variables

are stricly positive (i.e. g(x∗1) > 0), then it must also be true that β(x∗1) < 0 for

all values of x∗1. Rearranging (18) shows that

η(x∗1) = 1− β(x∗1)C(x∗1) (22)

and that the parameter η no longer needs to explicitly be part of the analytical

solution. It follows that η(x∗1) > 1 (since β(x∗1) < 0 and C(x∗1) > 1) and that

η(x∗1) + β(x∗1) > 1:

η(x∗1) + β(x∗1) = 1− β(x∗1)(C(x∗1)− 1) > 1 (23)

This result is the same as for the particular switching option cases studied by

Adkins & Paxson (2011a,b). The analytical solutions for x∗2(x∗1) and A(x∗1),

expressed as functions of x∗1, are found by substituting η with 1 − β(x∗1)C(x∗1)

in (14) and (17) and rearranging the latter expression:

x∗2(x∗1) = − (1− β(x∗1)C(x∗1))(r + θ2 − α2)R1,0

β(x∗1)(r + θ1 − α1)R2,0
x∗1 (24)

A(x∗1) = − R1,0

β(x∗1)(r + θ1 − α1)x∗1
β(x∗1)−1x∗2(x∗1)

1−β(x∗1)C(x∗1)
. (25)

Note that if
[
S − (E1−E2)

r

]
< 0 (i.e. C(x∗1) < 1 and the threshold has an in-

tercept on the oil price axis) the solution is defined for all threshold gas prices,

but not all threshold oil prices. If this is the case, and to make sure that the

solution is defined for all prices, similar expressions can be found for a given

x∗2 (see Appendix A for this version of the solution). In the special case that
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[
S − (E1−E2)

r

]
= 0 the problem collapses to a version of the solution derived by

McDonald & Siegel (1986), where all the parameters are constant. When this

term is zero the problem can be simplified by reducing it to a one-dimensional

case. Nunes & Pimentel (2017) further extends this result by deriving an analyt-

ical solution to the optimal stopping problem when jumps are added to the price

processes. A special version of the suggested solution is found when the present

values of producing oil or gas (rather than the prices themselves) are assumed to

follow geometric Brownian motions, and the production decline rates are set to

zero (this ensure that the dynamics of the present value of gas is the same in the

stopping and continuation region). In this scenario, the payout from the option

is equal to the difference between the value of two assets following a geometric

Brownian motion, minus a fixed switching cost. In the finance literature this is

often refered to as a spread option. Using the same approach as outlined above

for the switching option, an analytical solution can be expressed for the exercise

threshold of a perpetual spread option (see Appendix B for this version of the

solution).

2.2. Value of the switching option

In this section we derive the option value function for the continuation region,

using the results derived in the previous section.

Gahungu & Smeers (2011) use Monte Carlo simulation techniques to find the

option value (termed by them as the ”performance” of their exercise rule) for

specific starting points inside the continuation region, using a set of examples of

options where a basket of GBMs is exchanged for another. Attempting to use

the exercise threshold more directly, Adkins & Paxson (2011b) assume that

the parameters of the solution (A, β and η according to our notation) are

constant along one of the asset prices. However, no reasoning is given for why

the parameters should be constant across one of the asset prices rather than the

other and this should therefore be viewed as an approximation. In the solution

derived by McDonald & Siegel (1986), with no cost of exercising the option, the

parameters are constants and the unique set of parameters can be used directly

to determine the option value anywhere inside of the continuation region. It is

clear that the parameters A, β and η must change inside the continuation region

in our model setup (and along the switching threshold) and in the following we
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argue how to determine these parameters for a given oil and gas price, (x1, x2).

Before presenting the main result of this section we state three useful lemmas:

Lemma 1 For a given set {A, β, η} the function

k(x1, x2) = Axβ1x
η
2

is excessive with respect to (X1, X2).

