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Abstract

In this paper we apply some higher order symplectic numerical methods to analyze the

dynamics of 3-site Toda lattices (reduced to relative coordinates). We present benchmark

numerical simulations that has been generated from the HOMsPY (Higher Order Methods

in Python) library. These results provide detailed information of the underlying Hamiltonian

system. These numerical simulations reinforce the claim that the symplectic numerical

methods are highly accurate qualitatively and quantitatively when applied not only to Hamil-

tonian of the Toda lattices, but also to other physical models. Excepting exactly integrable

models, these symplectic numerical schemes are superior, efficient, energy preserving and

suitable for a long time integrations, unlike standard non-symplectic numerical methods

which lacks preservation of energy (and other constants of motion, when such exist).

1 Introduction

Hamiltonian equations of motion belong to a class of ordinary differential equations (ODEs)

which in general are difficult or mostly impossible to solve analytically. Consider a separable

Hamiltonian written in the form

Hðq; pÞ ¼
1

2
pTMpþ VðqÞ ¼ TðpÞ þ VðqÞ; ð1Þ

where T(p) is the non-relativistic kinetic energy, V(q) is the potential energy andM is the

inverse mass matrix. The autonomous Hamiltonian equations of motion constitute a system

of first order ordinary differential equations,

_qa ¼
@H
@pa

; _pa ¼ �
@H
@qa

; a ¼ 1; . . . N ð2Þ

where qa and pa are generalized coordinates of positions and momenta, respectively. The ” _”

denotes differentiation with respect to time t, and H =H(q, p). The initial conditions at t = 0
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can be written as,

qað0Þ ¼ qa
0
; pað0Þ ¼ pa0:

We define Eq (2) in abbreviated form as,

z ¼
q

p

 !

; rH ¼
@H=@qa

@H=@pa

 !

; ð3Þ

J ¼
0 I

� I 0

 !

; ð4Þ

where J is a skew-symmetric matrix. Further I and 0 represent the ðN �N Þ unit and zero

matrices, respectively. The compact conservative Hamiltonian system in differential form is,

_z ¼ J � 1rHðzÞ: ð5Þ

The above equations of motion are equivalent to Newton’s second law of mechanics with

conservative forces. The dynamics generated by these equations define, for each evolution

time, a mapping between regions of phase space. A general feature of these mappings is that

they preserve the volume of the regions being mapped (and some related properties, collec-

tively referred to as the symplectic structure). The standard non-symplectic numerical integra-

tors, that have been used to solve general initial value problems numerically, do not preserve

this qualitative behaviour, or the constants of motion for the system. Examples of such numeri-

cal integrators are the classical Runge-Kutta methods of different order, as found in standard

integration packages.

By contrast the geometrical numerical integrators have gained popularity in the scientific

community, due to their geometry preserving properties, in order to find qualitatively better

solutions to Hamiltonian problems. In physical systems energy preservation, symmetries,

time-reversal invariance, symplecticity, angular momentum, phase-space volume and dissipa-

tion are some key and crucial components to understand geometric properties. Detailed dis-

cussions of symplectic integrators with geometric properties have been given in [1–4].

Since the symplectic solvers have been widely accepted to be superior than the conventional

numerical methods for solving the Hamiltonian systems, Mushtaq et. al. [5] constructed a well

behaved class of higher order symplectic integrators schemes based on the extensions of the

Störmer-Verlet scheme for Hamiltonians like Eq (1). An overview of these extensions are pre-

sented in Section 3. In this paper, we apply these schemes to the Toda lattice models.

The new proposed (KiMoKi) schemes involve extensive calculations of higher order deriva-

tives of the Hamiltonian; hence it becomes a nightmare to do correct implementations manu-

ally. A collection of Python program HOMsPy (Higher Order Methods in Python) has been

developed and presented by Mushtaq and Olaussen [8] to overcome these cumbersome and

error-prone calculations for higher accuracy. More details, with implementation of many

applications, can be found tutorial on HOMsPY by Mushtaq [9].

The structure of the rest of this paper is as follows: In Section 2 we review the Toda lattice

models. These are integrable, nonlinear systems that have a number of extra constants of

motions beyond standard ones like energy and momentum. The form of these can be

described in a very consise manner by Eqs (7) and (8). In Section 3 we review the construction

of the KiMoKi class of symplectic numerical solvers. In Section 4 we present and discuss the

numerical simulations of the Toda lattice models by use of these methods. In Section 5 we
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conclude the main body of paper with brief remarks. Some technical details are delegated to

appendices.

2 Toda lattices

The periodic Toda lattice with N sites (or particles) can, in suitable dimensionless coordinates,

be specified by the Hamiltonian [10],

Hðq; pÞ ¼
1

2

XN

a¼1

p2

a þ
XN

a¼1

exp qa � qaþ1

� �
� 1

� �
; ð6Þ

where qa and pa are phase-space coordinates of positions and momenta respectively, and the

index a is interpreted modulo N (i.e., qNþ1 � q1). This mode belongs to a more general class

of lattice models where the nearest-neighbour potential, exp(q) − 1, is replaced by an arbitrary

function V(q). Another famous member of this class is the Fermi-Pasta-Ulam-Tsingou prob-

lem, with V(q) = q2/2 − αq3/3 + βq4/4. The original study by Fermi et. al. [11] only treated lin-

ear chains with fixed endpoints, and parameter choices for which αβ = 0.

