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Abstract 

Metabolomics is the branch of “omics” technologies that involves high-throughput identification and 

quantification of small molecule metabolites in the metabolome. NMR-based spectroscopy of biofluids 

represents a potential method for non-invasive characterization of cancer. While the metabolism of 

cancer cells is altered compared to normal non-proliferating cells, the metabolome of several biofluids 

(e.g. blood and urine) reflects the metabolism of the entire organism. This review provides an update on 

the current status of NMR metabolomics analysis of biofluids with respect to 1) cancer risk assessment, 

2) cancer detection, 3) disease characterization and prognosis and 4) treatment monitoring. We conclude 

that many studies show impressive associations between biofluid metabolomics and cancer progression, 

and suggest that NMR metabolomics can be used to provide information with prognostic or predictive 

value. However, translation of these findings to clinical practice is currently hindered by a lack of 

validation, difficulties in biological interpretation and non-standardized analytical procedures.  
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Introduction 

The metabolic characteristics of cancer cells change during disease progression, and this will be reflected 

in their metabolic profiles.1-3 Typical changes include deregulated uptake of glucose and amino acids, 

increased demand for nitrogen, and increased flux through anabolic metabolic pathways. This metabolic 

reprogramming can be used to discriminate between tumors of different phenotype, grade, or stage ex 

vivo.4-6 Obtaining such information from biofluids would reduce the need for invasive collection of tissue 

biopsies. Blood and urine are easily accessible biofluids, and several attempts have been made to identify 

signatures associated with cancer risk, presence, and prognosis using nuclear magnetic resonance (NMR) 

as the analytical platform. However, metabolic profiles of biofluids reflect the metabolic state of the entire 

organism – and not only that of the tumor (Figure 1). NMR metabolomics can therefore potentially provide 

information about the overall health status of individuals.7,8 As metabolite concentrations are regulated 

by numerous homeostatic mechanisms in the body, it may be challenging to relate metabolic profiles 

directly to cancer cell metabolism.  As an example, serum lactate levels do not scale directly with tumor 

burden despite the fact that most tumors excrete this metabolite in large amounts.9-11 Nevertheless, 

several recent studies suggest that biofluid metabolomics can provide information about cancer 

phenotype, grade and stage, and has potential as a clinical tool for cancer diagnostics, prognostics, and 

treatment monitoring. 

 

Metabolomics is the branch of “omics” technologies primarily concerned with high-throughput 

identification and quantification of small molecule metabolites in the metabolome. In the serum12 and 

urine metabolome13 databases, detailed information is given on more than 4600 and 3100 human 

metabolites, respectively. These metabolites are downstream products of genome and proteome-wide 

interactions, and the metabolome thus provides a sensitive measure of the phenotype. Blood passes 

through every organ in the body, serving as transport for all molecules secreted or excreted by different 

tissues in response to physiological needs or stresses, while urine contains water-soluble products 

eliminated by renal filtration. The diagnostic potential of these biofluids is evident by their widespread 

use in clinical chemistry through history. 14,15  

 

The most commonly used platforms for metabolomics studies are NMR and mass spectrometry (MS), each 

associated with their inherent advantages and disadvantages.  In general, MS methods are more sensitive 

than NMR (picomolar versus micromolar range), while NMR is highly reproducible and can provide 

quantitative measures without the need for labour-intensive sample preparation and fractionation. 
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However, the methodologies should be considered complementary, and the advantages of NMR based 

metabolomics are thoroughly covered in a recent review.16 Detailed protocols for biofluid sample 

preparation are described by Bernini et al.17 One-dimensional (1D) proton (1H) NMR experiments are the 

most commonly applied sequences for NMR metabolomics,18,19 usually including  a NOESY sequence for 

serum and urine spectra and an additional CPMG sequence for filtering out macromolecule signals in 

serum samples (Figure 2). Two-dimensional (2D) NMR experiments are indispensable tools for metabolite 

identification in NMR-based metabolomics studies,16,19-21 and also allows for metabolite quantification.22 

Further, there are now automatic platforms offering detailed quantification of lipoprotein subclasses, 

their lipid concentrations, and apolipoprotein A-I and B levels in serum,23,24 which expands the use of 

NMR-based metabolomics towards more lipidomics related approaches. 

 

In this review we will give an update on the current status of NMR metabolic profiling of biofluids for 

detecting and characterizing cancer (Figure 3). 

 

Prediction of cancer development and detection of precursor lesions  

For many cancers, curative treatment depends on early detection. However, cancers can be asymptomatic 

for months or years, during which they could be treated with minimal intervention, avoiding more invasive 

treatment and possibly increasing survival. Most approaches have so far focused on early detection of 

already present tumors, and include interventions such as mammogram screening for breast cancer (BCa). 