Proof. Using definition 2 of Alvarez (2003), in order to prove that f is excessive,

we need to prove that

E[e−rsk(X1,s, X2,s)|X1,0 = x1, X2,0 = x2] ≤ k(x1, x2), ∀x1, x2, s

as the other conditions hold trivially (namely, k is a nonnegative and measurable

function, such that limt→0E[e−rtk(X1(t), X2(t))|X1(0) = x1, X2(0) = x2] =

k(x1, x2), which follows from the fact that the GBM has continuous sample

paths and the function k is also continuous). Using the fact that X1 and X2

are (correlated) GBMs, it follows that:

E[e−rsk(X1,s,X2,s)|X1,0 = x1, X2,0 = x2] =

e−rsAxβ1x
η
2e

(α1−θ1−0.5σ2
1)βse(α2−0.5σ2

2)ηs

× E
[
eβσ1W

X1
s +ησ2W

X2
s

]

=Axβ1x
η
2e

(−r+(α1−θ1−0.5σ2
1)β+(α2−0.5σ2

2)η+0.5(β2σ2
1+η

2σ2
2+2ρβησ1σ2))s

=Axβ1x
η
2 = k(x1, x2)

using the definition of β and η (the roots of (8)). �
Based on lemma 1 and Theorem 10.1.6 of Øksendal (2013) the following

must hold:

Lemma 2 For a given set {A, β, η}, the function k(x1, x2) = Axβ1x
η
2 is super-

harmonic with respect to (X1, X2).

Returning to the problem of derivation of the value function in the contin-

uation region; for (x1, x2) ∈ <2
+, and for any x̂ > 0, we define the following

function:

kx̂(x1, x2) = A(x̂)x
β(x̂)
1 x

η(x̂)
2
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where β, η and A are computed using (20), (22) and (25), respectively, and with

x∗1 = x̂. Then in view of lemma 2, for each x̂, the function kx̂(x1, x2) is super-

harmonic. Moreover, using lemma 10.1.3. c) of Øksendal (2013), the following

important result holds:

Lemma 3 The function kD(x1, x2) = inf x̂ {kx̂(x1, x2)} is super-harmonic with
respect to (X1, X2).

Defining kD(x1, x2) = inf x̂ {kx̂(x1, x2)} as the option value in the continu-

ation region and combining it with the intrinsic value of oil production we get

the following:

Theorem 1 The value function V - the solution of the optimization problem
(2) - is given by:

V (x1, x2) =

{
kD(x1, x2) +

x1R1,0

r+θ1−α1
− E1

r x2 ≤ x∗2(x1)
x2R2,0

r+θ2−α2
− E2

r − S x2 > x∗2(x1)
, (26)

where kD(x1, x2) = inf x̂

{
A(x̂)x

β(x̂)
1 x

η(x̂)
2

}
.

Proof. First, we need to prove that in the continuation region D, the value

function that we propose is a solution of the partial differential equation (6). As

A, β and η depend on the state variables x1 and x2, and in order to check that

the differential equation (6) holds with the proposed solution, we would need

to compute derivatives of A, β and η with respect to x1 and x2. However, the

following argument can be used to prove that these derivatives must be zero:

when one is computing inf x̂ {kx̂(x1, x2)}, we may see A(x̂), β(x̂) and η(x̂) as

the choice parameters, whereas x1 and x2 are the state parameters (using the

terminology of Milgrom & Segal (2002), who describe versions of the “envelope

theorem” for an arbitrary choice set). Since the function A(x̂)x
β(x̂)
1 x

η(x̂)
2 is

continous for each (x1, x2) we can use a result from a standard version of the

envelope theorem (see e.g. Benveniste et al. (1979)) which imply that the total

derivative of the value function with respect to any choice variable must be equal

to zero, and that you can treat the choice parameters as though they are constant