Integrability is one of the most important properties of the Toda lattices. The model

describes a set of equal mass particles moving on a ring with exponentially decreasing nearest

neighbour interactions. The 2N phase-space coordinates can be used to define a symmetric,

periodic tridiagonal N �N (time dependent) matrix,

L ¼

p1 v1 0 � � � vN

v1 p2 v2 � � � 0

0 v2 p3 � � � 0

..

. ..
. . .

. . .
. ..

.

vN 0 � � � vN � 1 pN

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

; ð7Þ

where va = −e(qa−qa+1)/2. It was shown by Flaschka [12], using theory developed by Lax [13], that

the eigenvalues λa of L remain unchanged if the evolution qa(t), pa(t) is generated by the Ham-

iltonian of Eq (6). This means that all quantities

Cn �
XN

a¼1

l
n
a ¼ Tr Ln ð8Þ

are constants of motions. The first two are familiar, general expressions,

C1 ¼
XN

a¼1

pa � P ðtotal momentumÞ; ð9aÞ

1
2
C2 ¼

XN

a¼1

1
2
p2

a þ v
2

a

h i
¼ H þN total energyð Þ: ð9bÞ
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The third one is a special consequence of integrability,

C3 ¼
XN

a¼1

½p3

a þ 3paðv
2

a� 1
þ v2

aÞ� þ 6dN ;3 v1v2v3; ð9cÞ

where the last term is just an uninteresting constant, since v1v2v3 = 1 when N ¼ 3.

It may not be easy to discover a general prescription like the one above. Alternative meth-

ods to find additional conservation laws (when one suspects that such exists) are the more

brute force type of searches used by Göktaş et. al. [14] and Hohler et. al. [15]. They started by

deducing the general form of a possible conservation law, with unknown coefficients, and next

tried to explicitly solve for the coefficients with the help of computer algebra. This is a more

pedestrian and cumbersome approach, but may be more likely to succeed when applied to

models with unknown properties.

2.1 The 3-particle case

For N ¼ 3 it is simple to introduce center-of-mass and relative coordinates. A common physi-

cists choice is Jacobi coordinates with corresponding conjugate momenta (see Appendix A),

X ¼ 1

3
ðq1 þ q2 þ q2Þ; x1 ¼ q1 � q2; x2 ¼

1

2
q1 þ q2ð Þ � q3;

P ¼ p1 þ p2 þ p3; p1 ¼
1

2
p1 � p2ð Þ; p2 ¼

1

3
p1 þ p2 � 2p3ð Þ:

This separates the Hamiltonian into center-of-mass and internal contributions,

H ¼ 1

6
P2 þH?, with

H?ðx; πÞ ¼ p2
1
þ 3

4
p2

2
þ v2

1
þ v2

2
þ v2

3
� 3: ð10aÞ

In a similar manner we may rewrite C3 ¼
1

9
P3 þ 2PH? þ 3 C3? þ 6, with

C3? ¼ p
2
1
p2 �

1

4
p3

2
� p1ðv2

2
� v2

3
Þ þ p2 v2

1
� 1

2
ðv2

2
þ v2

3
Þ

� �
: ð10bÞ

A direct evaluation of dC3?/dt, using the Hamilton equations generated byH?, confirms that

it vanishes. I.e., that C3? indeed is a constant of motion.

The Hamiltonian of Eq (10a) can be rewritten by a canonical scale transformation,

ðp1; p2; x1; x2Þ ¼ � 1

4
p2;

1

2
ffiffi
3
p p1; � 4q2; 2

ffiffiffi
3
p
q1

� �
;

followed by a change of time and mass units (see Appendix B), t !
ffiffiffi
3
p
t,m! 1

8
m. This trans-

forms Eq (10a) to the expression used by Lunsford and Ford [16],

H?ðq; pÞ ¼ 1

2
ðp2

1
þp2

2
Þ þ 1

24
expð2q2þ2

ffiffiffi
3
p
q1Þ þ expð2q2 � 2

ffiffiffi
3
p
q1Þ þ expð� 4q2Þ � 3

� �
: ð11Þ

With the same transformations the conserved quantity of Eq (10b) can be expressed as

~C3? � � 96
ffiffiffi
3
p
C3?

¼ 8ðp2
1
� 3p2

2
Þp1 þ ðv2

3
þ v2

2
� 2v2

1
Þp1 þ

ffiffiffi
3
p
ðv2

3
� v2

2
Þp2:

ð12Þ

If the potential in Eq (11) is expanded to third order in the coordinates q1, q2, one obtains the

Henon-Heiles [17] Hamiltonian

HH� H ¼
1

2
p2

1
þ p2

2

� �
þ 1

2
q2

1
þ q2

2

� �
þ q2

1
q1

2
� 1

3
q3

2
:

This is the motivation for the form by Lunsford and Ford [16]. The KiMoKi solvers have
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already been implemented for the Henon-Heiles model by Mushtaq [9], and used to detect

chaotic and non-chaotic regions of that model. The former occur for oscillations of larger

amplitude, for which the higher order terms in the Toda lattice Hamiltonian become of impor-

tance. This explains why chaotic behaviour may occur in the Henon-Heiles model, but not in

the Toda lattice models (since they are integrable).