Several models for assessing the risk for various cancers based on clinical characteristics have been 

developed. Although they may show significant results at the population level, they generally have low 

predictive value for individual patients.25 NMR-analyses of biofluids allows high-throughput, global, and 

unbiased metabolic analyses, which could be used for this purpose. Serum metabolic profiles can be 

predictive of several diseases, including cardiovascular disease,26 diabetes,27 and preeclampsia,28 and 

several risk factors for cancer, such as smoking, obesity and diet, affect the serum metabolome.29-31 It is 

therefore plausible that metabolomic analyses of biofluids could reveal metabolic phenotypes associated 

with increased risk of cancer. 

 

Few studies have been performed linking NMR of biofluids prospectively to cancer risk, while a larger 

number of studies have assessed cancer risk by metabolic profiling using MS.32-35 In 2015, Bro et al. 

published a study predicting whether Danish women (n=838) would develop BCa within 5 years based on 

a combination of NMR-analysis of non-fasting serum and lifestyle factors.36 Using this approach, they 
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achieved a prediction accuracy of 82% in an independent validation set of 129 samples, approaching the 

diagnostic accuracy of mammogram screening.37 This was later reproduced using a larger sample size from 

the same cohort, resulting in an area under the curve (AUC) for the receiver operating characteristic (ROC) 

curve of 0.86 for prediction of BCa development within 5 years.38 However, in the same study, no 

relationship was found for prediction of future colon cancer. In a study on hepatocellular carcinoma (HCC), 

Fages et al. showed in a subgroup analysis with 22 cases and 43 controls that addition of NMR metabolic 

data improved the ability of current biomarkers to predict development of HCC within 2 years.39 

Development of HCC was associated with perturbations in fatty acid oxidation and amino acid-, lipid-, and 

carbohydrate metabolism two years prior to diagnosis, and adding metabolomic analysis to liver function 

and alpha-fetoprotein scores increased prediction sensitivity. While these findings must be reproduced in 

a representative and relevant target population before they can be considered for clinical use, they 

suggest that NMR of serum could have clinical utility in risk assessment for cancer. 

 

A small number of studies have shown an association between NMR metabolic profiles in blood and urine 

and the presence of precancerous lesions. In a cohort of 31 controls and 31 patients with Barretts’ 

esophagus (BE), Davis et al. showed that urinary metabolomic profiles could discriminate the two groups 

with an AUC of 0.96.40 Hasim et al. showed that cervical intraepithelial neoplasia (CIN) could be 

discriminated from healthy women with a sensitivity and specificity of more than 90% based on NMR 

analysis of plasma samples.41 Wang et al.42 showed in a Canadian cohort that urine NMR could detect 

colonic polyps with a sensitivity of 83% and a specificity of 51%, which was confirmed by Deng et al.43 for 

a Chinese cohort. This outperforms fecal immunochemical tests for detecting colorectal polyps, which 

have ranged in sensitivity from 9% for proximal polyps and 23% for distal polyps.44  

 

It is important to consider whether these associations are reflective of the direct metabolic contributions 

of the precancerous lesion, the host response, the metabolic effects of associated factors, or a 

combination of the three. Several risk factors for cancer may affect serum metabolic profiles, including 

age, smoking, BMI, and levels of androgens and other growth hormones. Relating metabolic changes to 

the tumor is therefore challenging. However, given the high specificities reported in the literature, and 

the matched case-control designs used, it seems unlikely that these associations are explained merely by 

differences in known risk factors. CIN is caused by malignant transformation in response to persistent 

infection by human papillomavirus (HPV). Since HPV-infection is highly prevalent in the healthy 

population,45 with most cases never progressing to CIN, the findings of Hasim et al.41 may suggest that 
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failure to control HPV-replication induces systemic metabolic changes in the host. Similar reasoning could 

be followed for the findings of Davis et al.40 on BE, which is caused by gastroesophageal reflux. In the 

Western adult population, the prevalence of symptomatic gastroesophageal reflux disease (GERD) is 

estimated to be 10-20%,46 but most patients with GERD do not have BE.47 It could therefore be 

hypothesized that progression from normal to precancerous tissue is associated with systemic metabolic 

changes, although no pattern of metabolic changes is consistently observed in these studies.  

 

Cancer detection and diagnosis 

Detecting cancer by metabolic profiling of biofluids would facilitate easy and minimally-invasive 

diagnostics, and allow for screening. Prostate cancer (PCa) has similar clinical symptoms as benign 

prostatic hyperplasia (BPH), and prostate specific antigens (PSA), often measured in men with suspicion 

of PCa, does not reliably separate these two conditions.48 Thus new and easily accessible biomarkers 

would be highly beneficial. A pilot-study by Giskeødegård et al. showed significant differences in serum 

metabolism by combined NMR and MS analyses, separating PCa from BPH with a classification accuracy 

of 78%.49 Increased dimethylsulfone was the NMR measured metabolite with highest discriminatory 

power (AUC 0.74); however using a panel of NMR and MS metabolites provided the best classification. 

