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Gupta S, Fečkaninová A, Lokesh J,
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Probiotics, the live microbial strains incorporated as dietary supplements, are known to

provide health benefits to the host. These live microbes manipulate the gut microbial

community by suppressing the growth of certain intestinal microbes while enhancing the

establishment of some others. Lactic acid bacteria (LAB) have been widely studied as

probiotics; in this study we have elucidated the effects of two fish-derived LAB types (RII

and RIII) on the distal intestinal microbial communities of Atlantic salmon (Salmo salar).

We employed high-throughput 16S rRNA gene amplicon sequencing to investigate the

bacterial communities in the distal intestinal content and mucus of Atlantic salmon fed

diets coated with the LABs or that did not have microbes included in it. Our results

show that the supplementation of the microbes shifts the intestinal microbial profile

differentially. LAB supplementation did not cause any significant alterations in the alpha

diversity of the intestinal content bacteria but RIII feeding increased the bacterial diversity

in the intestinal mucus of the fish. Beta diversity analysis revealed significant differences

between the bacterial compositions of the control and LAB-fed groups. Lactobacillus

was the dominant genus in LAB-fed fish. A few members of the phyla Tenericutes,

Proteobacteria, Actinobacteria, and Spirochaetes were also found to be abundant in the

LAB-fed groups. Furthermore, the bacterial association network analysis showed that

the co-occurrence pattern of bacteria of the three study groups were different. Dietary

probiotics can modulate the composition and interaction of the intestinal microbiota of

Atlantic salmon.

Keywords: fish, Salmo salar, feed additive, probiotics, intestinal bacteria, Lactobacillus, microbiota, amplicon

sequencing

INTRODUCTION

The ecological community of microorganisms that reside (Marchesi and Ravel, 2015) in the
gastrointestinal tract (GIT) of an organism is referred to as the gut microbiota (Lozupone et al.,
2012). The GIT of a healthy human harbors a dense (Kelsen and Wu, 2012; Marchesi et al.,
2016) and diverse population (Lozupone et al., 2012) of commensal microorganisms, which offer
many benefits to the host, including immune homeostasis and health maintenance (Sommer and
Bäckhed, 2013). These commensal gut bacteria are also known to aid in amino-acid production
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(Lin et al., 2017), nutrient metabolism and absorption (Morowitz
et al., 2011; Semova et al., 2012), vitamin and bioactivemetabolite’
synthesis (Cummings and Macfarlane, 1997; LeBlanc et al.,
2013), and pathogen displacement (Kamada et al., 2013). An
imbalance in the gastrointestinal microbial composition can lead
to immune-mediated diseases (Petersen and Round, 2014). A
healthy gut bacterial assembly is essential for the well-being of
the host organisms including fish, the microbiome of which is
shaped by environment- and host-related factors (Wong and
Rawls, 2012; Eichmiller et al., 2016; Lokesh et al., 2018).

Probiotics are “living bacteria,” and when they are
administered as supplements in the right amount they can
confer health benefits to humans (FAO and WHO, 2006), by
targeting, among others intestinal health through stimulation
of intestinal epithelial cell proliferation and differentiation,
fortification of intestinal barrier and immunomodulation
(Gareau et al., 2010; Thomas and Versalovic, 2010; Hemarajata
and Versalovic, 2013). Probiotics also have both direct and
indirect effects on the intestinal microbial composition
and diversity, and global host metabolic functions (Scott
et al., 2015). These live bacteria produce antimicrobial
compounds that suppress the growth of other microorganisms
and compete for their receptors and binding sites (Spinler
et al., 2008; O’Shea et al., 2012); thus altering the gut
microbiota (Collado et al., 2007). Members of the genera
Lactobacillus and Bifidobacterium are the most commonly
used probiotic organisms for humans (O’Toole and Cooney,
2008).

Lactic acid bacteria (LAB) maintain intestinal health by
producing lactic acid that can be utilized by short-chain fatty
acids (SCFAs)-producing microorganisms. SCFAs (particularly
acetate, propionate and butyrate) contribute to host health
maintenance; for example, butyrate is used as energy source by
the intestinal epithelial cells and also have anti-inflammatory
effects on the host cells (Louis et al., 2014). LAB that is generally
found in the GIT of endothermic animals have been extensively
investigated and their benefits have been reviewed by many
researchers (Pavan et al., 2003; Masood et al., 2011; Yang et al.,
2015; Karamese et al., 2016). The importance of fish gut-
dwelling LAB in aquaculture has been described in other reviews
(Ringø and Gatesoupe, 1998; Gatesoupe, 2008). Lactobacillus
that colonize the intestinal regions of fish are able to evoke
immune responses and impart protection against diseases (He
et al., 2017).

Feeding diets supplemented with beneficial bacteria such
as LAB is being considered as an alternative approach to
control diseases in farmed fish (Martínez Cruz et al., 2012;
Fečkaninová et al., 2017; Rodriguez-Nogales et al., 2017).
Not many studies in fish have employed high-throughput
sequencing techniques to understand the changes in bacterial
communities following LAB feeding. In this study, we examined
the ability of Lactobacillus to modulate the distal intestinal
microbiota of Atlantic salmon, a farmed salmonid fish.
In addition, we describe the differences in the topology
of co-occurrence networks associated with the intestinal
bacteria of Atlantic salmon offered feeds with and without
Lactobacillus.

MATERIALS AND METHODS

Ethics Statements
This study was approved by the Norwegian Animal
Research Authority, FDU (Forsøksdyrutvalget ID-7898).
Fish handling and sampling procedures were in compliance
with the description in LOVDATA. The rearing water was
treated with UV rays to remove substances that could be harmful
to the fish. Optimum values for water salinity, oxygen and
nitrogen concentration were maintained in the rearing tanks.
The temperature of the fish rearing hall was kept stable during
the entire feeding experiment.