3 An overview to construct the higher order symplectic scheme

One idea for construction of a symplectic integrator for the evolution generated by a Hamilto-

nian,

H ¼ TðpÞ þ VðqÞ;

is to replace it with an iterated sequence of short-time evolutions generated by respectively T
(p) (moves, which changes q without changing p) and V(q) (kicks, which changes p without

changing q), since each of these are exactly integrable. This is the Störmer-Verlet scheme,

which in its symmetrized form has a global error scaling like the timestep squared, τ2. One way

to achieve higher accuracy is by replacing T and V by effective quantities, T! Teff and V!
Veff, in a systematic manner. The effective quantities will depend on the timestep τ, and the

wanted order N of accuracy, τN. In the kick-push-move-kick scheme proposed by Mushtaq et.
al. [5], Veff is still a function of q only (in addition to τ); hence it can still be treated a potential,

only slightly changed. Then this is no longer possible for Teff; it must depend on both p and q.

However, what is really needed is not the infinitesimal generator Teff(p, q; τ), but its corre-

sponding, sufficiently accurate, finite (but short) time generator G(q, P; τ). The latter can be

constructed in a systematic manner:

Gðq;PÞ ¼
XN

k¼0

Gkðq;PÞ t
k; ð13Þ

such that the transformation (q, p)! (Q, P) is defined by

pa ¼
@G
@qa

; ð14aÞ

Qa ¼
@G
@Pa

; ð14bÞ

which preserves the symplectic structure exactly, reproduces the time evolution generated by

Teff to order τN. Here Qa is shorten for qa(t + τ), and Pa shorten for pa(t + τ). The change in

momentum p (of order τ3—i.e. a gentle push) is then defined through an implicit equation

(but one which has turned out to be unproblematic to solve by iteration for all cases tried),

while the change in position q continues to be explicit. Hence, the evolution step generated by

G consists of amove, accompanied with a gentle push.

Define K such that 2K + 2 is the order of the method, where K = 1, 2, 3 and K = 0 corre-

sponds to the Störmer-Verlet scheme. One full time step with this modification for kick-push-
move-kick scheme is,

1. “Kick”:

qa ! qa; ð15aÞ

Higher order symplectic illustrative perspective
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pa ! pa �
t

2

@

@qa
XK

k¼0

V2kðqÞ; ð15bÞ

2. “Push”:

qa ! qa; ð15cÞ

Pa ¼
@

@qa
X2Kþ2

k¼0

tk Gkðq;PÞ: ð15dÞ

But Pa is unknown yet. We have to solve a nonlinear equation to find Pa. However our gen-

erating function takes the form,

Gðq;PÞ ¼ qa Pa þ
1

2
P2

a tþ
X2Kþ2

k¼3

tk Gkðq;PÞ: ð15eÞ

Hence Eq (14a) can be written as,

pa ¼ Pa þ
@

@qa
X2Kþ2

k¼3

tk Gkðq;PÞ

or in a form suitable for an iterative solution,

Pa ¼ pa �
@

@qa
X2Kþ2

k¼3

tk Gkðq;PÞ

3. “Move”:

qa ! Qa ¼
@

@Pa

X2Kþ2

k¼0

tk Gkðq;PÞ; ð15fÞ

Pa ! Pa: ð15gÞ

4. “Kick”:

qa ! qa; ð15hÞ

pa ! pa �
t

2

@

@qa
XK

k¼0

V2kðqÞ: ð15iÞ

The explicit expressions for V2k and Gk were published by Mushtaq et. al. in ref [5]. For

convenience, on request from a reviewer, they are included in Appendix D.

To implement these higher order methods for our Toda lattice Hamiltonian, we define the

model by the code in Listing 1 of Appendix C, and use programs in the HOMsPy package to

Higher order symplectic illustrative perspective
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automatically generate all the KiMoKi solver code. The complete code package is available as

“Supporting information” for this paper.

4 Numerical simulations with HOMsPy

As has been mentioned before, numerical simulations on several Hamiltonian systems with

the algorithm outlined by Eq (15) has compared favourable to conventional non-symplectic

methods. We here present the results of additional simulations, of the model defined by Eq

(11), which strengthen this evidence further.

As mentioned earlier that we implemented these numerical schemes as Python routines in

HOMsPy. Python is an open source programming language which has gained increasing pop-

ularity in general, including (successful) applications for scientific computing. It is fast and

easy to code and use for small “prototyping” tasks, since there is no need for explicit declara-

tion of variables or a separate compilation cycle. It also comes with a huge repository of pack-

ages covering a large area of applications. Python is equipped with other features which

facilitates development and encourages documentation of large well-structured program sys-

tems. Obviously, as an interpreted language, native Python is not suitable for performing

extended numerical computations. But very often the code for such computations reduces to

calls to pre-compiled library routines.

4.1 Preservation of constants of motion

We have already stressed the advantage of using symplectic solvers for numerical analysis of

Hamiltonian models. This is most important when simulating long time series, where conven-

tional numerical algorithms (like the Runge-Kutta methods usually implemented in numerical

packages) can lead to a continuous degradation of important qualitative properties of Hamilto-

nian systems, like symplecticity (preservation of phase space volume and related quantities)

and constants of motion. These methods have no built-in mechanisms for preserving such

properties, as is illustrated in this subsection.