Further, Kumar et al. demonstrated the possibility to separate PCa from healthy controls,50 and PCa from 

both BPH and healthy controls by NMR analysis of filtered serum,51 with classification accuracies ranging 

from 82-94%. In their cohort, dimethylsulfone was not quantified and they detected increased levels of 

sarcosine in PCa patients compared to both BPH and healthy controls. Urinary and serum sarcosine levels 

have previously been suggested as potential PCa biomarkers,52,53 however the role of sarcosine in PCa has 

been debated as preliminary results could not be validated.54 By NMR, sarcosine levels in urine and 

unfiltered serum might be too low to be reliably measured.  

 

Several studies on small cohorts have searched for PCa biomarkers in semen or expressed prostatic 

secretions, showing decreased citrate levels in PCa compared to healthy controls.55-57 This could however 

not be confirmed in a larger study performing metabolic profiling of seminal plasma from 151 high-risk 

participants, of which 98 had proven PCa.58 In this cohort, citrate was not a predictor for PCa, and the 

significant metabolites choline and leucine did not improve diagnosis compared to PSA measurements. 

However, Perez-Rambla et al. have recently demonstrated significant metabolic differences in urine 

samples from PCa patients and BPH, without prior prostate massage.59 The predictive value of this 
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classification model was moderate and only significant after variable selection, and thus requires 

validation in independent cohorts.  

 

For BCa, the most common malignancy in women, NMR metabolic profiling of urine showed significant 

differences between BCa and controls (n=120 participants),60 but with modest classification accuracy. 

Here, 28/30 quantified metabolites were significantly lower in urine samples from BCa patients, with 

formate, succinate, and uracil among the most important for separation. A study on a small cohort (n=57) 

further demonstrated the possibility to separate BCa from healthy controls using serum samples,61 with 

higher lactate and a tendency of lower glucose and taurine in BCa patients. No further studies have 

validated these findings using NMR. However, Shen et al.62 described 78 MS-measured metabolites 

differently expressed in plasma from BCa patients compared to controls where neither lactate, glucose, 

nor taurine were among the significant metabolites. Thus, there seems to be no consistency in which 

metabolic changes are characteristic of BCa, and the potential of detecting BCa by NMR of biofluids needs 

further investigation.  

 

Pancreatic cancer has high mortality rates, and there is no reliable method for early diagnosis. Two small-

scale studies have shown promising results for detecting pancreatic cancer by NMR metabolic profiling of 

urine samples with high classification accuracies.63,64 Further, OuYang et al. showed that NMR metabolic 

profiles of serum from 17 patients and 23 healthy controls could be separated using principal component 

analysis.65 Among the discriminatory metabolites were decreased levels of 3-hydroxybutyrate and lactate, 

which were also detected in a study comparing plasma from pancreatic cancer patients with chronic 

pancreatitis patients and healthy controls.66 Further, Bathe et al. demonstrated the possibility to 

distinguish pancreatic cancer from benign hepatobiliary disease by NMR metabolic profiling of serum from 

99 participants with high accuracy. A recent meta-analysis has been performed to assess the diagnostic 

potential of literature-curated NMR and MS metabolite markers using MS profiling of serum samples from 

pancreatic cancer patients (n = 59) and three clinically relevant control groups (colorectal cancer (CRC) 

patients, type 2 diabetes patients, and healthy controls).67 The resulting panel of 10 metabolites 

(increased lactate, lyso-PC, alanine, choline, threonine, asparginine, tyrosine, lysine, and decreased 

palmitate and 3-hydroxybutyrate in cancer) showed high classification accuracy (AUC=0.99) for separating 

pancreatic cancer patients from non-cancers. However, the specificity for pancreatic cancer was low as 

the AUC remained high when comparing CRC with healthy controls. This shows that the identified 

metabolic pattern might be indicative of cancer, while not being cancer-type specific.  
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Detection of bladder cancer from urine is an interesting approach as urine is in direct contact with the 

bladder, and the potential for detection of bladder cancer has been examined in several studies by MS 

approaches.68 NMR has also demonstrated potential of detecting bladder cancer from urine in a pilot 

study of 33 bladder cancer patients and 70 controls, where increased taurine levels in urine were detected 

in patients.69 Moreover, two studies have demonstrated the potential of NMR profiling of serum for 

detecting bladder cancer. Cao et al. detected significantly increased levels of  acetoacetate and glucose, 

and lower levels of citrate, glycine, lactate, tyrosine, and phenylalanine in cancer patients (n=39) 

compared to healthy controls (n=25).70 Bansal et al. further demonstrated how serum metabolomics could 

significantly separate cancer patients (n=67) from healthy controls (n=32), and high from low grade 

bladder cancer with high sensitivity and specificity.71 In contrast to the study by Cao et al., this study found 

increased lactate levels in serum from cancer patients; thus serum metabolic alterations related to 

bladder cancer development are not yet established.  

