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ABSTRACT In the present work, we investigate the annihilation of persistent localized activity
states (bumps) in a Wilson-Cowan type two-population neural field model in response to α-type
spatio-temporal external input. These activity states serves as working memory in the prefrontal cortex. The
impact of different parameters involved in the external input on annihilation of these persistent activity states
is investigated in detail. The α-type temporal function in the external input is closer to natural phenomenon
as observed in Roth et. al. (Nature Neuroscience, vol. 19 (2016), 229–307). Two types of eraser mechanism
are used in this work to annihilate the spatially symmetric solutions. Initially, if there is an activity in the
network, inhibitory external input with no excitatory part and over excitationwith no inhibition in the external
input can kill the activity. Our results show that the annihilation of persistent activity states using α-type
temporal function in the external input is more roubust and more efficient as compare to triangular one as
used by Yousaf et al. (Neural networks., vol. 46 (2013), pp. 75–90). It is also found that the relative inhibition
time constant plays a crucial role in annihilation of the activity. Runge-Kutta fourth order method has been
employed for numerical simulations of this work.

INDEX TERMS Annihilation of bumps, α- function, integro-differential equations, neural networks,
Runge-Kutta fourth order method, symmetric solutions.

I. INTRODUCTION
The human brain is stimulating system contains billions of
neurons (nerve cells). The average human brain weighs about
1.2–1.4 kilograms and it is the most complex organ in the
human body. The most important thing in brain is neuron
which processes information and communicate through elec-
trical and chemical signals, control the activity of body.
The localized persistent states of activity in the cortical
networks [3] serves as the short-termworking memory which
is the ability to store stimulus-related information for few
seconds and discard it once it is not longer relevant.

Neuron transfer information in the form of electrical
pulses, different mathematical models describe this pro-
cess. Firing-rate and spiking-neuron models are studied by
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Daniel et al. [4] in which they focused on models that are
much related to the synapses and biophysical mechanisms of
neurons than connectionist models. The connectionist models
are used for normal behavior and clinical conditions, neuro-
modulation, learning and activity profiles in workingmemory
tasks. Working memory models can be broadly classified on
how the persistent activity is generated, although these classes
are not disjoint. One most popular mechanism is based on
the thought that activity is persistent through strong recur-
rent excitatory connections in a cell assembly [5]. Another
mechanism is the activity circulates in form of loops (called
synfire chains ) [3], which consists of feed-forward connected
subgroups with no direct feedback links between succeeding
groups of neurons.

In the applied mathematics and inparticular mathematical
neuroscience, the study of uniqueness, existence and stability
of localized persistent activity are important, the generation
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of coherent structures for different modeling approaches is
investigated in many studies [3], [6], [7], [9]–[14]. They
further studied the existence, stability, different shapes and
mechanisms that form these bumps in one population neu-
ronal model without recurrent excitations as discussed in
Jonathan and William [15].

We investigated the two-population neural field Wilson
Cowan model with spatio-temporal external input. Similar
studies in firing rate models are done by Folias and
Bressloff [16] and Blomquist et al. [17]. In Blomquist et al.
[17], they have studied two-population neural field model
with no external input, given as

∂ve
∂t
= −ve + ωee ⊗ Fe(ve−φe)− ωie ⊗ Fi(vi − φi) (1a)

τ
∂vi
∂t
= −vi + ωei ⊗ Fe(ve−φe)− ωii ⊗ Fi(vi − φi) (1b)

where ve and vi are the activity levels of excitatory and
inhibitory population, respectively, φe and φi represent the
corresponding threshold values for firing, τ is the ratio
between inhibitory and excitatory time constants called rel-
ative inhibition time, Fm (m = e, i) are the firing rate
functions. Neural responses are characterized by firing rates
and these firing rate functions converts these neural responses
firing rate of the population of neurons. The replacement of
the neural response function by the corresponding firing rate
is typically justified by the fact that each network neuron has
a large number of inputs (see [18] for further details). The
functions ωmn, (m, n = e, i) are connectivity functions.