As the name suggests, symplectic solvers preserve symplecticity exactly. There will, of

course, always be errors caused by numerical roundoff, but such errors do not depend on the

accuracy of the method, only on the numerical precision being used. Symplectic solvers do not

preserve most other constants of motion exactly, but the error (deviation from the initial

value) will oscillate in a narrow band around zero. The width of this band scales with the accu-

racy of the method (i.e., order and timestep) in the expected way. For the symplectic (KiMoKi)
algorithms used in this paper, applicable to Hamiltonians of the formH = T(p) + V(q), a con-

stant of motion is preserved exactly if it is conserved separately by T and V. In this paper, one

such example is the total momentum P of Eq (9a), whileH of Eq (9b) and C3 Eq (9c) are not.

It has been proven that symplectic integrators that preserve the Hamiltonian must actually

be exact solvers (modulo errors introduced by finite numerical precision). There exist special

methods for integrable models, as f.i. discussed by Kuznetsov and Vanhaecke [6] and Zullo

[7]. The KiMoKi integrators, aimed for a more general class of problems, are not able to pro-

vide exact solutions, at least not when the conventional coordinates are used.

In this subsection we compare the KiMoKi solvers of order 2 and 4 with the RK23 (order 2)

and RK45 (order 4) Runge-Kutta methods available through the solve_ivp routine in the

scipy.integrate package, for the same values of the timestep τ (for the Runge-Kutta

solvers, τ is themaximum timestep).

There are additional methods available in solve_ivp, but they are—for this comparison—

inferior to the Runge-Kutta ones.

Higher order symplectic illustrative perspective
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As can be seen from Figs 1 and 2, for short times the Runge-Kutta accuracy may very well

be better than the KiMoKi ones, but as time increases it steadily becomes worse. By comparing

Figs 1 and 2, we note that the time interval in which the Runge-Kutta methods are competitive

becomes larger with decreasing τ.

4.2 Poincaré section technique (surface-of-section)

The reduced 3-site Toda lattice model we investigate has 4 degrees of freedom, z� (q1, q2, p1,

p2). Even in this rather simple case it is a challenge to present and visualize how the solutions

Fig 1. This figure illustrates how well exactly conserved quantities are preserved by our symplectic numerical

solvers, compared to the standard Runge-Kutta methods implemented in scipy.integrate.solve_ivp.

For the 3-site Toda lattice, reduced to relative coordinates, the constants of motion are the HamiltonianH? of Eq (11)

and C3? of Eq (12). Here ΔH? = [H?(t) −H?(0)]/H?(0), calculated from the numerical solutions, and similar for

ΔC3?. Here τ is the fixed timestep of the sympletic solvers.

https://doi.org/10.1371/journal.pone.0215054.g001
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behave. One, quite popular and efficient method, is the Poincaré section technique (also

known as surface-of-section), introduced by Henri Poincaré the early 20th century. Generally,

for cases where energy is conserved,H(q1, q2, p1, p2) =H0, each orbit is restricted to a 3-dimen-

sional constant energy surface of 4-dimensional phase space. The points where one coordinate

is kept fixed (for example q2 = 0) define another, in general independent, 3-dimensional sur-

face. The intersection of these two surfaces is therefore two-dimensional. It can be specified by

two coordinates, for example (q1, p1). In this example, the points (q1(tn), p1(tn)) where the con-

stant energy orbit crosses the q2 = 0 surface are therefore easy to visualize in two-dimensional

plots. The times tn of crossings, and the order of repeated crossings, will be lost (or visualized

by other means).

Fig 2. See the caption to Fig 1.

https://doi.org/10.1371/journal.pone.0215054.g002
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Repeated crossings will generate a pattern which indicates the nature of the dynamics. In

our case, where there is an additional constant of motion (C3?), repeated crossings will appear

on two smooth curves—one for each direction in which the (q2 = 0)-plane is crossed, deter-

mined by the initial conditions. For ergodic motion, the crossings should spread smoothly

over or more regions of the plane, according to density predicted by classical statistical

mechanics. According to KAM theory, perturbations of integrable models are expected to lie

in-between: For a finite fraction of initial condition, the crossings will appear on a smooth

curve, while the rest will appear to be spread over a region of finite area.

Cheb-Terrab and de Oliveira [18] have written a MapleV R.3 routine for visualizing Hamil-

tonian dynamics by the Poincaré section technique. They employ the Toda lattice model for

usage demonstration. We have implemented their algorithm in python, in combination with

the KiMoKi solvers. The algorithm uses linear interpolation to determine crossings; hence it is

of limited accuracy and is best used with short time-steps τ. (All our code could have been

implemented in Maple, but this framework is not freely available to all.)

Fig 3 shows 4000 crossings of the orbit with the (q1 = 0)-plane, 2000 in each direction, using

KiMoKi solvers of order 2 (left panel) and 4 (right panel) with timestep τ = 0.005. For the left

panel the initial condition is z0 = (0, 1, 9.95, 10). The corresponding constants of motions are

H0 = 100, C3? = −15852.7. For the right panel the initial condition is z0 = (0, 1, 19.98, 10). The

corresponding constants of motion areH0 = 250, C3? = 16117.7.

Fig 4 shows 4000 crossings of the orbit with the (q2 = 0)-plane, 2000 in each direction, using

a KiMoKi solver of order 6 with timestep τ = 0.01. For the left panel the initial condition is z0 =

(1, 0, 22, 5.05). The corresponding constants of motion areH0 = 256, C3? = 72099.45. For the

right panel z0 = (0, 0.1, 1.41, 0.1). The corresponding constants of motion areH0 = 1, C3? =

23.51.