 

Lung cancer is often at an advanced stage when detected and have poor survival rates, making earlier 

detection highly warranted. Both early and advanced lung cancer (n=77) could be separated from chronic 

obstructive pulmonary disease (COPD) (n=22) by serum NMR profiling with high classification accuracy.72 

This may be clinically relevant as both diseases are associated with tobacco use and chronic inflammation. 

Presence of lung cancer was characterized by reduced acetate, citrate, and methanol, and increased N-

acetylated glycoproteins (NAC)-1, leucine, lysine, mannose, choline, and lipids. In the same study, early 

and late cancer could also be successfully separated, with patients with advanced cancer having further 

increases in NAC1.72 Additionally, in a study by Puchades-Carrasco et al.73 lung cancer cases could be 

separated from heathy controls when examining serum from a large patient cohort (n = 296), allowing for 

validation in an independent set of samples with high sensitivity and specificity.73 Lung cancer patients 

had increased levels of lactate and glutamate, and decreased glutamine and histidine compared to healthy 

controls. Increased lactate and glutamate levels in cancer patients were also detected in a small study 

(n=35) by Zhang et al.74 including only non-smokers. An earlier study including 85 lung cancer patients and 

78 healthy controls also detected highly significant metabolic changes in plasma from cancer patients;75 

however in this study all lung cancer patients were smokers whereas more than half the control group 

were non-smokers or ex-smokers. Smoking status is a major confounder in these studies, as smoking has 

a significant effect on serum metabolism,29 and there is a need for larger studies in representative cohorts 

to assess the clinical potential of metabolomics based detection of lung cancer.  
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Ovarian cancer (OCa) has the highest mortality rates among gynecologic cancers, and early stages are 

difficult to detect. Slupsky et al. demonstrated significant differences in NMR measured urine metabolic 

profiles between OCa patients (n=50) and healthy controls (n=72).60 Surprisingly, the levels of all 30 

quantified metabolites were significantly lower in OCa patients compared to controls. Significant 

metabolic differences have also been detected in serum samples between OCa patients and controls,76 

with validation of an independent set of samples yielding a sensitivity and specificity of 95% and 68%, 

respectively. The resulting model was also tested on a cohort of patients with renal cancer carcinoma. 

These patients were not incorrectly classified as OCa patients, indicating that the serum metabolic 

profiling bears potential for cancer type-specific diagnosis. OCa patients displayed significantly lower 

levels of alanine, valine, choline, creatinine/creatine, and lipids, and higher levels of acetoacetate, 

acetone, and β-hydroxybutyrate. NMR metabolic profiles of ovarian cyst fluid has been shown to contain 

information to separate benign from malignant cysts,77,78 with both studies showing increased levels of 

lactate, isoleucine, valine, methionine, and alanine. More recently, Kyriakides et al. demonstrated 

significant metabolic differences in fluid from benign, borderline, and malignant ovarian cysts. Here 

malignant cysts were characterized by lower citrate levels and increased levels of lysine compared to 

benign and borderline cysts, respectively.79 Interestingly, non- significantly increased levels of alanine, 

valine, lactate, and choline in malignant cysts were observed in agreement with previous findings.78 Thus, 

metabolic profiling of several biofluids shows potential for detection of ovarian cancer. 

 

The potential for cancer detection from NMR metabolic profiling of serum has also been demonstrated in 

small cohorts in other cancers, such as oral squamous cell carcinoma,80-82 esophageal adenocarcinoma,83 

HCC,84 upper urinary tract urothelial carcinoma,85 and colorectal cancer (CRC)86 with moderate to high 

classification accuracies. Another interesting approach for detection of CRC is examining fecal water as 

this in principle will reflect the full length of the colorectum. Metabolic profiling of fecal water extracts for 

detection of CRC in a study of 111 CRC patients and 412 controls resulted in a sensitivity and specificity 

comparable to that of colonoscopy.87 Similar results were obtained in two smaller studies,88,89 and as a 

consensus all studies showed low levels of butyrate as a potential marker for CRC, while there was less 

consistency between other metabolites. Common for NMR metabolomics of biofluids as a tool for 

detecting cancer is the lack of consistency between significant metabolites, and the need for validation in 

large, representative cohorts.  
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Disease characterization and prediction of prognosis  

As discussed above, NMR metabolomics can be applied to various biofluids for detection of cancer in a 

screening setting and discrimination between malignant and benign conditions in symptomatic 

individuals. However, there is also a medical need for methods that can provide prognostic and predictive 

information and contribute to selection of the most appropriate therapeutic strategy for individual 

patients.  