This work is an extension of the work done by Yousaf
et al. [19] where they investigated the bump solution
of two-population neural field model with spatio-temporal
external input. They formulated the general necessary con-
dition for emergence of persistent activity states. They fur-
ther investigated the generation and annihilation of persistent
states of activity in the network for triangular type temporal
function and different spatial functions.

The idea of α function motivated by Roth et al. [1],
they investigated the thalamic inputs which provide motor,
multiple visual and visumotor signals to L1 of mouse V1.
The α-type function is observed in the experimental data
in this study. We are using the α-function as the temporal
part of external input because the α-type function is smooth
and more natural behavior as observed in working memory.
The emergence of selective persistent states of activity in
the working memory investigated by Afzal et al. [20] with
spatio-temporal external input. The effect of external input on
emergence of bumps for different spatial and smooth α-type
temporal functions of external input is investigated and found
that certain parameters play a key role in the generation of
persistent activity states in the network e.g. relative inhibition
time constant, total duration and the amplitude of external
input by Afzal et al. [20].
We have investigated the phenomenon of annihilation of

the activity in network using spatio-temporal external input
with α-type temporal part. Initially, there is an activity in

FIGURE 1. Sketch of Two population model (2) with spatio-temporal
external input (Ge and Gi ).

the network, two types of eraser mechanisms can be used
in the network to annihilate the activity, one is inhibitory
external input and other is excitatory external input. The
results in this work are obtained using MATLAB.

This paper is organized as follows: In Section 2,
we describe the two populationmodel (2) with spatio-temporal
external input. Section 3 summerizes the general properties
of the model (2). In Section 4 we demonstrate numerically
the annihilation of persistent activity states for various type
of transient external input. The conclusion and discussion of
the results shown in Section 5.

II. MODEL
The two-population model with spatio-temporal external
input given as

ve = αe ∗ ωee ⊗ Fe(ve − φe) (2a)

−αi ∗ ωie ⊗ Fi(vi − φi)+ Ge
vi = αe ∗ ωei ⊗ Fe(ve − φe) (2b)

−αi ∗ ωii ⊗ Fi(vi − φi)+ Gi

where the functions Gm, for m = e, i are spatio-temporal
external inputs, αm for m = e, i denote temporal kernels
which represent the impact of past neural firing on the
present activity levels in the network. The parameter τ is
ratio between inhibitory and excitatory time constants named
relative inhibition time, φe and φi stand for threshold values
for firing, Fm (m = e, i) is the firing rate function (these
functions constitute one parameter family of non-decreasing
and smooth functions which mapped the set of real numbers
on to the unit interval [0, 1]). The functions Fm (m = e, i)
are parameterized by a positive steepness parameter βm.
An example of firing rate function is given by

Fm(v) =
1
2
(1+ tanh(βmv)) (3)
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FIGURE 2. The firing rate function for different values of steepness
parameter β.

Here βm is the steepness parameter. For βm → ∞ (m =
e, i), the firing rate function Fm approaches the Heaviside
function 2:

2(v) =

{
0, v < 0
1, v ≥ 0

(4)

This phenomenon is shown in Fig. 2. The connectivity func-
tion is denoted by ωmn, (m, n = e, i) in (2) with some
important properties like symmetric, normalized, real valued,
bounded and positive. The functions ωmn are parameterized
by means of synaptic footprints σmn(m, n = e, i), i.e.