Fig 3. Poincaré sections for an orbit of the reduced 3-site Toda lattice model of Eq (11). Each panel shows 4000

crossings of the (q1 = 0)-plane, 2000 in the positive direction (p1 > 0, marked blue), and 2000 in the negative direction

(p1 < 0, marked red). The dynamics between each crossing is determined by KiMoKi solvers of order 2 (left panel)

resp. 4 (right panel), with timestep τ = 0.005. The initial condition is z0 = (0, 1, 9.95073, 10), withH0 = 100, C3? =

−15852.72982, for the left panel, and z0 = (0, 1, 19.97541, 10), withH0 = 250, C3? = 16117.70199, for the right panel.

https://doi.org/10.1371/journal.pone.0215054.g003
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Fig 5 shows 4 000 crossings of the orbit with the (q2 = 0)-plane (left panel) or the (q1 = 0)-

plane (right panel), 2 000 in each direction, using a KiMoKi solver of order 8 with timestep τ =

0.05. For the left panel the initial condition is z0 = (0.1, 1, 0.1, 1.41). The corresponding con-

stants of motion areH0 = 1, C3? = −6.45. For the right panel z0 = (0, 1, 6.93, 1). The corre-

sponding constants of motion areH0 = 25, C3? = 2597.68.

4.3 3D camera plots of each orbit

An alternative method to visualize the solution behaviour is to make a projection to a 3-dimen-

sional subspace, and display the orbit in a “3-dimensional” plot. This is best done in interactive

sessions, since this allows one to vary the viewing direction over all possible spherical angles.

Snapshots examples from such matplotlib sessions are shown in Figs 6 and 7, for phase

space orbits {z(t)|0� t� 2 000}. Each plot displays quasi-periodic motion on a two-dimen-

sional surface determined by the initial value z0 (or more precisely the corresponding con-

stants of motion, H0 and C3?).

4.4 Behavior of energy error

We have earlier in Section 4.1 and Figs 1 and 2 shown that the long time behaviour of the

KiMoKi solvers are better than the standard Runge-Kutta solvers of the same order, with

respect to preservation of constants of motion. In Fig 8 we show that this behaviour can be

observed for all orders N of the KiMoKi solvers, with the accuracy increasing with N for a fixed

timestep τ. As can be seen, the errors keep varying in an oscillating manner, with no noticeable

increase in amplitude with time.

In Fig 9 we further show that the error scales with order N and timestep τ in the expected

manner. I.e., proportional with τN, with a N-dependent constant of proportionality.

Fig 4. Poincaré sections for an orbit of the reduced 3-site Toda lattice model of Eq (11). Each panel shows 4000

crossings of the (q2 = 0)-plane, 2000 in the positive direction (p2 > 0, marked blue), and 2000 in the negative direction

(p2 < 0, marked red). The dynamics between each crossing is determined by a KiMoKi solver of order 6, with timestep

τ = 0.01. The initial condition is z0 = (1, 0, 22, 5.04993), withH0 = 256, C3? = 72099.45264, for the left panel, and z0 =

(0, 0.1, 1.40733), withH0 = 1, C3? = 23.51188 for the right panel.

https://doi.org/10.1371/journal.pone.0215054.g004
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Fig 6. A quasi-periodic orbit z(t) for times 0� t� 2000, found by the KiMoKi solvers of order N = 2 (left panel)

and order N = 4 (right panel) with timestep τ = 0.1, projected to respectively the (q1, q2, p2) (left) and (q1, q2, p1)

(right) subspaces. The initial condition z0 = (0.1, 0, 0.1, 1.40709), withH0 = 1, C3? = −6.45412. The viewing angle is set

to (ϑ, φ) = (68, 78) (left), respectively (ϑ, φ) = (−128, −8). Here ϑ is the elevation angle (elev) and φ the azimuth angle

(azim).

https://doi.org/10.1371/journal.pone.0215054.g006

Fig 5. Poincaré sections for an orbit of the reduced 3-site Toda lattice model of Eq (11). The left panel shows 4 000

crossings of the (q2 = 0)-plane, 2 000 in the positive direction (p2 > 0, marked blue) and 2 000 in the negative direction

(p2 < 0, marked red). The right panel similarly shows 4 000 crossings of the (q1 = 0)-plane. The dynamics between each

crossing is determined by a KiMoKi solver of order 8, with timestep τ = 0.05. The initial condition is z0 = (0.1, 0, 0.1,

1.40709), withH0 = 1, C3? = −6.45412, for the left panel, and z0 = (0, 1, 6.92943, 1), withH0 = 25, C3? = 2597.68431, for

the right panel.

https://doi.org/10.1371/journal.pone.0215054.g005

Higher order symplectic illustrative perspective

PLOS ONE | https://doi.org/10.1371/journal.pone.0215054 April 18, 2019 12 / 22

https://doi.org/10.1371/journal.pone.0215054.g006
https://doi.org/10.1371/journal.pone.0215054.g005
https://doi.org/10.1371/journal.pone.0215054


5 Concluding remarks

In this paper, the KiMoKi algorithms for numerical solutions of the Hamilton equations for a

Toda lattice model have been discussed and tested. These methods preserve the symplectic

structure exactly (within the accuracy given by the employed numerical precision); For order

N = 2 the method is equal to the Störmer-Verlet scheme, with long-time accuracy of order τ2;

it has been extended to methods of order τ4, τ6 and τ8. As demonstrated, the method works as

expected (sometimes even better than expected) for the reduced 3-site Toda lattice model.

