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Determinants of ambient air pollution,
mortality, and life expectancy were ex-
amined in 54 countries.

A GLS random-effects model estimation
with first-order autoregressive [AR(1)]
was used in the study.

Long-term increase in income level by
1% declines mortality rate by 0.01%.
Inversed-U shaped curve between PM, 5
and income level was observed at a
turning point of US$ 48,061.

Ambient air pollution contributes signif-
icantly to reducing life expectancy and
increasing mortality.
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Background: The growing concern with environmental related impacts on mortality and morbidity means that the
conceptual framework of environment-health-economic policy nexus is salient in the global debate on air pollution.
Objectives: With time series data spanning 2000-2016, this study explored the proximate determinants of ambient
air pollution, mortality, and life expectancy in North America, Europe & Central Asia, and East Asia & Pacific regions.
Methods: The study applied historical data on urban population, total pollution, energy consumption, GDP per
capita, life expectancy, mortality rate and industrial PM, 5 emissions to develop six parsimonious models using
the generalized least squares (GLS) random-effects model estimation with first-order autoregressive [AR(1)] distur-
bance across 54 countries.

Results: An increase in income level by 1% declined mortality rate by 0.01% and increased longevity by ~0.02% (95%
Confidence Interval [CI]) in the long-run. An increase in industrial PM, 5 emissions per capita by 1% decreased life
expectancy by 0.004% and mortality rate by 0.02% (95% CI). Intensification of energy consumption and its related
services by 1% were found to increase industrial PM, 5 emissions by 0.42-0.45% (95% CI). An inversed-U shaped
curve between PM, 5 emissions per capita and income levels was found at a turning point of US$ 48,061. The validity
of an environmental Kuznets curve hypothesis between ambient air pollution and urbanization was confirmed,
while a rapid increase in population had a significant positive impact on ambient air pollution.

Conclusion: Ambient air pollution contributes significantly in reducing life expectancy and increasing mortality.
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However, sustained economic development, along with energy efficiency, and sustainable urban settlement plan-
ning and management are potential options for reducing ambient air pollution while improving quality of life
and environmental sustainability.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ambient air pollution has become a public health concern, due to its
impact on mortality and morbidity. It is estimated that seven million peo-
ple die annually from the combined effect of indoor and outdoor air pollu-
tion (WHO, 2014). Air pollution-attributable mortality results from
morbidity, such as stroke, ischaemic heart disease, chronic obstructive pul-
monary disease, lung cancer and acute lower respiratory infection in chil-
dren (WHO, 2012). Studies have examined the impact of ambient air
pollution on morbidity (Cohen et al, 2017; WHO, 2016), mortality
(Burnett et al., 2018; Mueller et al., 2016; Pope et al., 2018) and longevity
(Balakrishnan et al., 2019; Pope III et al., 2009; Schwartz et al., 2018). Al-
though all studies have triggered public health concerns in relation to
the impact of ambient air pollution on mortality rate, life expectancy and
morbidity, however, the results are inconsistent due to differences in de-
mographic characteristics, model estimation methods and the nature of
data (i.e. experimental, cross-sectional, time series or panel data)
employed. The by-product of unsustainable planning and management
policies from energy, agricultural, transport and industrial sectors often
spur excessive air pollution (WHO, 2014). Air pollution is, therefore, an in-
dicator of sustainable development, since, policies that address air pollu-
tion improve health outcomes and reduce greenhouse gas (GHG)
emissions (WHO, 2016). A recent study found a 90% decline in household
air pollution attributable to a reduction in traditional biomass energy con-
sumption, mainly due to rapid urban population growth (Zhao et al.,
2018). The Intergovernmental Panel on Climate Change (IPCC) 5th assess-
ment report confirms income level, population, energy, and GHG intensity
as the immediate drivers of environmental pollution. However, existing lit-
erature on the nexus between environment and health outcomes hardly
consider these relevant variables, hence, leading to omitted-variable bias.