(and therefore with derivatives equal to zero). In particular this means that the

proposed solution can be verified to be correct at the exercise threshold and the

value function for the pair (x∗1, x
∗
2(x∗1)) is given by A(x∗1)x∗1

β(x∗1)x∗2(x∗1)η(x
∗
1) +

x∗1R1,0

r+θ1−α1
− E1

r . Now we have to prove that also in the strictly continuation region
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(i.e. not including the threshold), the value function is given by kD(x1, x2) +

x1R1,0

r+θ1−α1
− E1

r . It follows from Theorem 10.1.9 from Øksendal (2013) that the

value function for the option in the continuation region is given by the least

superharmonic majorant of the payoff function. As it is given from lemma 3

that kD(x1, x2) is super-harmonic (and trivially the infimum is the least of the

potential solutions) it remains to show that it is a majorant of the payoff to the

option. We make the following definition

h(x1, x2) = kD(x1, x2)−
[(

x2R2,0

r + θ2 − α2
− E2

r

)
−
(

x1R1,0

r + θ1 − α1
− E1

r

)
− S

]

(27)

for any given x1 and for x2 < x∗2(x1). Since h(x∗1, x
∗
2) = 0 (value-matching)

and
dkD(x∗1 ,x

∗
2)

dx2
= − R2,0

r+θ2−α2
(smooth-pasting) at the threshold it is sufficient to

show that kD(x1, x2) is convex in x2, for any given x1 and for x2 < x∗2(x1).

Clearly, k(x1, x2) = Axβ1x
η
2 is convex in x2 for a fixed set {A, β, η} (since η >

1) and if it is also convex in (x2, {A(x̂), β(x̂), η(x̂)}), and C is a convex set,

then the function kD(x1, x2) = inf x̂∈C {kx̂(x1, x2)} is convex (see e.g Boyd &

Vandenberghe (2004), section 3.2.5, for a proof). Under this assumption it

must follow that the proposed solution for the option value is a majorant of the

payoff to the option since h(x1, x2) > 0 for any given x1 and for x2 < x∗2(x1).

Consequently, the value function for the continuation region is given by Theorem

(26). For the stopping region, the value function follows trivially from the

definition of the problem. �
Based on Theorem 1, and under the assumption of convexity in x̂, the

option value inside of the continuation region can be calculated by finding

min
x̂

{
A(x̂)x

β(x̂)
1 x

η(x̂)
2

}
. The minimum can be determined by substituting A(x̂),

β(x̂) and η(x̂) with expressions (25), (20) and (22) (with x∗1 = x̂), respectively,

and finding
d
(
A(x̂)x

β(x̂)
1 x

η(x̂)
2

)

dx̂ = 0. Using standard calculus and simplifying gives

the following expression:
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0 =

(
ln

(
(β(x̂)C(x̂)− 1)(r + θ2 − α2)R1,0

β(x̂)(r + θ1 − α1)R2,0

)
− ln (x2)

)

(
C(x̂)x̂

∂β(x̂)
∂x̂

β(x̂)
+ 1− C(x̂)

)
(28)

+ ln (x̂)

(
(1− C(x̂))

(
1− x̂

∂β(x̂)
∂x̂

β(x̂)

))
+ ln (x1)

(
x̂
∂β(x̂)
∂x̂

β(x̂)

)
,

where

∂β(x̂)

∂x̂
=
f ′(x̂)g(x̂)− f(x̂)g′(x̂)

2g(x̂)2
− 1

2

[(
f(x̂)

2g(x̂)

)2

+ 2
(r − α2)

g(x̂)

]− 1
2

×

1

g(x̂)2

(
1

2

(
f(x̂)

g(x̂)

)
[f ′(x̂)g(x̂)− f(x̂)g′(x̂)]− 2(r − α2)g′(x̂)

)
(29)

and as before f(x̂) ≡ σ2
1 − 2(α1 − θ1) − 2ρσ1σ2 + C(x̂)(2α2 + σ2

2) and g(x̂) ≡
σ2
1 + σ2

2C(x̂)2 − 2ρσ1σ2C(x̂).

The option value for any point (x1, x2) can now be found using the following

procedure: solve the one-dimensional non-linear equation in (28) for x̂ using

any standard numerical algorithm. Use the solution for x̂ in (20), (22), and

(25) (with x∗1 = x̂) to determine the parameter set {A, β, η} for the point

(x1, x2). Finally, find the option value by applying the determined parameter

set in kx̂(x1, x2) = A(x̂)x
β(x̂)
1 x

η(x̂)
2 . A similar procedure to determine option

value for the related perpetual spread option is outlined in the appendix.