A brief summary of this work is as follows:

• The symplectic property is preserved provided we solve the non-linear Eq (14a) for push
steps to sufficient accuracy.

• Without prior knowledge the quasi-periodic nature of the solutions can easily be detected

from 3D plots of the orbits (projected to 3-dimensional subspaces). Further (but not inde-

pendent) confirmation can be found by investigating the behaviour of the Poincaré section

of each orbit.

• Although the KiMoKi solver do not preserve constants of motion exactly, the time oscillating

error in these quantities do not systematically increase in “amplitude” with time. This ampli-

tude can be reduced in a predictable manner by increasing the order N of the method, or

decreasing the timestep τ, or both.

A Jacobi coordinates for few-body systems

Consider first a translation invariant Hamiltonian system with two non-relativistic particles of

massm1 resp.m2, with position coordinates q1 resp. q2. To exploit translation invariance it is

Fig 7. A quasi-periodic orbit z(t) for times 0� t� 2000, found by the KiMoKi solvers of order N = 6 (left panel)

and order N = 8 (right panel) with timestep τ = 0.1, projected to respectively the (q1, q2, p2) (left) and (q1, q2, p1)

(right) subspaces. The initial condition z0 = (0.1, 0, 0.1, 1.40709), withH0 = 1, C3? = −6.45412. The viewing angle is set

to (ϑ, φ) = (15, −87) (left), respectively (ϑ, φ) = (−128, 133). Here ϑ is the elevation angle (elev) and φ the azimuth

angle (azim).

https://doi.org/10.1371/journal.pone.0215054.g007
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common to introduce center-of-mass and relative coordinates,

X

x

 !

¼
m1 m2

1 � 1

 ! q1

q
2

 !

; ð16aÞ

where μj =mj /(m1 +m2), for j = 1, 2. For common systems with conjugate momenta

p1 ¼ m1
_q1 and p2 ¼ m2

_q2, the new momenta become

P

π

 !

¼
1 1

m2 � m1

 ! p
1

p2

 !

: ð16bÞ

Fig 8. Long time energy error for solutions of a Toda lattice model computed by the KiMoKi solvers. An orbit z(t)
with initial value z0 = (0.1, 0, 0.1, 1.40709), corrsponding toH0 = 1 and C3? = −6.45412. The solution is computed for

times 0� t� 5 000 with timestep τ = 0.1; for better visibility only the last hundred time units are plotted.

https://doi.org/10.1371/journal.pone.0215054.g008
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The linear transformation of Eq (16) is canonical (because the matricesMq in Eq (16a) andMp

in Eq (16b) are related byMt
p ¼ M

� 1
q ) and maintains the diagonal form of the kinetic energy.

In the equal-mass case, m1 ¼ m2 ¼
1

2
, the matricesMq andMp do not become orthogonal. The

latter, which can be obtained by scale transformations of X and x, may look simpler and more

natural from a mathematical point of view. However, this would obscure physical interpreta-

tion of the coordinates.

The inverse of Eq (16) is

q
1

q2

 !

¼
1 m2

1 � m1

 ! X

x

 !

; ð17aÞ

p
1

p2

 !

¼
m1 1

m2 � 1

 ! P

π

 !

: ð17bÞ

The extension to three particles is obvious for the center-of-mass coordinate, and one may

further maintain the previous definition of one relative coordinate. As a second relative

Fig 9. Scaled energy errors for some higher order symplectic integrators, when applied to the reduced 3-site Toda

lattice Hamiltonian of Eq (11). The plots are for an orbit z(t) with initial value (0.1, 0, 0.1, 1.40709), corresponding to

H0 = 1, C3? = −6.45412, computed with KiMoKi solvers of ordersN = 2, 4, 6, 8, and timesteps τ = 0.025, 0.05, and 0.1.

https://doi.org/10.1371/journal.pone.0215054.g009
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coordinate, select the distance between the center-of mass of the first two particles, and the

third one. Hence

X

x1

x2

0

B
B
B
@

1

C
C
C
A
¼

m1 m2 m3

1 � 1 0

~m1 ~m2 � 1

0

B
B
B
@

1

C
C
C
A

q
1

q2

q
3

0

B
B
B
@

1

C
C
C
A
; ð18aÞ

where now μj =mj/(m1 +m2 +m3) for j = 1, 2, 3 and ~m j ¼ mj=ðm1 þm2Þ for j = 1, 2. The new

conjugate momenta becomes respectively

P

π1

π2

0

B
B
B
@

1

C
C
C
A
¼

1 1 1

~m2 � ~m1 0

m3 m3 � m1 � m2

0

B
B
B
@

1

C
C
C
A

p1

p
2

p3

0

B
B
B
@

1

C
C
C
A

ð18bÞ

The inverse of Eq (18) is

q1

q2

q
3

0

B
B
B
@

1

C
C
C
A
¼

1 ~m2 m3

1 � ~m1 m3

1 0 � m1 � m2

0

B
B
B
@

1

C
C
C
A

X

x1

x2

0

B
B
B
@

1

C
C
C
A
; ð19aÞ

p
1

p2

p3

0

B
B
B
@

1

C
C
C
A
¼

m1 1 ~m1

m2 � 1 ~m2

m3 0 � 1

0

B
B
B
@

1

C
C
C
A

P

π1

π2

0

B
B
B
@

1

C
C
C
A
: ð19bÞ

For the case of equal masses, mj ¼
1

3
and ~m j ¼

1

2
.