Test Probiotics, Feed Type, and Design
Two species of Lactobacillus (RII and RIII) that were previously
isolated from the intestinal content of farmed healthy juveniles
of rainbow trout (commercial fish farm–Rybárstvo PoŽehy s.r.o.,
Slovak Republic) were employed in this study. Antimicrobial
susceptibility of the microorganisms was assessed based on
the “Guidance on the assessment of bacterial susceptibility to
antimicrobials of human and veterinary importance” provided
by the European Food Safety Authority. Sensitivity or intrinsic
resistance of the isolated organisms to a recommended set of
antibiotics make them safe for use as probiotics in aquaculture.
Both RII and RIII showed antagonistic activity against salmonid
pathogens Aeromonas salmonicida subsp. salmonicida CCM
1307 and Yersinia ruckeri CCM 6093 (Fečkaninová, 2017).
Furthermore, high level of tolerance to different pH, bile,
temperature, and high growth properties of the two species
were confirmed through in vitro studies (Fečkaninová, 2017).
The test probiotics were coated on commercial salmon feeds.
Briefly, a pure culture of probiotic bacteria that were grown on de
Man, Rogosa and Sharpe agar (MRS) plates (HiMedia, Mumbai,
India) for 48 h were inoculated into 1,000ml of MRS broth and
incubated for 18 h at 37◦C. The culture was centrifuged at 4,500
rpm for 20min at 4◦C in a cooling centrifuge (Universal 320 R,
Hettich, Germany). The resulting cell pellets were washed twice
and resuspended in 30ml of 0.9% (w/v) sterile saline. The feed
(batches of 1,800 g) was thoroughly coated with the bacterial
suspensions (Spirit Supreme, Skretting AS, Norway) using a
vacuum coater (Rotating Vacuum Coater F-6-RVC, Forberg
International AS, Norway). The bacterial counts on feeds were
∼108 cells.g−1 (RII/RIII), as determined by spread plating on
MRS agar plates and incubating for 48 h at 37◦C. The control
feeds were coated with 0.9% of sterile saline alone. The coated
feeds were stored at 4◦C until they were offered to Atlantic
salmon.

Experimental Fish, Feeding Regime, and
Environmental Parameters
Atlantic salmon of average weight 522± 68 g were maintained in
800 L tanks in a flow-through seawater system, earlier described
in Sørensen et al. (2017). A 20-day feeding trial was conducted
at the research station, Nord University, Bodø, Norway. Three
groups of fish (n= 45 fish/tank; 3 replicate tanks per group) were
offered feeds with (RII ∼108 cells.g−1-RII; RIII ∼108 cells.g−1-
RIII) or without probiotics (Control—C). The fish were fed ad
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libitum; the feeds were dispensed two times a day, between
08.00–09.00 and 14.00–15.00, using automatic feeders (Arvo-
Teck, Huutokoski, Finland). The water flow rate, temperature,
salinity and O2 levels in the tanks were 800 L/h, 6.7–7.1◦C, 33
ppt, >85% saturation measured at the outlet, respectively. A
photoperiod of 24:0 LD was maintained throughout the feeding
trial.

Collection of the Intestinal, Tank Biofilm,
and Rearing Water Samples
First, the fish were euthanized using 160 mg/L of MS222 tricaine
methanesulfonate (Argent Chemical Laboratories, Redmond,
WA, USA). Thereafter, the body surface of the fish was swiped
with 70% ethanol. The fish were then dissected to aseptically
remove the GIT from the abdominal cavity. The distal intestinal
(DI) region was separated from the GIT and the content and
surface mucus samples from the DI were collected (n = 18 for
each group; 6 fish/tank) using sterile forceps and sterile glass
slides, respectively. In addition to these fish samples, we collected
environmental samples: water from the main inlet to the rearing
hall (inlet water, n = 1), water from the rearing tanks (n = 3)
and biofilm from the walls of the rearing tanks (n = 3). From
the 3 tanks of each group, one liter of rearing water was filtered
using 0.2µm pore-size filters (Pall Corporation, Hampshire,
United Kingdom) and the filter paper was stored at −80◦C. The
biofilm samples were scraped from the walls of the 3 tanks of each
group. The fish and biofilm samples were collected in cryotubes,
snap-frozen in liquid nitrogen and stored at−80◦C.

The sample abbreviations reported in this article are: (i)
fish samples–Control distal intestine content (CDC), RII distal
intestine content (RIIDC), RIII distal intestine content (RIIIDC),
Control distal intestine mucus (CDM), RII distal intestine
mucus (RIIDM), RIII distal intestine mucus (RIIIDM); (ii)
environmental samples– Control tank water (CW), RII tank
water (RIIW), RIII tank water (RIIIW), inlet water (IW), Control
tank biofilm (CB), RII tank biofilm (RIIB), RIII tank biofilm
(RIIIB).

DNA Extraction and PCR Amplification of
Bacterial 16S rRNA Gene for Illumina
MiSeq Amplicon Sequencing
Genomic DNA was extracted from the content, mucus and
biofilm samples using the Quick-DNATM Fecal/Soil Microbe
96 kit (Zymo Research, Irvine, CA, USA) following the
manufacturer’s protocol. Metagenomic DNA Isolation kit for
water (Epicenter Biotechnologies, Madison, WI, USA) was
employed to extract the genomic DNA from the water samples.
The quality of the extracted DNA was checked on 1.2% (w/v)
agarose gel. Qubit 3.0 fluorometer (Life Technologies, Carlsbad,
USA) was employed to quantify the concentration of DNA.

To describe the changes in the intestinal bacteria under
the influence of LAB, we amplified the V3–V4 region of the
bacterial 16S rRNA gene employing a dual-index sequencing
strategy described by Kozich et al. (2013). The PCR reactions
were carried out in triplicates, each reaction (25 µl) volume
contained 12.5 µl of Kapa HiFi Hot Start PCR Ready Mix (KAPA

Biosystems, Woburn, USA), 1.5 µl of each forward and reverse
primer (at a final concentration of 100 nM), 3.5 µl of DNAse
and nuclease free water (Merck, Darmstadt, Germany) and 6
µl of DNA template and/ or 6 µl of negative PCR control. The
thermocycling conditions included initial denaturation at 95◦C
for 5min, followed by 35 cycles of denaturation at 98◦C for 30 s,
annealing at 58◦C for 30 s, extension at 72◦C for 45 s, and the
final extension performed at 72◦C for 2min. After performing
the PCR, the resulting amplicon triplicates were pooled and
visualized on 1.2% (w/v) agarose gel stained with SYBR R© Safe
(Thermo Fisher Scientific, Rockford IL, USA), and the amplicon
size was compared to a 1 kb DNA ladder (Thermo Fisher
Scientific, Inc.). No amplification was observed in the negative
PCR control. Only the amplicons (∼550 bp) with clear visible
bands were selected, purified using the ZR-96 ZymocleanTM Gel
DNA Recovery Kit (Zymo Research) and eluted in 15 µl of
elution buffer. The eluted amplicon library (sequencing library)
was quantified by qPCR using the KAPA Library Quantification
Kit (KAPA Biosystems). After quantification, each amplicon
library was normalized to an equimolar concentration (3 nM)
and validated on the TapeStation (Agilent Biosystems, Santa
Clara, USA), prior to sequencing. The normalized library pool
was further diluted to 12 pM, spiked with equimolar 10% Phix
control and then paired-end sequencing was performed using
the 600 cycle v3 sequencing kit on the Illumina MiSeq Desktop
sequencer (Illumina, San Diego, CA, United States) in 2 runs
with inter-run calibrators to reduce eventual differences between
sequencing runs.