2.3. Comparative statics for price process parameters

Comparative statics for the exercise threshold with regards to the price pro-

cess parameters are presented in this section. Only the conclusions are included

here while the proofs are relegated to Appendix C.

Proposition 1 Assuming that the covariance σ1,2 (σ1,2 = ρσ1σ2) is held fixed,
or the correlation ρ is fixed and ρ ≤ 0, the threshold gas price x∗2 (for a given
x∗1) is increasing in the volatility σ1 and σ2 of the oil and gas price respectively.
If the correlation ρ is assumed fixed and ρ > 0, the effect on x∗2 (for a given
x∗1) is non-monotonic. Below some critical values for σ1 and σ2, an increase in
either of the volatilities will decrease x∗2 (for a given x∗1). However, above these
critical values for σ1 and σ2, an increase in either of the two volatilities will
monotonically result in an increase in x∗2 (for a given x∗1).

Increasing either σ1 or σ2 generally increases the volatility of the payout to the

option and therefore increases option value. In turn this makes the continuation

17



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

region larger (i.e. increases x∗2). However, for this effect to be entirely mono-

tonic one has to assume that the covariance (σ1,2 = ρσ1σ2) is fixed or that the

correlation is fixed and ρ < 0. If this is not the case the volatility of the payout

to the option can actually decrease when σ1 or σ2 increase (this is only true for

very low values of σ1 and σ2). This non-monotonic behavior was also noted by

Adkins & Paxson (2011a,b). It was shown by Adkins & Paxson (2011b), for

an option with similar characteristics to the switching option considered here -

albeit with somewhat different notation, that the “turning point” for σ2 (here

denoted σ̂2) can be determined by σ̂2 = ρσ1
β

(1−η) . We add to this result by

substituting β and η with our analytical expressions (20) and (22), and the ex-

pression then simplifies to σ̂2 = ρσ1

C(x∗1)
(with C(x∗1) as defined in (19)). Increases

in σ2 when σ2 > σ̂2 will lead to an increase in x∗2 (for a given x∗1), but the

opposite is true when σ2 < σ̂2. Similar derivations can determine the critical

value for σ1 and this is shown in Appendix C.

Increasing ρ unambiguously decreases the volatility of the payout to the

option and therefore the following result must hold true:

Proposition 2 The threshold gas price x∗2 (for a given x∗1) is decreasing in the
correlation ρ in the change in oil and gas prices.

Intepreting the effects of changing the drift rates for either oil or gas must

be done with caution. This is due to the fact that it does not only change

the dynamics of the prices, it effectively also changes the net present values of

perpetual oil/gas production as well. This gives a non-monotonic behavior when

changing the drift rate for the gas price, but not for the gas production decline

rate (since this does not change the dynamics in the continuation region):

Proposition 3 The threshold gas price x∗2 (for a given x∗1) is increasing in the
gas production decline rate θ2.

Increasing the gas price drift rate α2 montonically increases x∗2 (for a given x∗1)

when α2 is higher than a certain level, and monotonically decreases when α2

is below this level. Where this change in behavior occurs can be determined

exactly and is included in Appendix C.3. A non-monotonic behavior is not

observed for the oil price drift rate or oil production decline rate due to the

assumption that r > α1 − θ1 (see Appendix C.2 for details):
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Proposition 4 The threshold gas price x∗2 (for a given x∗1) is increasing in the
drift rate for the oil prices α1 and decreasing with the oil production decline rate
θ1.

3. Numerical Examples

The numerical examples are constructed around a base case for the switching

option. Parameter values for the base case are chosen to reflect a “representa-

tive” case for a large size (initial reserves of 100–500 mill. barrels of oil) oilfield

in the North Sea. This means that oil and gas prices from this region are used

to estimate price process parameters. The example case is considered to be an

offshore field in the decline phase. Therefore, the decline rate of production

should be realistic for a representative offshore field in the North Sea. The

International Energy Agency (IEA (2008)) estimates the average decline rate

post-plateau to be 15.5% for OECD Europe (only North Sea fields included).