As a contribution to the global debate on air pollution, this study for
the first time examined the determinants of industrial-related atmo-
spheric emissions of particulate matter (PM), mortality, and life expec-
tancy, with the addition of income level, population, urban population,
and energy consumption to control for omitted-variable bias. The study
further tested the validity of the environmental Kuznets curve (EKC) hy-
pothesis of industrial PM emissions versus income level and urban popu-
lation, respectively. Due to data availability, the study was limited to 54
countries for the period between 2000 and 2016. There are several esti-
mation techniques utilized for cross-sectional time series models, how-
ever, only few methods can control for missing data observations, serial
correlation and unbalanced panels. In this context, the study employed
the generalized least squares (GLS) random-effects model proposed by
Baltagi and Wu (1999) to develop six conceptual frameworks which in-
corporate the concept of sustainable development in the hypothesis. A
similar estimation method was applied to examine the nexus between
economic activity and air pollution (Davis et al., 2010). Our study demon-
strated that ambient air pollution, demographic characteristics, energy
and socio-economic policies have implications for health outcomes in
Europe, Central Asia, Australia, Canada and the US.

2. Materials and methods
2.1. Data

Table 1 presents the description of data variables. Seven data series
with an annual periodicity spanning from 2000 and 2016 from 54 coun-

tries in North America, Europe & Central Asia, and East Asia & Pacific re-
gions were employed in this study. The countries include Australia,

Albania, Armenia, Austria, Azerbaijan, Belarus, Belgium, Bosnia and
Herzegovina, Bulgaria, Croatia, Canada, Cyprus, Czech Republic,
Denmark, Estonia, Finland, France, Georgia, Germany, Greece,
Hungary, Iceland, Ireland, Italy, Kazakhstan, Kyrgyzstan, Latvia,
Liechtenstein, Lithuania, Luxembourg, Malta, Monaco, Montenegro,
Netherlands, Norway, Poland, Portugal, Republic of Moldova, Romania,
Russian Federation, Serbia, Slovakia, Slovenia, Spain, Sweden,
Switzerland, Tajikistan, Macedonia, Turkey, Turkmenistan, Ukraine,
United Kingdom, US, and Uzbekistan. The 54 countries were selected
due to data availability. Data on PM, 5 (kg per annum) are annual atmo-
spheric industrial PM emissions collated from the Centre on Emission
Inventories and Projections (CEIP, 2018) which operates the United Na-
tions Economic Commission for Europe (UNECE) and European Moni-
toring and Evaluation Programme (EMEP) emission database. Data
series on crude death rate (per 1000 people), life expectancy at birth
(years), total urban population, total population, energy consumption
(kg of oil equivalent per capita), and GDP per capita (current US$)
were obtained from the World Bank (2018) development indicators da-
tabase. The selection of the data series was based on the targets outlined
in the Sustainable Development Goals (SDGs) 3, 7-8, and 11-13 —re-
ducing air-pollution attributable mortality and preventable diseases; re-
ducing the reliance on fossil fuel energy technologies and increasing the
share of clean and renewable energy sources; ensuring sustainable eco-
nomic development; ensuring sustainable human settlement; reducing
unsustainable consumption and production patterns; and mitigating
climate change and its impacts (United Nations, 2015).

2.2. Data analysis

Due to the unequal distribution of the data series for the 54 coun-
tries, the study employed the GLS random-effects model estimation
with locally best invariant (LBI) test statistic proposed by Baltagi and
Wu (1999). The GLS random-effects model fits longitudinally based re-
gression with first-order autoregressive white noise [AR(1)] and it's ca-
pable of controlling for missing data, unbalanced panel data, serial
correlation and country-specific random effects. As a data pre-
processing technique, all the data series were transformed logarithmi-
cally (In) to provide the variables with a constant variance. In model 1
presented in Eq. (1), ambient air pollution of country i in year ¢t
(InPM, 5; () was regressed on urban population (InURBAN; ), energy
consumption (InENERGY; ), income level (InPGDP; ;) and the second-
degree polynomial of income level ( InPGDP?;,). The empirical specifi-
cation of the model used is expressed as:

Model 1: InPMys;, = &+ 3; InURBAN;; + 3, INENERGY,
+ B3 InPGDP;¢ + P4 InPGDP*;¢ + by, + &i¢ (1)

where « is the constant, 3’ s are the estimated parameters, ¢;  is the

Table 1
Description of data series in Europe, Central Asia, Australia, Canada and USA.
Variable Code Unit
Particulate matter (PM,s) PM2.5 kg
Crude death rate DEATH per 1000 people
Life expectancy at birth, total LIFE years
Urban population URBAN number
Total Population TPOP number
Energy consumption ENERGY kg of oil equivalent per capita

GDP per capita PGDP current US$
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country-specific random effect assumed to be uncorrelated with the co-
variates of the regressors and the error term, which follows indepen-
dent, identically distributed (i.i.d.) process with zero mean and
variance, and disturbance ¢; ; = pg; (—1 + 7, -

In model 2, ambient air pollution was regressed on energy consump-
tion, income level and the second-degree polynomial of income level,
expressed as:

Model 2 : InPM;5;; = o + 3; InENERGY; + 3, InPGDP;;
+B5 InPGDP?;; + ¢;, + i )

In model 3, ambient air pollution was regressed on urban population
and energy consumption, expressed as:

Model 3 : InPMys;; = & + 3; InURBAN;; + 3, INENERGY;; + ¢,
+ & 3)

In model 4, ambient air pollution was regressed on the total popula-
tion (InTPOP;, ;) and energy consumption, expressed as:

Model 4 : InPMss;; = &+ B; INTPOP;; + 3, INENERGY; + ¢b;,
+ &g (4)

In model 5, ambient air pollution per capita was regressed on in-
come level and the second-degree polynomial of income level to test
for the EKC hypothesis expressed as:

Model 5: InPM5C;e = &+ By INENERGY;; + 3, InPGDP;,
+Bs InPGDP%; + ¢y, + &1, )

where PM, 5 per capita (InPM, 5C; ;) was calculated by dividing PM; 5 by
the total population.

In model 6, life expectancy (InLIFE; ) was regressed on ambient air
pollution per capita and income level, expressed as:

Model 6 : InLIFE;; = & + 3; InPMy5C;i¢ + 3, InPGDP;; + i, + & (6)

In model 7, mortality rate (InDEATH; ;) was regressed on ambient air
pollution per capita and income level, expressed as:

Model 7 : InDEATH;; = & + 31 InPM5Ci; + 3, InPGDP;; + ¢,
+ & (7)

While the seven models were validated using the marginal effects
post-estimation technique, the EKC hypothesis was verified using the
Utest algorithm procedure by Lind and Mehlum (2010) expressed as:

PM5Ciy = ot + 31 PGDP;; + [32PGDP2,-¢ + ¢ (8)

where PM, 5C; ,, PGDP; ,, PGDP?; , o and &, are explained in the previous
equations.

3. Results

Figs. 1-4 present the mean distribution of pollutants, energy con-
sumption, income level, urbanization, population, life expectancy and
death rate from 2000 to 2016 in 54 countries in Europe, central Asia,
Australia, Canada and USA. The minimum average annual industrial
PM, 5 emissions occur in Monaco at 3381 kg while the highest emission
occurs in the US at 4,721,297,957 kg (Fig. 1). Fig. 2(a) shows the mini-
mum average energy consumption occurs in Tajikistan at 325 kg of oil
equivalent per capita, while the maximum energy consumptions occur
in Iceland at 14,462 kg of oil equivalent per capita. Tajikistan has the
minimum average income level at US$ 592 while the highest is
Monaco at US$ 130,851 [Fig. 2(b)]. Liechtenstein has the lowest mean
urban population of 5188 people compared to the US with the highest

urbanized population of 244,178,564 people [Fig. 3(a)]. The minimum
mean population occurs in Monaco with 35,547 people while the US
has the highest population of about 303,408,340 people [Fig. 3(b)].
The average life expectancy [Fig. 4(a)] at birth is the lowest in
Turkmenistan (66 years) and highest in Iceland and Switzerland
(82 years). On the contrary, the minimum mean death rate of 5 per
1000 people occurs in Uzbekistan while the highest death rate of 15
per 1000 people occurs in Bulgaria and Ukraine [Fig. 4(b)].