16S rRNA Gene Sequence Data Processing
Sequence data quality check, processing and analyses: The
sequence quality of the raw reads generated from the Illumina
MiSeq machine was checked using FastQC (Andrews, 2010). The
forward reads (R1) corresponding to V3 region were employed
for subsequent analyses because they were of better quality than
the reverse reads (R2) corresponding to V4 region [Phred quality
score (Q) ≤ 15]. Sequence processing was performed using the
UPARSE (USEARCH version 9.2.64) software by Edgar (2013);
this step included quality filtering and operational taxonomic
units OTU clustering. FastQ files were used as the input file for
the UPARSE pipeline. The raw reads were truncated to 240 bp
and quality-filtered. The reads were truncated to remove the low-
quality base pairs at the 3

′
-end and to make all samples of same

sequence length. Furthermore, chimeric sequences were removed
using the UCHIME algorithm (Edgar et al., 2011). The quality-
filtered sequences were clustered into OTUs at 97% sequence
similarity level. For taxonomy prediction, we employed the
16S rRNA Ribosomal Database Project (RDP) training set with
species names v16. This RDP training set was used as a reference
database because the large 16S databases like SILVA, Greengenes,
or the full RDP database may give unreliable annotations of short
16S rRNA tags (Edgar, 2018). Taxonomic ranks were assigned
to the OTUs using the SINTAX algorithm (Edgar, 2016) using a
bootstrap cutoff value of 0.5. Afterwards, OTUs with a confidence
score <1 at the domain level and the OTUs belonging to the
phyla Cyanobacteria and Chlorophyta were removed to exclude
the plant-related sequences from the microbiota analysis. After
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constructing theOTU table, the counts were rarefied to the lowest
number of sequences per sample to get an even sampling depth to
facilitate comparisons between the treatment groups. The OTU
count data was divided into 4 sets based on the sample type,
namely the DI content, DI mucus, tank water and tank biofilm
samples. The downstream analyses were performed separately on
these 4 sets. Furthermore, to ensure that we employ content and
mucus data from the same fish, only 14 fish from each group were
considered for the downstream analyses. In total 103 samples
were used for the downstream analyses, including the tank water
and biofilm samples. The raw 16S rRNA gene sequence data from
this study has been deposited in the EuropeanNucleotide Archive
(ENA) under the accession number ERP110004.

Analyses of microbial diversity and composition: R codes
were executed in RStudio v3.5.0 (RStudio Team, 2016) and
the functions of the R packages “iNEXT” v2.0.12 (Hsieh et al.,
2016), “phyloseq” v1.22.3 (McMurdie and Holmes, 2013) and
“ggplot2” v2.2.1 (Wickham, 2016) were used to make the
rarefaction curves for the species richness, to calculate and
visualize diversity indices, and to prepare the abundance plots.
Another R package called “microbiome” v1.0.2 (Lahti et al., 2017)
was used to make core and rare microbiota (relative abundance
of core taxa) plots. Alpha diversities were calculated based on
the formula suggested by Jost (2006); for Shannon diversity
(effective number of common OTUs) and Simpson diversity
(effective number of most abundant OTUs). Beta diversity was
examined by conducting weighted UniFrac distance metric (for
fish samples)-based PCoA and double principal coordinates
analysis (DPCoA, for water and biofilm samples) (Fukuyama
et al., 2012).

The feeding design, sample processing and sequencing, and
analyses are shown in Figure 1.

Statistical Analysis of the Bacterial 16S
rRNA Gene Amplicon Data
Statistical analysis was also performed in RStudio v3.5.0.
Kruskal-Wallis test followed by Dunn’s test was employed to
detect differences in alpha diversity, and we report statistically
significant differences at p < 0.05 and statistical trends at
p ≤ 0.15. Betadisper was used to check the assumption of
heterogeneity in dispersions; after that Adonis (PERMANOVA)
followed by pairwise comparisons was employed (999
permutations) to understand the significant dissimilarities
of the communities. “ANCOM” v1.1–3 (Mandal et al., 2015)
was used to detect the differentially abundant OTUs in the
treatment groups, and “Boruta” v5.3.0 R package (Kursa and
Rudnicki, 2010) was employed to find the relevant OTUs that
caused the differences in the intestinal bacteria of the three fish
groups.

Microbial Network Construction and
Comparison of Topology
We used “SPIEC-EASI” v0.1.4 R package (SParse InversE
Covariance Estimation for Ecological Association Inference) for
generating the single-domain bacterial network. SPIEC-EASI
is a statistical method that assumes the underlying microbial

interaction networks to be sparse (Kurtz et al., 2015). In this
study, we employed the neighborhood selection (MB) method
on the sequenced 16S rRNA gene (V3 region) data of both
DI content and mucus samples to understand the community
organization.

We explored the co-occurrence networks to uncover the
probable biological interactions occurring within the microbial
communities. We used the top 200 OTUs for network
construction, since it is advised to avoid extremely rare OTUs
or OTUs with a large number of zeros (Banerjee et al., 2018).
The co-occurrence microbial networks were constructed and
analyzed using the functions of the R package “igraph” v1.2.1
and customized ggplot2 commands. A network consists of a set
of vertices (commonly called as nodes) and set of edges. The
degree of a node is the number of connections it has with the
other nodes in the network. Betweenness estimates the number
of shortest paths that pass through the nodes in the network
and assortativity coefficient quantifies the extent of the selectively
connected labeled pair of nodes (Kolaczyk and Gábor, 2014).
We compared the topology of the networks of the content and
mucus samples separately by analyzing the node degrees and
betweenness of the control and LAB-fed groups using Kruskal-
Wallis test followed by Dunn’s test.

RESULTS

We analyzed the V3 region amplicons of the 16S rRNA
gene that was sequenced on our high-throughput sequencing
platform. A total of 28,747,884 high-quality reads were clustered
into 1,823 OTUs at 97% identity threshold. These reads were
rarified based on sample-size to 12,855 reads/sample; this
allowed us to assess most of the underlying microbial diversity
(Supplementary Figures 1A,B).

The differences in the DI bacterial communities of the LAB-
fed fish compared to the control fish are explained based on
the following diversity metrics: overall microbial richness (i.e.,
counts of individual OTUs), effective number of OTUs (counts of
common and dominant OTUs), taxonomic composition, relative
abundances of the bacterial taxa. Furthermore, we present
the significant and relevant bacterial communities of the DI
microbiota. We also describe the topology of the networks of the
bacterial communities in the 3 fish groups.