ωmn(x) =
1
σmn

9mn(ξmn), ξmn =
x
σmn

(5)

Here 9mn is non-dimensional scaling function. For example,
the Gaussian connectivity function of the type (5) is given as

9mn(ξmn) =
1
√
π
exp(−ξ2mn) (6)

The operator⊗ in (2) defines the spatial convolution integral,
given as

[ωmn ⊗ Fm(vm − φm)](x, t)

=

∫
∞

−∞

ωmn(x − x ′)Fm((vm(x ′, t)− φm))dx ′ (7)

and the temporal convolution integral αmn ∗ f is given as

[αm ∗ f ](x, t) =
∫ t

−∞

αm(t − t ′)f (x, t ′)dt ′ (8)

where the function αm for m = e, i represent temporal
kernels which represent the impact of past neural firing on
the present activity levels in the network. This impact decays
exponentialy with time. The common choice for the functions
αm are [2], [17], [21], [22]:

αe(t) = exp(−t), αi(t) =
1
τ
exp(−t/τ ) (9)

The system of Volterra equations (2) with exponentially
decaying temporal kernals is transformed into the following
integro-differential equations [17], [21], [23], [24]

∂ve
∂t
= −ve +

∫
∞

−∞

ωee(x − x ′)Fe(ve − φe)dx

−

∫
∞

−∞

ωie(x − x ′)Fi(vi − φi)dx ′ + Ge(x, t) (10a)

τ
∂vi
∂t
= −vi +

∫
∞

−∞

ωei(x − x ′)Fe(ve − φe)dx ′

−

∫
∞

−∞

ωii(x − x ′)Fi(vi − φi)dx ′ + Gi(x, t) (10b)

by mean of linear chain trick [25], [26]. Finally, the functions
Gm, m = e, i model the spatio-temporal external inputs. The
general form for the external input is:

Gm(x, t) = CmRm(x)gm(t) (11)

Here the temporal function is denoted as gm(t), Rm(x) spa-
tial part and Cm represent the amplitude of external input.
Schematically, the model (10) is illustrated in Fig.1, which
expresses the rate of change the activity levels in excitatory
and inhibitory populations.

III. GENERAL PROPERTIES OF THE MODEL
In the work of Faye and Faugeras [27], they investigated
the asymptotic stability, uniqueness and stability of a solu-
tion of non-linear delay integro-differential equations for
multi-population model. For properly designed connectivity
functions, firing rate function and external input functions,
one can prove that the initial value problem of (2) is locally
wellposed in the space of bounded continuous functions in
a way analogous to Potthast et al. [28] for one-population
models, and Faye and Faugeras [27] for multi-population
models with axonal and dendritic delay effects incorporated.
The boundedness of solutions to Wilson-Cowan type models
have been studied in several papers, for details please see:
[2], [17], [28]. Here we prove that the solution of initial value
problem (10) are uniformly bounded provided both the initial
conditions and the external input functions are bounded and
continuous.

A. BOUNDEDNESS
In the brief review of boundedness results, the connectivity
function ωmn for m = e, i is taken to be normalized and the
convolution 0 ≤ [wmn ⊗ Fm(um − φm)] ≤ 1 is uniformly
bounded for all x and t . The lower and upper bound function
for inhibitory and excitatory terms for the present choice of
temporal function will be same as in Yousaf et al. [19].

B. SPATIO-TEMPORAL EXTERNAL INPUT
Inorder to investigate the role of each part of the external input
on annihilation of ehe persistant activity states, the spatio-
temporal external input is splitted into three different parts.

Gm(x, t) = CmRm(x)gm(t − tm0), m = e, i (12)

where amplitude of external input is Cm, spatial function is
denoted by Rm(x).mThe temporal part is gm(t) and tm0 is
for translation axis for m = e, i. Moreover, we are using
symmetric and continuous functions as spatial part in external
input (12).

1) SPATIAL FUNCTIONS OF EXTERNAL INPUT
Spatial part divided into three following types of external
input.
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FIGURE 3. Stationary symmetric solution of model 1 with no external
input known as bumps [17]. The connectivity function is Gaussian
(a) Excitatory narrow bump (b) Inhibitory narrow bump (c) Excitatory
broad bump (d) Inhibitory broad bump. The threshold values are φe = .12
and φi = .08, synaptic footprints are σee = .35, σei = .48, σie = .60,
σii = .69.