 

In BCa, it has been reported that metabolic profiling by MS of plasma can discriminate between human 

epidermal growth factor receptor 2 (HER2)-positive and –negative tumors, and between estrogen 

receptor (ER)-positive and –negative tumors.90  However, this study illustrates the challenges of biological 

interpretation of metabolomics data. Relatively high levels of lactate and low levels of glucose are seen in 

HER2-positive subjects, in line with the metabolic characteristics of HER2-positive cell lines.91,92 The 

interpretation of this finding is that higher aerobic glycolysis in HER2-positive tumors is reflected in the 

plasma metabolite levels. However, several studies have shown that ER-positive breast tumor tissues are 

associated with high lactate production.4,93 A reasonable expectation would therefore be that plasma 

from patients with ER-positive tumors should have higher lactate and lower glucose levels than plasma 

from patients with ER-negative tumors. However, high glucose levels were found in plasma from ER-

positive patients whereas no difference in lactate levels were observed.  These results demonstrate how 

the plasma metabolome reflects more than just the metabolic input and output of cancer cells. Despite 

the unresolved questions related to pathobiological interpretation, NMR analysis of serum and/or urine 

can provide prognostic information.   

 

In BCa, for example, the plasma metabolome has been found to discriminate between early stage and 

metastatic disease.10 Among the most important discriminant metabolites were lactate, glucose, and 

pyruvate. Interestingly, there was a negative correlation between plasma lactate level and disease stage, 

emphasizing the complex tumor-host relationship in cancer. In a similar experiment, Jobard et al.94 

discriminated early BCa from metastatic BCa with 90% sensitivity and 79% specificity. Here, an OPLS-DA 

model was built using data from 85 patients and validated in a cohort of 112 patients. A metabolic profile 

consisting of 9 discriminant metabolites was established, but this profile was remarkably different from 

the one described by Richard et al..10 The two studies had only one discriminant metabolite in common 

(pyruvate), but were in disagreement with respect to the level of pyruvate in metastatic versus early 

disease.  
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The ability of serum or urine NMR metabolomics to discriminate between different grades of disease has 

also been demonstrated in lung cancer,73 oral cancer,80 renal cancer,95 pancreatic cancer,63 bladder 

cancer,71 and PCa.50 In some cases, the diagnostic performance is good; Bansal et al.71 compared metabolic 

signatures from patients with low-grade and high-grade bladder cancer with correct classification >95% 

in the validation cohort, whereas Kumar et al.50 reported >90% correct classification in a study of low-

grade versus high-grade PCa.  

 

Another opportunity for clinical application of NMR metabolomics is to use metabolic information in 

biofluids to predict patient outcome. Using only pre-treatment serum samples, Bertini et al.96 used 

metabolic profiles from patients with metastatic CRC to construct a classifier that could predict overall 

survival. Applying this predictor to a validation cohort, patients with short overall survival were identified 

with a hazard ratio of 3.4. The NMR-based metabolic profile was an independent predictor of overall 

survival, with higher predictive power than traditional predictive criteria (ECOG-Performance status and 

clinical chemistry biomarkers).  

 

Several studies have used serum metabolomics to identify patients at risk of recurrence following curative 

BCa surgery. Asiago et al.97 combined NMR and MS-based techniques in a longitudinal study of 56 patients, 

where 20 developed recurrent disease during the study. Using a supervised approach, patients with 

recurrent disease could be identified with a diagnostic accuracy of 85%. Interestingly, recurrence could 

be predicted from serum samples collected 13 months prior to recurrence. Similar findings were published 

by Tenori et al.98, who studied a cohort of 80 patients with ER-negative BCa. Using a serum sample 

collected post-surgery, recurrence could be predicted with a diagnostic accuracy of 75%. Patients with 

recurrence displayed higher levels of glucose and lower levels of histidine than patients with no relapse. 

These results were recently reproduced in a multicenter trial including 699 patients.99 Here, a training set 

of serum samples collected pre-surgery from 285 patients with early BCa and 109 patients with metastatic 

disease was used to develop a classification model that subsequently predicted recurrence with an 

accuracy of 71%, independently of age, tumor size, grade, or lymph node status. Collectively, these studies 

indicate that NMR metabolomics may be useful for stratification of patients to receive tailored treatment 

based on their individual risk profile.  

 

Leukemias represent a special case, where serum represents the matrix in which the cancer cells reside. 

It could be speculated that this would result in a more direct relationship between the metabolic activity 
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of the cancer cells and the metabolic composition of serum. In a cohort of 415 subjects, Wang et al.100 

could discriminate between patients with acute myeloid leukemia (AML) and healthy controls, using a 

model where 22 metabolites significantly contributed to the classification. Furthermore, dividing the 

patients into groups with good and less favorable prognosis, the serum metabolome could contribute with 

prognostic information. Consistent with a report from Musharraf et al.,101 lactate concentrations were 

paradoxically lower in AML patients than in healthy subjects, and patients with poor prognosis had lower 

lactate levels than patients with medium prognosis.  