Differences in the Microbial Diversity and
Composition of the Intestinal and
Environmental Microbiota
LAB feeding did not affect the species richness of the bacterial
community in the DI content (Figure 2A). However, this was
not the case for bacteria in the DI mucus; the species richness
was found to be higher in the mucus of the RIII-fed group (p =

0.004 for RII vs. RIII and p = 0.071 for RIII vs. C) (Figure 3A).
We observed differences in the effective number of common and
dominant OTUs in the mucus of LAB-fed groups, (p= 0.109 and
p = 0.146 for RII vs. RIII; Figures 2B, 3B and Figures 2C, 3C).
Comparison of the Faith’s phylogenetic diversity (PD) of the DI
content did not reveal any significant differences (Figure 2D).
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FIGURE 1 | Illustration of the study design, sampling and sequence analyses.

For the DI mucus, differences were observed between the PD
associated with the three fish groups (p = 0.004 for RII vs. RIII
and p = 0.079 for RIII vs. C; Figure 3D). It is noteworthy that
the median alpha diversities of RII lies below the corresponding
values of C although we did not detect a trend or statistically
significant difference between the feed groups. PCoA based on
the weighted UniFrac distance matrix revealed the beta diversity
of the bacterial communities; the differences between the control
and LAB-fed groups were statistically significant (Figure 4A: F
statistic= 9.215, R2 = 0.320, p< 0.001; and Figure 4B: F statistic
= 3.114, R2 = 0.137, p < 0.002).

The beta diversity of the bacterial communities in the
rearing tank water and biofilm samples were also analyzed.
The bacterial communities in the water of the 3 study groups
were not different (Supplementary Figure 2A, F-statistic
= 0.753, R2 = 0.273, p = 0.684), as was the case with
the bacteria in the biofilm (Supplementary Figure 3A, F
statistic = 0.681, R2 = 0.185, p = 0.574). On the other hand,
the bacterial communities in the water were significantly
different from those of the fish (Supplementary Figures 2B–G).

Although we did not observe any significant differences
between the bacterial communities of the tank biofilm
and the intestinal mucus bacteria of the LAB-fed fish
(Supplementary Figures 3B–D,F–G), the biofilm and
mucus bacteria of the control group were different
(Supplementary Figure 3E, F statistic = 16.29, R2 = 0.520,
p= 0.003).

Intestinal Bacterial Composition Under the
Influence of LAB
Bacteria belonging to 23 phyla were present in the DI
content andmucus (Figures 5A, 6A). Firmicutes, Proteobacteria,
Spirochaetes, Tenericutes, and Actinobacteria were found to
be dominant in the intestine of the three study groups
(Supplementary Figures 4A,C). Firmicutes were found to be
more abundant than the rest, in both the content and mucus
of the LAB-fed fish (Figures 5A,B and Figures 6A,B). The
abundance of the phylum Tenericutes (content and mucus)
was higher in RII-fed fish, than in the RIII-fed fish group
(Figures 5A,B and Figures 6A,B). Proteobacteria (content and
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FIGURE 2 | Diversity of the bacterial communities of the intestinal content. Boxplots show the species richness (A), Shannon index (B), Simpson index (C), and

Faith’s phylogenetic diversity (D). The feed group codes are as follows: Control, CDC; RII, RIIDC; RIII, RIIIDC.

mucus) decreased in the LAB-fed groups compared to the control
group (Figures 5A,B; Figures 6A,B andTable 1). The abundance
of Spirochaetes was higher in the DI mucus of RIII-fed fish
and lower in the RII-fed fish (Figures 6A,B). The abundant
phyla in water is shown in Supplementary Figure 5A. The
dominant phyla in water were Bacteriodetes and Proteobacteria
(Supplementary Figure 5B). The changes in the abundance of
most bacterial taxa in both DI content and mucus of the LAB-fed
groups compared to the control group is shown in Table 1.

At the genus level, Lactobacilli (Lactobacillus fermentum
and Lactobacillus paraplantarum) were found to be the
most dominant bacteria in the content and mucus of LAB-
fed fish (Figure 5B, and Supplementary Figures 4B–D) and
Mycoplasma was also found to be dominant in the DI mucus of
LAB-fed fish (Figure 6B).

Core Bacterial Communities of the
Intestinal Microbiota
We identified the core microbiota, i.e., the members of the
bacterial communities that were commonly shared among 99%
of the samples.The common core taxa–at prevalence (bacterial
community population frequency) of 99% and abundance
detection threshold of 20%–are shown in Figures 7A,B. In
the DI content, the abundant genera in the LAB-fed fish,
namely Lactobacillus, Ralstonia (L. paraplantarum, R. pickettii)
and Mycoplasma were noted to be among the core bacterial
members. Bradyrizhobium, Photobacterium, Phyllobacterium,

Brevinema, Methylobacterium (B. jicamae, P. phosphoreum,
P. myrsinacearum, B. andersonii, M. fujisawaense), and
Sphingomonas were also the shared core taxa in the content
(Figure 7A). In the DI mucus, the genera that had higher
abundance in the RIII-fed fish viz. Brevinema and Pelomonas
(B. andersonii, P. saccharophila) were observed among the core
bacterial members. Photobacterium, Ralstonia, Aquabacterium,
Bradyrizhobium, Methylobacterium, Phyllobacterium, (P.
phosphoreum, R. pickettii, A. parvum, B. jicamae,M. fujisawaense,
P. myrsinacearum), Sphingomonas, and Mycoplasma were also
the shared core taxa of the intestinal mucus (Figure 7B).

The DPCoA indicated differences in the core members of the
LAB-fed and the control group (content: F-statistic: 3.879, R2 =
0.165, p= 0.004; mucus: F-statistic: 5.844, R2 = 0.219, p= 0.001;
Supplementary Figures 6A,B).

Significantly Abundant and Relevant
Bacterial Taxa of the Intestinal Microbiota
ANCOM analysis detected the significantly abundant bacterial
OTU in the DI content, which turned out to be L. fermentum in
RIII-fed fish (Table 1). However, this bacterium was not detected
as a significant feature in the DI mucus.