Table 2 shows the GLS random-effects model estimation results with
AR(1) disturbance. Different observations ranging from 795 to 905 were
included with 54 countries, and the regressors explained approximately
17-69% of variations in the response variables (PM; s, PM, s per capita,
life expectancy and death rate) estimated by the overall R-squared
value. All coefficients from the six models had the expected signs and
were statistically significant at 1, 5, and 10% level. The empirical results
found 0.72 and 0.79 coefficients on the nexus between PM, s and urban
population, signifying that a 1% increase in urban population increases
industrial PM, 5 emission levels by 0.72-0.79%. To determine the effect
of urban sprawl in developed economies, the study employed the path-
way to estimating the environmental Kuznets curve hypothesis with re-
sults presented in Table 3. As an addendum, the study confirmed the
existence of an inversed U-shape curve between industrial PM, 5 emis-
sions and urbanization at a turning point of 162,000,000 people. Simi-
larly, the study found a positive coefficient (0.81) on total population,
which is relatively higher than the coefficients on urban population,
reflecting the stronger effect of population on air pollution.

Empirically, a 1% increase in population escalates the levels of PM; 5
by 0.81%. To test the validity of the EKC hypothesis, the study employed
two different response variables (total industrial PM; 5 emissions and
PM, 5 emissions per capita) as a proxy for ambient air pollution. The lat-
ter response variable for estimating the EKC hypothesis was divided by
the total population of each country. The estimated coefficients (0.80
and 0.83) on GDP per capita for both response variables (pollutants)
were positive while the coefficients (—0.05) on the squared of GDP
per capita were negative, hence, confirming the validity of the EKC hy-
pothesis. To corroborate the hypothesis, the study further employed
the Utest estimation technique presented in Table 3. The Utest validated
the existence of an inversed-U shaped curve between PM, 5 per capita
and income level —at a turning point of US$48,061. The results are con-
sistent with Sarkodie and Strezov (2019b) who reported a turning point
of US$48,101 for selected developed countries. From an empirical per-
spective, an increase in country-specific income level intensifies ambi-
ent air pollution by almost 8% (—0.5*PGDP/PGDP?) and declines after
reaching a turning point of US$48,061. The three coefficients on energy
consumption from the estimated regression produced varied results
from 0.42 to 0.45, revealing a positive effect. Thus, intensification of en-
ergy consumption and its related services increase PM, 5 by 0.42-0.45%.

After examining the determinants of fine particulate matter, the
study proceeded to test the nexus between life expectancy, mortality,
income level and exposure to ambient air pollution. The coefficient
(0.019) on GDP per capita versus life expectancy is positive, confirming
the positive impact of a long-term increase in income level on longevity
by ~0.02%. In contrast, long-term increase in GDP per capita declines
mortality rate by 0.01%. Comparatively, growth in income levels in
both scenarios shows a domineering role in improving life expectancy
(~0.02%) compared to a reduction in mortality rate (0.01%). While a
1% increase in industrial PM, 5 emissions per capita decreases life expec-
tancy by 0.004%, an increase in the same increases mortality rate by
0.02%.