 

Treatment monitoring 

Among external environmental factors exerting modifications in metabolic profiles is medication. 

Following the administration of a certain therapy, changes in the metabolome occur as a result of the 

biological activity. Pinpointing specific drug-related alterations in metabolite levels and pathways as an 

effect of a specific therapy can provide information related to mechanism of action and/or resistance, 

toxicity, interactions with other drugs, or even predict clinical outcome. 

 

In a study by Wei et al.102 serum metabolic profiles from a small cohort of BCa patients (n=28) who later 

received neoadjuvant chemotherapy were acquired using both NMR spectroscopy and liquid 

chromatography (LC)-MS. A multivariate prediction model built with information from three NMR 

detected amino acids; isoleucine, glutamine and threonine, and the MS detected fatty acid linolenic acid 

could discriminate pathological complete responders from stable disease with 100% specificity and 80% 

sensitivity. The study showed potential for combined NMR and MS metabolomics in predicting BCa 

response to neoadjuvant chemotherapy before treatment start. However, this required validation as the 

low number of samples with leave-one-out cross validation may give over-optimistic results. 

 

In a study by Tenori et al.103 an NMR metabolomics approach was employed on serum from 579 BCa 

patients from an international clinical trial. The patients were all treated with the chemotherapeutic agent 

paclitaxel, while they were randomized to additionally receive either the anti-HER2 drug lapitinib or a 

placebo. The authors focused on investigating metabolic profiles from serum at three different time 

points: at baseline and at the on-treatment weeks 9 and 21. When comparing samples from each time 

point separately, no meaningful associations of the metabolic profiles with their clinical endpoints of time 

to progression, overall survival, and toxicity were found. The same was the case when examining each 

treatment arm individually within each time point. Only when they included only HER2-positive patients 
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receiving anti-HER2 treatment (n=49), could they detect clinical associations. When further dividing this 

patient group into three groups based on time to progression (TTP), extreme TTP groups, i.e. TTP range: 

62–175 days (n=11) vs TTP range: 367–821 days (n=11) could be discriminated based on NMR metabolic 

profiles with an accuracy of 89.6%. Similarly, when dividing HER2-positive patients receiving anti-HER2 

treatment (n=34) into three groups based on overall survival (OS), OS range: 105-470 days (n=9) and OS 

range: 664-843 days (n=7) could be discriminated based on NMR metabolic profiles with an accuracy of 

78%. However, like in the previously mentioned study, the small number of patients did not allow for a 

proper validation on an independent test set of samples with similar biological characteristics. Still, 

univariate Wilcoxon tests showed significantly higher glucose and lower glutamate and phenylalanine 

(p<0.05) for patients in the upper TTP extreme compared to the lower TTP extreme patients. 

 

Other studies have focused on investigating the effect of BCa treatment on serum metabolic signatures 

in the context of high adiposity. When studying serum of 21 post menopausal women receiving 

chemotherapy in the form of fluorouracil, epirubicin, and cyclophosphamide (FEC) sampled before and 

during treatment, Keun et al.104 found that pre-treatment levels of lactate and alanine could individually 

predict >1.5 kg weight gain (AUC >0.77; p < 0.05). Of these two metabolites, lactate seemed to be the 

most interesting, showing the highest change (up to 75% increase) on average as an effect of 

chemotherapy. Stebbing et al.105 on the other hand, investigated correlations between metabolic 

syndrome, NMR metabolic profiles, and treatment response in BCa patients. Although the association 

between metabolic syndrome and metabolites was not directly evaluated, a significant trend (p=0.003) of 

increased incidence of metabolic syndrome with poorer treatment response was observed. Likewise, 

multivariate logistic regression with variable selection revealed high glucose and lactate, and low alanine 

to be significantly associated with poorer response, i.e. progressive disease, independently of whether 

patients received FEC or taxane-based chemotherapy.   

 

Renal cell carcinomas that become metastatic are typically resistant to a broad range of therapies 

including chemotherapy and radiotherapy.106 Targeted therapies that act upon the VEGF and mTOR 

pathways have become promising treatment alternatives for metastatic renal cell carcinoma. The French 

clinical trial TORAVA assessed the effectiveness of combining the VEGF and mTOR inhibitors bevacizumab 

and temsirolimus, respectively, for this patient group, compared to that of two different standard 

treatments: sunitinib and interferon-α+bevacizumab.107 Pre-treatment and serial on-treatment serum 

samples from 121 patients included in the trial were examined by Jobard et al.108 using NMR spectroscopy 
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to identify metabolic signatures associated with targeted therapies. For the targeted 

bevacizumab+temsirolimus arm, significant metabolic changes were detected already at the second week 

of treatment, while no changes were detected for the standard treatment arms. This effect was 

characterized by a significant increase in lipids, lipoproteins (VLDL and LDL), glucose, and N-

acetylglycoproteins. While metabolic differences between treatment arms were not significant after 

multiple testing correction, trends indicated higher serum concentrations of lipids, lipoproteins (VLDL and 

LDL), cholesterol, glucose, the end-products of β-oxidation (acetone, acetoacetate, and 3-

hydroxybutyrate), N-acetylglycoproteins, branch-chained amino acids (valine, leucine, isoleucine), 

alanine, and acetate in the patients given bevacizumab+temsirolimus compared to those receiving 

sunitinib. 