Boruta analysis gave 9 and 8 relevant OTUs in the intestinal
content andmucus, respectively. In the DI content, L. fermentum,
L. paraplantarum, Streptococcus sobrinus, Corynebacterium
simulans, Lactococcus plantarum, W. cibaria, C. amphilecti, and
bacterial taxa belonging to Streptococcus and Xanthomonodales
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FIGURE 3 | Diversity of the bacterial communities of the intestinal mucus. Boxplots show the species richness (A), Shannon index (B), Simpson index, (C) and Faith’s

phylogenetic diversity (D). Different letters indicate statistically significant differences (P < 0.05) between the study groups. The feed group codes are as follows:

Control, CDM; RII, RIIDM; RIII, RIIIDM.

were the relevant bacteria. L. paraplantarum was found to be
abundant in the RII-fed group, whereas L. fermentum and
Xanthomonodales were found to be abundant in the RIII-fed
group. S. sobrinus, C. simulans, L. plantarum, W. cibaria, C.
amphilecti were reduced in abundance in the LAB-fed groups. In
themucus, Lewinella antarctica, L. paraplantarum, L. fermentum,
Salinisphaera, Colwellia aestuarii and bacteria belonging to-
Gammaproteobacteria, Rhodobacteraceae, and Clostridiales were
found to be the relevant bacterial taxa (most of them were
abundant in the mucus of the RIII-fed fish–Table 1).

Association Network of OTUs
The DI Content Bacteria

The single-domain bacterial (SDB) network derived from the
DI content of the 3 groups comprised of one giant connected
component (Supplementary Figure 7). The significantly
abundant and relevant OTUs were labeled based on their
membership in different modules (Figures 8A–C). The
connectivity pattern of the significantly abundant and relevant
OTUs in the phylum-level co-occurrence network is shown
in Supplementary Figures 9 A–C. The average node degrees
were 4.27 (SD: 3.44), 3.71 (SD: 1.52), 4.06 (SD: 2.48) for the
control, RII- and RIII-fed fish, respectively. Similarly, the
values for betweenness were 370 (SD: 369), 396 (SD: 351), 388
(SD- 391). The average node degrees and betweenness of the
three groups were not significantly different. The degree of

assortativity (assortativity coefficient ca) of the phylum-level
network associated with the three groups (control, RII- and RIII-
fed fish) were 0.09, 0.19, and 0.10, respectively. The significantly
abundant and relevant OTUs belonged to different phyla and
modules (Figures 8A–C and Supplementary Figures 9 A–C).
The degree distribution of the microbial network (for all OTUs)
of the study groups (Supplementary Figure 11A) revealed that
there are many highly connected hub nodes for the bacterial
network of the RII-fed fish and the hubs of the control group
have more node degrees.

The DI Mucus Bacteria

The SDB network derived from the DI mucus of the control,
RII, and RIII groups comprised of one giant connected
component (Supplementary Figure 8). In the bacterial
network of RII-fed fish, we observed a singleton (C.
aestuarii), a dyad (2 OTUs of Mycoplasma), and a triad (L.
paraplantarum, W. cibaria, and P. piscicola) with no connection
to the main network (Supplementary Figure 8). As for the
RIII-fed group, there were 3 dyads (Sphingobacteriales +

Myxococcales, 2 OTUs of Mycoplasma, and Xanthomonadales
+ Gammaproteobacteria) with no connection to the main
network (Supplementary Figure 8). The significantly abundant
and relevant OTUs were labeled based on their membership in
different modules (Figures 9A–C).
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FIGURE 4 | Beta diversity of the intestinal bacterial communities. Principal

coordinate analysis plot (A) shows the differences in the composition of the

bacterial communities in the intestinal content (Control, CDC; RII, RIIDC; RIII,

RIIIDC). Principal coordinate analysis plot (B) shows the differences in the

composition of the bacterial communities in the intestinal mucus (Control,

CDM; RII, RIIDM; RIII, RIIIDM).

The connectivity pattern of the significantly abundant and
relevant OTUs in the phylum-level co-occurrence network is
shown in Supplementary Figures 10 A–C. The average node
degrees were 4.12 (SD: 2.20), 2.29 (SD: 2.09), 2.74 (SD: 1.19)
for the control, RII- and RIII-fed fish, respectively. The values
for betweenness of the control, RII- and RIII-fed fish were
505 (SD: 664), 481 (SD: 596), 613 (SD: 766), respectively.
Dunn’s test identified significant differences between the LAB-
fed groups, and between control and RIII-fed fish; for node
degree, but not for edge betweenness; p = 0.0002, p =

0.003 and p = 0.08, p = 0.07, respectively. The degree
of assortativity (assortativity coefficient ca) of the phylum-
level network for the three groups (control, RII- and RIII-
fed fish) were −0.01, −0.07, and 0.13, respectively. The
degree distribution of the microbial network (for all OTUs)
of the three groups is shown in Supplementary Figure 11B.
The node degree histogram showed that the hubs of the
RII-fed groups have higher node degrees than the other
groups.

The main results of this study are summarized in Figure 10.

DISCUSSION

Probiotics are live microbes that can impart health-benefiting
effects on host organisms. For instance, feeding of some species
belonging to genera Lactobacillus and Bifidobacterium can elicit
positive effects on host health (Wang et al., 2015; Bagarolli
et al., 2017). Probiotics alter the gut microbiota and interact
with them to produce several types of metabolites, vitamins, and
antimicrobial agents that affect the host physiology (Saulnier
et al., 2011; O’Shea et al., 2012; LeBlanc et al., 2017). In
the present study, we investigated the intestinal microbiota
changes in Atlantic salmon after feeding them with dietary
supplements of two Lactobacillus spp., named RII and RIII.
To understand the differences in the microbial community
associated with the content and mucus of the DI, the bacteria in
the two samples were analyzed separately because the microbial
niche in the DI mucus is distinct compared to the intestinal
contents.

Feeding LAB to the fish may facilitate their establishment
in the intestine, although significant difference was noted for
the abundance of only one of the two LAB species. The feed-
delivered organisms also altered the diversity and composition
of the DI bacteria differently. RIII supplementation caused a
significant increase in the species richness and phylogenetic
diversity of the bacterial community in DI mucus. Furthermore,
both RII and RIII caused a shift in the community composition;
bacteria belonging to different genera were altered in the two
feed groups. The co-occurrence networks indicated differential
bacterial associations in the control and LAB-fed groups.

Water bacterial communities may have an effect on the
microbiota of fish. To clarify this, we compared the microbial
community composition in the intestinal and environmental
samples. Notwithstanding the fact that different extraction
methods can cause small variations in the microbial profile
(Wagner Mackenzie et al., 2015) studies have shown that
rearing water has a minor effect on the GI microbiota in fish
(Giatsis et al., 2015; Uren Webster et al., 2018). Betiku et al.
(2018) have demonstrated that recirculating water systems have
more diverse microbial composition compared to the flow-
through system. However, similar to other reports (Yan et al.,
2016, Lokesh et al., 2018, Gupta et al., under review) water
bacterial communities might not have affected the intestinal
bacterial profile in our study. Also, none of the dominant
OTUs of water were detected in the DI of fish, suggesting
that host-specific gut microbial species selection is modulated
by the host gut habitat and host’s genotype (Giatsis et al.,
2015).