3.1. Model validation

The validity of the model is essential for making unbiased statistical
inferences. Although there were gaps in the data series for some coun-
tries considered in the study, only Fisher-type tests could be used for
testing panel unit root. First generational panel unit root tests, like Im-
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Pesaran-Shin which requires no gaps in observations, and Breitung, Im-
Pesaran-Shin, Hadri LM, Levin-Lin-Chu, Harris-Tzavalis and other sec-
ond generational panel unit root tests require a strongly balanced
panel data. However, such conditions are not required by the Fisher-
type tests. The estimated panel unit root using Fisher-type tests like
Dickey-Fuller and Phillips-Perrons rejected the null hypothesis that all
the panel contains unit root at first difference, hence, confirmed the
data series were integrated of order one, I(1) [Supplementary Material].
Due to the data limitations of the study, an econometric estimation
method was adopted in STATA Version 15 capable of controlling for
the unbalanced panel with missing data. The estimated Baltagi and
Wu (1999) locally best invariant (LBI), modified Bhargava et al.
(1982) Durbin-Watson test statistics were within the acceptable
range, thus, validating the robustness of the six models. Fig. 5 presents
the conditional marginal effects with a 95% confidence interval (CIs).
The marginal effect is a post-estimation technique utilized after estimat-
ing the proposed six models. It outputs corresponding statistics from
predicting previously fit model using either fixed and average covari-
ates or the integration of remaining covariates (Williams, 2012). The
plots of the estimated marginal effects of all the six models depicted
in Fig. 5 were within the 95% confidence interval bands, hence,
confirming the stability of the estimated models.

4. Discussion

Rapid urbanization has a long history with increasing levels of ambi-
ent concentration of air pollution, due to its associated socio-economic
and environmental challenges. This study, in line with previous studies
(Wang et al., 2018; Wang et al., 2019), demonstrated that rapid growth
in urban population increases industrial PM emissions at the initial
stages but air pollution declines after urban sprawl exceed 162 million
population. Except for the US with over 244 million urban population,
the available data shows that countries like the Russian Federation,
Germany, United Kingdom, France, Turkey, Italy, Spain, Ukraine and
Canada with expanded urban dwellers below 162 million population
have high levels of industrial induced ambient air pollution. In contrast,
industrial air pollution was found to decline in America and European
countries with high urban population compared to developing coun-
tries (Yang et al., 2018). Thus, rapid urban population growth has a mit-
igating effect on industrial PM emissions in developed countries (Wang
et al.,, 2019). The mitigating effect stems from the stringent environ-
mental regulations and improved industrial-related abatement technol-
ogies instituted in urban areas of developed countries.

The significant positive impact of population on ambient air pollu-
tion is consistent with Chen et al. (2018). Increasing population growth



494 S.A. Sarkodie et al. / Science of the Total Environment 683 (2019) 489-497

LIFE
( a) 825
100°N 78.1
73.8
69.4
75°N
65.0
50°N
25°N
0°N-
25°8
L4
50°S
160°E 150°W 100° W 50°W 0°E 50°F 100°E 150°E 160° W
DEATH
(b) 16.0
100°N 14.2
123
10.5
75°N
8.7
6.8
50°N- 5.0
25°N
0°N
#5°8
»
50°S
160°E 150°W 100° W 50°W 0°E S0°E 100°E 150°E 160°W
Fig. 4. Mean geographical distribution of (a) Life expectancy at birth [years] (b) Crude Death rate [per 1000 people].
Table 2
GLS random-effects (RE) model estimation results with AR(1) disturbance.
Variables PM5 5 PM5 5 PMS 5 PM, 5C Life expectancy Mortality rate
Urban population 0.79** 0.72** - - - -
[0.07] [0.08]
Energy consumption 0.42** 0.42** 0.45** - - -
[0.06] [0.06] [0.06]
GDP per capita 0.80™* - - 0.83** 0.019** —0.01*
[0.12] [0.13] [0.001] [0.01]
Squared of GDP per capita —0.05** - - —0.05™* - -
[0.01] [0.01]
PM, 5 per capita - - - - —0.004** 0.02**
[0.002] [0.01]
Total population - - 0.81** - - -
[0.09]
Constant —1.63 2.56** 0.64 —2.57** 4.160™* 2.32%*
[1.25] [1.37] [1.54] [0.56] [0.011] [0.06]
Prob > ° 0.00** 0.00** 0.00** 0.00** 0.00** 0.01*
N 795 795 795 905 893 894
ID 52 52 52 54 53 54
R? 0.67 0.65 0.65 0.17 0.69 0.19