FIGURE 4. Two types of spatial functions, where dashed and solid curves
represent excitatory and inhibitory functions, respectively. (a) Gaussian
function (13). (b) Exponential function (14).

1) The bump pair solution (broad and narrow ) determined
in Bloomquist et al. [17] and is shown in Fig.3, for more
details see [17].

2) Gaussian function is defined as:

Rm(x) =
1

ρm
√
π
exp(−(

x
ρm

)2), m = e, i (13)

where ρm (m = e, i) is the width parameter, shown
in Fig.4(a)

3) Exponential decay function shown in Fig.4(b)

Rm(x) =
1
2
exp(−|(

x
ρm

)|), m = e, i (14)

2) TEMPORAL FUNCTIONS OF EXTERNAL INPUT
In the study of annihilation of the activity in the network the
temporal part is assume to be the α-type function is defined
as:

g(t) =

{
0 t < t0
d1 t exp(−αt) t ≥ t0

(15)

FIGURE 5. Alpha type external input function defined in (15).

where d1 is the normalization constant with respect to the area
and is given as

d1 =
α2 exp(αT )

exp(αT )− αT − 1
(16)

The α-type function shown in Fig.5. We assume that

g(T ) = ε, ⇒ α = −
1
T
log(

ε

T
) (17)

where ε = 0.001 and T > 0. This condition (17) imposed due
to better comparison between different temporal functions.
The α-type function in cortex is observed in Roth et al. [1]
during some experimental results. Axonal calcium imaging is
a major technique used in neuroscience, Roth et al. [1] used
this technique to measure the information provided visual
cortex by the pulvinar equivalent in mice, the lateral posterior
nucleus (LP), as well as the dorsolateral geniculate nucleus
(dLGN). In [1], they have discussed the thalamic inputs which
provide motor, multiple visual and visumotor signals to L1
of mouse visual cortex V1, in this study α-type function is
observed in the experimental data in Roth et al. [1]. Here
V1 is primary visual cortex that receives the sensory inputs
from the thalamus and L1 is layer in V1.

IV. RESULTS
In this section, annihilation of persistent activity states is
discussed under the influence of spatio-temporal external
input (12). Before digging into results its important to men-
tion that we are in the parameter regiem, where two bump pair
solutions exist. This is the case for no external input, the most
generic case, two stationary and symmetric solutions exist
[17], one of which is nammed as narrow and other is broad.
The stability of these bumps depend on the parameter relative
inhibition time costant τ . The narrow bump is unstable for
values of τ , while the broad bump pair is stable for small
and moderate values of relative inhibition time τcr = 3.01.
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FIGURE 6. Emergence and annihilation of the activity using α-type
temporal function (15), the function R is assumed to be broad bump in
the external input. The emergence and annihilation of (a) excitatory and
(b) inhibitory activity. (c) Excitatory external input. (d) Inhibitory external
input. The corresponding parameters are given in table 1. The rest of
parameters are same as used in Fig.3.

Once the activity is evoked or emerged in the system, it will
converge to a broad bump (attractor state). Now the next
chalenge is to annihilate this activity.

We are interested to demolish the stable activity states
in working memory using α-type external input (15). In
Yousaf et al. [19], they have investigated the bump pair for-
mation in presence of external input in two populationWilson
Cowan type. They also have investigated the annihilation
of activity by using external input which is spatially and
temporally dependent, but they used different external input
with triangular temporal part motivated by Pinto et. al [29].
We will investigate the annihilation by considering exter-
nal input with more realistic and natural choice of α-type
temporal function (15) in the external input.

A. ANNIHILATION OF THE ACTIVITY
In this section, we are investigating the different aspects
of external input to annihilate the activity in the network.
We found that the persistant activity in the system is anni-
hilated by using, either inhibitory (i.e. Ge(x, t) = 0) or
excitatory external input (i.e. Gi(x, t) = 0). The activity is
also disappeared by a using a combination of both (excitatory
and inhibitory) inputs but with stronger inhibitory input as
compare to excitatory.

