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Nuy local Nusselt number

1. Introduction

The principles of heat transfer in manufacturing industry is a chief theory behind the design and production of
many household appliances and commercially used devices. The examples of heat transfer can be found in air
conditioning system, refrigerators, the TV and the DVD player, to name afew. Even heat tansfie more
important due to stretching sheet which has abundance of applications in industries, engineering, metallurgy,
paper production, drawing of plastitms, hot rolling wires, elongation bubbles, extrusion processes in which
the deformed materiel is pass out from die faal product, geological stretching of the tectonic plates during
earthquake etc.

A Blasius type movingow due to a stretching sheet issuing steadily from the slithas been investigated by
Sakiadi§l]. The numerical and integral methods have been carried out to obtain the solution of the underlying
study. He indicated that the boundary layer behavior on such surface is different than the surfaedassfgth.
Owing to the need of danitive experiment for the boundary layer of continuous surface, the combination of
experimental and analytical vecations have been considered in Tebal[2]. Athree page article by Crajri
extended the work of Sakiafli} in that he took the boundary layeow over a stretching sheet where velocity
varies linearly from the slit. The work on unsteady viscaughas been only assumed adjacentto stagnation
point by Rot{4] but far away from the plate thew is taken as steady. The plate performed harmonic motion in
its own planei.e. alongdirection and he has shown that this problem is solvable exactly. Danberg and Fansle
[5] enhanced this idea further for non-similar stretching wall where velocity is proportional to the distance
Chakrabarti and Gupfé] has extended the specialized case of Danberg and[Fhaskconsidered an
electrically conductinguid with a uniform transverse magnetield. The motionin the uid is caused by a
stretching of the wall. Soundalgekar and M{irftackled a heat transfer problem past a continuous semi-
in nite atplate in whichtemperature varies nonlinearlydse’, where A is a constant ands neveroor 1.

They observed that the Nusselt number increases with increasing the expaMant[ 8], on the other hand,
moved one step further and presented analysis for the three dimensienehused by two lateral directions
where wall velocities varies linearly. The list of available literature on boundanolagdor different uids
and ows over a stretching sheet with different aspectsis long. For detail the reader is referredttalDijtta
Grubka and BobbfL0-21], and forthcoming cited literature in next paragraphs.

Inboundary layer ow, if atemperature difference is strong then the assumptionidfproperties are
constant may lead to different results and hence wrong interpretation of the post processing. The dynamic
viscosity is highly dependent on atemperature and is weakly dependent on thermodynamic pressure. Takhar
etal[22] was the rstwho has discussed variabled properties. Pantokratorfa3 have discussed results of
variable viscosity on the@w due to a continuous movingt plate. He assumed that the Prandtl number is
variable across a boundary layer. His assumption is based on thigateof Prandtl number which depends on
viscosity i.e. if viscosity is variable so do the Prandtl number. This assumptionis not correct as discussed in
Andersson and Aarsadity] . A compact analysis on variablad properties for Sakiadis problem have been
presented by Andersson and Aars§2th They clarify some of the misconceptions prevalentin scienti
community over a variableuid properties. Lai and Kulackif] investigated variablelid properties for
convective heat transfer in a saturated porous medium since previous studies mostly dealt with eodstant
properties for water. Their work is also concerned on heat transfer analysis for gases too. Karetasizatan
studied the effect of radiation on the MHD Newtoniamd ow due to an exponentially stretching sheetwhen
considering the effects of viscous dissipation and frictional heating on the heat transport Higydthave
deliberated axisymmetric hydromagnetv of a third grade uid. The ideawas to observe characteristics of

ow over a stretching cylinder. They reported that the velocity and momentum boundary layer thickness is
dependent on the curvature parameter. They also mentioned that velocily {grbigher for third gradeuid
than the Newtonian and second graded with and without MHD. Very recently Batai al[ 28] discussed
MHD dissipative ow across slendering stretching sheet with temperature dependent variable viscosity. Study of
viscoelastic boundary layesw and heat transfer over an exponentially stretching sheet was examined by Khan
and Sanjayanarjd9. Popet al[30] have examined the imience of variable viscosity on laminar boundary layer

ow. They assumed theiid viscosity varies inversely with temperaturelAliconsidered heat transfer
characteristics over a nonlinearly stretching sheet. Peaalh@?] similar to Ali[31] have studied the effect of
variable viscosity and thermal conductivity over a nonlinearly stretching sheet. Magyari and§eller
considered mass and heat transfer in the boundary layers on acontinuous surface which is stretched
exponentially. Theow of aviscoelastiaid over a stretching sheet with transverse magnetitis assumed by
Anderssolfi34]. He showed that the MHD has the same effect on tiveas viscoelasticity. In a similar work, a
power-law uid over a stretching sheet was investigated by Andezsapa5]. They have shown that the
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Figure 1.Geometry of the problem.