LAB Increases the Microbial Diversity in
the Intestinal Mucus
Corresponding to our observation on the content bacteria, a few
previous studies have also shown that LAB supplementation does
not alter the intestinal bacterial diversity (Chao1 and Shannon
diversities); in humans (Van Zanten et al., 2014) and in mice
with colon cancer (Mendes et al., 2018). On the other hand,
species richness, Shannon and Simpson diversities, and PD
of the bacteria in the DI mucus were higher in the RIII-fed
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FIGURE 5 | Barplots showing the abundance of all bacterial phyla (A), and dominant genera (B), in the intestinal content. The height of each bar segment represents

the abundance of individual operational taxonomic units (OTUs) stacked in order from greatest to smallest, and separated by a thin black border line. Color codes for

the dominant genera: Proteobacteria—shades of green, Spirochaetes—dark blue, Firmicutes—shades of yellow, Actinobacteria—orchid, and Tenericutes—dark

orange.

fish. In the case of mucus bacteria of RII-fed fish, we noted
a slight decrease (p > 0.05) in alpha diversity compared to
the control fish. Previous studies have shown that Lactobacillus
can increase the bacterial PD in the gut of mice (Usui et al.,
2018) and weaning piglets (Zhao et al., 2016). On the contrary,
offering LAB in combination with Bifidobacterium breve and
Bifidobacterium longum did not result in greater bacterial species
diversity (Chao1, Shannon index and PD) in mice that received
antibiotics (Grazul et al., 2016).

LAB Promotes the Abundance and
Dominance of Intestinal Lactobacillus and
Other Firmicutes
L. paraplantarum (LP) is related to L. plantarum (Curk
et al., 1996). It was dominant in the RII-fed group and L.
fermentum (LF) was found dominant in the RIII-fed group.
Lactobacilli are a group of gram-positive ubiquitous LAB that
produce organic acids as end products of their metabolic
activity linked to carbohydrate fermentation (Bernardeau et al.,
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FIGURE 6 | Barplots showing the abundance of all bacterial phyla (A), and dominant genera (B) in the intestinal mucus. The height of each bar segment represents

the abundance of individual operational taxonomic units (OTUs) stacked in order from highest to smallest, and separated by a thin black border line. Color codes for

the dominant genera: Proteobacteria—shades of green, Spirochaetes—dark blue, Firmicutes—shades of yellow, Actinobacteria—shades of orchid, and

Tenericutes—dark orange.

2006). LP is known to produce bacteriocins, which are
antimicrobial peptides produced as a defense response (Tulini
et al., 2013). A Lactobacillus isolate (LP 11-1) stimulated
the innate immune system and induced tolerance against
the pathogenicity of Pseudomonas aeruginosa in silkworm
(Nishida et al., 2017). LF has been found to restore the
expression of markers associated with the maintenance of
intestinal barrier function, and recover the SCFAs- and lactic

acid-producing bacterial populations in mouse suffering from
colitis (Rodriguez-Nogales et al., 2017).

Lactobacillus is part of the normal intestinal flora of fish
(Ringø et al., 1995; Spanggaard et al., 2000; Ringø and
Olsen, 2003). In zebrafish, probiotic Lactobacillus helps to
overcome infection (He et al., 2017). In Nile tilapia (Oreochromis
niloticus), LF is known to improve fish immune response
(Nwanna and Bamidele, 2014). LF (LbFF4 strain) along with
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TABLE 1 | Changes in abundances of the bacterial taxa by LAB feeding.

Sample type Intestinal content Intestinal mucus

X
X
X

X
X
X
X
X

Taxa

Groups
RII RIII RII RIII

Acidobacteria ↑ ↑ ↑ ↑

Actinobacteria ↑ ↑ ↓ ↓

Fusobacteria ↓ ↑ ↓ ↓

Deinococcus-Thermus ↑ ↑ ↓ ↑

SR1 ↑ – – ↑

Chloroflexi ↑ ↑ – –

Parcubacteria ↓ ↓ ↑ ↑

Planctomycetes ↓ ↓ ↑ –

Lactobacillus fermentum ↑ ↑ ↓ ↑

Lactobacillus paraplantarum ↑ ↓ ↑ ↑

Colwellia aestuarii ↑ ↓ ↓ ↑

Streptococcus sobrinus ↓ ↓ ↓ ↑

Lewinella antarctica ↓ ↑ ↑ ↑

Lactobacillus plantarum ↓ ↓ ↓ ↓

Acinetobacter radioresistens ↓ ↑ ↓ ↓

Novosphingobium sediminicola ↓ ↑ ↓ ↓

Phyllobacterium myrsinacearum ↓ ↑ ↓ ↓

Ralstonia pickettii ↓ ↑ ↓ ↓

Stenotrophomonas maltophilia ↓ ↑ TND TND

Undibacterium oligocarboniphilm ↓ ↑ TND TND

Micrococcus luteus ↓ ↑ ↓ ↓

Enterococcus cecorum ↑ – TND TND

Mycoplasma ↑ ↓ ↑ ↑

Aquabacterium ↓ ↓ ↓ ↓

Bradyrizhobium ↓ ↓ ↓ ↓

Brevinema ↓ ↓ ↓ ↑

Delftia ↓ ↓ ↓ ↑

Methylobacterium ↓ ↓ ↓ ↓

Aquabacterium parvum ↓ ↓ ↓ ↓

Pelomonas ↓ ↓ ↓ ↑

Photobacterium ↓ ↓ ↓ ↓

Sphingomonas ↓ ↓ ↓ ↓

Weissella ↓ ↓ TND TND

Brevinema andersonii ↓ ↓ ↓ ↑

Pelomonas saccharophila ↓ ↓ ↓ –

Bradyrizhobium jicamae ↓ ↓ ↓ ↓

Methylobacterium fujisawaense ↓ ↓ ↓ ↓

Photobacterium phosphoreum ↓ ↓ ↓ ↓

Aliivibrio logei TND TND ↓ ↓

Caulobacter segnis TND TND ↓ ↓

Cornybacterium ↓ ↓ ↓ ↓

Propionibacterium acnes TND TND ↓ ↓

Arrows indicate changes in abundance (blue arrow: increase, red arrow: decrease, bold

black line: no change, TND: taxon not dominant).

L. plantarum (LbOG1 strain) exhibit in vitro antibacterial
activities against fish pathogens in Clarias gariepinus (Adenike
and Olalekan, 2009). The higher abundance of intestinal
Lactobacillusmembers and the altered bacterial abundance in the
LAB-fed fish confirms that LAB feeding can change the intestinal
microbial composition.