1) INHIBITORY EXTERNAL INPUT EFFECT
Here we focus on the effect of inhibitory external input only
(by keeping excitatory input Ge(x, t) = 0) to annihilate the
activity. Fig.6 which shows the emergence and annihilation of
the activity using α-type temporal function (gm(t)) and broad
bump Rm(x) as a spatial function.

TABLE 1. Parameters sets used to demonstrate the annihilation of the
activity given in Fig.6.

FIGURE 7. Temporal functions for the external input (12) and pulse width
coordinate planes corresponding to the activities observed in Fig.6.
(a) α-type temporal function g(t) (b) Corresponding pulse width
coordinates in the process of emerging and annihilation of activity g(t)
and R(x) = broad bump as spatial function. Red and black color
diamonds (�) represent the initial and final state, while the symbol
asterisk (∗) stands for the broad bump solution.

FIGURE 8. Ti versus Ci and the stable activity erase by the presence of
inhibitory external input in the system for α-type temporal function (15)
for different values of τ (a) τ = 1.5 and (b) τ = 2.5. Successful
deactivation and failure of deactivation represented by green and red
color respectively. Here ti0 = 30, so that’s way x-axis start at 30.

The parameter-plane Ti versus Ci for the two intermediate
values of τ is investigated in Fig.8, where green and red
color regions show successful annihilation and unsucessful
annihilation, respectively. The erasure process of persistent
activity for the larger values of τ becomes easier as expected,
shown in Fig.8. e.g. for the value of τ = 2.5 gives larger green
region as compare to τ = 1.5. As we move more closer to
τcr = 3.1, the stable activity will become itself more unsta-
ble and a very small input will erase it. The corresponding
pulse width coordinates are shown in Fig.7 showing that its
relatively easier to annihilate the activity than emergence.

2) EXCITATORY EXTERNAL INPUT EFFECT
Excitatory external input can also be used to erase the activ-
ity using alpha type temporal functions g(t) in the external
input [30]. This is due to the fact that exciting more exci-
tatory neurons in the network disturbs the balance between
excitatory and inhibitory population connections. Since each
neuron has its refractory period which makes it impossible
for previously excited neurons to fire action potential and
in the same time excitation increases inhibitory response.
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FIGURE 9. Annihilation of the persistent activity states using excitatory
external input using α-type function (15) as temporal function and broad
bump as a spatial function for different inhibitory time constant τ . The
CT -plane for (a) τ = 2.2 (b) τ = 2.4.

FIGURE 10. Annihilation of the persistent bump state excitatory external
input using α-type function (15) as temporal function and broad bump as
a spatial function for different inhibitory time constant τ . The CT -plane
for (a) τ = 2.5 (b) τ = 2.6.

FIGURE 11. Annihilation of the persistent bump state excitatory external
input using α-type function (15) as temporal function and broad bump as
a spatial function for different inhibitory time constant τ . The CT -plane
for (a) τ = 2.8 (b) τ = 3.

This ultimately increases the inhibitory activity which in turn
causes the annihilation of activity in the network. This is
the basic phenomena about excitatory external input onto
excitatory population.

The annihilation of persistent bump state under the influ-
ence of α-type temporal part in the external input, broad bump
is used as a spatial part. The dependence of τ can be observed
from figures 9,10,11, eraser of persistent state of activity is
easier for larger τ . The eraser mechanism is due to the fact
that the value of τ is much smaller then τcr , e.g., τ = 2, 2.2,
no such annihilation was seen in Fig. 9. For the moderate
values of τ e.g., τ = 2.5, 2.6, the remarkable difference is
shown in Fig.10, but if we choose the value of τ closer to τcr
e.g., τ = 2.8, 3 for which the persistent state of activity is no
longer stable shown in Fig.11. It is obvious from the results
shown in Fig.8 and Fig.10, the minimum value required to