a, b, c represent models 1-3, Parenthesis [ ] denotes the standard error, ID = Number of countries, N = Number of observations, R’> = overall R-squared, **,*,*** rejection of the null hy-
pothesis at 1, 5 and 10% significance level.
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Table 3
Utest relationship for validating EKC hypothesis.
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Lower bound Upper bound Turning point
Interval US$138° US$192,989° US$48,061°
5036° 265000000" 162000000°
Slope 0.00* 0.00*
0.00° 0.00°
t-Value 8.64° —8.62°
24.71° —13.31°
P>t 0.00" 0.00"
0.00° 0.00°

Test: Hy: Inverse U shape vs. Hp: Monotone or U shape.
¢ Represents GDP per capita.
b Represents urbanization.
** Denotes the rejection of the null hypothesis.
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increases the demand for land, food, transport, energy, natural re-
sources and environmental infrastructures, which could intensify
human and socio-economic activities spurring ambient air pollution.
Rapid population growth has affected land-use and food production
systems through intensification and extensification, leading to ecologi-
cally damaging challenges due to intensive production and consump-
tion patterns (Preston, 1996). A strong feedback equilibrating
mechanism was found between population growth and air pollution
(Cramer, 2002). Population growth in developed countries with higher
levels of air pollution is relatively slow compared to developing coun-
tries (Cramer, 2002). In terms of sectoral contribution, population
growth plays a critical role in agrarian transformations compared to in-
dustrial pollution. While rapid population requires reallocation of natu-
ral resources to meet the growing demand for food, the same logic does
not apply when considering industrial transformations (Preston, 1996).
Hence, the effect of population growth on ambient air pollution is inten-
sive in agrarian-dependent economies compared to industrialized
economies.

Energy consumption remains the backbone of economic develop-
ment, however, unsustainable production and consumption patterns
have been linked to environmental pollution and degradation (Sarkodie
and Strezov, 2018). This study found a positive relationship between in-
dustrial PM, 5 emissions and energy consumption, consistent with Chen
et al. (2018). The empirical results depict that energy consumption and
income levels are intertwined. The nexus between industrial air pollution
and income levels produced an inversed-U shape, hence, validating the
EKC hypothesis. The underlying reasons for the observed inversed-U
shape can be attributed to environmental awareness, stringent
industrial-related emission laws, modern energy sources and the intro-
duction of advanced technologies like carbon, capture and storage in
high-income countries (Blanco et al., 2014; Edenhofer et al,, 2011;
Owusu and Asumadu, 2016). The concentrations of industrial PM, 5 in re-
lation to energy consumption patterns were relatively high in the lower-
middle and low-income countries (Chen et al,, 2018). Energy sector and
its related services are by far the major contributors to ambient air pollu-
tion (IEA, 2016). The level and trend of energy-related air pollution de-
pend on the phase of a country's economic development (pre-industrial,
industrial and post-industrial sector). At the initial stages of economic de-
velopment, demographic changes, such as rural-urban migration have the
tendency of increasing the concentration of energy-related air pollution.
Most industrialized economies depend on fossil fuel energy technologies
for power generation and industrial production —increasing the levels of
industrial and energy-related pollutants. This stage is characterized by
heavy manufacturing, energy-intensive, and labour-intensive production
with the aim of increasing the production of goods and services but with
limited energy efficient technologies (Xu et al., 2016). Lifestyle changes
and consumption patterns associated with wealth may increase the de-
mand for more energy services, such as electricity for appliances and oil
for transportation purposes, which may potentially escalate air pollution.
As income level rises further to a turning point of US$48,061 per annum,
households switch from polluting energy technologies to modern and
cleaner energy sources, leading to a decline in industrial PM emissions.
Ambient air pollution declines in services and decarbonized economies
due to stringent environmental policies, transfer of polluting industries
to developing countries, technological advancement, energy efficiency,
conservation and management options among the population
(Dasgupta et al., 2002; Sarkodie and Strezov, 2019a).