Enterococcus cecorum, was also found to be dominant
in the content of the RII-fed group compared to the
control group (Table 1). Enterococcus spp. isolated from the
intestine of rainbow trout (Oncorhynchus mykiss) are used
as probiotics due to their antimicrobial activity against fish
pathogens (Carlos et al., 2015). The functional potential of
E. cecorum in Atlantic salmon has not yet come to light
although one particular strain is known to cause infections in
broilers (Herdt et al., 2009).

Clostridiales (belonging to Firmicutes) were higher in
the mucus of salmon offered diets with RIII. Commensal
Clostridiales are known to promote gut health by modulating
gut homeostasis and taking part in immune activation (Lopetuso
et al., 2013).

LAB Favors Certain Members of
Tenericutes, Spirochaetes, and
Actinobacteria
LAB significantly aided in altering the abundance of the genus
Mycoplasma (Tenericutes) and B. andersonii (Spirochaetes) in
the mucus, which are the common core members in the
DI content of Atlantic salmon (Figure 7A). Mycoplasma has
consistently been isolated from salmon intestine (Holben et al.,
2002; Zarkasi et al., 2014) and its presence as a core microbiota
suggests that it may be a commensal organism in the intestinal
ecosystem. B. andersonii has been reported in the intestinal
microbiota of flatfish, Solea senegalensis (Tapia-Paniagua et al.,
2010). Although B. andersonii is known to digest lignocellulose
and fix nitrogen in termite guts (Kudo, 2009), their functional
importance needs to be elucidated. The abundance of the genus
Micrococcus (M. luteus), a member of Actinobacteria, was higher
in the DI content of the RIII-fed group (Table 1). Though M.
luteus is known to be a pathogen for rainbow trout (Salmo trutta
L.) and brown trout (Oncorhynchus mykiss) (Pkala et al., 2018)
an in vivo feeding study has suggested that they can enhance
the growth and health of Nile tilapia (Abd El-Rhman et al.,
2009).

LAB Largely Decreased the Abundance of
Proteobacteria
Proteobacteria is the most abundant phylum in many marine
and freshwater fishes (Yan et al., 2016; Lokesh et al., 2018) and
it is also known to dominate the gut microbiota of Atlantic
salmon (Gajardo et al., 2016; Lokesh et al., 2018). Therefore, it
was surprising to find this taxon in low abundance in the LAB-
fed and the control fish. A general decrease in the abundance
of intestinal Proteobacteria has also been reported in farmed
Atlantic salmon that were transferred to seawater (Rudi et al.,
2018). Taxa belonging to Proteobacteria are involved inmetabolic
pathways that participate in carbon and nitrogen fixation and in
the stress response regulatory system (Vikram et al., 2016). They
are also important in the digestive process in fish (Romero et al.,
2014). P. phosphoreum, a known gut symbiont of marine fish,
helps in chitin digestion and use luciferase- reoxidize reduced
coenzymes and other molecules for metabolism (Nealson and
Hastings, 1979). N. sediminicola and P. myrsinacearum are
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FIGURE 7 | Abundance of the core bacterial taxa in the intestinal content (A) and mucus (B). Color codes: Shades of green—Proteobacteria, yellow—Firmicutes,

dark blue—Spirochaetes, and dark orange—Tenericutes.

known as nitrogen-fixing bacteria (Gonzalez-Bashan et al., 2000;
Muangthong et al., 2015). On the other hand, R. pickettii
formerly known as Burkholderia pickettii has genes to biodegrade
aromatic hydrocarbons (Ryan et al., 2007). In the current and
in our recent (Gupta et al, under review) studies we found
that P. myrsinacearum and R. pickettii are part of the core
gut microbiota of Atlantic salmon; N. sediminicola was also
significantly abundant in the intestinal mucus of the fish fed
oligosaccharide. Functions of the aforementioned bacteria are
not yet reported in fish.

LAB Affects the Microbial Association
We inferred single-domain networks using the SPEIC-EASI
framework, and highlighted the significantly abundant and
relevant OTUs in the intestinal microbiota. For DI mucus, the
inferred SDB network for RII-fed fish showed lower overall

connectivity. The node degree histograms also communicate
interesting information about the network; the mucus bacteria
of RII-fed group had hubs with more node degree. However,
the lower average node degree and lower selective linking
of the RII-fed group indicate less interactions among the
gut bacteria. Cooperative microbial communities are known
to provide microbiome stability because of their functional
dependence. Studies have shown that the stability declines with
an increase in microbial diversity and proportion of cooperative
interactions (Coyte et al., 2015). However, higher cooperating
microbial communities can cause a runaway effect that can
collapse the competing microbial population due to over-
representation of the most stable community (McNally and
Brown, 2016).

The dyads in the mucus bacterial networks of LAB-fed
fish were different, the exception being the one constructed
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FIGURE 8 | Network graphs showing the significantly abundant and relevant OTUs of the intestinal content in different modules of the network. Bacterial networks of

the control (A), RII (B), and RIII (C) fish. Nodes represent OTUs and specific colors of the modules reveal the membership of the significantly abundant and relevant

OTUs. The left graph shows the location of the OTUs and in the right graph, the significantly abundant and relevant OTUs that belong to the same module are shown

in callouts.
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FIGURE 9 | Network graphs showing the significantly abundant and relevant OTUs of DI mucus in different modules based on their membership for control fish (A),

RII (B), and RIII fish (C). Nodes represent OTUs and specific colors of the modules reveal the membership of the significantly abundant and relevant OTUs. The left

graph shows the location of the OTUs and in the right graph the significantly abundant and relevant OTUs that belong to the same module are shown in callouts.
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FIGURE 10 | Illustration summarizing the salient observations of the study. DI, distal intestine; C, control group; RII and RIII, LAB-fed groups.

with 2 OTUs of Mycoplasma which had higher abundance
in the RII-fed fish and lower abundance in the RIII-fed fish.
This result could be suggesting that intestinal Mycoplasma in
the LAB-fed fish was not associated with other gut bacterial
communities. In the content of LAB-fed fish, most of the labeled
OTUs (except OTU 8) were existing in their respective modules
(Figures 8B, C). In the mucus of RIII-fed fish OTUs belonging
to C. aestuarii, L. paraplantarum and Clostridiales were found
to exist in one module. Clostridiales and Rhodobacteraceae,
which had same module membership in the network of
the control fish were no longer closely associated after LAB
feeding. So was the case with L. fermentum and C. aestuarii.
Members affiliated to Rhodobacteraceae are known for their
denitrification properties, and Kraft et al. (2014) have shown
that Clostridiales indirectly participates in nitrate respiration
by providing fermentation substrates (e.g., acetate, formate, or
hydrogen) to Rhodobacteraceae-like denitrifiers. Our findings
suggests that the taxa belonging to the same module can be
functionally dependent but the alteration of their membership
after LAB feeding has to be further investigated.