 

Biofluid studies in cancer using NMR spectroscopy have not been limited to the hydrogen nucleus. In a 

multiple myeloma study, phosphorus (31P) NMR spectroscopy was used to study the effect of 

chemotherapy on serum phospholipids.109 At baseline, patients (n=20) exhibited significantly lower levels 

of phosphatidylcholine and phosphatidylethanolamine + sphingomyelin relative to inorganic phosphate 

compared to healthy controls (n=22). After therapy, the serum levels for these compounds returned to a 

more normal state for responders, while this was not the case for non-responders. This could be 

potentially useful for monitoring of treatment response. A similar effect was observed in another multiple 

myeloma study using 1H NMR spectroscopy on serum,110 in which chemotherapy-treated patients (n=27) 

who achieved complete remission showed reversed trends for some metabolites to resemble those 

observed in healthy individuals (n=31). These trends included higher levels of lipids in healthy controls 

compared to patients at the time of diagnosis, similarly as for the aforementioned study using 31P NMR. 

Healthy controls additionally exhibited higher levels of glutamine, cholesterol, lipids, lysine, and choline, 

and lower levels of glucose. Similarly, in another 1H NMR study of myeloma patients (n=32),111 higher 

choline and glucose in serum was associated with the time point of remission after chemotherapy 

compared to the diagnosis time point. However, long term follow-up showed that patients who relapsed 

after 3 years or more exhibited higher levels of choline than those who remained in remission. 

Interestingly, when comparing active disease samples (diagnosis and long-term relapse) with non-active 

disease samples, i.e. from patients in remission, carnitine and acetylcarnitine were found to be 

significantly decreased in the former. Urine from the same patients was also examined, where higher 

phenylalanine and alanine and lower betaine, glycine, hippurate and trimethylamine N-oxide were among 

the trends associated with diagnosis compared to remission after chemotherapy. 
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NMR metabolomics of serum for the assessment of treatment toxicity could help avoiding treatment that 

causes more harm than benefit, which is especially important for patients where the goal is palliative. 

care. In a study by Backshall et al.,112 a higher toxicity grade of the single-agent capecitabine as treatment 

for inoperable CRC (n=52 patients) was associated with higher low-density lipoprotein-derived lipids, 

including polyunsaturated fatty acids and choline phospholipids in serum prior to treatment. This suggests 

potential for prediction of toxicity based on minimally-invasively accessible serum.  

 

Challenges and future aspects 

In several of the above studies, significant associations between the biofluid metabolome and cancer risk, 

presence, prognosis, and treatment effect have been described. However, in most cases there is no clear 

association between metabolic biomarkers of disease observed in cancer cells/tumors and the metabolic 

biomarkers identified in serum and urine. Also considering the relatively low sensitivity of NMR, this 

indicates that the metabolic information from biofluids measured by NMR is largely related to tumor-host 

interaction (Figure 1). At the stage where a malignant tumor is detected, it is likely that it will affect 

functions of the organ of origin to a certain degree, and that the altered organ function and associated 

immune response is reflected in the biofluid metabolome. It is also known that tumors can cause systemic 

effects through release of various endocrine mediators.113,114 Combined, these effects can modulate the 

metabolic state of many other organs,115 resulting in an altered global metabolic phenotype. This explains 

why for example inflammation116 and cachexia117 can be detected by metabolomics.  

 

Biological interpretations is also difficult due to the heterogeneous findings in different studies. There is 

little consistency regarding which metabolites are important for different cancer types, and in several 

cases metabolite trends are contradictory between different studies investigating the same cancer type 

and aspects. One explanation for this is that so far, most studies have been performed in small patient 

cohorts. There is a need for large clinical studies in representative and relevant target populations, 

allowing for proper validation, before results can be considered for clinical use. In order to implement 

metabolic findings in clinical practice, randomized prospective clinical studies would be necessary to 

validate the value of using metabolic profiling in screening, cancer detection, prognostic evaluation and/or 

treatment monitoring.  Of high clinical value would also be patient monitoring for early detection of 

recurring disease. Such studies should aim to demonstrate diagnostic superiority of metabolic profiling on 

a patient-by-patient basis compared to existing diagnostic tools, and must be rigorously designed with 
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respect to collection of samples, NMR analysis and processing of the metabolic data. Furthermore, 

controlled preclinical experiments are necessary to provide mechanistic explanations for the changes in 

metabolic profiles at different stages of the disease. However, if a model is validated in a sufficiently large, 

representative and relevant population, it can be argued that the model can have clinical implications 

even if the metabolic differences are not mechanistically understood. Several machine learning methods, 

such as neural networks and random forest classifiers, focus on predictive performance, and do not yield 

easily interpretable models. However, such approaches pose important challenges, including possibly 

stagnating the generation of biomedical knowledge, and not knowing whether the model bases its 

decisions on statistically associated “red herrings”, as opposed to relevant clinical factors.118 