B Unit transformations

Most quantities in physical expressions, like the Hamiltonian

H ¼
1

2m
p2 þ VðqÞ;

are dimensionful. I.e., they carry units of time, length, and mass. When expressed in dimen-

sionless form like in Eq (6) or Eq (10a), this means that the dimensionless time t, length ℓ, and

massm actually are expressed in terms of some reference quantities t0, ℓ0,m0. I.e., a dimen-

sionless potential energy V(q) = e(qa−qa + 1) must be interpreted to mean ðm0‘
2

0
=t2

0
Þeðqa � qaþ1Þ=‘0 ,

and the factor 1

2
in the dimensionless kinetic energy must be interpreted to mean 1

2
m� 1

0
. In

“units where t0 = ℓ0 =m0 = 1”. Consider now a change of reference units to

ð~t0;~‘0; ~m0Þ ¼ ðt0=lt; ‘0=l‘;m0=lmÞ; ð20Þ

with all physical quantities fixed. It is rather obvious that dimensionless coordinates will
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change as

t ! ~t ¼ ltt; ð21aÞ

q! ~q ¼ lqq; ð21bÞ

p! ~p ¼ ðlml‘=ltÞp: ð21cÞ

In this context, the statement t! λt t is shorthand for i) a change of reference units

t0 ! ~t0 ¼ t0=lt, implying ii) the transformation of Eq (21a), often followed by iii) a symbol

renaming back to the original one, ~t ! t.
The corresponding transformations of V(q) and 1

2
p2 are less obvious,

VðqÞ ! ~V ð~qÞ ¼ ðlml
2

‘
=l

2

t ÞVðlq~qÞ; ð21dÞ

1

2
p2 ! 1

2
l
� 1

m ~p2; ð21eÞ

and cannot be deduced from the dimensionless expressions without knowledge of which phys-

ical quantity they represent (energy in this case).

C Code snippets

In this section we provide some information of how the routines in the HOMsPY package can

be used to create the symplectic solvers for the Toda lattice Hamiltonian, and how these solvers

can be used to solve an initial value problem from provided initial data.

The package itself can downloaded from the CPC Program Library at http://cpc.cs.qub.ac.

uk/summaries/ADTV, by providing the Catalogue Id AESD v1.0. The code, with accompa-

nying information which need not be repeated here, is found by unpacking the downloaded .
tar-file. Since the package is written Python 2.7, we provide code snippets illustrating how

the solvers can be accessed by Python 3 code.

One way to continue is to add the code in Listing 1 to the examples/makeExamples.
py file. But for our project we made a new folder TodaLattice, and added it to a new file

makeTodaLattices.py.

Listing 1. Constructing KiMoKi solvers for a Toda lattice model

def makeTodaLattices():
# Choose names for coordinates and momenta
q1, q2, p1, p2 = sympy.symbols([’q1’, ’q2’, ’p1’, ’p2’])
qvars = [q1, q2]; pvars = [p1, p2]
# Define potential in terms of coordinates
V = (exp(2�q2+2�sqrt(3)�q1) + exp(2�q2-2�sqrt(3)�q1) +

exp(-4�q2) − 3)/24
kimoki.makeModules(’TodaLattices’, V, qvars, pvars, DP = True,

MP = True, MAXORDER = 8, VERBOSE = True)

By running this code several files will be created. The most important one is TodaLat-
tices.py, which contains the KiMoKi solvers up to 8th order. This file should not be modi-

fied manually; is not intended to be studied in detail by humans. But (in particular) the

multiprecision code should be checked against unintended conversions to floating point num-

bers. F.i., if the final division /24 in the above definition of V is replaced by a pre-multiplica-

tion (1/24)�, then this factor will be converted to a double precision number at an early

stage, and thereby pollute all multiprecision accuracy.
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The file runTodaLattices.py provide some usage examples, intended to be modified

and extended. Since this file will be overwritten the next time makeTodaLattices is exe-

cuted, it is recommended to work on a renamed copy.

The current version of theHOMsPY package, with all its output, is written in Python 2.7.

But functions can be accessed from Python 3 through an interface like the one in Listing 2.

Data exchange via pickle files may seem primitive, but this has the advantage of documenting

(preserving) the arguments and data being used.

Listing 2. Python 3 code calling Python 2.7 function.

def get_ivpsoln(��kwargs):
@@@Solve an initial value problem by use of KiMoKi.
The KiMoKi solver routines are currently written in Python2.7. This
is a simple Python 3 interface using ’subprocess.call()’. Arguments
and results are communicated via pickle files, for which some care
with protocol and encoding is required.@@@
# Default arguments:
args = {’argfile’: ’ivpargs’, ’soln’: ’ivpsoln’,

’tau’: 0.05, ’tmax’: 50., ’order’: 4,
’z0’: (0., 0., 5., 5.)}

args = {��args, ��kwargs} # Override defaults
if not os.path.isfile(f@./{args[’soln’]}.pkl@):
with open(f@{args[’argfile’]}.pkl@, ’wb’) as outfile:
pickle.dump(args, outfile, protocol = 2)

subprocess.call([@python2@, @./run todalattices.py@,
@solve_ivp@, args[’argfile’]])

with open(f@{args[’soln’]}.pkl@, ’rb’) as infile:
soln = pickle.load(infile, encoding=’latin1’)

return soln

On the Python 2.7 side we copied runTodaLattices.py to run_todalattices.
py. All existing functions except computeSolution(. . .) can be deleted, and the function

in Listing 3 must be added.