Based on this study we assume a 15.5% decline rate for both oil and gas in the

base case.

3.1. Price process parameters

The data used for estimating the price process parameters are daily ob-

servations of futures prices from the Intercontinental Exchange (ICE) for the

time period August 12th 2010 to June 16th 2015. For the oil prices the Brent

crude futures are used and for the gas prices we use UK Natural gas futures.

As a proxy for the spot price for oil and gas the front month contract price is

used. The gas prices, which are quoted in GBP, are converted to USD using

USD/GBP forward rates quoted by Thomson Reuters. When annualizing the

volatility estimates, 251 tradings days per year is assumed. Moreover, since the

estimates for volatility are conducted using log returns on the data, we adjust

for rollover effects. Table 1 summarizes the estimation results.

Table 1: Estimated price process parameters

Estimated values(S.E.)
α1 0.004(0.0013)
σ1 0.338(0.0056)
α2 0.005(0.0007)
σ2 0.267(0.0054)
ρ 0.184(0.0278)
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To estimate the risk adjusted drifts, a pair of futures were chosen for each

commodity such that the difference in time to maturity between the two con-

tracts is constant. We use the 12th position future relative to the observation

day (approximately one year to maturity) and the 36th position (approximately

3 years to maturity) with a constant 2 year timespan between them in terms

of time to maturity. Using no-arbitrage arguments, it is assumed that futures

prices are equal to the risk adjusted expected spot prices. Since we assume geo-

metric Brownian motion, the following must therefore hold true: αi =
ln (

Fs,T
Fs,t

)

T−t .

Here αi is the risk adjusted drift for commodity i, T and t are times of maturity

with T > t, so that Fs,T is a contract with a longer time to maturity than Fs,t,

and finally s < t is the time of observation. Using this relationship to calculate

observed αi for both oil and gas the risk adjusted drifts α1 and α2 are estimated

as the mean of each observed set respectively.

3.2. Switching Option

For the numerical results a set of parameters, summarized in Table 2 (and

with price process parameters as stated in Table 1), are assumed as a base case

for the switching option. The current production rate for oil is measured in

million standard cubic meters (Sm3). However, to calculate the revenue stream

while producing oil a conversion7 is made to million barrels (bbl). A similar

conversion is made for the gas, where the production rate is listed in billion

standard cubic meters and converted to 100 mill. therms. Using prices of

USD/bbl for the oil and 0.01 USD/therm for the oil and gas respectively, this

means that the product of the production rates and the prices are in mill. USD.

The current switching threshold and the option value for the base case are

depicted for a range of combinations of oil and gas prices in Figure 2. The

thresholds should be interpreted such that for a given oil price, it is optimal to

switch to gas production if the market price of gas is above the corresponding

critical gas price. Alternatively, for a given gas price it is optimal to switch from

oil to gas production if the price of oil drops below the critical price. Numerical

7Conversion factor for oil from mill. Sm3 to mill. barrels is 6.29, and for gas from bill.
Sm3 to 100 mill. therms the conversion factor is 3.79121 (this assumes the following standard
conversion rates for oil and gas: Sm3 crude oil = 6.29 barrels. 1 Sm3 natural gas = 40 MJ. 1
MJ = 947.80 Btu (British Thermal Unit). 1 Therm = 100 000 Btu.)
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Table 2: Base case parameters switching option

Values Units Description
R1,0 2.0 mill. Sm3 Yearly oil production
R2,0 15 bill. Sm3 Yearly gas production
θ1 0.155 Oil production decline rate
θ2 0.155 Gas production decline rate
E1 500 mill. USD Yearly oil production costs
E2 500 mill. USD Yearly gas production costs
r 0.03 Risk free rate
S 1000 mill. USD Cost of switching

values for critical prices for a range of points on the threshold, as well as the

associated parameters, are reported in Table 3. For a specific point inside of the

continuation region, x1 = x2 = 100, the x̂ found by solving (28) is 47.44. The

option value at this point is 25428 mill. USD (with β = −0.0984, η = 1.1283,

and A = 221.61). Note that the seemingly very high option values should be

interpreted with caution for the following reason: there is no option to abandon

the oil directly and therefore the option to switch also includes the option value

from avoiding production of oil in perpetuity where this could potentially have

a large negative present value.