 

While standardization of the NMR experiment itself is important for comparing results between 

metabolomics studies, there is also a need for standardized procedures when handling the resulting 

spectral data. It is well-known that different types of normalization emphasize different metabolites, and 

may in addition affect statistical classification accuracy.119 Another challenge with NMR is that different 

metabolites are quantified in different studies, and in several cases there is disagreement on the 

identification of peaks at the same ppm region, despite the fact that one of the strengths with NMR is the 

possibility to do safe metabolite identification.16 NMR-spectra from biofluids may contain hundreds 

(serum) to thousands (urine) of signals, and severe overlap pose major difficulties in quantification, even 

with developments in instrumentation such as higher magnetic field strengths and cryogenically cooled 

probes. Consequently, much of the NMR-based metabolomics literature only report semi-quantitative 

metabolite levels. A more standardized solution for this would be more extensive use of validated 

quantification softwares (Chenomx, AMIX etc) and algorithms such as BATMAN120 and Urine Shift 

Predictor.121  

 

Possible confounders affecting the metabolic profiles must also be considered, such as drugs. As shown 

in Figure 2, paracetamol intake will highly affect the NMR metabolic profiles of urine.122 If the disease 

state being investigated causes discomfort and pain, it is likely that the patients will be taking more of 

these drugs than the control group, and it is important to make sure that the metabolic differences 

measured between the groups are not a result of drug intake. Also for diseases that are highly correlated 

to external factors, such as lung cancer and smoking, it is important to be aware that exposure to these 

factors might affect the measured biofluid metabolism.  
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Collectively, the body of data suggests that it may be possible to develop biomarkers for cancer risk 

assessment, detection, diagnostics, and treatment monitoring using NMR metabolomics, as evidenced by 

the high classification accuracies of several of the above studies. Since biofluids in general mirrors the 

metabolic activity of the entire organism, mechanistic studies under controlled conditions (i.e. in relevant 

preclinical disease models) are needed if we are to understand the biological underpinnings of such 

metabolic signatures. Furthermore, it must be stressed that the metabolic signatures associated with 

disease progression probably depend on cancer type as well as other biological variables. This, combined 

with the effect of the statistical tools used to analyze spectroscopy data, emphasizes the need for rigorous 

validation of all proposed metabolic biomarkers.  
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Figures legends 

 

Figure 1: The metabolome of several biofluids (e.g. blood and urine) reflects the metabolic activity of the 

entire organism, which is influenced by a host of endogenous and exogenous factors. A selection of factors 

potentially affecting systemic metabolism is presented here. 

 

Figure 2: Representative NMR spectra of urine (A-B) and serum (C). Spectra shown in A and C were 

acquired from urine and serum, respectively, belonging to the same patient. The influence of medication 

on the urine NMR metabolic profile is exemplified in B, where large paracetamol-derived metabolite 

peaks can be observed. The urine spectra (A-B) are acquired using the NOESY sequence, while the serum 

spectrum (C) is acquired using CPMG. 1: 3-hydroxyisobutyrate; 2: 3-hydroxyisovalerate; 3: 

threonine/lactate; 4: 2-alfa-hydroxyisobutyrate; 5: alanine; 6: p-cresol sulfate; 7: citrate; 8: 

dimethylamine; 9: creatine; 10: creatinine; 11: trimethylamine-N-oxide (TMAO); 12: glycine; 13: 

hippurate; 14: trigonelline; 15: water; 16: 4-hydroxyphenylacetate; 17: phenylacetylglutamine; 18: 3-

indoxyl sulfate; 19: paracetamol-derived metabolites, 20: leucine; 21: valine; 22: isoleucine; 23: lipid; 24: 

lactate; 25: lysine; 26: acetate; 27: N-acetyl cysteine (NAC); 28: glutamate/glutamine; 29: pyruvate; 30: 

glutamine; 31: glucose; 32: tyrosine; 33: histidine; 34: phenylalanine. 

 

Figure 3: NMR metabolic profiling of biofluids may reflect several phases of cancer development, making 

it applicable for different purposes, from assessing the risk of future cancer development to detecting and 

characterizing existing cancer. The minimally-invasive nature makes metabolic profiling of biofluids a 

suitable tool for treatment monitoring.  
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