Themucus bacteria of RIII-fed fish had higher species richness
and PD, and the significantly abundant and relevant OTUs
belonged to different modules. For the RIII-associated network,
2 OTUs each belonging to two modules (Rhodobacteraceae
and L. fermentum; C. aestuarii, and Clostridiales) had higher
abundances compared to the control group. In addition,
significantly abundant and relevant bacteria had higher
abundance in the RIII-fed fish compared to the control group.
This abundance pattern does not indicate negative feedback
loops (Coyte et al., 2015). These results of bacterial networks
have to be validated through culture-based studies.

CONCLUSION

In summary, LAB feeding promoted the dominance of
intestinal Lactobacillus (Firmicutes) and certain members
of the phyla Tenericutes, Spirochaetes, and Actinobacteria.
Although the abundances of many members of Proteobacteria
were decreased, the phylum remained dominant in the
distal intestine of Atlantic salmon. Dietary supplementation
with the two LAB strains shifted the intestinal bacterial
community composition. Furthermore, the co-occurrence
networks of the intestinal bacteria were also different for
the LAB-fed fish. Taken together, our results show that the
LAB influences the gut microbiota of Atlantic salmon. This
information will help in future studies that explore the microbial
interactions between LAB-modulated gut microbiota and the
host.

AUTHOR CONTRIBUTIONS

MS and VK procured the funding for the study. VK, MS, JK,
AF, and SG designed the study. JK provided the probiotics. AF
and SG conducted the feeding experiment. SG performed the 16S
rRNA sequencing studies. SG, VK, and JF analyzed the data. SG
wrote the manuscript with the guidance of VK. All authors read,
revised and approved the manuscript.

FUNDING

The study was undertaken as part of the project Bioteknologi–
en framtidsrettet næring (FR-274/16), funded by the Nordland
County Council, Norway.

Frontiers in Microbiology | www.frontiersin.org 15 January 2019 | Volume 9 | Article 3247

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Gupta et al. Lactobacilli Modulate Salmon Intestinal Microbiota

ACKNOWLEDGMENTS

The Lactobacillus strains employed in this study are the
property of The University of Veterinary Medicine and
Pharmacy in Košice, Košice, The Slovak Republic. We thank
Professors Peter Popelka (Department of Food Hygiene
and Technology) and Dagmar Mudroová (Department of
Microbiology and Immunology), The University of Veterinary
Medicine Košice for providing the microorganisms for this
study. We are thankful to Ghana Vasanth for her assistance
in sample collection, Martina Kopp for her technical help in
sequencing the libraries, and Nord University research station
staff for their help during the period of fish sampling. Special
thanks to Bisa Saraswathy for her support in data analysis,
scientific input, helpful discussions and preparation of the
manuscript. The authors acknowledge the open access
publication funding provided by Nord University.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2018.03247/full#supplementary-material
Supplementary Figure 1 | Sample-size-based rarefaction curves for the reads

obtained from the intestinal content (A) and mucus (B). The shaded portion

around each line represents the 95% confidence interval. Color code for the feed

groups: green lines- control, orange lines- RII, pink lines- RIII. Codes for content

samples: CDM-control, RIIDC-RII, RIIIDC-RIII. Codes for mucus samples:

CDM-control, RIIDM-RII, RIIIDM-RIII.

Supplementary Figure 2 | Double principal coordinate analysis plots showing

the beta diversity of the bacterial communities. Tank and inlet water (A), control

intestinal content and control tank water: F-statistic = 4.035, R2 = 0.211, P =

0.01 (B), RII intestinal content and RII tank water: F-statistic = 2.375, R2 = 0.136,

P = 0.07 (C), RIII intestinal content and RIII tank water: F-statistic = 5.006, R2 =

0.250, P = 0.002 (D), Control intestinal mucus and control tank water: F-statistic

= 16.291, R2 = 0.520, P = 0.003 (E), RII intestinal mucus and RII tank water:

F-statistic = 2.934, R2 = 0.163, P = 0.051 (F), RIII intestinal mucus and RIII tank

water: F-statistic = 3.910, R2 = 0.206, P = 0.03 (G).

Supplementary Figure 3 | Double principal coordinate analysis plots showing

the beta diversity of the bacterial communities. Tank biofilm bacteria (A), Control

intestinal content and control tank biofilm: F-statistic = 2.061, R2 = 0.120, P =

0.082 (B), RII intestinal content and RII tank biofilm: F-statistic = 1.915, R2 =

0.113, P = 0.015 (C), RIII intestinal content and RIII tank biofilm: F-statistic =

4.171, R2 = 0.217, P = 0.043 (D), Control intestinal mucus and control tank

biofilm: F-statistic = 5.807, R2 = 0.1279, P = 0.002 (E), RII intestinal mucus and

RII tank biofilm: F-statistic = 1.476, R2 = 0.09, P = 0.146 (F), RIII intestinal

mucus and RIII tank biofilm: F-statistic = 2.078, R2 = 0.121, P = 0.076 (G).

Supplementary Figure 4 | Barplots showing the dominant bacterial phyla and

species in the intestinal content (A,B) and mucus (C,D).

Supplementary Figure 5 | Barplots showing the abundance of the bacterial

phyla (A), dominant phyla (B) in the tank water. The height of each bar segment

represents the abundance of individual operational taxonomic units (OTUs)

stacked in order from largest to smallest, and separated by a thin black border

line. Color codes: Proteobacteria—green, Bacteroidetes—light blue.

Supplementary Figure 6 | DPCoA showing the differences in the composition of

the core members of the intestinal content (A) and mucus (B) samples of the

control and LAB-fed groups.

Supplementary Figure 7 | The single-domain network graph of the bacteria in

the intestinal content. Nodes represent different phyla shown in different colors.

The three panels represent the three feed groups: Control (A), RII (B), RIII (C).

Supplementary Figure 8 | The single-domain network graph of the bacteria in

the intestinal mucus. Nodes represent different phyla shown in different colors.

The three panels represent the three feed groups: Control (A), RII (B), RIII (C).

Supplementary Figure 9 | Network association graph showing the connectivity

pattern of the significantly abundant and relevant OTUs in the intestinal content of

the Control (A), RII (B), and RIII (C) groups.

Supplementary Figure 10 | Network association graph showing the connectivity

pattern of the significantly abundant and relevant OTUs in the intestinal mucus of

the Control (A), RII (B), and RIII (C) groups.

Supplementary Figure 11 | Histograms showing the degree distribution of the

bacterial networks associated with the intestinal content (A) and mucus (B).
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