magnetic eld make the boundary layer thinner for the underlying case. Nade&lffi6] analyzed the heat
transfer characteristic while presenting two cases, Prescribed exponential order surface teiffiesdtarel
prescribed exponential order heaix (PEHB. They studied Jeffreyid over an exponentially stretching

surface. Although, viscous dissipation is a key term appearing in energy equation but considered by very few

scientists. Pavitheet al[37] took this task to include viscous dissipation in dustigl over an exponentially

stretching sheet and also discussed two cases for heat transfer analysis: Prescribed exponential order surface

temperaturdPESYand prescribed exponential order heak (PEHF. Maboodet al[3g did analysis on
viscous incompressiblew along with radiation effect while taking exponentially stretching sheet. They
obtained the solution by using homotopy analysis me{ht#M). Mukhopadhyay39 studied MHD
boundary layerow and heat transfer towards an exponentially stretching sheet embedded in athermally
strati ed permeable medium. Singh and Agaf#élinvestigated the effects of variahléd properties of
Maxwell uid over an exponentially stretching sheet. They applied Keller-Box methond énumerical
solution. A variable thermal conductivity has been accounted with Catta@hdstov heat ux formulationin
Hayatetal[13].

All studies of the past have considered varialilgproperties with many differentuids over a different
type of stretching sheets. Not much work has been done on varigtilproperties, speccally temperature
dependent viscosity and thermal conductivity, over an exponentially stretching sheet with MHD effdict. We
these gaps and present some interesting results on this topic.

The present paper has been organized as follows. In sgatieipresent a mathematical model for thosv
and heattransfer analysis. The three distinct cases have been discussed i Shetcamputational
procedure has been explained in sectidn sectiorb, we present the graphs, tables and their discussion. The
conclusion has been drawn in section

2. Problem formulation

Consider a steady, two dimensional, incompressiiheof an electrically conductingiid over a sheet that has
been stretched exponentially. Thaxis is taken along the sheet grakis is normal to itB, is the strength of
uniform magnetic eld which is applied normal to the sheet. The induced magnelilds neglected because the
value of amagnetic Reynolds number is less than unity in an electrically conduadi®\d ., is a temperature of
the sheetand, is the temperature of the ambientid. The geometrical comguration of the problem can be

seeninthe gurelfor better understanding and visualization. The governing equations with these assumptions

are given by Andersson and Aardéth

{uws v 0, s S (13
(uuy vu) Suy B9 N (19
Ep(uTx VT KTy, S (19
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Table 2 Values of skin friction and wall temperature gradient for different physical parameters for
CaseB.

bvp4c Shooting method
Pr M € f (0) R(Gx f (0) R(Gx
7 0 0.1 3.3152541 24809717 3.3151441 2.480 938 2
— 0.1 — 3.492 4239 2.436 2617 3.492 291 2.436 224 3
— 0.2 — 3.654 614 7 2.395552 6 3.654 4571 2.3955111
— 0.3 — 3.805 688 1 2.357 806 3.805504 8 2.357 760 2
— 0.4 — 3.947 960 7 2.322 3623 3.947 8457 2.322 337
3 0.1 0.1 3.277 7335 1.402 2712 3.277 6795 1.402 261 8
5 — — 3.3945291 1.972 303 6 3.394 461 8 1.972 289 6
7 — — 3.492364 1 2.436 2428 3.492 291 2.436 224 3
10 — — 3.615561 8 3.022 006 2 3.6154815 3.0219747
7 0.1 0 3.5182186 2.612649 6 3.5181387 2.6126254
— — 0.1 3.492364 1 2.436 2428 3.492 291 2.436 224 3
— — 0.2 3.469 090 9 2.286 594 5 3.469 0201 2.286 5794

Table 3Values of skin friction and wall temperature gradient for different physical parameters

for Case C.
bvp4c Shooting method
Pr M € f (0 RCx f (0) R(Ox
7 0 0.1 3.268 118 3 2.509 089 3 3.268 09 2.509 08
— 0.1 — 3.441 1836 2.466 886 7 3.441 15 2.466 88
— 0.2 — 3.5993611 2.428 2206 3.599 32 2.428 21
— 0.3 — 3.746 2347 2.3922529 3.746 19 2.392 24
— 0.4 — 3.884 1387 2.358 4529 3.884 08 2.358 44
3 0.1 0.1 3.199274 3 1.4325278 3.19924 1.43252
5 — — 3.3332549 2.0025356 3.33321 2.002 53
7 — — 3.441 1836 2.466 886 7 3.441 15 2.466 88
10 — — 3.572 496 3.053 781 3.572 47 3.05377
7 0.1 0 3.469 863 5 2.644 825 3.469 83 2.644 81
— — 0.1 3.4411836 2.466 886 7 3.441 15 2.466 88
— — 0.2 3.4152734 2.3159895 3.41523 2.31598
Table 4Values of skin friction and wall temperature gradient witekVMD.1 andt = 0.1.
bvp4c Shooting method
Cases M Pr f°(0) R(0) f°(0) R0)
0.1 3
CaseA 1.358981 4 1.8484702 1.358 9571 1.848 469 8
CaseB 3.2777335 1.402 2712 3.2776795 1.402 261 8
CaseC 3.199274 3 1.432527 8 3.199 24 1.432 52
0.1 5
CaseA 1.358980 1 2.480 004 5 1.358 956 9 2.480 048
CaseB 3.3945291 1.9723036 3.394 4618 1.972 2896
CaseC 3.3332549 2.0025356 3.33321 2.002 53
0.1 7
CaseA 1.358961 7 2.9934557 1.358 956 9 2.993 482
CaseB 3.492364 1 24362428 3.492 291 2.436 224 3
CaseC 3.4411836 2.466 886 7 3.441 15 2.466 88