Further empirical evidence shows that sustained income level in-
creases life expectancy and decreases the mortality rate. 1% reduction
in industrial emissions of particulate matter was found to increase life
expectancy by 15% (Pope III et al., 2009). The monetary cost involved
in reducing ambient air pollution in high-income countries has a posi-
tive effect on life expectancy and quality of life. Sustained income levels
increase access to, inter alia, basic needs, quality healthcare, and educa-
tion. Economic theory links higher income levels to consumption pat-
terns —as such, improving household income levels and standard of

living improves quality of life by reducing undesirable mortality and
morbidity rates.

This study further observed a significant positive relationship be-
tween mortality rate and industrial PM, 5 emissions, consistent with
previous studies (Burnett et al., 2018; Lin et al., 2016; Pope Ill et al.,
2009), which showed that air pollution increases the risk of mortality
from stroke, cardiovascular and respiratory diseases. On the contrary,
this study found a negative nexus between life expectancy and indus-
trial PM emissions. The toxicity and adverse effects of ambient air pollu-
tion also depend on the economic status of countries and the magnitude
of concentration. A study showed that ambient air pollution increases
morbidity substantially in low- and middle-income countries due to in-
creasing levels of industrial PM, 5 emissions, demographic and epidemi-
ological changes (Cohen et al., 2017). Indoor air pollution is visible in
low-income countries with an overreliance on traditional biomass,
which leads to premature deaths from acute lower respiratory infection
and pneumonia in children and mortality from lung cancer and chronic
obstructive pulmonary diseases among adults (DiSano, 2002).

4.1. Limitations of the study

The empirical results from the estimated models remain valid based
on the following limitations of the study. First, due to the unequal
spaced observations and unbalanced characteristic of the panel data
used in this model, most first generational and second generational
panel unit root tests could not be applied, hence, there are uncertainties
about controlling for cross-sectional dependence. However, the estima-
tion technique employed accommodated for pre-estimation issues as-
sociated with the data. Second, there are currently no available critical
values to compare Baltagi-Wu LBI test statistics for diagnostics after
model estimation, however, marginal effects estimation techniques
were utilized to cross-validate the estimated models. Notwithstanding,
all the empirical results were consistent with energy, environment and
health economics literature. The conceptual framework developed in
this study utilized a parsimonious model which incorporated the SDGs
in the hypothesis, therefore, useful for all studies on environmental
and health economics and “nexus” testing.

5. Conclusion

Industrial PM emissions cause ambient air pollution, which is an envi-
ronmental risk factor that affects health outcomes. Long-term exposure
increases mortality, morbidity and reduces life expectancy. This study ex-
amined the proximate determinants of industrial PM, s emissions and the
effect on life expectancy and mortality from 2000 to 2016 in Europe, Cen-
tral Asia, Australia, Canada and the US. While evidence shows that
sustained income levels increase life expectancy and decrease mortality
rates, ambient air pollution in effect increases mortality rate. Economic
development and energy consumption were found to increase the con-
centration, toxicity, and adverse effect of ambient air pollution. The
study confirmed an inversed-U shaped relationship between rapid ur-
banization and ambient air pollution. Urban sprawl was found to occur
at the initial stages of economic development and may trigger higher
levels of urban pollution without careful urban settlement planning and
management. Urban-related ambient air pollution begins to subside
when the urban population attains its carrying capacity and authorities
begin to promote, inter alia sustainable human settlements planning,
land-use, capacity building, sustainable energy and transportation sys-
tem. Further studies are needed to validate the empirical results of this
study with different air pollutants and income groups.
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