As the production rate of oil declines deterministically the threshold also has

to change. The thresholds one and five years ahead are shown in Figure 3. The

changing threshold across time due to the deterministic decrease in production

is similar to the effect of changing the initial production R1,0. Changing the

oil production (either the initial production or as an effect of the deterministic

decline rate) produces a monotonic change in the entire threshold, decreasing

the size of the continuation region as production decreases.

Table 3: Numerical values for a range of points on the exercise threshold

x∗1 x∗2 β η A
1.0 12.4 -0.0245 1.3775 88.80
10.0 32.6 -0.0809 1.1972 159.93
30.0 79.0 -0.0953 1.1411 206.74
50.0 125.6 -0.0987 1.1271 223.10
70.0 172.2 -0.1002 1.1208 231.64
90.0 218.8 -0.1011 1.1172 236.94
110.0 265.5 -0.1016 1.1149 240.57
130.0 312.1 -0.1020 1.1133 243.23
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Figure 2: Exercise threshold and option value for the base case

Figure 3: Switching threshold across time/production rate for the base case

In the following, the effects of changing key parameters of the model is demon-

strated through a sensitivity analysis. Unless otherwise noted, only one parame-

ter at the time is allowed to change and the other parameter values are assumed

equal to those set in the base case. Consider now changes in the drift rates α1

and α2 of the oil and gas prices. For the range of values illustrated in Figure 4

the continuation region always increase when either of the drift rates increase.

However, while this monotonic behavior is always true for α1 this was shown

not to be the case for α2. As the drift rate of gas decreases the continuation

region also always decreases given α2 > 0, but for some negative value of α2
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the behavior is reversed. This occurs due to two competing effects when α2

is decreasing; the present value of gas production decreases (switch “later”),

and expected future gas price decreases (switch “earlier”; standard option pric-

ing result). The absolute changes in the threshold values are also much more

sensitive to changes in α2 than in α1 for these parameter ranges.

Figure 4: Effects on the switching threshold from changing the drift rate parameters

Increasing the volatilities of either the gas or oil price generally increases the

volatility of the payout from the switching option. This is always the case when

the correlation ρ ≤ 0. However, when ρ > 0, increasing one of the volatilities can

have a negative effect for very low volatility values. This effect is due to the fact

that the payout of the switching option is a function of the difference between

two stochastic elements (the present values of gas and oil) and the variance

expression for such a payout has a negative term for the covariance/correlation.

However, if the covariance (rather than the correlation coefficient) is assumed to

be fixed the effect is a montonic increase when either of the volatilities increase.

In general, when the volatility of the payout of the option increases the value

of the option increases and consequently the continuation region for the option

should increase. These effects are in line with the observations made by Adkins

& Paxson (2011b) and McDonald & Siegel (1986). The effects on the switching

threshold of changing the volatility levels are illustrated in Figure 5, both for

the base case and for ρ = 1 (to demonstrate the non-monotonic behavior).
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Figure 5: Effects on the switching threshold from changing the volatility parameters

The effects of changing some of the other key parameters to the model; θ2,

r, S, and ρ, are summarized and depicted in Figure 6. Increasing either the

switching cost S or the gas production decline rate θ2 both increase the size of

the continuation region. The intuition is straightforward; both of these effects

decrease the value received when switching, making a switch to gas less valuable

in general. Increasing the correlation ρ or the risk free discount rate r decreases

the size of the continuation region. The effect from correlation can be interpreted

as a volatility effect; increasing the correlation decreases the volatility of the

payout of the option and therefore the continuation region shrinks. Although

the effect of increasing r is also a monotonically shrinking continuation region,

the interpretation is not straightforward. This effect changes both the present

value of gas production and oil production, as well as the discount rate for the

option payout.
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Figure 6: Effects on the switching threshold from changing key parameters

4. Conclusion

We propose a model to determine the optimal exercise boundary for making

a switch from oil to gas production. Assuming that the oil and gas prices follow

geometric Brownian motions with correlated increments, we derive an analytical

solution for the switching strategy. This approach can be used to maximize the

value-creation from aging oil fields with remaining gas reserves. Moreover, we

propose an explicit solution for determining the option value which is new to

the literature. The solutions for both the threshold and the option value may be

applicable to other options applications with similar features to the switching

option considered here. The proposed solution for the option value may also

contribute to shed light on how one can determine the exercise thresholds and

option value for more complicated compound switching options.