Listing 3. Python 2.7 function called from Python 3.

def solve_ivp(argfile):
@@@Interface to python3 code through a subprocess call.
Calling arguments (’args’), and the returned solution (’zt’) are
communicated through pickle files.@@@
# All arguments with default values
args = {’tmax’: 50., ’tau’: 0.05, ’order’: 4,

’z0’: (0., 0., 5., 5.), ’soln’: @ivpsoln@}
with open(argfile, ’rb’) as infile:
kwargs = pickle.load(infile)

for key, value in kwargs.items():
args[key] = value # Override defaults

tmax, tau = args[’tmax’], args[’tau’]
nMax = 1+int(tmax/tau)
z0 = numpy.array(args[’z0’])
zt = computeSolution(z0, tau, args[’order’], nMax)
with open(@%s.pkl@ % args[0soln0], 0wb0) as outfile:
pickle.dump(zt, outfile)

Further, the last two blocks in run_todalattices.py were changed to the one of List-

ing 4.

Listing 4. Python 2.7 main entry point

funcs = {’solve_ivp’: solve_ivp, ’find_sections’: find_sections
if __name__ == @__main__@:
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@@@Execute the function named by sys.argv[1], with argument sys.argv
[2].
@@@

argc = len(sys.argv)
func = sys.argv[1] if argc > 1 else @solve_ivp@
argfile = @%s.pkl@ % sys.argv[2] if argc > 2 else @args.pkl@
funcs[func](argfile)

D Explicit expressions

On request from a reviewer we here for convenience include the explicit expressions used in

the algorithms of Eq (15). The rest of this section is an essentially unedited copy of a section

with the same name, previously published by Mushtaq and Olaussen [8]:

Explicit (but compact) expressions for the terms of order τ2, τ4, and τ6 were given in [5, 19].

With the notation,

@a �
@

@qa
; @

a
� Mab@b; pa � Mabpb; D � pa@

a
; �D � ð@aVÞ@

a
;

where the Einstein summation convention is employed (an index which occur twice, once in

lower position and once in upper position, are implicitly summed over all available values; i.e,

Mab@b� ∑b Mab@b—we generally use the matrixM to rise an index from lower to upper posi-

tion), they are

T2 ¼ �
1

12
D2Vt2; ð22aÞ

T4 ¼
1

720
D4 � 9�DD2 þ 3D�Dð ÞVt4; ð22bÞ

T6 ¼ �
1

60480
ð2D6 � 40 �DD4 þ 46D�DD3 � 15D2 �DD2

þ54 �D2D2 � 9 �DD�DD � 42D�D2Dþ 12D2 �D2ÞVt6

ð22cÞ

V2 ¼
1

24
�DVt2; ð22dÞ

V4 ¼
1

480
�D2Vt4; ð22eÞ

V6 ¼
1

161280
17 �D3 � 10 �D3ð ÞVt6: ð22fÞ

In this last line we have introduced

�D3 � ð@aVÞð@bVÞð@cVÞ@
a
@
b
@
c
: ð23Þ

The kick-steps can still be integrated directly, since the V2k’s only depend on q. However, the

T2k’s (for k� 1) in general depend on both q and p; hence themove-steps cannot be integrated

directly. To overcome this problem we introduce a generating function

Gðq;P; tÞ ¼
X

0�k�N

Gkðq;PÞ t
k

ð24Þ
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such that the transformation (q, p)! (Q, P) defined implicitly by

Qa ¼
@G
@Pa

; pa ¼
@G
@qa

; ð25Þ

preserves the symplectic structure exactly, and reproduce the time evolution generated by Teff

to order τN. Here Qa is shorthand for qa(t + τ), and Pa shorthand for pa(t + τ). The explicit

expressions for the coefficients Gk are

G0 ¼ qaPa; ð26aÞ

G1 ¼
1

2
PaPa; ð26bÞ

G2 ¼ 0; ð26cÞ

G3 ¼ �
1

12
D2V; ð26dÞ

G4 ¼ �
1

24
D3V; ð26eÞ

G5 ¼ �
1

240
3 D4

þ 3 �DD2
� D�DD

� �
V; ð26fÞ

G6 ¼ �
1

720
2 D5

þ 8 �DD3
� 5 D�DD2

� �
V; ð26gÞ

G7 ¼ �
1

20160
ð10 D6

þ 10 �DD4
þ 90 D�DD3

� 75 D2 �DD2

þ 18 �D2D2 � 3 �DD�DD � 14 D�D2Dþ 4 D2 �D2ÞV;
ð26hÞ

G8 ¼ �
1

40320
ð3 D7

� 87 �DD5
þ 231 D�DD4

� 133 D2 �DD3
þ 63 �D2D3

� 3 D�D2D2
� 21 D2 �D2Dþ 4 D3 �D2 � 63 �DD�DD2

þ 25 D�DD�DDÞV:

ð26iÞ

The Eqs (22,26) define the kick-move-kick scheme for a general potential V. If one uses all

the listed terms the local error becomes of order τ9, and the scheme will respect long-time con-

servation of energy to order τ8.
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