The effect of viscosity and thermal conductivity for all the three cases have been studied. Temperature of
ambient uidisTy = 278 Kwhile temperature of surface is takehas- 358 K. In gure?-3velocity and
temperature proles are presented for all Cases A, B and C. In comparison with Case A and C veloltippro

7



I0OP Publishing J. Phys. Commu®(2019 095005 A Mushtacetal

Table 5Comparison of RD) for M = 0 and for various Prandtl numbersto

previous data.
b Pr Magyari and Kellgp4] Pal[44] Presentresult
0.0 0.5 0.330 493 0.330 49 0.330496 78
— 1 0.549 643 0.549 64 0.549 650 44
— 3 1.122 188 1.122 09 1.122 0915
— 5 1.521 243 1.521 24 1.521 232
1.0 0.5 0.594 338 0.594 34 0.594 343 14
— 1 0.954 782 0.954 78 0.954 789 75
— 3 1.869 075 1.869 07 1.869 069 5
— 5 2.500 135 2.500 13 2.500 063 9
3.0 0.5 1.008 405 1.008 41 1.008 416 5
— 1 1.560 294 1.560 30 1.560 305 1
— 3 2.938 535 2.938 54 2.9385528
— 5 3.886 555 3.886 56 3.886 566 2
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Figure 2 Variation in dimensionless velocity plesf &l) for differentcasesatRr 0.7, M= 0.1and: = 0.1.
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Figure 3Variation in dimensionless temperature pkes ( ) for differentcasesatPs 0.7, M= 0.1and = 0.1.

Case B have been reduced adjacent to moving surface as shgwreih The same results have been observed
in momentum boundary layer thickness. Comparing with the Case B the temperatulefprdoth Cases A

and C decreases close to moving surface as shoguiie3. Effect of magnetic parameter M on temperature
and velocity proles have been shown iguresi—9. Temperature prole increases as we increase M and there is
adecreasing effect on momentum boundary layer for all three Cases A, B and@eki 0-13the effect of
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Figure 4 Variation in dimensionless velocity piesf &l) for different values of M with P& 3.

Case A
' ‘ ‘ —M=
---M=0.1
08 —--M=0.2
0.67
)
f=y
o
D
0.4¢
0.2
G0 5 10 15
M

Figure 5 Variation in dimensionless temperature ptes ( ) for different values of M with P& 3.
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Figure 6 Variation in dimensionless velocity piesf &l) for different values of Mwith = 0.1 and Pr= 3.
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Figure 7 Variation in dimensionless temperature pkes ( ) for different values of Mwith = 0.1 and Pr= 3.
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Figure 9 Variation in dimensionless temperature ptes ( ) for different values of Mwith = 0.1 and Pr= 3.

10



10P Publishing J. Phys. CommuB(2019 095005

A Mushtacetal

Case A

—Pr=0.7
-—-Pr=
~Pr=10

6(m)

10 15

M

Figure 10Variation in dimensionless temperature ples ( ) for different values of Prwith M= 0.1
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Figure 11Variation in dimensionless temperature ples ( ) for different values of Prwith M= 0.1 anc = 0.1.
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Figure 12Variation in dimensionless velocity plesf &l) for different values of Prwith M= 0.1and: = 0.1.

Prandtl number has been shown. The wall temperature reduces for all the Cases A, B and C whereas the velocity

pro leincreasesin Case B. lguresl4-15the effect of parameteon temperature prole has been shown. For
boththe Cases B and C there is anincrement in temperaturdsgro
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Figure 13Variation in dimensionless temperature ples ( ) for different values of Prwith M= 0.1 anct = 0.1.
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Figure 14 Variation in dimensionless temperature ples () for different values of parametewith Pr = 0.7 and M= 0.1.
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Figure 15Variation in dimensionless temperature ptes ( ) for different values of parametewith Pr = 0.7 and M= 0.1.
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