Although the negative effects on oil production from starting gas produc-

tion depend on the characteristics of each oil field, we have assumed that the

remaining oil is lost if the decision to switch is made. This is a conservative
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assumption which emphasizes the trade-off effect between the two resources in

the model. Relaxing this assumption to model a more complicated relationship

between oil and gas production would expand the applicability of our model to

a broader range of oil fields. This seems like a valuable extension of our model

and an interesting idea to pursue in further research. As long as adding such

effects does not lead to a time-dependent optimal switching strategy, it may be

possible to find solutions using the same approach as herein.
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Université catholique de Louvain, Center for Operations Research and Econo-

metrics (CORE), Discussion Paper (2011/34).

Hahn, W. J., & Dyer, J. S. (2008). Discrete time modeling of mean-reverting

stochastic processes for real option valuation. European Journal of Opera-

tional Research, 184 , 534–548.

27



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Heydari, S., Ovenden, N., & Siddiqui, A. (2012). Real options analysis of in-

vestment in carbon capture and sequestration technology. Computational

Management Science, 9 , 109–138.

IEA (2008). World Energy Outlook . International Energy Agency.

McDonald, R., & Siegel, D. (1986). The value of waiting to invest. The Quarterly

Journal of Economics, 101 , 707–727.

Milgrom, P., & Segal, I. (2002). Envelope theorems for arbitrary choice sets.

Econometrica, 70 , 583–601.

Ning, S., Jhaveri, B., Fueg, E., Stechauner, G., Jemison, J., & Hoang, T. (2016).

Optimizing the utilization of miscible injectant at the greater Prudhoe Bay

fields. In SPE Western Regional Meeting . Society of Petroleum Engineers.

Nunes, C., & Pimentel, R. (2017). Analytical solution for an investment problem

under uncertainties with shocks. European Journal of Operational Research,

259 , 1054–1063.

Øksendal, B. (2013). Stochastic differential equations: an introduction with

applications. Springer Science & Business Media.

Paddock, J. L., Siegel, D. R., & Smith, J. L. (1988). Option valuation of claims

on real assets: The case of offshore petroleum leases. The Quarterly Journal

of Economics, 103 , 479–508.

Pindyck, R. S. (2001). The dynamics of commodity spot and futures markets:

a primer. The Energy Journal , 22 , 1–29.

Postali, F. A., & Picchetti, P. (2006). Geometric brownian motion and structural

breaks in oil prices: a quantitative analysis. Energy Economics, 28 , 506–522.

Rohlfs, W., & Madlener, R. (2011). Valuation of ccs-ready coal-fired power

plants: a multi-dimensional real options approach. Energy Systems, 2 , 243–

261.

Schwartz, E. (1998). Valuing long-term commodity assets. Journal of Energy

Finance & Development , 3 , 85–99.

28



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Schwartz, E. S. (1997). The stochastic behavior of commodity prices: Implica-

tions for valuation and hedging. The journal of finance, 52 , 923–973.

Szabo, J., & Meyers, K. (1993). Prudhoe Bay: development history and future

potential. In SPE Western Regional Meeting . Society of Petroleum Engineers.

Tsekrekos, A. E., & Yannacopoulos, A. N. (2016). Optimal switching decisions

under stochastic volatility with fast mean reversion. European Journal of

Operational Research, 251 , 148–157.

Wallace, S. W., Helgesen, C., & Nystad, A. N. (1987). Generating production

profiles for an oil field. Mathematical Modelling , 8 , 681–686.

29