TABLE 2. Minimum Values of Amplitude in the external input to
annihilate the activity. Cz and Cy stands for minimum aplitude in present
work and Yousaf et. al. [19], respectively. The minimum time duration and
amplitude required to annihilate the persistent activity states.

annihilate the activity for both the cases i.e. in inhbitory and
excitatory annihilators are smaller than Yousaf et. al. [19].
The comparizon is given in Tab. 2. Thus the present choice
of temporal function (Alpha function) is a better choices as
compare to triangular one. Present work can be benificial for
those working on brain modeling. This work may provide
useful information for designing functions which best fits for
external inputs in brain.

V. CONCLUSION AND DISCUSSIONS
The present study is a continuation of an interested and one
of best studied area in neuro-science, how to Annihilate the
working memory (Bumps solutions) in the prefrontal cortex
by using a transient spatio-temporal external input in two
population neural fieldmodel. Before going into further detail
its important to mention that model with no input corresponds
atmost two stationary and symmetric solutions called bumps
(self sustained activity). One is named as narrow and the
other as broad. The stability of these two bump pairs depend
on relative inhibition time τ . In this work we have used
broad bump as a spatial part of external input. It is stable
for small and moderate values of τ < τcr = 3.01 [17].
We are in the paramerter regime of two bump pair solutions.
So if activity is stable then it will converge to broad bump as
shown in Fig.7. The idea of external input was introduced in
Yousaf et al. [19], where they investigated the annihilation of
the activity under the effect of external input with triangular
function as the temporal part [19], [29].

In the present study, We have investigated the effect of α-
type external input on annihilation of self sustained activ-
ity states instead of triangular one. This choce of external
input is more natural as observed by Roth et al. [1]. The
role of different parameters of the external inputs have been
investigated to annihilate the stable activity (broad bump/ self
sustained activity) in the system. The most important fact in
our observation is α-type function which gives much better
results instead of triangular function e.g. the green region
is appeared more earlier as compared in case of triangular
function as shown in Fig.8 to Fig.11.

it observed that, for larger values of relative inhibition time
constant τ , activity state is annihilated quickly as compare to
the case τ <= τcr = 3.01 for both cases (Inhibitory or exci-
tatory input erraser). This is due to the fact that the activity
near the critical time contant is alredy about to die and only
a very small external input is enough to annihilate it, while
for comparitively smaller values of τ < τcr , strong external
input is required to annihilate the activity Fig.8 to Fig.11.
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It is obvious from results (Fig.8) For the choice of
Inhibitory erraser (Ge = 0, Gi > 0), since excitatory and
inhibitory activities are already in the system and there is a
balance between them. This balance is resulted in the form
of stationary solutions (bumps). Therefore, a small inhibitory
external input is sufficient disturb this ballance which results
the annihilation of activity. If this process is repeated for
larger values of τ , its even more easier to annihilate the
activity. For the case of excitatory external input as an erraser
its not that much easier to annihilate the activity as compare
to inhibitory erraser. This is because of that each neuron has
its refractory period which makes it impossible for previ-
ously excited neurons to fire action potential and in the same
time excitation increases inhibitory response. This ultimately
increases the inhibitory activity which in turn causes the
annihilation of activity in the networkm (Fig.11).

All above discussion shows that the smooth choice of
temporal part in the external input is a better chaoice as
compare to temporal one. It is obvious from the results in
(Fig.8–Fig.10), the minimum value of the amplited of exter-
nal input required to annihilate the activity for both the cases
(inhbitory and excitatory annihilators) is smaller as compare
to Yousaf et. al. The corresponding comparizon is given in
Tab.2.

In future, the effect of external input on generation and
annihilation of self sustained activity states can further be
investigated for some other choices of temporal functions
which are enriched with more importnat parameters.
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